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Abstract. The Accretion-Ejection Instability has been proposed to explain the low frequency Quasi-Periodic
Oscillation (QPO) observed in low-mass X-Ray binaries, in particular Black-Hole candidates. Its frequency, typi-
cally a fraction of the Keplerian frequency at the disk inner radius, is exactly in the range indicated by observations.
The variations of the frequency with the disk inner radius (extracted from spectral fits of the X-ray emission)
might thus be a useful test. In this paper we discuss how changes in the rotation curve, due to relativistic effects
when the disk approaches the central object, affect the physics of the instability, and thus this frequency-inner
radius relation. We find that the relationship between the frequency of the mode and the Keplerian frequency at
the inner disk radius (rint) departs from the one obtained in a Keplerian disk, when rint approaches the last stable
orbit. This might agree with the recently published results, showing a discrepancy between the behavior of the
QPO in the micro quasar GRO J1655-40, compared to other sources such as XTE J1550-564 and GRS 1915+105.
In a companion paper (Rodriguez et al. 2002, hereafter Paper I) we have presented detailed observational results
for GRO J1655-40 and GRS 1915+105. We show how the opposite correlations found in these sources between
the disk color radius (assumed to be close to its inner radius) and the QPO frequency could indeed be explained
by our theoretical result.
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1. Introduction

This is the second of two papers where we compare the
properties of the Accretion-Ejection Instability (AEI), re-
cently found to occur in the inner region of disks with a
moderate magnetic field (Tagger & Pellat 1999, hereafter
TP99), with the low frequency Quasi-Periodic Oscillation
(QPO) observed in galactic Black-Hole binaries.

The AEI is a spiral instability, driven by magnetic
stresses, of disks threaded by a magnetic field of mod-
erate (i.e. near equipartition) amplitude. It belongs to
the same family as galactic spirals, driven by self-gravity
(see Binney & Tremaine 1987 and references therein) or
the Papaloizou-Pringle instability (Papaloizou & Pringle
1985), driven only by pressure forces. It is essentially the
same spiral instability found by Tagger et al. (1990); this
instability was quite weak and thus unlikely to be very
efficient in an accretion disk, but it was shown in TP99
that a different physical process, the corotation resonance
(analyzed as a coupling with a Rossby wave in the disk)
could give it a more sizable growth rate. Rossby waves
are familiar in planetary atmospheres, where their most
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spectacular manifestation is the Great Red Spot of
Jupiter. They propagate in flows with a gradient of vortic-
ity, a gradient most often neglected in analytical studies
of disks.

In TP99 it was at the same time recognized that this
resonance offers in a magnetized disk a unique prospect,
responsible for the name given to the instability: the AEI
grows (and causes accretion) by extracting energy and an-
gular momentum from the disk, and storing them in a
Rossby vortex at its corotation radius (the radius where
the wave rotates at the same velocity as the gas in the
disk). If the disk has a low-density corona, this energy
and momentum will be re-emitted as Alfvén waves trav-
eling upward to this corona, where they might power a
wind or a jet. Thus, and although only a limited compu-
tation of this effect was given in TP99 (a full computation
will be presented in a forthcoming paper), the AEI pro-
vides a unique way of connecting accretion and ejection
in the disk. This contrasts with other known disk insta-
bilities, or with the hypothesis of a turbulent viscosity,
which all result in a radial transport of energy and mo-
mentum, making a connection with MHD models of jets
very difficult. These models show that the jet is very effi-
cient at carrying away angular momentum from the disk,
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and a mechanism connecting radial and vertical transport
of angular momentum is thus highly desirable (see how-
ever Casse & Ferreira (2000) and references therein). It
is very interesting to note1 that the conditions of insta-
bility are always fulfilled by these MHD models of jets,
since they have a plasma β ∼ 1, and the radial gradient,
which must be positive, always has (as a consequence of
the self-similar ansatz) the value +1/2.

In this paper we will first present a comparison be-
tween the observed properties of the low-frequency QPO
and the behavior expected from the AEI, showing that
this instability could provide a good explanation for the
QPO. In this respect we will turn to an effect neglected in
TP99. In that paper it was found, from exact numerical
solutions, that the m = 1 mode (i.e. 1-armed spiral) was
often the most unstable, although it could not be predicted
from an approximate WKB theory. This was confirmed in
numerical simulations by Caunt & Tagger (2001). Here
we first show that relativistic effects, when the inner edge
of the disk approaches the Black Hole, change this spe-
cial status of the m = 1 mode, and introduce a quali-
tative difference in its properties. Numerical solution of
the linearized MHD equations, using a pseudo-Newtonian
potential which mimics the relativistic corrections to the
rotation curve in the disk, then shows that the relation
between the mode frequency and the disk inner radius
is changed by these effects. This is potentially important
since spectral fits of the disks of X-ray binaries give a mea-
sure of the disk inner radius: thus the correlation between
this radius and the QPO frequency can be directly tested.

As we were completing this work which had started
from a purely theoretical argument, new observations
(Sobczak et al. 2000, hereafter SMR) showed that this
frequency-radius correlation is reversed in the microquasar
GRO J1655-40 compared to other sources – in partic-
ular another microquasar, XTE J1550-564. We suggest
that these observations might correspond to our theoreti-
cal results. In our previous paper (Rodriguez et al. 2002,
hereafter Paper I) we have critically reassessed the anal-
ysis of GRO J1655-40 by SMR and confirmed its reverse
frequency-radius correlation. We then turned to another
microquasar, GRS 1915+105, because its high variability
and the large number of available observations let us hope
to explore the correlated variations of the disk radius and
the QPO frequency over a much broader interval. The
results for GRS 1915+105 showed the usual correlation,
opposite to that of GRO J1655-40. In our final discus-
sion we will show that these opposite behaviors might be
explained by our theoretical result.

