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A SECOND ORDER ACCURACY IN TIME FOR A FULL DISCRETIZED

TIME-DEPENDENT NAVIER-STOKES EQUATIONS BY A TWO-GRID SCHEME

HYAM ABBOUD†, VIVETTE GIRAULT‡ AND TONI SAYAH⋆.

Abstract. We study a second-order two-grid scheme fully discrete in time and space for solving the
Navier-Stokes equations. The two-grid strategy consists in discretizing, in the first step, the fully non-

linear problem, in space on a coarse grid with mesh-size H and time step ∆t and, in the second step, in

discretizing the linearized problem around the velocity uH computed in the first step, in space on a fine
grid with mesh-size h and the same time step. The two-grid method has been applied for an analysis of

a first order fully-discrete in time and space algorithm and we extend the method to the second order

algorithm.
Keywords Two-grid scheme, Non-linear problem, Incompressible flow, Time and Space discretizations,

Taylor-Hood finite element, Duality argument, “ superconvergence“.

1. Introduction.

Let Ω be a bounded domain of IR2 with a polygonal boundary ∂Ω and let ]0, T [ be a given time-interval.
Consider the following Navier-Stokes problem for an incompressible fluid

∂u

∂t
(x, t) − ν∆u(x, t) + u(x, t) · ∇u(x, t) + ∇p(x, t) = f(x, t) in Ω×]0, T [, (1.1)

with the incompressibility condition

div u(x, t) = 0 in Ω×]0, T [, (1.2)

the homogeneous Dirichlet boundary condition

u(x, t) = 0 on ∂Ω×]0, T [, (1.3)

and the initial condition
u(x, 0) = 0 in Ω, (1.4)

where u and p represent respectively the velocity and the pressure of the fluid. All the quantities are
taken at the point (x, t) where x = (xi)1≤i≤2 ∈ R

2 denotes the position and t ∈ [0, T ] the time. We
suppose that the fluid density is a constant (ρ = 1); f denotes the external forces applied to the fluid
and ν is the viscosity. The notations u · ∇u, ∆u and div u mean :

u · ∇u =
2∑

i=1

ui
∂u

∂xi
,∆u =

2∑

i=1

∂2u

∂2xi
and div u =

2∑

i=1

∂ui

∂xi
.

The term u · ∇u is the convection term and ν∆u is the diffusion one.

The purpose of this article is to solve by a second-order, in time and space, two-grid scheme, on
a coarse grid and a fine grid, the non-stationary incompressible Navier-Stokes problem and to show that
the two-grid algorithm’s global error is similar to the error of the direct resolution of the non-linear prob-
lem on a fine grid. The two-grid strategy is a general method for solving a non-linear Partial Differential
Equation (PDE), depending or not in time, with solution u. This technique consists on what follows :
In a first step, we discretize the fully non-linear PDE on a coarse grid of mesh-size H and we compute
an approximate solution uH . Then, in a second step, we linearize the PDE around uH and we discretize
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the linearized problem on a fine grid of mesh-size h; let ulin
h be the corresponding solution. Then, under

suitable assumptions, we can prove that if h, H and the time step ∆t are well-chosen, the global error
of the two-grid algorithm ‖ u − ulin

h ‖ has the same order as the error ‖ u − uh ‖ that would have been
obtained if the non-linear problem had been directly discretized on the fine grid.

Two-grid discretizations have been widely applied to linear and non-linear elliptic boundary value
problems: J. Xu in [22], [23], [24] has pioneered their development. These methods have been extended
to the steady Navier-Stokes equations, cf. for instance the work of W. Layton in [13], W. Layton & W.
Lenferink in [14] and V. Girault & J.-L. Lions in [7]. Also, this method has been applied to the time-
dependent Navier-Stokes problem, cf. V. Girault & J.-L. Lions [8] in which they analyze a semi-discrete
algorithm, H. Abboud & T. Sayah in [2] and H. Abboud, V. Girault & T. Sayah in [3] for an analysis of a
first order fully-discrete in time and space algorithm and in [1] for a numerical analysis of a second-order
totally discrete in time and space scheme.

Setting L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

q dx = 0} and assuming that f belongs to L2(0, T ;H−1(Ω)2), it is

well-known that (1.1)–(1.2) has the following variational formulation in ]0, T [: Find u(t) ∈ H1
0 (Ω)2, such

that in the sense of distributions on ]0, T [,

∀v ∈ H1
0 (Ω)2,

d

dt
(u(t), v) + ν(∇u(t),∇v) + (u(t) · ∇u(t), v) − (p(t),div v) = 〈f(t), v〉, (1.5)

∀q ∈ L2
0(Ω), (q, div u(t)) = 0, (1.6)

and

u(0) = 0, (1.7)

where u(t) = u(x, t).
Furthermore, this problem has one and only one solution u in L∞(0, T ;L2(Ω)2) ∩ L2(0, T ;H1(Ω)2) and

p in the dual space of W
1,1
0 (0, T ;L2

0(Ω)) (see e.g. J.-L. Lions in [15] and O.A. Ladyzenskaya in [12]).
In addition, we have the following regularity result:

Theorem 1.1. If Ω is convex and f ∈ L2(0, T ;L2(Ω)2), then

u ∈ L∞(0, T ;H1(Ω)2) ∩ L2(0, T ;H2(Ω)2) and p ∈ L2(0, T ;H1(Ω)). (1.8)

For discretizing (1.5)–(1.7), let η > 0 be a discretization parameter in space and for each η, let Tη be a

corresponding regular (or non-degenerate) family of triangulations of Ω, consisting of triangles such that
any two triangles are either disjoint or share a vertex or an entire side. For an arbitrary triangle κ, we
denote by ηκ the diameter of κ and by ρκ the diameter of the circle inscribed in κ. Then η denotes the
maximum of ηκ and we assume that Tη is regular in the sense of Ciarlet [6] : there exists a constant σ

independent of η such that

sup
κ∈Tη

ηκ

ρκ
= σκ ≤ σ. (1.9)

Let Xη and Mη be a “stable” pair of finite-element spaces for discretizing the velocity u and the pressure
p, stable in the sense that it satisfies a uniform discrete inf-sup condition: there exists a constant β⋆ ≥ 0,

independent of η, such that

∀qη ∈ Mη, sup
vη∈Xη

1

|vη|H1(Ω)

∫

Ω

qη div vηdx ≥ β⋆ ‖ qη ‖L2(Ω) . (1.10)

Let IPκ denote the space of polynomials with total degree less than or equal to κ. For a second-order
two-grid scheme, we choose the Taylor-Hood finite-element, where in each triangle κ, each component of
the velocity is a polynomial of IP2 and the pressure p is a polynomial of IP1. Therefore, the finite-element
spaces are:

Xη =
{
vη ∈ C0(Ω)2; ∀κ ∈ Tη, vη|κ ∈ IP2

2, vη|∂Ω
= 0
}

, (1.11)

Mη =

{
qη ∈ C0(Ω); ∀κ ∈ Tη, qη|κ ∈ P1,

∫

Ω

qηdx = 0

}
. (1.12)
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There exists an approximation operator Pη ∈ L(H1
0 (Ω)2;Xη) such that (see V. Girault and P.-A. Raviart

in [9]):

∀v ∈ H1
0 (Ω)2, ∀qη ∈ Mη,

∫

Ω

qη div(Pη(v) − v)dx = 0, (1.13)

and for k = 0, 1 or 2,

∀v ∈ [H1+k(Ω) ∩ H1
0 (Ω)]2, ‖ Pη(v) − v ‖L2(Ω) ≤ Cη1+k|v|H1+k(Ω), (1.14)

and forall r ≥ 2, k = 0, 1 or 2,

∀v ∈ [W 1+k,r(Ω) ∩ H1
0 (Ω)]2, |Pη(v) − v|W 1,r(Ω) ≤ Crη

k|v|W 1+k,r(Ω). (1.15)

In addition, as Mη contains all polynomials of degree one, there exists an operator rη ∈ L(L2
0(Ω);Mη),

such that for any real number s ∈ [0, 2],

∀q ∈ Hs(Ω) ∩ L2
0(Ω), ‖ rη(q) − q ‖L2(Ω)≤ Cηs|q|Hs(Ω). (1.16)

To discretize in time, we divide the interval [0, T ] into N subintervals of equal length k =
T

N
, with

grid-points tn = nk, 0 ≤ n ≤ N.

With these spaces, we propose the following two-grid scheme for discretizing (1.5)–(1.7). We use two
regular triangulations of Ω : a coarse triangulation TH and a fine one Th, that for practical purposes, is a
refinement of TH . On each of these, we define the same stable pair of finite-element spaces, (XH ,MH) and
(Xh,Mh) such that XH ⊂ Xh and MH ⊂ Mh. At each time step, we solve (1.17)–(1.18) and (1.19)–(1.20)
below. The two-grid algorithm reads :
• Step One (non-linear problem on coarse grid): Knowing un−1

h and un
h, find (un+1

H , pn+1
H ) with values

in XH × MH , solution of

∀vH ∈ XH ,
1

2∆t
(3un+1

H − 4un
H + un−1

H , vH) + ν(∇un+1
H ,∇vH) + (un+1

H · ∇un+1
H , vH)

+
1

2
(div un+1

H , un+1
H · vH) − (pn+1

H ,div vH) = (fn+1, vH),
(1.17)

∀qH ∈ MH , (qH ,div un+1
H ) = 0. (1.18)

• Step Two (linearized problem on fine grid): Knowing (un+1
H , pn+1

H ), find (un+1
h , pn+1

h ) with values in
Xh × Mh solution of

∀vh ∈ Xh,
1

2∆t
(3un+1

h − 4un
h + un−1

h , vh) + ν(∇un+1
h ,∇vh) + (un+1

H · ∇un+1
h , vh)

− (pn+1
h ,div vh) = (fn+1, vh),

(1.19)

∀qh ∈ Mh, (qh,div un+1
h ) = 0. (1.20)

By assumption, u0
H = u0

h = 0 and u1
H and u1

h are computed by solving one iteration of an Euler scheme.
In both (1.17) and (1.19), fn+1 is a suitable approximation of f at time tn+1. The purpose of this two-grid
algorithm is to reduce the time of computation for both velocity and pressure.

In the sequel, we shall take (∆t)2 of the order of H3 : there exist constants α1 and α2 that do not
depend on H and ∆t such that

α1H
3 ≤ (∆t)2 ≤ α2H

3.