In a recent paper Psaltis & Norman (2002) have pre-
sented a model for the low-frequency QPO. It is a model
of random excitation of modes (analogous in a way to the
excitation of solar modes), which are filtered at a transi-
tion radius assumed to exist in the disk. The QPO fre-
quencies then lie at (or near) fundamental single-particle
frequencies at this radius. In that case the low frequency

1 J. Ferreira, private communication.

QPO we discuss here would be associated, as proposed
by Stella & Vietri (1999), with the nodal-precession fre-
quency. The computation we present here is a more elab-
orate one (since it describes global hydrodynamical or
MHD perturbations, rather than the individual motion of
isolated particles or gas blobs), for one such type of mode
(the spiral density wave), which is based on the epicyclic
motion. It thus goes in the direction outlined by Psaltis
(2002), moving from basic frequencies of motion to the hy-
drodynamical (in his case) or MHD (in our case) proper-
ties of flows in the disk. Our model is also different in that
the modes are unstable: they grow spontaneously from the
thermal noise and are expected (this has now been veri-
fied in numerical simulations by Caunt & Tagger 2001)
to form narrow and high-amplitude features, as galactic
spirals do. This contrasts with the model of Psaltis and
Norman, where a sharp transition radius must be assumed
to exist in the disk to explain the excitation of the mode,
and we have no a priori difficulty to explain the very high
amplitude sometimes observed in the QPO.

2. The Accretion-Ejection Instability

2.1. Basic properties

For the sake of completeness we present here the main
elements of physics underlying this instability mechanism.
More details and discussions can be found in TP99.

This instability appears as a spiral density wave in an
accretion disk threaded by a vertical (poloidal) magnetic
field, of the order of equipartition with the gas thermal
pressure. This part of the instability is essentially similar
to the spiral density waves of galactic disks, but it is driven
by magnetic stresses rather than self-gravity (Tagger et al.
1990). The action of differential rotation couples the spiral
to a Rossby wave at its corotation radius (the radius where
the wave rotates at the same velocity as the gas). This
means that the spiral wave generates, at its corotation
radius, a Rossby wave in which it stores the energy and
angular momentum it extracts from the disk (thus caus-
ing accretion). It is this exchange of energy and angular
momentum which makes the whole perturbation (density
wave + Rossby wave) unstable, i.e. growing exponentially
with time.

A standing wave pattern (called in this context a nor-
mal mode) can form in the following manner, also respon-
sible for the standing spiral pattern in galaxies: consider a
spiral wave propagating outward from the inner radius of
the disk. As it approaches corotation it is reflected as an-
other spiral wave, propagating inward; it is during this
reflection that some wave energy is exchanged (by the
action of differential rotation) with the Rossby wave, so
that the reflected spiral has a higher amplitude than the
original one. Now the reflected spiral, as it reaches the
inner disk radius, is reflected again as an outgoing spi-
ral. This forms an equivalent to an electromagnetic cav-
ity: if the resulting outgoing spiral has the same phase
as the initial one, the process will repeat itself, the whole
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Fig. 1. The structure of the instability is described here schematically as a function of radius. It is formed of a standing spiral
density wave in the inner part of the disk, coupled to a Rossby vortex it excites at its corotation radius. The Rossby vortex in
turn generates Alfvén waves propagating toward the corona of the disk.

pattern being amplified at each reflection at corotation.
As in an electromagnetic cavity, this integral phase condi-
tion selects a discrete set of frequencies, corresponding to
nr = 0, 1, 2 . . . nodes in the radial structure of the spiral
wave pattern, known as normal modes of the system. In
this process the Rossby wave becomes a standing vortex,
rotating at the angular velocity of the pattern. In practice
only the nr = 0 mode, the most unstable one, will concern
us here. Figure 1 illustrates the trajectory of the waves
within the cavity, and the excitation of the Rossby wave.

This basic physical description was obtained in the
simple model of a thin disk in vacuum, and numerical so-
lutions were given in TP99. If now one takes into account
a low density corona above the disk, it was shown in TP99
that the waves in the disk will generate an Alfvén wave
transferring to the corona (where it might power a wind or
an outflow) the energy and angular momentum extracted
from the disk. The AEI thus appears as a very good candi-
date to connect accretion and ejection in the inner region
of a magnetized disk. The computation of the Alfvén wave
emission was done, in TP99, in a WKB approximation
valid only away from the corotation region, where most of
the emission should occur. A full computation (Varnière
& Tagger 2002) will be given in a forthcoming publication.

2.2. The Inner Lindblad Resonance

The propagation properties of the waves determine the
mode frequency, and thus the location of its corotation
radius. It was shown in TP99 that the point where the
wave is reflected, near its corotation radius, is in fact
the Inner Lindblad Resonance (ILR), where the Doppler-
shifted wave frequency

ω̃(r) = ω −mΩ(r)

where ω is the wave frequency, m is the azimuthal
wavenumber (i.e. the number of spiral arms) and Ω is the
rotation (orbital) frequency, is equal to the opposite of the
epicyclic frequency κ, given by

κ2 = 4Ω2 + 2ΩΩ′r

where the prime notes the radial derivative. κ is the restor-
ing frequency which appears in the motion of individ-
ual particles (stars in the galactic context, fluid elements
here), initially on a circular orbit, and to which a radial
perturbation is given. When describing fluid motions, κ2

appears as a restoring force, which supplements pressure
and other forces (gravity in the galactic context, magnetic
stresses here).

The wave propagates in the region where ω̃2−κ2 > 0,
i.e. in the radial interval between the inner disk radius rint

and the ILR radius. This is where a cavity is formed, and
where a standing pattern results from the combination of
the ingoing and outgoing waves, as shown in Fig. 1. The
manner in which waves are reflected at the Inner Lindblad
Resonance and at the inner disk edge has been discussed
in details in TP99.

When studied in a WKB approximation for the radial
structure of the wave in a Keplerian disk, the wave is found
to be evanescent (non-propagating) in the region between
the ILR and the corotation radius. It was also shown in
TP99 that in this WKB approximation this results in a
mode frequency close to

ω <∼ (m− 1)Ωint

where Ωint is the rotation frequency at the inner radius
rint, and m is the azimuthal wavenumber (i.e. the num-
ber of spiral arms). From this WKB approximation the
m = 1 mode seems to be excluded, since it does not have
an ILR because κ = Ω in Keplerian rotation around a
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central mass (so that ω − Ω = −κ would imply ω = 0).
However the WKB analysis is only marginally valid, and
should be used only as a guide. In practice it was shown in
TP99 by exact numerical solution of the problem that the
m = 1 mode does exist, and is often the most unstable.
This was to be expected, since the physics of Rossby waves
usually selects large wavelengths (e.g. the Great Red Spot
of Jupiter), and since the efficiency of the corotation res-
onance (the coupling between spiral and Rossby waves)
is found to scale roughly as m−1. Thus m > 1 modes
have their corotation radius very close to rint, whereas the
m = 1 typically has a frequency of the order of .1−.3 Ωint,
depending on various disk parameters; this corresponds to
a corotation radius at a few times rint. As discussed in the
next section, this frequency range is the observed one for
the low frequency QPO.

Relativistic effects may be expected to make a strong
qualitative difference here: indeed the last stable orbit at
rLSO is defined as the orbit where, because of these ef-
fects, the epicyclic frequency κ vanishes, whereas κ = Ω
in a Newtonian, Keplerian disk. One must remember that
κ corresponds to the restoring force experienced by a par-
ticle moving away from a circular orbit. For r < rLSO, κ is
imaginary so that the radial motion of orbiting particles
is unstable and they will rapidly spiral toward the central
object. The vanishing of κ at rLSO (rather than κ = Ω in a
Newtonian, Keplerian disk) thus introduces the possibility
for an m = 1 mode to have an ILR, if the disk comes close
enough to rLSO; we expect (and will indeed find below)
this to affect the properties of the m = 1 mode.

In the low state of black-hole binaries, rint is usu-
ally found to be a few times rLSO, although we do not
know what can exist between rint and the black hole: an
ADAF might be a possibility, but one might also think of
the force-free magnetic structure necessary to contain the
vertical magnetic flux threading the black hole, according
to the Blandford-Znajek (1977) mechanism. However cer-
tain observations, which have been discussed in detail in
Paper I, show that sometimes, during its variation, rint

has a lower bound which probably marks the position of
rLSO. This has prompted us to study the effect of the ex-
istence of an ILR on the frequency and growth rate of the
m = 1 mode. We will then compare the theoretical result
with the observational one of Paper I.

3. AEI and QPO properties

Before taking into account the pseudo-Newtonian effects
we will concentrate on how the AEI can be associated with
the QPO. In this view we will first make a brief summary
of the characteristics of QPOs.

Quasi-Periodic Oscillations have been widely observed
in many X-ray binaries, whose compact object is either
a neutron star or a black-hole candidate. They are com-
monly considered to originate in the disk, either at its
inner boundary (in particular the kHz QPO in neutron-
star binaries) or beyond it. Among black-hole binaries,
the low-frequency QPO (of the order of one to a few Hz)

has drawn particular attention, because it seems to convey
important information on the physics of the inner region
of the accretion disk and of the corona.

In particular in the micro-quasar GRS 1915+105,
Swank et al. (1997) and Markwardt et al. (1999) (hereafter
SM97 for both of these references), who dubbed it “ubiq-
uitous” since it seems to be always present in the low-hard
state of the source, have shown that its frequency varies
with the evolution of the disk, during its low and hard
state. Indeed a correlation can be found, in two different
manners:

– The first correlation seems to relate the QPO fre-
quency with the color radius of the disk. This ra-
dius is obtained from the model (multicolor black-
body+power-law tail) commonly used to fit the X-ray
spectrum of the source. It is considered as a measure
of the inner radius of the disk, even though the ex-
act relation between them is not well known. We will
discuss in this paper only in terms of the disk inner ra-
dius, but will return below to the inner radius – color
radius relation.
In the case of GRS 1915+105, during a typical 30 min
cycle between a high/soft and a low/hard state, SM97
show that the QPO appears only during the low state,
and that its frequency varies with the disk parame-
ters. If the QPO frequency is converted into an equiv-
alent Keplerian radius in the disk, assuming a reason-
able mass for the black hole, this radius would be of
the order of a few times the observed color radius.
Furthermore, the QPO frequency seems very well cor-
related with the color radius. Indeed, in a detailed dis-
cussion of the QPO in various states of the source,
Muno et al. do show such a correlation. In particular,
during the 30 min cycles of GRS 1915+105, the QPO
frequency can be seen to decrease with increasing ra-
dius. Both studies conclude that the QPO, although it
affects more strongly the power-law tail (coronal emis-
sion), seems to have its origin in the disk.