The remainder of this article is organized as follows : In Section 2, we present some conventions and
notations that will be used throughout the article. In Section 3, we present a first error estimate for
the fully-discrete Step One, then in section 4 we establish a duality argument based on the backward
semi-discrete Stokes system and we derive some uniform bounds that allow us to prove the Stokes prob-
lem’s error estimate in L2(Ω×]0, T [)2, then we apply it to the Navier-Stokes problem. We also prove a
“superconvergence” result for the non-linear part. Finally, the pressure is estimated in section 5 and the
error estimation for the solution of Step Two is studied in section 6.
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2. Preliminaries.

To begin with, we present some conventions and notations that will be used throughout the article.
As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time
interval ]a, b[ with values in a functional space, say X (cf. Lions and Magenes [16]). More precisely, let
‖ . ‖X denote the norm of X; then for any r, 1 ≤ r ≤ ∞, we define

Lr(a, b;X) =
{

f mesurable in ]a, b[;

∫ b

a

‖ f(t) ‖r
X dt < ∞

}

equipped with the norm

‖ f ‖Lr(a,b;X)=
(∫ b

a

‖ f(t) ‖r
X dt

)1/r

,

with the usual modifications if r = ∞. It is a Banach space if X is a Banach space.
Let (k1, k2) denote a pair of non-negative integers, set |k| = k1 + k2 and define the partial derivative ∂k

by ∂kv =
∂|k|v

∂xk1

1 ∂xk2

2

. Here X is usually a Sobolev space, such as (cf. Adams [4] or Nečas [17]): for any

non-negative integer m and number r ≥ 1,

Wm,r(Ω) = {v ∈ Lr(Ω); ∂kv ∈ Lr(Ω),∀|k| ≤ m}.

This space is equipped with the seminorm

|v|W m,r(Ω) =
[ ∑

|k|=m

∫

Ω

|∂kv|rdx
]1/r

,

and is a Banach space for the norm

‖ v ‖W m,r(Ω)=
[ ∑

0≤|k|≤m

|v|rW k,r(Ω)

]1/r

,

with the usual extension when r = ∞. When r = 2, this space is the Hilbert space Hm(Ω). In particular,
the scalar product of L2(Ω) is denoted by ( . , . ). Similarly, L2(a, b;Hm(Ω)) is a Hilbert space and in
particular L2(a, b;L2(Ω)) coincides with L2(Ω×]a, b[).
For functions that vanish on the boundary, we recall Poincaré’s inequality: there exists a constant P such
that

∀v ∈ H1
0 (Ω), ‖ v ‖L2(Ω)≤ P|v|H1(Ω). (2.1)

More generally, recall the inequalities of Sobolev imbeddings in two dimensions: for each r ∈ [2,∞[, there
exits a constant Sr such that

∀v ∈ H1
0 (Ω) , ‖ v ‖Lr(Ω)≤ Sr|v|H1(Ω), (2.2)

where

|v|H1(Ω) =‖ ∇v ‖L2(Ω) . (2.3)

When r = 2, (2.2) reduces to Poincaré’s inequality and S2 is Poincaré’s constant. The case r = ∞ is
excluded and is replaced by: for any r > 2, there exists a constant Mr such that

∀v ∈ W
1,r
0 (Ω) , ‖ v ‖L∞(Ω)≤ Mr|v|W 1,r(Ω). (2.4)

We also have in dimension 2,

‖ g ‖L4(Ω)≤ 21/4 ‖ g ‖1/2
L2(Ω)‖ ∇g ‖1/2

L2(Ω) . (2.5)

Owing to (2.1), we use the seminorm |.|H1(Ω) as a norm on H1
0 (Ω) and we use it to define the norm of

the dual space H−1(Ω) of H1
0 (Ω):

‖ f ‖H−1(Ω)= sup
v∈H1

0 (Ω)

〈f, v〉
|v|H1(Ω)

,
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where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Also, we recall the spaces we intro-

duced at the beginning:

V = {v ∈ H1
0 (Ω)2; div v = 0 in Ω} and L2

0(Ω) = {q ∈ L2(Ω);

∫

Ω

q dx = 0},

and the orthogonal complement of V in H1
0 (Ω)2 :

V ⊥ = {v ∈ H1
0 (Ω)

2
;∀w ∈ V, (∇v,∇w) = 0}.

The results of this article are based on the identity:

2(an+1, 3an+1 − 4an + an−1) = |an+1|2 + |2an+1 − an|2 + |δ2an|2 − |an|2 − |2an − an−1|2, (2.6)

where

δ2an = an+1 − 2an + an−1. (2.7)

3. Error estimates for the solution of Step One

The results in this paragraph are written for the non-linear scheme (1.17)–(1.18).
To simplify, we denote by η the mesh parameter. First of all, we prove the existence and the uniqueness
of the solution of (1.17)–(1.18).

Lemma 3.1. (Stability) Let un+1
η be a solution of (1.17)–(1.18) with the initial datas u0

η and u1
η ∈ Vη;

We have

sup
2≤n≤N

‖ un
η ‖L2(Ω) + sup

2≤n≤N
‖ 2un

η − un−1
η ‖L2(Ω) +

√
2ν
( N∑

n=2

∆t ‖ ∇un
η ‖2

L2(Ω)

)1/2

+
(N−1∑

n=1

‖ δ2un
η ‖2

L2(Ω)

)1/2

≤ C
(2S2

2

ν

N∑

n=2

∆t ‖ fn ‖2
L2(Ω) + ‖ u1

η ‖2
L2(Ω) + ‖ 2u1

η − u0
η ‖2

L2(Ω)

)1/2

.

Proof. We take the scalar product of (1.17) by 4∆tun+1
η , use (2.6) and sum the result over 1 ≤ n ≤

m − 1. �

The stability of (1.17)–(1.18) results from the following a priori estimation:

Lemma 3.2. (Uniqueness) The scheme (1.17)–(1.18) has a solution for all ν > 0, all initial datas

u0
η, u1

η ∈ Vη and for all data f ∈ C0([0, T ];L2(Ω)2). The solution is unique for ∆t sufficiently small.

Proof. For all 1 ≤ n ≤ N−1, the problem (1.17)–(1.18) is a square system of algebric non-linear equations
in finite dimension. Due to the anti-symetrisation of the non-linear term, we prove, by the theorem of the
seddle point of Brouwer and the inf-sup condition, that for all 1 ≤ n ≤ N − 1, the problem has at least

a solution (un
η , pn

η ). For the unicity, we consider two solutions (u
(1)
η , p

(1)
η ) and (u

(2)
η , p

(2)
η ). Their difference

(wn
η , pn

η ) satisfies:

∀vη ∈ Vη,
1

2∆t
(3wn+1

η − 4wn
η + wn−1

η , vη) + ν(∇wn+1
η ,∇vη) + (wn+1

η · ∇u(1)n+1
η , vη)

+ (u
(2)n+1
η · wn+1

η , vη) +
1

2
(div wn+1

η , u(1)n+1
η · vη) +

1

2
(div u(2)n+1

η , wn+1
η · vη) = 0.

By using the identity (2.6) and choosing vη = wn+1
η , we obtain

1

4∆t

(
‖ wn+1

η ‖2
L2(Ω) + ‖ 2wn+1

η − wn
η ‖2

L2(Ω) + ‖ δ2wn
η ‖2

L2(Ω) − ‖ wn
η ‖2

L2(Ω) − ‖ 2wn
η − wn−1

η ‖2
L2(Ω)

)

+ν|wn+1
η |2H1(Ω)− ‖ wn+1

η ‖2
L4(Ω) |u

(1)n+1
η |H1(Ω) −

1

2
|wn+1

η |H1(Ω) ‖ wn+1
η ‖L4(Ω)‖ u(1)n+1

η ‖L4(Ω)≤ 0.
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Due to the fact that in finite dimension, all the norms are equivalent, summing the precedent inequality
from n = 1 to m − 1, and using Lemma 3.1 and w0

η = w1
η = 0, we obtain

‖ wm
η ‖2

L2(Ω) +ν

m∑

n=2

∆t|wn
η |2H1(Ω) +

m−1∑

n=1

‖ δ2wn
η ‖2

L2(Ω) + ‖ 2wm
η − wm−1

η ‖2
L2(Ω)≤ C∆t

m∑

n=1

‖ wn
η ‖2

L2(Ω),

(3.1)
with a constant C that depends on η but does not depend on ∆t. For the last term of the sum of the
right-hand side, we write:

wm
η = δ2wm−1

η + 2wm−1
η − wm−2

η .

Then

‖ wm
η ‖2

L2(Ω)≤ 2
(
‖ δ2wm−1

η ‖2
L2(Ω) + ‖ 2wm−1

η − wm−2
η ‖2

L2(Ω)

)
,

and for ∆t sufficiently small, the term

2C∆t
(
‖ δ2wm−1

η ‖2
L2(Ω) + ‖ 2wm−1

η − wm−2
η ‖2

L2(Ω)

)

can be absorbed by the term in the left-hand side of the inequality. Applying Gronwall’s lemma, we
obtain wn

η = 0 then, the inf-sup condition implies pn
η = 0, 2 ≤ n ≤ N. �

In the next proposition, we will establish the error estimate for the solution computed by one iteration
of Euler’s scheme (u1

η − u(∆t), p1
η − p(∆t)):

Proposition 3.3. Suppose that u′′ ∈ C0(0, T ;L2(Ω)2), u(∆t) ∈ H3(Ω)2 and p(∆t) ∈ H2(Ω), the error

of the solution computed by one iteration of Euler’s scheme satisfies the following estimations, for ∆t ≤
k0 > 0 sufficiently small,

1

2
‖ u1

η − u(∆t) ‖2
L2(Ω) +

ν∆t

2
|u1

η − u(∆t)|2H1(Ω)

≤ (∆t)4

4
‖ u′′ ‖2

L∞(0,T ;L2(Ω)2) +C(∆t)η4
(
|u(∆t)|2H3(Ω) + |p(∆t)|2H2(Ω)

)
+ Cη6|u(∆t)|2H3(Ω),

(3.2)

and

(∆t)1/2 ‖ p(∆t) − p1
η ‖L2(Ω)≤ C

(
(∆t)3/2 + η2 +

η3

√
∆t

)
. (3.3)

Proof. Due to the regularity assumption of u, there exists θ ∈]0, 1[ such that

0 = u0 = u(∆t) − (∆t)u′(∆t) +
1

2
(∆t)2u′′(θ∆t),

and u1
η satisfies the following error equation

∀vη ∈ Vη,
1

∆t
(u1

η − u(∆t), vη) + ν(∇(u1
η − u(∆t)),∇vη) =

∆t

2
(u′′(θ∆t), vη)

−(p(∆t) − rηp(∆t),div vη) + (u(∆t) · ∇u(∆t) − u1
η · ∇u1

η, vη) − 1

2
(div u1

η, u1
η · vη).

(3.4)

Setting vη = v1
η = u1

η − Pηu(∆t) and ϕ1
η = Pηu(∆t) − u(∆t), we obtain

1

∆t
‖ v1

η ‖2
L2(Ω) +ν|v1

η|2H1(Ω) =
∆t

2
(u′′(θ∆t), v1

η) + (rηp(∆t) − p(∆t),div v1
η) − (v1

η · ∇u1
η, v1

η)

−1

2
(div v1

η, u1
η · v1

η) − (ϕ1
η · ∇u1

η, v1
η) − 1

2
(div ϕ1

η, u1
η · v1

η)

−(u(∆t) · ∇ϕ1
η, v1

η) − 1

∆t
(ϕ1

η, v1
η) − ν(∇ϕ1

η,∇v1
η).

(3.5)
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Then (3.2) follows readily by applying the error approximation of Pη.

For the pressure, we have

(rηp(∆t) − p(∆t),div vη) + (p1
η − rηp(∆t),div vη) =

1

∆t
(u1

η − u(∆t), vη) + ν(∇(u1
η − u(∆t)),∇vη)

−∆t

2
(u′′(θ∆t), vη) − (u(∆t) · ∇u(∆t) − u1

η · ∇u1
η, vη) +

1

2
(div u1

η, u1
η · vη),

(3.6)
and owing to the inf-sup condition (1.10), there exists vη ∈ V ⊥

η such that

(p1
η − rηp(∆t),div vη) =‖ p1

η − rηp(∆t) ‖2
L2(Ω) and |vη|H1(Ω) ≤

1

β⋆
‖ p1

η − rηp(∆t) ‖L2(Ω),

with β⋆ > 0 independent of η. Then, by applying (3.2), we obtain (3.3). �

The next result, stated in Lemma 3.4, is a standard error estimate. We give the proof for the sake of
completeness.

Lemma 3.4. Let Xη and Mη be defined by (1.11) and (1.12) and approximate fn+1 by fn+1 = f(tn+1).
At each time step, (1.17)–(1.18) has a solution un+1

η and this solution is unique if ∆t is sufficiently small.

Suppose that u ∈ L2(0, T ;H3(Ω)2), u′ ∈ L2(0, T ;H2(Ω)2), u(3) ∈ L2(Ω×]0, T [)2 and p ∈ L2(0, T ;H2(Ω)),
there exist a constant C that does not depend on η and ∆t and a constant k0 > 0 that does not depend

on η such that, for all ∆t ≤ k0,

sup
1≤n≤N

‖ un
η − u(tn) ‖L2(Ω) +

(N−1∑

n=1

‖ δ2(un
η − u(tn)) ‖2

L2(Ω)

)1/2

+
√

ν
(N−1∑

n=1

∆t|un+1
η − u(tn+1)|2H1(Ω)

)1/2

≤ C(η2 + (∆t)2).
(3.7)

Proof. Setting vn
η = un

η − Pηu(tn) and ϕn
η = Pηu(tn) − u(tn), 0 ≤ n ≤ N, we substruct (1.17) and (1.1)

taken at t = tn+1 and by using the following second-order backward finite difference scheme

∂u

∂t
(tn+1) =

3u(tn+1) − 4u(tn) + u(tn−1)

2∆t
+ O((∆t)2), (3.8)

we have ∣∣∣u′(t + ∆t) − 3u(t + ∆t) − 4u(t) + u(t − ∆t)

2∆t

∣∣∣ ≤ (∆t)3/2

2
√

3
‖ u(3) ‖L2(t−∆t;t+∆t), (3.9)

and by summing the result over 1 ≤ n ≤ m − 1, we obtain :

‖ vm
η ‖2

L2(Ω) + ‖ 2vm
η − vm−1

η ‖2
L2(Ω) +

m−1∑

n=1

‖ δ2vn
η ‖2

L2(Ω) +4ν
m−1∑

n=1

∆t|vn+1
η |2H1(Ω)

≤
(
‖ v1

η ‖2
L2(Ω) + ‖ 2v1

η − v0
η ‖2

L2(Ω)

)
+ 2
∣∣∣

m−1∑

n=1

(3ϕn+1
η − 4ϕn

η + ϕn−1
η , vn+1

η )
∣∣∣+ 4ν

∣∣∣
m−1∑

n=1

∆t(∇ϕn+1
η ,∇vn+1

η )
∣∣∣

+4
∣∣∣

m−1∑

n=1

∆t(p(tn+1) − rηp(tn+1),div vn+1
η )

∣∣∣+ 4
m−1∑

n=1

∆t
(∆t)3/2

2
√

3
‖ u(3) ‖L2(tn−1;tn+1)‖ vn+1

η ‖L2(Ω)

+4
∣∣∣

m−1∑

n=1

∆t(u(tn+1) · ∇u(tn+1) − un+1
η · ∇un+1

η , vn+1
η ) − 1

2

m−1∑

n=1

∆t(div un+1
η , un+1

η .vn+1
η )

∣∣∣.

(3.10)
Let us study the terms of the right hand side of (3.10) denoted by ((trhs)i)1≤i≤7. The first term (trhs)1
is bounded as in Proposition 3.3.

To study the second term, we have

3ϕn+1
η − 4ϕn

η + ϕn−1
η

2∆t
= Pηu′(tn+1) − u′(tn+1) + R2,
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with

|R2| ≤
(∆t)3/2

2
√

3
‖ Pηu(3) − u(3) ‖L2(tn−1;tn+1) .

Hence, by assuming that Pη is stable in the norm L2 (cf. Girault and Lions [8]), we have

|(trhs)2| =
∣∣∣4

m−1∑

n=1

∆t
(3ϕn+1

η − 4ϕn
η + ϕn−1

η

2∆t
, vn+1

η

)∣∣∣

≤ Cη4

2ε2
‖ u′ ‖2

L∞(0,T ;H2(Ω)2) +
C(∆t)4

2ε2
‖ u(3) ‖2

L2(Ω×]0,T [)2 +
ε2

2

m−1∑

n=1

∆t|vn+1
η |2H1(Ω).

The third term is bounded as follows :

|(trhs)3| =
∣∣∣4ν

m−1∑

n=1

∆t(∇ϕn+1
η ,∇vn+1

η )
∣∣∣ ≤ 2Cνη4

ε3
‖ u ‖2

L2(0,T ;H3(Ω)2) +2νε3

m−1∑

n=1

∆t|vn+1
η |2H1(Ω).

For the pressure contribution, we have :

|(trhs)4| =
∣∣∣4

m−1∑

n=1

∆t(p(tn+1) − rηp(tn+1),div vn+1
η )

∣∣∣ ≤ 2Cη4

ε4
‖ p ‖2

L2(0,T ;H2(Ω)) +2ε4

m−1∑

n=1

∆t|vn+1
η |2H1(Ω).

The fifth term is treated as follows :

|(trhs)5| = 4
m−1∑

n=1

∆t
(∆t)3/2

2
√

3
‖ u(3) ‖L2(tn−1;tn+1)‖ vn+1

η ‖L2(Ω)

≤ (∆t)4S2
2

3ε5
‖ u(3) ‖2

L2(Ω×]0,T [)2 +ε5

m−1∑

n=1

∆t|vn+1
η |2H1(Ω).

Let us consider now the non-linear terms, (trhs)6 + (trhs)7, which are treated like follows :

(−u(tn+1) · ∇u(tn+1) + un+1
η · ∇un+1

η , vn+1
η ) +

1

2
(div un+1

η , un+1
η · vn+1

η )

= −(vn+1
η · ∇vn+1

η , Pηu(tn+1)) − 1

2
(div vn+1

η , Pηu(tn+1) · vn+1
η ) − (ϕn+1

η · ∇vn+1
η , Pηu(tn+1))

−1

2
(div ϕn+1

η , Pηu(tn+1) · vn+1
η ) − (u(tn+1) · ∇vn+1

η , ϕn+1
η ).

(3.11)

The study of the three terms in the right-hand side of (3.11), denoted by ((trhs)67).j, j = 1, 2, 3, will end
the proof. Setting

C1 = sup
n

|u(tn)|H1(Ω),

applying on one hand
∫

Ω

div(vn+1
η − u(tn+1))u(tn+1) · ϕn+1

η dx = −
∫

Ω

(vn+1
η − u(tn+1)) · ∇u(tn+1) · ϕn+1

η dx

−
∫

Ω

(vn+1
η − u(tn+1)) · ∇ϕn+1

η · u(tn+1)dx,
(3.12)

and on the other hand

ab ≤ ap

p
+

bp′

p′
, avec

1

p
+

1

p′
= 1, (3.13)

we have

|((trhs)67).1| =
∣∣∣4

m−1∑

n=1

∆t
(
(vn+1

η · ∇vn+1
η , Pηu(tn+1)) +

1

2
(div vn+1

η , Pηu(tn+1) · vn+1
η )

)∣∣∣

≤ 3S4C1

√
2

2ε4
6

m−1∑

n=1

∆t ‖ vn+1
η ‖2

L2(Ω) +
9S4C1ε

4/3
6

2
√

2

m−1∑

n=1

∆t|vn+1
η |2H1(Ω),



SECOND-ORDER TWO-GRID SCHEME FOR THE FULLY DISCRETE TRANSIENT NAVIER-STOKES EQUATIONS 9

|((trhs)67).2| =
∣∣∣4

m−1∑

n=1

∆t
(
(ϕn+1

η · ∇vn+1
η , Pηu(tn+1)) +

1

2
(div ϕn+1

η , Pηu(tn+1) · vn+1
η )

)∣∣∣

≤ 3S2
4CC1

{η4

ε7
‖ u ‖2

L2(0,T ;H3(Ω)2) +ε7

m−1∑

n=1

∆t|vn+1
η |2H1(Ω)

}
,

and

|((trhs)67).3| =
∣∣∣4

m−1∑

n=1

∆t
(
u(tn+1) · ∇vn+1

η , ϕn+1
η

)∣∣∣

≤ S2
4C1

2

{C2η4

ε8
‖ u ‖2

L2(0,T ;H3(Ω)2) +ε8

m−1∑

n=1

∆t|vn+1
η |2H1(Ω)

}
.

After a suitable choice of εi, (3.10) becomes

‖ vm
η ‖2

L2(Ω) + ‖ 2vm
η − vm−1

η ‖2
L2(Ω) +

m−1∑

n=1

‖ δ2vn
η ‖2

L2(Ω) +ν

m−1∑

n=1

∆t|vn+1
η |2H1(Ω)

≤ α(∆t)4 + βη4 + ξ

m−1∑

n=1

∆t ‖ vn+1
η ‖2

L2(Ω),

(3.14)

where α, β and ξ are constants that do not depend on η and ∆t.