– A second correlation, found by Psaltis et al. (1999a)
(hereafter P99), is more fragile at the present time
since it relies on very few data for black-hole binaries.
Recent results by Nowak (2000), finding three broad
peaks in the spectra of black-hole binaries, might in-
dicate that there is more to be discovered in that di-
rection. The result of Psaltis et al. is very interest-
ing because it fits, in a very different manner, with
the previous one: they show that, in a large variety of
X-ray binaries, there seems to be a correlation between
a high and a low frequency QPO: the low-frequency
QPO involved in the correlation (which is the QPO
discussed by SM97 and by SMR) is observed in many
sources, whose compact object is either a neutron star
or a black hole. Its frequency ranges from about 1 to
a few tens of Hz. The high-frequency QPO in the cor-
relation differs between neutron stars and black hole
binaries: in neutron stars it is the lower of the pair
of so-called “kHz QPO”, believed to originate at the
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inner disk radius; the higher-frequency QPO of the pair
would correspond to the Keplerian rotation frequency
at this radius, while the lower-frequency one might be
a beat wave between this and the rotation frequency
of the neutron star (Miller et al. 1998), or the perias-
tron precession frequency (Stella & Vietri 1999). We
will not discuss these models here (see e.g. Psaltis et al.
1999b), but only retain that the upper frequency, in the
correlation of Psaltis et al., is close to the Keplerian
rotation frequency near the inner edge of the disk. In
black-hole binaries, the high-frequency QPO consid-
ered in the correlation is seen as a broad feature at a
few tens of Hz. This correlation can thus be seen as
relating the frequency of the low-frequency QPO and
the inner radius of the disk.

The correlation found by Psaltis et al. is such that the ra-
tio between the two frequencies is about 11, corresponding
to a ratio ∼5 between the corresponding radii if one con-
siders them as Keplerian frequencies. This is comparable
to the ratio found by SM97.

The exact relation between the color radius given by
the spectral fit and the true inner radius of the disk is not
well known and an open debate among observers, since
it involves a number of corrections which depend on as-
sumptions about the disk and coronal structures. Different
works explore this relation, such as Shimura & Takahara
(1995) in the case of a Schwarzschild black-hole, or Merloni
et al. (1999), but a general agreement on the correction
to be made is still lacking. In this work we will simply
identify rcol and rint, and will discuss in our conclusions
how this affects our results.

We consider the AEI as a very good candidate to ex-
plain the QPO because of a number of characteristics:

– Its frequency, for the one-armed spiral (m = 1, where
m is the azimuthal wavenumber) is a fraction of the
Keplerian frequency at the inner radius, fully compat-
ible with the observation. This would explain both the
absolute value of the QPO frequency and its correla-
tion with the inner disk radius. We focus on the m = 1
mode because the theory shows it (or the m = 2, de-
pending on disk parameters) to be most unstable, and
because recent numerical simulations (Caunt & Tagger
2001) show that the disk evolution most often leads it
to dominate. The m = 2 would have a higher frequency
than the low-frequency QPO we discuss here.

– As in galaxies, its physics should make it form long-
lived, standing patterns, so that it should appear as
what is called in the galactic context a quasi-stationary
spiral structure – as confirmed by the numerical sim-
ulations. This would explain the long life of the QPO
(or rather its long correlation time, measured by the
width of the QPO), as observed in particular during
the hard and steady state of the source.

– These properties would probably be shared by any
spiral mode, driven by other instability mechanisms
(e.g. the Papaloizou-Pringle instability, although in
that case the growth rate is weaker and concerns only

high-m modes). However the AEI has the additional
property of emitting vertically, as the Poynting flux of
an Alfvén wave, the energy and angular momentum
extracted from the disk (whence the name we have
given to this instability); this makes it a realistic ex-
planation, both for the compact jet observed in these
sources (e.g. Dhawan et al. 2000) and for the strong
modulation of the coronal emission with the QPO.

Based on these considerations, we have discussed (Tagger
1999) how, if the QPO is indeed identified with the AEI,
this could lead to a possible scenario for the 30 min cycles
of GRS 1915+105. In this scenario accretion in the inner
region of the disk, and the observed cycles, would be con-
trolled by the accumulation of poloidal magnetic flux in
the disk.

These points may be considered only as favorable in-
dications – though better than for other models of QPO,
where most often only basic frequencies of motion are
identified, without a mechanism of wave excitation. The
basic physics and other theoretical expectations (e.g. the
formation of a long-lived, quasi-stationary spiral pattern)
have been confirmed by numerical simulations (Caunt &
Tagger 2001). This has led us to look for more distinctive
observational signatures of the AEI.

4. Relativistic effects

A fully relativistic description of the instability is a
formidable challenge we will not attempt here. Instead
we use existing models of pseudo-Newtonian potentials,
devised to mimic the behavior of the rotation curve (and
in particular the vanishing of κ at rLSO) in the relativistic
part of the disk. This is enough to check the effect, on
the m = 1 mode, of the apparition of an Inner Lindblad
Resonance in the disk.

4.1. The pseudo-Newtonian potential

We use the pseudo-Newtonian potential given by Nowak
& Wagoner (1992):

Φ = −GM
r

(
1− 3

GM

rc2
+ 12

(
GM

rc2

)2
)
· (1)

This is a second order approximation of the Schwarzschild
metrics, so that it neglects the effect of the spin of the
compact object. Although the angular momentum arising
from the spin of the black hole might change the radius
of the last stable orbit by a factor up to six for extreme
spin, the qualitative effect of the presence of an ILR for
the m = 1 mode would remain.