Then after applying Gronwall’s lemma and for ∆t sufficiently small, the result follows from this in-
equality:

sup
1≤n≤N

‖ vn
η ‖L2(Ω) + sup

1≤n≤N
‖ 2vn

η − vn−1
η ‖L2(Ω) +

(N−1∑

n=1

‖ δ2vn
η ‖2

L2(Ω)

)1/2

+
√

ν
(N−1∑

n=1

∆t|vn+1
η |2H1(Ω)

)1/2

≤ α′(∆t)2 + β′η2.

(3.15)

Finally, (3.7) follows by applying a triangular inequality and the Pη’s properties. �

Remark 3.5. We suppose that there exist two constants α′ and γ′ > 0 that do not depend on η and ∆t

such that

α′η3 ≤ (∆t)2 ≤ γ′η3, (3.16)

which means that (∆t)2 is of the same order of η3.

4. Some error estimates for the Stokes problem

The error estimate of order two in L2(Ω×]0, T [)2, that will be established in the next section, is based
on a duality argument for the transient Stokes problem:

∂v

∂t
(x, t) − ν∆v(x, t) + ∇q(x, t) = g(x, t) in Ω×]0, T [, (4.1)

div v(x, t) = 0 in Ω×]0, T [, v(x, t) = 0 on ∂Ω×]0, T [, v(x, 0) = 0 in Ω. (4.2)

The fully-discrete scheme for (4.1)–(4.2) is: Find (vn+1
η , qn+1

η ) with values in Xη × Mη, for each 1 ≤ n ≤
N − 1, solution of:

∀zη ∈ Xη,
1

2∆t
(3vn+1

η − 4vn
η + vn−1

η , zη) + ν(∇vn+1
η ,∇zη) − (qn+1

η ,div zη) = (gn+1, zη), (4.3)

∀λη ∈ Mη, (λη,div vn+1
η ) = 0. (4.4)

These equations are completed by initial conditions similar to the Navier-Stokes problem’s ones.

This linear problem (4.3)–(4.4) has a unique solution, owing to the inf-sup condition (1.10), without
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any restriction on ∆t. This solution satisfies the following error estimates in norm L∞(0, T ;L2(Ω)2) and
L2(0, T ;H1(Ω)2): We prove, first of all, that the initial value v1

η, as in the Navier-Stokes problem, satisfies:

If v(∆t) ∈ H3(Ω)2, q(∆t) ∈ H2(Ω) and v′′ ∈ C0([0, T ];L2(Ω)2), then

‖ v1
η − v(∆t) ‖2

L2(Ω) +ν∆t|v1
η − v(∆t)|2H1(Ω)

≤ (∆t)4

2
‖ v′′ ‖2

L∞(0,T ;L2(Ω)2) +C(∆t)η4
(
|v(∆t)|2H3(Ω) + |q(∆t)|2H2(Ω)

)
+ Cη6|v(∆t)|2H3(Ω).

(4.5)

Secondly, in the general case, we have the following result (the proof is similar to the one of Lemma 3.4,
but simpler because of the absence of the convection term).

Lemma 4.1. Let (v, q) and (vn
η , qn

η ) be the respective solution of (4.1)–(4.2) and (4.3)–(4.4). In addition

to the precedent hypotheses, we suppose that g is regular enough in space and in time,

v ∈ L2(0, T ;H3(Ω)2), v′ ∈ L2(0, T ;H2(Ω)2), v(3) ∈ L2(Ω×]0, T [)2 and q ∈ L2(0, T ;H2(Ω)). There exists

a constant C that does not depend on η and ∆t such that

sup
1≤n≤N

‖ vn
η − v(tn) ‖L2(Ω) + sup

1≤n≤N
‖ 2(vn

η − v(tn)) − (vn−1
η − v(tn−1)) ‖L2(Ω)

+
(N−1∑

n=1

‖ δ2(vn
η − v(tn)) ‖2

L2(Ω)

)1/2

+
√

ν
( N∑

n=1

∆t|vn
η − v(tn)|2H1(Ω)

)1/2

≤ C(η2 + (∆t)2).
(4.6)

In addition, the solution (vn+1
η , qn+1

η ) of (4.3)–(4.4) satisfies an error estimate in L∞(0, T ;H1(Ω)2). To
simplify, we introduce the following notation

δ1an =
3an+1 − 4an + an−1

2∆t
. (4.7)

The proof is based on the following Stokes projection: ∀(u, p) ∈ V × L2
0(Ω), Sη(u) ∈ Vη satisfies

∀vη ∈ Vη, ν(∇(Sη(u) − u),∇vη) = −(p, div vη). (4.8)

The operator Sη satisfies the following inequalities:

Lemma 4.2. Let (u, p) ∈ V × L2
0(Ω). Sη(u) defined by (4.8) satisfies

|Sη(u) − u|H1(Ω) ≤ 2|Pη(u) − u|H1(Ω) +
1

ν
‖ rη(p) − p ‖L2(Ω) . (4.9)

If in addition Ω is convex, there exists a constant C that does not depend on η such that

‖ Sη(u) − u ‖L2(Ω)≤ Cη(|Sη(u) − u|H1(Ω)+ ‖ rη(p) − p ‖L2(Ω)). (4.10)

Lemma 4.3. In addition to the hypotheses of Lemma 4.1, suppose that v′ ∈ C0(0, T ;H2(Ω)2),
v′′ ∈ L2(0, T ;H1(Ω)2), v(3) ∈ L2(Ω×]0, T [)2, q′ ∈ C0(0, T ;H1(Ω)) and q′′ ∈ L2(Ω×]0, T [). Then, if Ω is

convex, there exists a constant C that does not depend on η and ∆t such that

sup
1≤n≤N

|vn
η − v(tn)|H1(Ω) + sup

1≤n≤N−1
|2(vn+1

η − v(tn+1)) − (vn
η − v(tn))|H1(Ω)

+
(N−1∑

n=1

∆t ‖ δ1(vn
η − v(tn)) ‖2

L2(Ω)

)1/2

+
(N−1∑

n=1

|δ2(vn
η − v(tn))|2H1(Ω)

)1/2

≤ C(η2 + (∆t)3/2 +
η3

√
∆t

).

(4.11)
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Proof. Setting ϕ(t) = v(t)−Sηv(t), ϕi
η = ϕ(ti) and ei

η = vi
η−Sηv(ti) and applying (3.9) to (4.3), we obtain

∀zη ∈ Vη, (δ1en
η , zη) + ν(∇en+1

η ,∇zη) = (δ1ϕn
η , zη) + R3, (4.12)

where

|R3| ≤
(∆t)3/2

2
√

3
‖ v(3) ‖L2(tn−1,tn+1;L2(Ω)2)‖ zη ‖L2(Ω) .

Taking the scalar product by zη = zn+1
η =

3en+1
η − 4en

η + en−1
η

2∆t
, summing over 1 ≤ n ≤ m − 1, and

applying Jensen’s inequality, (4.12) becomes

1

2

m−1∑

n=1

∆t ‖ zn+1
η ‖2

L2(Ω) +
ν

4

(
|em

η |2H1(Ω) + |2em
η − em−1

η |2H1(Ω) +
m−1∑

n=1

|δ2en
η |2H1(Ω)

)

≤ 5ν

4
|e1

η|2H1(Ω) +
(∆t)4

3
‖ v(3) ‖2

L2(0,T ;L2(Ω)2) +
m−1∑

n=1

∆t ‖ δ1ϕn
η ‖2

L2(Ω) .

(4.13)

Then (4.11) follows readily by applying (4.5), (4.9) and (4.10). �

The parabolic duality argument (cf. [21]) consists in defining the solution (wn−1, λn−1) of the backward
semi-discrete Stokes system of second order in time :

−wn+1 − 4wn + 3wn−1

2∆t
+ ν∆wn−1 −∇λn−1 = vn−1

η − v(tn−1) in Ω, 1 ≤ n ≤ N + 1, (4.14)

div wn−1 = 0 in Ω, 1 ≤ n ≤ N + 1, (4.15)

wn−1|∂Ω = 0, 1 ≤ n ≤ N + 1, (4.16)

wN+2 = 0 , wN+1 = 0 in Ω. (4.17)

For each n, 0 ≤ n ≤ N, the Stokes problem (4.14)–(4.17) has a unique solution wn ∈ H1
0 (Ω)2, λn ∈ L2

0(Ω),
(cf. [9], [20]).
The next lemma establishes basic estimates for the velocity wn of the backward semi-discrete Stokes
problem (4.14)–(4.17).

Lemma 4.4. Standard arguments give the uniform bounds:

sup
0≤n≤N

‖ wn ‖L2(Ω) + sup
1≤n≤N+1

‖ 2wn−1 − wn ‖L2(Ω) +
√

2ν
( N∑

n=0

∆t|wn|2H1(Ω)

)1/2

+
N+1∑

n=1

‖ δ2wn ‖2
L2(Ω)≤

√
2S2

ν

( N∑

n=0

∆t ‖ v(tn) − vn
η ‖2

L2(Ω)

)1/2

,

(4.18)

where S2 is the constant of Poincars inequality, and

√
ν

2
sup

0≤n≤N
|wn|H1(Ω) +

√
ν

2

(N+1∑

n=1

|δ2wn|2H1(Ω)

)1/2

+

√
ν

2
sup

0≤n≤N
|2wn − wn+1|H1(Ω)

+
(N+1∑

n=1

∆t ‖ wn+1 − 4wn + 3wn−1

2∆t
‖2

L2(Ω)

)1/2

≤
( N∑

n=0

∆t ‖ v(tn) − vn
η ‖2

L2(Ω)

)1/2

.

(4.19)

If Ω is convex, then ∀ 0 ≤ n ≤ N,wn ∈ H2(Ω)2, λn ∈ H1(Ω) and (4.19) implies the uniform bound

( N∑

n=0

∆t
(
|wn|2H2(Ω) + |λn|2H1(Ω)

))1/2

≤ C
( N∑

n=0

∆t ‖ v(tn) − vn
η ‖2

L2(Ω)

)1/2

(4.20)

with a constant C independent of ∆t and η.
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Proof. For the first inequality, we take the scalar product of (4.14) with z = 4∆twn−1, and we use the
incompressibility condition. Multiplying the result by ∆t, summing it over n from m + 1 to N + 1, and
applying the Poincars inequality, we obtain for any ε > 0

‖ wm ‖2
L2(Ω) + ‖ 2wm − wm+1 ‖2

L2(Ω) +4ν
N∑

n=m

∆t|wn|2H1(Ω) +
N+1∑

n=m+1

‖ δ2wn ‖2
L2(Ω)

≤ 2

ε

N∑

n=m

∆t ‖ v(tn) − vn
η ‖2

L2(Ω) +2εS2

N∑

n=m

∆t|wn|2H1(Ω),

where S2 is Poincars constant. Then (4.18) follows after the suitable choice of ε =
ν

S2
.

Similarly, for the second inequality, we take the scalar product of (4.14) with z =
wn+1 − 4wn + 3wn−1

2∆t
,

we multiply the equation by ∆t and sum it over n. We obtain (4.19) by choosing ε =
1

2∆t
.

Now, we assume that Ω is convex. Since (4.14)–(4.17) is a steady Stokes problem with right-hand

side −wn+1 − 4wn + 3wn−1

2∆t
+ (v(tn−1)− vn−1

η ), we have wn ∈ H2(Ω)2, λn ∈ H1(Ω) (cf. [10]) and (4.19)

implies also the uniform bound (4.20). �

From now on, we assume that Ω is convex. Using these inequalities, the next theorem establishes that
the error satisfies an estimate of order two in L2(Ω×]0, T [)2.

Theorem 4.5. If g ∈ L2(Ω×]0, T [)2, v ∈ L2(0, T ;H3(Ω)2), q ∈ L2(0, T ;H2(Ω)), v′ ∈ L2(0, T ;H2(Ω)2)
and v(3) ∈ L2(Ω×]0, T [)2, then there exists a constant C, that depends on the norm of v, v′, v(3) and q,

but not on η and ∆t such that

( N∑

n=0

∆t ‖ vn
η − v(tn) ‖2

L2(Ω)

)1/2

≤ C(η3 + (∆t)2 + η(∆t)2). (4.21)

In particular, if (3.16) holds, then

( N∑

n=0

∆t ‖ vn
η − v(tn) ‖2

L2(Ω)

)1/2

≤ Cη3. (4.22)

Proof. Let en−1 = vn−1
η − v(tn−1). Taking the scalar product of (4.14) by en−1, summing over n form 1

to N + 1 and applying a discrete integration by parts, we obtain

N∑

n=0

∆t ‖ en ‖2
L2(Ω)=

N−1∑

n=1

{
− 1

2
(3en+1 − 4en + en−1, Pηwn+1) − ν∆t(∇Pηwn+1,∇en−1)

}

−1

2

N+1∑

n=1

(3en+1 − 4en + en−1, wn+1 − Pηwn+1) − ν

N+1∑

n=1

∆t(∇(wn−1 − Pηwn−1),∇en−1)

+
N+1∑

n=1

∆t(λn−1 − rηλn−1,div en−1) −
{3

2
(w1, e1) + ν∆t(∇e1,∇Pηw1)

}
.

(4.23)

Denote the terms in the right-hand side of (4.23) by (WRH)j , j = 1, ..., 5. The first term is treated as



SECOND-ORDER TWO-GRID SCHEME FOR THE FULLY DISCRETE TRANSIENT NAVIER-STOKES EQUATIONS 13

follows :

|(WRH)1| ≤
∣∣∣

N∑

n=1

∆t
(
q(tn+1) − rηq(tn+1),div(Pηwn+1 − wn+1)

)∣∣∣

+
P√
3
(∆t)2 ‖ v(3) ‖L2(Ω×]0,T [)2

(N−1∑

n=1

∆t|Pηwn+1|2H1(Ω)

)1/2

≤
[
Cη3 ‖ q ‖L2(0,T ;H1(Ω)) +

P√
3
(∆t)2 ‖ v(3) ‖L2(Ω×]0,T [)2

]( N∑

n=0

∆t ‖ en ‖2
L2(Ω)

)1/2

.

The second term is bounded as follows :

|(WRH)2| ≤
(N−1∑

n=1

∆t ‖ δ1en ‖2
L2(Ω)

)1/2(N−1∑

n=1

∆t ‖ wn+1 − Pηwn+1 ‖2
L2(Ω)

)1/2

≤ Cη2((∆t)3/2 + η2)
( N∑

n=0

∆t ‖ en ‖2
L2(Ω)

)1/2

.

Owing to Lemma 4.1, the third and fourth terms can be bounded by:

|(WRH)3| ≤ Cη
( N∑

n=0

∆t|en|2H1(Ω)

)1/2( N∑

n=0

∆t|wn|2H2(Ω)

)1/2

≤ Cη((∆t)2 + η2)
( N∑

n=0

∆t ‖ en ‖2
L2(Ω)

)1/2

,

and

|(WRH)4| ≤ Cη((∆t)2 + η2)
( N∑

n=0

∆t ‖ en ‖2
L2(Ω)

)1/2

.

Finally, the last term can be written as follows :

|(WRH)5| = −3

2
(w1 − Pηw1, e1) − 3

2

[
(Pηw1, e1) + ν∆t(∇e1,∇Pηw1)

]
+

ν

2
∆t(∇e1,∇Pηw1).

Let us consider the terms between square brackets and write the error equation at time t1 : there exists
θ ∈]0, 1[ such that

(e1, Pηw1) + ν∆t(∇e1,∇Pηw1) = ∆t(rηq(∆t) − q(∆t),div Pηw1) − (∆t)2

2
(v′′(θ∆t), Pηw1),

then
∣∣∣(e1, Pηw1) + ν∆t(∇e1,∇Pηw1)

∣∣∣ ≤ C
[
(∆t)η2|q(∆t)|H2(Ω) +

(∆t)2

2
‖ v′′ ‖L∞(0,T ;L2(Ω)2)

]

( N∑

n=0

∆t ‖ en ‖2
L2(Ω)

)1/2

.

The first and last parts of (WRH)5 are bounded by using (4.5).
Substituting these inequalities into (4.23), we obtain (4.21). In addition, if (3.16) holds, then (4.21)
implies (4.22). �

Now, we split un
η − u(tn) into a linear contribution, vn

η − u(tn), and a non-linear one un
η − vn

η . Here

vn+1
η is the solution of the Stokes problem (4.3)–(4.4) with g = f − u · ∇u. Therefore, v = u and vn+1

η

solves the discrete problem ∀wη ∈ Vη,

(3vn+1
η − 4vn

η + vn−1
η , wη)

2∆t
+ ν(∇vn+1

η ,∇wη)−(qn+1
η ,div wη) = (f(tn+1)−u(tn+1)·∇u(tn+1), wη). (4.24)

Therefore, Theorem 4.5 gives
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Corollary 4.6. Suppose that u satisfies the hypotheses on v in Theorem 4.5 and that f ∈ C0([0, T ];L2(Ω)2),
then

( N∑

n=0

∆t ‖ vn
η − u(tn) ‖2

L2(Ω)

)1/2

≤ C(η3 + (∆t)2 + η(∆t)2), (4.25)

with another constant C(f, u, p, ν, T ) that does not depend on η nor on ∆t.

Furthermore, if p′ belongs to L2(0, T ;H1(Ω)), Lemma 4.3 implies that

sup
0≤n≤N

|vn
η − u(tn)|H1(Ω) ≤ C(η2 + (∆t)3/2 +

η3

√
∆t

). (4.26)

On the other hand, we prove the following “superconvergence” result for the non-linear part.

Theorem 4.7. Under the assumptions of Corollary 4.6 and if p′ ∈ L2(0, T ;H1(Ω)), u′ ∈ L2(0, T ;H1(Ω)2)
and u ∈ L∞(0, T ;W 1,4(Ω)2) then there exists a constant C that does not depend on η and ∆t, such that

sup
0≤n≤N

‖ vn
η − un

η ‖L2(Ω) + sup
1≤n≤N

‖ 2(vn
η − un

η ) − (vn−1
η − un−1

η ) ‖L2(Ω)

+
(N−1∑

n=1

‖ δ2(vn
η − un

η ) ‖2
L2(Ω)

)1/2

+
(N−1∑

n=0

∆t|vn+1
η − un+1

η |2H1(Ω)

)1/2

≤ C(η3 + (∆t)2).
(4.27)

Proof. In one hand, we take the difference between (4.24) and (1.17). We split the non-linear term as
follows :

un+1
η · ∇un+1

η +
1

2
div un+1

η un+1
η − u(tn+1) · ∇u(tn+1)

= −ϕn+1
η · ∇un+1

η − 1

2
div ϕn+1

η · un+1
η − vn+1

η · ∇ϕn+1
η − 1

2
div vn+1

η ϕn+1
η

+(vn+1
η − u(tn+1)) · ∇(vn+1

η − u(tn+1)) +
1

2
div(vn+1

η − u(tn+1))(vn+1
η − u(tn+1))

+(vn+1
η − u(tn+1)) · ∇u(tn+1) +

1

2
div(vn+1

η − u(tn+1))u(tn+1) + u(tn+1) · ∇(vn+1
η − u(tn+1)).

On the other hand, we multiply the resultant equation by ϕn+1
η and sum it over n = 1, ···,m−1. We obtain:

1

2

m−1∑

n=1

(ϕn+1
η , 3ϕn+1

η − 4ϕn
η + ϕn−1

η ) + ν

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω)

=
m−1∑

n=1

∆t
{

(−ϕn+1
η · ∇un+1

η , ϕn+1
η ) − 1

2
(div ϕn+1

η , un+1
η · ϕn+1

η )
}

+
m−1∑

n=1

∆t(u(tn+1) · ∇(vn+1
η − u(tn+1)), ϕn+1

η )

+
m−1∑

n=1

∆t
{

((vn+1
η − u(tn+1)) · ∇(vn+1

η − u(tn+1)), ϕn+1
η ) +

1

2
(div (vn+1

η − u(tn+1)), (vn+1
η − u(tn+1)) · ϕn+1

η )
}

+
m−1∑

n=1

∆t
{

((vn+1
η − u(tn+1)) · ∇u(tn+1), ϕn+1

η ) +
1

2
(div (vn+1

η − u(tn+1)), u(tn+1) · ϕn+1
η )

}
.

(4.28)
The left-hand side of (4.28) can be written as follows :

1

4
‖ ϕm

η ‖2
L2(Ω) −

1

4
‖ ϕ1

η ‖2
L2(Ω) +

1

4
‖ 2ϕm

η − ϕm−1
η ‖2

L2(Ω) −
1

4
‖ 2ϕ1

η − ϕ0
η ‖2

L2(Ω)

+
1

4

m−1∑

n=1

‖ δ2ϕn
η ‖2

L2(Ω) +ν

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω).

We note (URH)i, i = 1, ..., 4, the terms in the right-hand side of (4.28). For the first term, setting
C1 = sup

n
|un

η |H1(Ω), we can write

|(URH)1| ≤
C1

2

{
(
√

2ε1 +
21/43S4ε

4/3
2

8
)

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω) + (

√
2

ε1
+

21/4S4

8ε4
2

)
m−1∑

n=1

∆t ‖ ϕn+1
η ‖2

L2(Ω)

}
.
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Setting C3 = sup
n

‖ u(tn+1) ‖L∞(Ω) and due to Corollary 4.6, the second term is bounded as follows :

|(URH)2| ≤
CC3

2ε3
(η6 + (∆t)4 + (∆t)4η2) +

C3ε3

2

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω).