From this potential one can compute the orbital and
epicyclic frequencies:

rΩ2 =
∂Φ
∂r

κ2 = r
∂

∂r

1
r

∂Φ
∂r
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Fig. 2. Rotation curves in a pseudo-Newtonian potential,
showing the frequencies Ω (solid), κ (dots) and Ω−κ (dashed),
normalized to the orbital frequency at the Last Stable Orbit
(r = rLSO). The line at ω = .3 shows for example that a mode
of frequency ω = .3Ω(rLSO) has a corotation and ILR respec-
tively near r ' 2rLSO and r ' 1.2rLSO, if these radii are within
the disk (i.e. if the inner radius rint is small enough).

so that the last stable orbit is at

rLSO = 6
GM

c2

and Ω and κ can be rewritten as:

Ω =
√
GMr−

3
2

(
1− rLSO

r
+
(rLSO

r

)2
) 1

2

(2)

κ =
√
GMr−

3
2

(
1−

(rLSO

r

)2
) 1

2

· (3)

Figure 2 shows the resulting rotation curve, and the func-
tion Ω− κ. It shows how relativistic effects (or a pseudo-
Newtonian potential) allow κ to decrease near rLSO, so
that the m = 1 mode can have an ILR when rint is close
enough to rLSO.

For the numerical solution, we have also used as
a cross-check the pseudo-Newtonian approximation of
Paczynski & Witta (1980):

Φ = − GM

r − rg
(4)

where rg = 2GM/c2 is the Schwarzschild radius. This
Padé approximation (rather than the series expansion
above) gives essentially the same results, confirming our
expectation that the results depend mostly on the qual-
itative difference introduced by the existence of an ILR,
rather than on the detailed rotation curve; we will present
here only results using Eq. (1).

5. Numerical results

5.1. Numerical method

We use the same method of solution as in TP99, and the
same setup: the disk is supposed to be infinitely thin and

embedded in a vacuum. It is threaded by a vertical mag-
netic field B = B0(r)ez. For the sake of completeness,
we repeat here the system of linearized MHD equations
solved:

−iω̃U − 2ΩV = −c2s
∂h

∂s
− 2

B0

Σ
∂ΦM

∂s
(5)

−iω̃V +WU = −imc2sh− 2im
B0

Σ
ΦM (6)

−iω̃r2σ = − ∂

∂s
(ΣU)− imΣV (7)

−iω̃r2BD
z = − ∂

∂s
(B0U)− imB0V (8)

where s = ln r, U = rvr, V = rvϑ, Σ and σ are the
equilibrium and perturbed surface densities, h = σ/Σ,
W = κ2/2Ω is the vorticity in the equilibrium flow, B0 and
BD
z are the equilibrium and perturbed vertical magnetic

fields at the surface of the disk, and ΦM is a magnetic
potential obtained from:

∇2ΦM = −2B1
zδ(z) (9)

which is solved using the Poisson kernel commonly used in
self-gravitating disks. In other terms, the magnetic field is
described above the disk (in vacuum, with no currents) by
a magnetic potential, whose source is the currents in the
disk. For simplicity, since pressure plays very little role in
the instability, we have assumed an isothermal equation
of state.

The presence of ΦM makes this an integro-differential
system, corresponding to the long-range action of mag-
netic stresses (in contrast with the local action of pressure
stresses between neighboring fluid elements). This system
is solved by projecting it on a radial grid, evenly spaced in
the variable s = ln r. The solution then reduces to finding
the eigenvalues and eigenvectors of a matrix: each eigen-
value is a frequency ω and the corresponding eigenvector
gives the radial structure of the perturbed velocity, den-
sity and magnetic field. A discrete set of eigenvalues, cor-
responding to the modes with n = 0, 1, 2 . . . nodes in
their radial structure, is then easily identified, as discussed
in TP99 (the other eigenvalues come from the discretiza-
tion of the problem on a numerical grid). The boundary
condition of an outgoing wave at large radius (i.e. no in-
flux of information from the outer ranges of the disk) is
implemented, as in TP99, by solving on an axis slightly
tilted in the complex-s plane.

The only change here is that we use in Eqs. (5)–(8) the
rotation curve described above, rather than the Newtonian
one used in TP99. We introduce the parameter

ξ = rint/rLSO.

At large ξ the whole disk is very close to the Newtonian
rotation curve, and we recover the results of TP99. When
ξ becomes close to 1, i.e. when the disk inner radius ap-
proaches the last stable orbit, relativistic effects on the
rotation curve start to play and the m = 1 mode can
have an ILR. In that case, between rint and the ILR, the
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wave propagates (in a WKB sense). Let us compare this
with the behavior of a simple oscillator, described by the
equation:

d2

dx2
Ψ +MΨ = 0

(this comparison is quite relevant since, where the WKB
approximation applies, the system of Eqs. (5)–(9) reduces
to a system of this form).

In the propagation zone (i.e. for us between rint and
the ILR) M is positive, so that Ψ oscillates. On the other
hand in the “forbidden band” (for us, between the ILR
and corotation, or between rint and corotation if no ILR
is present) M is negative and the mode has an exponential
behavior2.

Thus the change in the behavior of the solutions be-
tween rint and the ILR will change the integral phase con-
dition, which determines the mode frequency. This is true
even though, as mentioned in the introduction, the WKB
approximation is not really valid, resulting in the very fact
that the m = 1 mode exists even in a Newtonian potential.
Our first goal is to quantify these effects.

5.2. Numerical results

The computation uses two more parameters: the magni-
tude of the magnetic field, and its radial profile. The field
is measured by the parameter β = 2µ0p/B

2, i.e. the ratio
of the thermal and magnetic pressures. As discussed in
TP99, our instability occurs when β is of the order of 1 or
lower (whereas the magneto-rotational instability (Balbus
& Hawley 1991; Chandrasekhar 1960; Velikhov 1959) oc-
curs only for β > 1). We will present here only results
with β = .5, and complement them with results at β = 1
for comparison.