For the third term, we use Lemma 4.1 and (4.26) and we obtain :

|(URH)3| ≤
CS2

4

2ε4
(η8 + (∆t)7 + (∆t)3η4) +

3S2
4ε4

4

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω).

In order to bound the last term, we use the well-known formula (3.12) :

((vn+1
η − u(tn+1)) · ∇u(tn+1), ϕn+1

η ) +
1

2
(div (vn+1

η − u(tn+1)), u(tn+1) · ϕn+1
η )

=
1

2
((vn+1

η − u(tn+1)) · ∇u(tn+1), ϕn+1
η ) − 1

2
((vn+1

η − u(tn+1)) · ∇ϕn+1
η , u(tn+1)),

(4.29)

we set C2 = sup
1≤n≤N

|u(tn+1)|W 1,4(Ω) and we obtain :

|(URH)4| ≤
C(C2S4 + C3)

4ε5
(η6 + (∆t)4 + η2(∆t)4) +

(S4C2 + C3)ε5

4

m−1∑

n=1

∆t|ϕn+1
η |2H1(Ω).

Finally, we still have to estimate ϕ1
η :

‖ ϕ1
η ‖2

L2(Ω) +ν∆t|ϕ1
η|2H1(Ω) = ∆t

∣∣∣(u1
η · ∇u1

η − u(∆t) · u(∆t), ϕ1
η)
∣∣∣.

The non-linear term is splitted as the general one. The first part is bounded by :

C1

2

{
(
√

2ε6 +
21/43S4ε

4/3
7

8
)∆t|ϕ1

η|2H1(Ω) + (

√
2

ε6
+

21/4S4

8ε4
7

)∆t ‖ ϕ1
η ‖2

L2(Ω)

}
,

and if ∆t is sufficiently small, these terms are absorbed by the left-hand side of (4.28). In the second
part, we obtain :

∆t ‖ v1
η − u(t1) ‖2

L2(Ω)≤ C(η6 + (∆t)4),

and in the third one :

∆t|v1
η − u(∆t)|H1(Ω) ‖ v1

η − u(∆t) ‖L4(Ω) |ϕ1
η|H1(Ω)

≤ 1

2
(ε8∆t|ϕ1

η|2H1(Ω) +
1

ε8
C(η8 + η6(∆t)3/2 +

η9

√
∆t

+ η4(∆t)7/2).

In the last part, we obtain

∆t ‖ v1
η − u(t1) ‖2

L2(Ω)≤ C(η6 + (∆t)4).

Then (4.27) follows readily by applying these results. �

Combining Corollary 4.6 and Theorem 4.7, we obtain :

Corollary 4.8. Under the assumptions of Theorem 4.7, there exists a constant C that does not depend

on η and ∆t, such that

( N∑

n=0

∆t ‖ u(tn) − un
η ‖2

L2(Ω)

)1/2

≤ C(η3 + (∆t)2), (4.30)

In particular, if (3.16) holds, then

(N−1∑

n=1

∆t ‖ u(tn+1) − un+1
η ‖2

L2(Ω)

)1/2

≤ Cη3. (4.31)
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5. An estimate for the pressure

The results of the preceding section allow one to establish an error estimate for the pressure. We start
with a general bound.

Lemma 5.1. Under the assumptions of Lemma 3.4, let (u(tn+1), p(tn+1)) and (un+1
η , pn+1

η ) be the re-

spective solution of (1.1)–(1.4) and (1.17)–(1.18). We have

(
N−1∑

n=1

∆t ‖ pn+1
η − rηp(tn+1) ‖2

L2(Ω))
1/2 ≤ 1

β⋆

{
C1(η

2 + (∆t)2) + C2(∆t)2 ‖ u(3) ‖L2(Ω×]0,T [)2

+C3η
2 ‖ p ‖L2(0,T ;H2(Ω)) +S2(

N∑

n=1

∆t ‖ δ1(un
η − u(tn)) ‖2

L2(Ω))
1/2
}

,

(5.1)

where β⋆ is the constant of the inf-sup condition (1.10) and the coefficients Ci, 1 ≤ i ≤ 3, are independent

of η and ∆t.

Proof. Let us substruct the non-linear terms and set ei
η = ui

η − u(ti). We obtain

u(tn+1) · ∇u(tn+1) − un+1
η · ∇un+1

η − 1

2
div un+1

η un+1
η = −u(tn+1) · ∇en+1

η − en+1
η · ∇un+1

η − 1

2
div en+1

η un+1
η .

Then, for all wn
η ∈ Xη and due to (3.9), we have

N−1∑

n=1

∆t(pn+1
η − rηp(tn+1),div wn+1

η ) =
N−1∑

n=1

∆t
(3en+1

η − 4en
η + en−1

η

2∆t
, wn+1

η

)
+ ν

N−1∑

n=1

∆t(∇en+1
η ,∇wn+1

η )

+

N−1∑

n=1

R1 +

N−1∑

n=1

∆t(u(tn+1) · ∇en+1
η , wn+1

η ) +

N−1∑

n=1

∆t
{

(en+1
η · ∇un+1

η , wn+1
η ) +

1

2
(div en+1

η un+1
η , wn+1

η )
}

+
N−1∑

n=1

∆t(p(tn+1) − rηp(tn+1),div wn+1
η ).

(5.2)

Owing to the inf-sup condition (1.10), there exists a function wη ∈ V ⊥
η such that

(div wη, pn+1
η − rηp(tn+1)) =‖ pn+1

η − rηp(tn+1) ‖2
L2(Ω) and |wη|H1(Ω) ≤

1

β⋆
‖ pn+1

η − rηp(tn+1) ‖L2(Ω) .

Let (PRH)i, i = 1, ..., 6, denote the terms of the right-hand side of (5.2).

We deduce by standard arguments:

|(PRH)1| ≤ S2

(N−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω)

)1/2(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

,

|(PRH)2| ≤ ν
(N−1∑

n=1

∆t|Pηu(tn+1) − u(tn+1)|2H1(Ω)

)1/2(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

≤ C1(η
2 + (∆t)2)

(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

,

|(PRH)3| ≤ C2(∆t)2 ‖ u(3) ‖L2(Ω×]0,T [)2

(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

.
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The fourth and fifth terms (PRH)4, (PRH)5 are bounded as follows :

|(PRH)4| ≤ S2
4(sup

t
|u(t)|H1(Ω))

(N−1∑

n=1

∆t|en+1
η |2H1(Ω)

)1/2(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

≤ C3(η
2 + (∆t)2)

(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

.

|(PRH)5| =
1

2

∣∣∣
N−1∑

n=0

∆t
{

(en+1
η · ∇un+1

η , wn+1
η ) − (en+1

η · ∇wn+1
η , un+1

η )
∣∣∣

≤ S2
4(sup |un+1

η |H1(Ω))
(N−1∑

n=1

∆t|en+1
η |2H1(Ω)

)1/2(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

≤ C4(η
2 + (∆t)2)

(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

,

and the last term is bounded as follows :

|(PRH)6 ≤ C5η
2 ‖ p ‖L2(0,T ;H2(Ω))

(N−1∑

n=1

∆t|wn+1
η |2H1(Ω)

)1/2

.

Then (5.1) follows easily by substituting these inequalities into (5.2). �

We have to estimate
(N−1∑

n=1

∆t ‖ δ1(un
η − u(tn)) ‖2

L2(Ω)

)1/2

. This estimate is proven assuming the trian-

gulation satisfies a milder regularity property than uniform regularity (1.9): there exists a constante τ̃

that does not depend on η or ∆t such that

ρmin ≥ τ̃ η5, where ρmin = inf
κ∈Tη

ρκ. (5.3)

More precisely, this assumption is used in proving that un
η is bounded in L∞(0, T ;W 1,5/2(Ω)2) :

Lemma 5.2. Under the assumptions of Theorem 4.7 and if Tη satisfies (5.3), there exists a constant C

that depends neither on η nor on ∆t, such that

sup
n

|un
η |W 1,5/2(Ω) ≤ C. (5.4)

Proof. We refer to [2] for the sketch of this proof. �

Lemma 5.3. Under the assumptions of Theorem 4.7, there exists a constant C = C(u, u′, u(3)) that does

not depend on η and ∆t, such that

(N−1∑

n=1

∆t ‖ δ1(un
η − u(tn)) ‖2

L2(Ω)

)1/2

+
√

ν sup
1≤n≤N

|un
η − u(tn)|H1(Ω)

+
√

ν sup
1≤n≤N

|2(un
η − u(tn)) − (un−1

η − u(tn−1))|H1(Ω) +
√

ν
(N−1∑

n=1

|δ2(un
η − u(tn))|2H1(Ω)

)1/2

≤ C(η2 + (∆t)3/2 +
η3

√
∆t

).

(5.5)
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Proof. The proof is similar to that of Lemma 5.1. By taking ei
η = ui

η − Sηu(ti), ϕi
η = u(ti)− Sηu(ti) and

the test function wη = wn+1
η = δ1en

η :

m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω) +
ν

2
(|em

η |2H1(Ω) − |e1
η|2H1(Ω) + |2em

η − em−1
η |2H1(Ω) − |2e1

η − e0
η|2H1(Ω) +

m−1∑

n=1

|δ2en
η |2H1(Ω))

≤ ν
∣∣∣

m−1∑

n=1

∆t(∇ϕn+1
η ,∇δ1en

η )
∣∣∣+
∣∣∣

m−1∑

n=1

∆t(p(tn+1),div δ1en
η )
∣∣∣+

m−1∑

n=1

∆t(δ1ϕn
η , δ1en

η ) +
m−1∑

n=1

R1

+
m−1∑

n=1

∆t
{

(u(tn+1) · ∇u(tn+1) − un+1
η · ∇un+1

η , δ1en
η ) − 1

2
(div un+1

η un+1
η , δ1en

η )
}

,

(5.6)
with

u(tn+1) · ∇u(tn+1) − un+1
η · ∇un+1

η − 1

2
div un+1

η un+1
η

= u(tn+1) · ∇(u(tn+1) − un+1
η ) + (u(tn+1) − un+1

η ) · ∇un+1
η − 1

2
div(u(tn+1) − un+1

η )un+1
η .

Due to the definition of the operator Sη, we only have to estimate the three last terms (VRH)i, i = 1, ..., 3,

in the right-hand side of (5.6).