In the same manner, we use as in TP99 a flat radial
density profile, and a magnetic field profile varying only
over a limited radial range, around the corotation radius:
it was shown in TP99 that the amplification of the mode
depends only on the local gradient, at the corotation ra-
dius, of the quantity κ2Σ/2ΩB2

0, and these somewhat ar-
tificial profiles allow us an easy solution, by limiting the
global variation of equilibrium quantities across the nu-
merical grid. The real part of the frequency depends of
course on the global profiles. Here we want to consider only
the effect of the relativistic modifications of the rotation
curve. Thus we will stick to these simple radial profiles.
We will report in a future publication results obtained

2 Note however that, as described by Tagger et al. (1990),
in our problem the behavior of ΦM in the forbidden band is
algebraic rather than exponential; this is due to the long-range
action of magnetic stresses, i.e. to the r−m−1 dependence of
an m−polar field. It allows waves in the inner cavity to cou-
ple quite efficiently, across the forbidden band, to the outgoing
wave and to the Rossby vortex. This results in a stronger insta-
bility than the Papaloizou-Pringle one of unmagnetized disks,
because in that case pressure forces result in a classical expo-
nential decay in the forbidden band.
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Fig. 3. Frequency of the m = 1 mode, normalized to the or-
bital frequency at the Last Stable Orbit for a Schwarzschild
black hole, as a function of ξ = rint/rLSO. At large ξ, i.e. when
the inner radius of the disk is far away from the last stable
orbit, the whole disk obeys Newtonian dynamics and ω varies
as r

−3/2
int . At lower ξ, relativistic effects modify the gas rota-

tion curve near the inner disk edge and change the behaviour
of ω: from ξ ≈ 10 the gradient softens gradually and the the
correlation is reversed at ξ ≈ 1.3.

with a different but more elaborate method of solution;
this allows us to consider more general profiles but does
not change qualitatively the results presented here.

Keeping all these parameters constant, we solve the
system of Eqs. (5)–(9) varying ξ, the ratio rint/rLSO, from
1 to 100. The results are shown in Fig. 3. As expected at
large ξ we recover the results obtained in the Newtonian
case, since the rotation curve is unaffected by relativistic
effects. In these results the mode frequency ω varies as
r
−3/2
int : since the problem has no scale length besides rint,
ω is just proportional to Ωint, the orbital frequency at the
inner radius.

For ξ < 10, small departures from this scaling become
visible. A strong difference appears when ξ <∼ 1.3: the
correlation between ω and rint changes sign, so that now
ω decreases as ξ approaches 1.

The limited numerical resolution does not allow us to
see a marked difference in the behavior of the eigenfunc-
tion (the radial dependence of the perturbed quantities)
near rint, when ξ approaches 1. Nevertheless, the values
found for ω show that an ILR appears in the disk, for
ξ < 1.4: this means that the inverse frequency-radius cor-
relation is associated with the presence of the ILR, in-
troduced by the relativistic effects on the rotation curve.
We show in Fig. 4 the results obtained with β = .5 and
β = 1., normalizing this time for more clarity the mode
frequency to the rotation frequency at the inner radius. At
large ξ the whole disk is Newtonian and ω/Ωint becomes
constant. At β = 1, because the frequency is higher, the
ILR appears in the disk only for ξ ' 1.1, and the turnover
of the frequency-inner radius correlation is also shifted to
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Fig. 4. Frequency of them = 1 mode, normalized to the orbital
frequency at the inner radius, as a function of ξ for β = .5
(solid) and β = 1. (dashed). In the latter case the frequency
is higher, so that an ILR appears in the disk only for ξ <∼
1.1. As a result the part of the curve with a positive slope,
when normalized to the last stable orbit obital frequency, is
very small compared to the β = 0.5 case. This motivates our
presentation of the two cases normalized to the inner radius
rotation frequency which allows the comparison and shows a
similar behavior.

lower ξ. As a result the left part of the curve, with a pos-
itive correlation due to relativistic effects, shows a much
more limited variation of ω/Ωint.

Our main result, the change in the correlation be-
tween ω and ξ, is physically based on a qualitative dif-
ference in the rotation curve, which allows the mode to
have an ILR in the disk when ξ is close to 1. We thus
expect that this result should be quite robust and persist
with more detailed relativistic models, e.g. taking into ac-
count the Kerr metrics of a spinning black hole, or more
realistic profiles in the disk.

6. The observed correlation

As mentioned in the introduction, a QPO frequency-
radius correlation, for the low-frequency QPO of black-
hole binaries, has already been pointed out: in particu-
lar, for the micro-quasar GRS 1915+105, by SM97 during
a particular cycle of the source, and more generally by
Muno et al. who find that, among all observed properties,
the QPO frequency is well correlated with the disk inner
radius.

On the other hand Sobczak et al. (2000) have recently
shown that two other black hole candidates, XTE J1550-
564 and GRO J1655-40, have contrasting behaviors: in
XTE J1550-564 the QPO frequency decreases as the
radius increases, as seen in GRS 1915+105, while in
GRO J1655-40 the correlation is opposite. This has led
us to the hypothesis that these sources lie on opposite
sides of our theoretical curve, Fig. 3, i.e. in GRO J1655-
40 the disk inner radius would be very close to the last

stable orbit, while in XTE J1550-564 (and apparently in
GRS 1915+105) the disk would be farther from the black
hole.

In Paper I we have critically reassessed the observa-
tional results of SMR on GRO J1655-40, taking into ac-
count the uncertainties on the relation between the ob-
served color radius and the disk inner radius; we have then
turned to GRS 1915+105 because its high variability let
us expect to explore the theoretical curve over a broader
radial range.

6.1. Fit parameters

The theoretical curve uses non-dimensional parameters,
namely ξ = rint/rLSO and ω/Ω(rLSO). This will allow
us to compare on the same figure objects with different
masses and spins. Before showing results from the com-
parison between the theory and observation we will briefly
present the formula and physical range for the last stable
orbit radius rLSO and the rotation frequency at this radius
Ω(rLSO).

The general formula for the last stable orbit radius
and the rotation frequency at that orbit in the Nowak &
Wagoner pseudo-Newtonian potential are

rLSO =
GM

c2

(
3 +A2 ±

√
(3−A1)(3 +A1 + 2A2)

)
with:
A1 = 1 + 3

√
1− a2

?(
3
√

1 + a? + 3
√

1− a?)

A2 =
√

3a2
? +A2

1

a? =
J

Mc
and:

Ω(rLSO) =

√
GM

r3
LSO

·

Where J is the angular momentum of the black hole, and
a? its specific angular momentum.

These expressions can be normalized with the value for
a one solar mass black hole, namely the Last Stable Orbit
r• = 8.9 km and rotation frequency Ω• = 1.4 × 104 s−1.
We note δ = 3 + A2 ±

√
(3−A1)(3 +A1 + 2A2) and m

the black hole mass in units of the solar mass, giving:

rLSO =
δ

6
m r• (10)

Ω(rLSO) =
(

6
δ

)3/2 1
m

Ω• (11)

δ varies continously from 1 for a prograde maximally ro-
tating Kerr black hole (a? = +1) to 6 for a? = 0, i.e. a
Schwarzschild black hole and 9 for a retrograde maximally
rotating Kerr black hole (a? = −1).

The black hole mass gives us the range of variation
for the last stable orbit radius. Table 1 shows the allowed
ranges. For GRO J1655-40, we have used the value 7 M�,
given by Orosz & Bailyn (1997). For GRS 1915+105, we
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Fig. 5. Plot of the QPO frequency vs. the radius for both
sources, together with the theoretical curve from TP99. Both
axes as normalized in such a way that the plot is mass and
spin independent. All the data points are taken from Tables 1
and 2 of Paper I.

have used the value 14 M� given by Greiner et al. (2001).
a? = 0.93 is the value found by Zhang et al. (1997) for
GRO J1655-40, given here as an example of almost max-
imally rotating black hole.

6.2. Results from fits

We show in Fig. 5 the observational results for both
sources (retaining only data points found valid by the
analysis of Paper I), fitted with the theoretical curve.

The theoretical curve is the one shown in Fig. 2 for a
ratio of the gas thermal pressure to the magnetic pressure
in the disk β = .5, and the same radial profiles as in TP99.
Changing these parameters changes the absolute value of
the frequency but not the overall behavior although, as
discussed in Sect. 5.2, a value of β <∼ 1 would not allow
us to reproduce the whole range of frequency variation for
GRO J1655-40.

We have fit the data points by fixing, for each source,
a reference value for the radius and QPO frequency. The
choice of value for these reference points are taken in the
range allowed by the mass determination of the objects,
see Table 1.

In this range we fit the data curves by moving them
solidly up and down (i.e. fitting the fiducial value of the
rotation frequency at the Last Stable Orbit), and side-
ways (i.e. fitting the fiducial value of rLSO), which changes
neither their shape nor their variation with the ratio
rint/rLSO. We choose to do this because the absolute rela-
tion between the observed rcol and the real rint cannot be
constrained, given the uncertainties in the model used for
the spectral fits, and because our theoretical values cor-
respond to a fiducial choice of disk parameters. However
it is quite remarkable that, identifying the absolute values
of rcol and rint, our best fit gives for GRO J1655-40 a spin
parameter a? ' .946 for a mass of 7 M�, whereas from

Table 1. Range of possible last stable orbit radius for
GRO J1655-40 and GRS 1915+105 depending on the rotation
parameter a?.

spin GRO J1655 GRS 1915

a? = 1 10.4 20.8

a? = 0.93 21.9 43.7

a? = 0 62.3 124.6

a? = −1 93.4 186.9

Table 2. Results given by the fit of the data by the theoretical
curve. The spin values in braket are from Zhang et al. (1997).

Object rLSO (km) mass (M�) spin

GRO J1655 20.5 7 0.946 (0.93)

GRS 1915 34.5 14 0.9765 (0.998)

a different procedure Zhang et al. (1997) find a? = .93.
For GRS 1915+105 we obtain a spin of 0.9765, compat-
ible with the 0.998 found by Zhang et al. (1997). These
parameters are summarized in Table 2.

This agreement between independent estimates may
however be a pure coincidence, since both are model de-
pendent: in particular we have taken a ratio rint/rcol = 1;
changing this would change the determination of rLSO,
and thus ultimately of the spin; Zhang et al. (1997) use a
model of disk emission, as discussed in the conclusions of
Paper I, and changing their hardening factor would have
a similar result. Inversely Strohmayer (2001) finds a lower
spin value for GRO J1655-40, based on relativistic preces-
sion models (see e.g. Stella & Vietri 1999). The present
work can thus be considered only as one more contribu-
tion in this debate, attempting to constrain the disk and
fit parameters from different perspectives.

It is also noteworthy that, before the estimate of
Greiner et al. (2001) for the mass of GRS 1915+105 was
available, we had left this parameter free and the best fit
gave us a mass of ∼15 M�, very close to the measured
value, for an almost maximally (0.99965) rotating Kerr
black hole. On the other hand, for GRO J1655-40 a value
of β ≈ 1, giving a lower inner radius for the turnover of
the frequency-radius correlation, would not have allowed
a satisfying fit because (as shown in Fig. 4) the theoretical
range of variation of ω is too small.