The first one is bounded as precedently as follows :

|(VRH)1| =

∣∣∣∣∣

m∑

n=1

∆t(δ1ϕn
η , δ1en

η )

∣∣∣∣∣ ≤
C

2ε1

{
η4(‖ u′ ‖2

L∞(0,T ;H2(Ω)2) + ‖ p′ ‖2
L∞(0,T ;H1(Ω)))

+(∆t)2η2(‖ u′′ ‖2
L2(0,T ;H1(Ω)2) + ‖ p′′ ‖L2(Ω×]0,T [))

}
+

ε1

2

m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω) .

The second term is bounded as follows:

|(VRH)2| =

∣∣∣∣∣

m−1∑

n=1

R1

∣∣∣∣∣ ≤
C(∆t)4

2ε2
‖ u(3) ‖2

L2(Ω×]0,T [)2 +
ε2

2

m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω) .

For the last term, it is splitted into two parts that we treat succesively. The first part is treated as
follows :

∣∣∣
m−1∑

n=1

∆t
(
u(tn+1) · ∇(u(tn+1) − un+1

η ), δ1en
η

)∣∣∣

≤ C ‖ u ‖L∞(Ω×]0,T [)2

2

(
C ′

ε3
(η4 + (∆t)4) + ε3

m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω)

)
,

and for the second part, we notice that :

‖ (u(tn+1) − un+1
η ) · ∇un+1

η ‖L2(Ω) ≤ |un+1
η |W 1,5/2(Ω) ‖ u(tn+1) − un+1

η ‖L10(Ω)

≤ S10|un+1
η |W 1,5/2(Ω)|u(tn+1) − un+1

η |H1(Ω),

then it is bounded as follows :

∣∣∣
m−1∑

n=1

∆t
((

(u(tn+1) − un+1
η ) · ∇un+1

η , δ1en
η

)
+

1

2

(
div(u(tn+1) − un+1

η )un+1
η , δ1en

η

))∣∣∣

≤
(C

2
+ S10

)
sup

n
|un

η |W 1,5/2(Ω)

m−1∑

n=1

∆t|u(tn+1) − un+1
η |H1(Ω) ‖ δ1en

η ‖L2(Ω)

≤ C ′′

(
C ′

ε4
(η4 + (∆t)4) + ε4

m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω)

)
.
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Then by setting C1 =‖ u ‖L∞(Ω×]0,T [)2 , the last term of the right-hand side of (5.6) is bounded by :

(C1C
′

2ε3
+

C ′′C ′

ε4

)
(η4 + (∆t)4) +

(C1ε3

2
+ C ′′ε4

)m−1∑

n=1

∆t ‖ δ1en
η ‖2

L2(Ω) .

Finally the initial datas are bounded due to Proposition 3.3. Then, choosing suitably the parameters εi,

the equation (5.6) becomes

(
m−1∑

n=1

∆t ‖ δ1(un
η − Sηu(tn)) ‖2

L2(Ω))
1/2 +

√
ν sup

1≤n≤N
|un

η − Sηu(tn)|H1(Ω)

+
√

ν sup
1≤n≤N

|2(un
η − Sηu(tn)) − (un−1

η − Sηu(tn−1))|H1(Ω) +
√

ν(
N−1∑

n=1

|δ2(un
η − Sηu(tn))|2H1(Ω))

1/2

≤ C(η2 + (∆t)3/2 +
η3

√
∆t

).

Finally (5.5) follows readily from this result and by applying a triangular inequality and Sη’s properties.
�

From these three lemmas, we easily derive an estimate of the pressure.

Theorem 5.4. Under the assumptions of Lemma 5.1, there exists a constant C that does not depend on

η nor on ∆t, such that

( N∑

n=1

∆t ‖ p(tn) − pn
η ‖2

L2(Ω)

)1/2

≤ C(η2 + (∆t)3/2 +
η3

√
∆t

). (5.7)

6. Error estimate for the solution of Step Two

We assume at this stage that we know the solution un+1
H of the first step. Then at each time step, the

second step (1.19)–(1.20) is a square system of linear equations in finite dimension, and if ∆t is small
enough, it has a unique solution. First, we will establish the error estimate for the solution computed by
one step of Euler’s scheme (u1

h − u(∆t), p1
h − p(∆t)) :

Proposition 6.1. The error of the solution computed by one iteration of Euler’s scheme satisfies the

following estimations, for ∆t ≤ k0 > 0 sufficiently small,

1

2
‖ u1

h − u(∆t) ‖2
L2(Ω) +

ν∆t

2
|u1

h − u(∆t)|2H1(Ω) ≤ C(H6 + h4 + (∆t)4), (6.1)

and

(∆t)1/2 ‖ p(∆t) − p1
h ‖L2(Ω)≤ C(h2 + H3 + (∆t)3/2). (6.2)

Proof. The error’s equation is similar to (3.2).

∀vh ∈ Vh, (u1
h − u(∆t), vh) + ν∆t(∇(u1

h − u(∆t)),∇vh) =
(∆t)2

2
(u′′(θ∆t), vh)

−∆t(p(∆t) − rhp(∆t),div vh) + ∆t(u(∆t) · ∇u(∆t) − u1
H · ∇u1

h, vh).

(6.3)

By setting vh = v1
h = Phu(∆t) − u1

h and ϕ1
h = Phu(∆t) − u(∆t), the non-linear term can be written as

follows :

(u(∆t) · ∇u(∆t) − u1
H · ∇u1

h, vh) = ((u(∆t) − u1
H) · ∇u(∆t), vh) + (u1

H · ∇(u(∆t) − Phu(∆t)), vh)

+((u(∆t) − u1
H) · ∇(u1

h − Phu(∆t)), vh) + (u(∆t) · ∇(Phu(∆t) − u1
h), vh)

= ((u(∆t) − u1
H) · ∇u(∆t), vh) − (u1

H · ∇ϕ1
h, vh) − ((u(∆t) − u1

H) · ∇v1
h, vh).
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Then, we have three contributions of the non-linear term. For the first part, we write :

∆t
∣∣∣((u(∆t) − u1

H) · ∇u(∆t), v1
h)
∣∣∣ ≤ S4|v1

h|H1(Ω) sup
t

|u(∆t)|W 1,4(Ω)∆t ‖ u(∆t) − un+1
H ‖L2(Ω)

≤ 1

2

(
ε1∆t|v1

h|2H1(Ω) +
1

ε1
C2∆t(H6 + (∆t)4 + (∆t)H4)

)
.

For the second part, we know that ‖ u1
H ‖L4(Ω) is bounded and we write :

∆t
∣∣∣(u1

H · ∇ϕ1
h, v1

h)
∣∣∣ ≤ S4∆t|v1

h|H1(Ω) ‖ u1
H ‖L4(Ω) |u(∆t) − PHu(∆t)|H1(Ω)

≤ 1

2

(
ε2∆t|v1

h|2H1(Ω) +
C

ε2
(∆t)h4

)
.

Finally, the last term can be written as :

∆t
∣∣∣((u(∆t) − u1

H) · ∇v1
h, v1

h)
∣∣∣ ≤ ∆tĈH1−ε|v1

h|2H1(Ω)|u1
H − u(∆t)|H1(Ω),

with

|u1
H − u(∆t)|H1(Ω) ≤ C((∆t)3/2 + H2 +

H3

√
∆t

).

In that case, for H (and ∆t) sufficiently smooth, this term is absorbed by the left-hand side of the
equation. And for the linear terms, we introduce Phu(∆t) in (6.3) and we obtain:

‖ v1
h ‖2

L2(Ω) +ν∆t|v1
h|2H1(Ω) ≤

∣∣∣(ϕ1
h, v1

h)
∣∣∣+ ν∆t

∣∣∣(∇ϕ1
h,∇v1

h)
∣∣∣+

(∆t)2

2
sup ‖ u′′ ‖L2(Ω)‖ v1

h ‖L2(Ω)

+∆t ‖ p(∆t) − rhp(∆t) ‖L2(Ω) |v1
h|H1(Ω) + non-linear term.

(6.4)

For the pressure, we obtain :

∆t(rhp(∆t) − p(∆t),div vh) + ∆t(p1
h − rhp(∆t),div vh)

= (u1
h − u(∆t), vh) + ν∆t(∇(u1

h − u(∆t)),∇vh) − (∆t)2

2
(u′′(θ∆t), vh) − ∆t(u(∆t) · ∇u(∆t) − u1

H · ∇u1
h, vh).

(6.5)
We choose vh ∈ V ⊥

h such that

(p1
h − rhp(∆t),div vh) =‖ p1

h − rhp(∆t) ‖2
L2(Ω) and |vh|H1(Ω) ≤

1

β⋆
‖ p1

h − rhp(∆t) ‖L2(Ω),

with β⋆ > 0 that does not depend on h. Thus

(∆t)1/2 ‖ p1
h − rhp(∆t) ‖L2(Ω)≤

(∆t)1/2

β⋆

(
‖ rhp(∆t) − p(∆t) ‖L2(Ω) +

S2

∆t
‖ u1

h − u(∆t) ‖L2(Ω)

+ν|Phu(∆t) − u(∆t)|H1(Ω) +
S2

2
(∆t) ‖ u′′(θ∆t) ‖L2(Ω) +S2

4(|u(∆t)|H1(Ω) + |u1
H |H1(Ω))|u1

h − u(∆t)|H1(Ω)

)

≤ C(h2 + H3 + (∆t)3/2).

�

The fine velocity satisfies the following error estimate:

Theorem 6.2. Under the hypotheses of Theorem 4.7, the solution of Step 2, (un+1
h , pn+1

h ), satisfies the

following error estimate

sup
1≤n≤N

‖ un
h − u(tn) ‖L2(Ω) + sup

1≤n≤N
‖ 2(un

h − u(tn)) − (un−1
h − u(tn−1)) ‖L2(Ω)

+(
N−1∑

n=1

‖ δ2(un
h − u(tn)) ‖2

L2(Ω))
1/2 +

√
ν(

N∑

n=1

∆t|un
h − u(tn)|2H1(Ω))

1/2

≤ C(H3 + h2 + (∆t)2 + H(∆t)2),

(6.6)

with a constant C that does not depend on h, H and ∆t.
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Proof. By substructing the equations (1.19) and (1.17), by setting vi
h = Phu(ti)−ui

h, ϕi
h = Phu(ti)−u(ti),

by taking the test function vh = vn+1
h and by summing the result from n = 1 to n = m − 1, we obtain

ν

m−1∑

n=1

∆t|vn+1
h |2H1(Ω) +

1

4

(
‖ vm

h ‖2
L2(Ω) − ‖ v1

h ‖2
L2(Ω) + ‖ 2vm

h − vm−1
h ‖2

L2(Ω) − ‖ 2v1
h − v0

h ‖2
L2(Ω)

+
m−1∑

n=1

‖ δ2vn
h ‖2

L2(Ω)

)
≤ |

m−1∑

n=1

R1| + |ν
m−1∑

n=1

∆t(∇ϕn+1
h ,∇vn+1

h )| + |
m−1∑

n=1

∆t(p(tn+1) − rhp(tn+1),div vn+1
h )|

+|
m−1∑

n=1

∆t(δ1ϕn
h, vn+1

h )| + |
m∑

n=1

∆t(un+1
H · ∇un+1

h − u(tn+1) · ∇u(tn+1), vn+1
h )|.