Thus the agreement found from Fig. 5 would mean
that in GRO J1655-40 the inner radius stays very close
to the last stable orbit, whereas in GRS 1915+105 (which
is in a different spectral state) it is already much larger
when the QPO has appeared and the spectral fits return
reliable values of rcol.

The two data points for GRS 1915+105 at ξ ≈ 1.2
are puzzling: it would be very tempting to place them
on the left (growing) part of the theoretical curve, as
for GRO J1655-40. A minor change in the fit parame-
ters would easily accomodate that. We prefer to consider
this as inconclusive since the observational evidence is
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fragile: these points are the first two in this cycle of the
source, and are in fact obtained before the dip (i.e. the
transition to the low-hard state) as explained in Paper I.
They correspond to the phase, at the end of the high state,
when the inner radius starts moving away from the low
value (presumably very close to rLSO) it has in this state.
We have discussed in Paper I how these points could in
fact be subject to the corrections of MFR. Furthermore,
for the second (highest) of these points we have also ex-
plained that the determination of the frequency is not
certain, and that it might in fact be a harmonic of the
fundamental frequency.

7. Discussion

The Accretion-Ejection Instability appears as a good can-
didate to explain the low-frequency QPO of black-hole
binaries, for a number of reasons: its frequency which lies
in the observed range, its connection with the corona and
high-energy emission, the fact that it is an instability, i.e.
does not need an ad hoc excitation mechanism, and that
the magnetic field configurations used for MHD models of
jets obey the instability criterion. In this paper we have
shown that, if one accepts this identification of the AEI
as the source of the QPO, we are able to understand an
otherwise unexplained behavior. The theory predicts an
observational signature, the turnover of the relation be-
tween the QPO frequency and the inner radius of the disk.
The relation between this radius and the color radius, ex-
tracted from spectral fits, is still too uncertain to give more
than an indicative value to the fits we present. It is how-
ever very comforting that these fits, which also depend on
assumptions on the physical parameters in the disk, give
results in surprisingly close agreement with independent
estimates. More observations showing the changing corre-
lations (perhaps even in a single source at different times)
would be needed to confirm it. These observations could
extend to neutron-star binaries, since Psaltis et al. (1999a)
find a link between the low-frequency QPOs in many dif-
ferent X-ray binaries. Future work will be dedicated to
this, and to testing the suggestion we made in Paper I that
the anomalous color radius frequently found in spectral fits
of different sources (including the two studied here) might
indicate the presence of a spiral shock or hot point in the
disk.

References

Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton

University Press)
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433B
Casse, F., & Ferreira, J. 2000, A&A, 353, 1115
Caunt, S., & Tagger, M. 2001, A&A, 367, 1095
Chandrasekhar, S., 1960, Proc. Nat. Acad. Sci., 46, 253
Dhawan, V., Mirabel, I. F., & Rodriguez, L. F., ApJ, 543, 373
Greiner, J., Cuby, J. G., McCaughren, M. J. 2001, Nature, 414,

522
Markwardt, C. B., Swank, J. H., & Taam, R. E., 1999, ApJ,

513, 37
Merloni, A., Fabian, A. C., & Ross, R. R. 2000, MNRAS, 313,

193 (MFR)
Miller, M. C., Lamb, F. K., & Psaltis, D. 1998, ApJ, 508, 791
Muno, M. P., Morgan, E. H., & Remillard, R. A. 1999, ApJ,

52, 321
Nowak, M. A., & Wagoner, R. V. 1992, ApJ, 393, 607
Nowak, M. A. 2000, MNRAS, 318, 361
Orosz, J. A., & Bailyn, C. D. 1997, ApJ, 482, 1086
Paczynski, B., & Witta, P. J. 1980, A&A, 88, 23
Papaloizou, J. C. B., & Pringle, J. E. 1985, MNRAS, 213, 799
Psaltis, D., Belloni, T., & van Der Klis, M. 1999a, ApJ, 520,

262
Psaltis, D., Wijnands, R., Homan, J., et al. 1999b, ApJ, 520,

763
Psaltis, D., & Norman, C. 2002, ApJ, submitted

[astro-ph/0001391]
Psaltis, D. 2002, ApJ, submitted [astro-ph/0010316]
Rodriguez, J., Varnière, P., Tagger, M., & Durouchoux, P.

2002, A&A, 387, 487 (Paper I)
Shimura, T., & Takahara, F. 1995, ApJ, 445, 780
Sobczak, G. J., McClintock, J. E., Remillard, R. A., et al. 2000,

ApJ, 531, 537, (SMR)
Stella, L., & Vietri, M. 1999, ApJ, 524, L63
Strohmayer, T. E. 2001, ApJ, 552, L49
Swank, J., Chen, X., Markwardt, C., & Taam, R. 1997, Proc. of

the Conf. Accretion Processes in Astrophysics: Some Like
it Hot, held at U. Md., October 1997, ed. S. Holt, & T.
Kallman

Tagger, M. 1999, Proc. of the 5th Compton Symp.,
Portshmouth (USA), AIP Conf. Proc., 510, 129
[astro-ph/9910365]

Tagger, M., Henriksen, R. N., Sygnet, J. F. & Pellat, R. 1990,
ApJ, 353, 654

Tagger, M., & Pellat, R. 1999, A&A, 349, 1003 (TP99)
Varnière, P., & Tagger, M. 2002, A&A, submitted
Velikhov, E. P. 1959, Sov. Phys. JETP Lett., 9, 995
Zhang, S. N., Cui, W., & Chen, W. 1997, ApJ, 482, L155