(6.7)
Let us estimate the terms (TGRH)i, i = 1, ..., 4 in the right-hand side of (6.7). The first term is bounded
as follows :

|(TGRH)1| ≤
C(∆t)4

2ε1
‖ u(3) ‖2

L2(Ω×]0,T [)2 +
ε1

2

m−1∑

n=1

∆t ‖ vn+1
h ‖2

L2(Ω) .

The second term and third terms are bounded respectively as follows :

|(TGRH)2| ≤
Cνh4

2ε2
‖ u ‖2

L2(0,T ;H3(Ω)2) +
νε2

2

m−1∑

n=1

∆t|vn+1
h |2H1(Ω).

and

|(TGRH)3| ≤
Ch4

2ε3
‖ p ‖2

L2(0,T ;H2(Ω)) +
ε3

2

m−1∑

n=1

∆t|vn+1
h |2H1(Ω),

and the fourth term is as follows :

|
m−1∑

n=1

∆t(δ1ϕn
η , vn+1

h )| ≤ C(∆t)4

2ε4
‖ u(3) ‖2

L2(Ω×]0,T [)2 +
Ch4

2ε4
‖ u′ ‖2

L∞(0,T ;H2(Ω)2) +
ε4

2

m−1∑

n=1

∆t ‖ vn+1
h ‖2

L2(Ω) .

The non-linear term in the right-hand side can be written as follows:

un+1
H · ∇un+1

h − u(tn+1) · ∇u(tn+1) = (un+1
H − u(tn+1)) · ∇u(tn+1) + un+1

H · ∇(Phu(tn+1) − u(tn+1))

−(u(tn+1) − un+1
H ) · ∇(un+1

h − Phu(tn+1)) − u(tn+1) · ∇(Phu(tn+1) − un+1
h ).

We study the four parts (NL)i, i = 1, ..., 4, of the non-linear term separately. Setting C∞.1 = sup |u|W 1,4(Ω),

the first part is treated as follows :

∣∣∣
m−1∑

n=0

∆t((NL)1, v
n+1
h )

∣∣∣ ≤ C∞.1

2ε5.1
C(H6 + (∆t)4) +

S2
4C∞.1ε5.1

2

m−1∑

n=1

∆t|vn+1
h |2H1(Ω).

Setting C∞.2 = sup ‖ un+1
H ‖L4(Ω), the second part is treated as follows :

∣∣∣
m−1∑

n=0

∆t((NL)2, v
n+1
h )

∣∣∣ ≤ CC∞.2h
4

2ε5.2
‖ u ‖2

L2(0,T ;H3(Ω)2) +
S2

4C∞.2ε5.2

2

m−1∑

n=1

∆t|vn+1
h |2H1(Ω).

For the third part, we use the following estimation (cf. [7]): there exists a constant Ĉ, that does not
depend on η such that, for all uη ∈ Vη,

∀wη ∈ Xη, |(uη · ∇wη, wη)| ≤ Ĉη1−ε ‖ div uη ‖L2(Ω) |wη|2H1(Ω), (6.8)

we have
∣∣∣

m−1∑

n=0

∆t((NL)3, v
n+1
h )

∣∣∣ ≤ ĈH1−ε(H2 + (∆t)3/2 +
H3

√
∆t

)
m−1∑

n=1

∆t|vn+1
h |2H1(Ω),

And the last part is bounded as follows :

∣∣∣
m−1∑

n=0

∆t((NL)4, v
n+1
h )

∣∣∣ = 0.
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Then, collecting these inequalities, choosing suitably the parameters εi and δ and applying Gronwall’s
Lemma, we get

sup
1≤n≤N

‖ un
h − Phu(tn) ‖L2(Ω) + sup

1≤n≤N
‖ 2(un

h − Phu(tn)) − (un−1
h − Phu(tn−1)) ‖L2(Ω)

+(
N−1∑

n=1

‖ δ2(un
h − Phu(tn)) ‖2

L2(Ω))
1/2 +

√
ν(

N∑

n=1

∆t|un
h − Phu(tn)|2H1(Ω))

1/2

≤ C(H3 + h2 + (∆t)2).

Then, (6.6) follows readily from the above result and the Ph’s properties. �

Finally, we consider the error of the pressure. As in Section 5, the pressure satisfies the following bound.

Lemma 6.3. Let (u(tn+1), p(tn+1)) and (un+1
h , pn+1

h ) be the respective solution of (1.1)–(1.4) and (1.19)–
(1.20). We have

(N−1∑

n=1

∆t ‖ pn+1
h − rhp(tn+1) ‖2

L2(Ω)

)1/2

≤ 1

β⋆

{
C1h

2 ‖ p ‖L2(0,T ;H2(Ω)) +C2(∆t)2 ‖ u(3) ‖L2(Ω×]0,T [)2

+C3(H
3 + (∆t)2) + C4h

2 + S2

(N−1∑

n=1

∆t ‖ δ1(un
h − u(tn)) ‖2

L2(Ω)

)1/2}
,

(6.9)
where β⋆ is the constant of the inf-sup condition (1.10) and the coefficients Ci, i = 1, ..., 4, do not depend

on H,h and ∆t.

Proof. The steps of this proof are similar to those of the proof of Lemma 5.1 and the only difference
between these proofs concerns the non-linear term. Here we write

u(tn+1) · ∇u(tn+1) − un+1
H · ∇un+1

h = (u(tn+1) − un+1
H ) · ∇u(tn+1) + (un+1

H − u(tn+1)) · ∇(u(tn+1) − un+1
h )

+u(tn+1) · ∇(u(tn+1) − un+1
h ).

Then, let us estimate the terms that compose the non-linear term.

∣∣∣∣∣

N−1∑

n=1

∆t(u(tn+1) · ∇u(tn+1) − un+1
H · ∇un+1

h , wn+1
h )

∣∣∣∣∣

≤ S4

(N−1∑

n=1

∆t|wn+1
h |2H1(Ω)

)1/2{
(sup

n
|u(tn)|W 1,4(Ω))

(N−1∑

n=1

∆t ‖ u(tn+1) − un+1
H ‖2

L2(Ω)

)1/2

+S4(sup
n

|u(tn) − un
H |H1(Ω) + sup

n
|u(tn)|H1(Ω))

(N−1∑

n=1

∆t|u(tn+1) − un+1
h |2H1(Ω)

)1/2}

≤
(
C(H3 + (∆t)2)

)( N∑

n=1

∆t|wn+1
h |2H1(Ω)

)1/2

.

Then, (6.9) follows readily from these bounds and from the inf-sup condition (1.10). �

Therefore, here again, we must derive an estimate for
(N−1∑

n=1

∆t ‖ δ1(un
h − u(tn)) ‖2

L2(Ω)

)1/2

.
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Lemma 6.4. Under the assumptions of Theorem 4.7 and Corollary 3.4, there exists a constant C that

does not depend on H,h and ∆t such that :

(N−1∑

n=1

∆t ‖ δ1(un
h − u(tn)) ‖2

L2(Ω)

)1/2

+
√

ν sup
1≤n≤N

|un
h − u(tn)|H1(Ω)

+
√

ν sup
1≤n≤N

|2(un
h − u(tn)) − (un−1

h − u(tn−1))|H1(Ω) +
√

ν
(N−1∑

n=1

|δ2(un
h − u(tn))|2H1(Ω)

)1/2

≤ C(h2 + H3 + (∆t)2).

(6.10)

Proof. We substruct the equations (1.17) and (1.19), we set ei
h = ui

h − Shu(ti) and ϕi
h = u(ti) − Shu(ti)

and we take the function test wh = δ1en
h. Due to the definition of the Stokes operator Sh, we have

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω) +
ν

2

m−1∑

n=1

∆t
(
∇en+1

h ,∇δ1en
h

)
=

m−1∑

n=1

∆t
(
δ1ϕn

h, δ1en
h

)
+

m−1∑

n=1

R1

+
m−1∑

n=1

∆t
(
u(tn+1) · ∇u(tn+1) − un+1

H · ∇un+1
h , δ1en

h

)
.

The first term of the right-hand side is bounded as follows :

∣∣∣∣∣

m−1∑

n=1

∆t
(
δ1ϕn

h, δ1en
h

)∣∣∣∣∣ ≤
C

2ε1

{
h4(‖ u′ ‖2

L∞(0,T ;H2(Ω)2) + ‖ p′ ‖2
L∞(0,T ;H1(Ω)))

+(∆t)2h2(‖ u′′ ‖2
L2(0,T ;H1(Ω)2) + ‖ p′′ ‖L2(Ω×]0,T [))

}
+

ε1

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω) .

The second term is bounded as follows :
∣∣∣∣∣

m−1∑

n=1

R1

∣∣∣∣∣ ≤
C(∆t)4

2ε2
‖ u(3) ‖2

L2(Ω×]0,T [)2 +
ε2

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω) .

Setting C∞∞ = sup
n

‖ u(tn+1) ‖L∞(Ω), the third term is bounded as follows :

∣∣∣∣∣

m−1∑

n=1

∆t
(
(u(tn+1) − un+1

H ) · ∇u(tn+1), δ1en
h

)∣∣∣∣∣ ≤
C∞∞

2ε3
(H6 + (∆t)4) +

C∞∞ε3

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω) .

Using Theorem 6.2, the fourth and fifth terms are respectively bounded as follows :

∣∣∣∣∣

m−1∑

n=1

∆t
(
(un+1

H − u(tn+1)) · ∇(u(tn+1) − un+1
h ), δ1en

h

)∣∣∣∣∣

≤ S2
4

2ε4
(sup

n
‖ u(tn+1) − un+1

H ‖L∞(Ω))
2

m−1∑

n=1

∆t|u(tn+1) − un+1
h |2H1(Ω) +

S2
4ε4

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω)

≤ S2
4

2ε4
C(H6 + h4 + (∆t)4) +

S2
4ε4

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω),

and
∣∣∣∣∣

m−1∑

n=1

∆t
(
u(tn+1) · ∇(u(tn+1) − un+1

h ), δ1en
h

)∣∣∣∣∣ ≤
C∞∞

2ε5
C(H6 + h4 + (∆t)4) +

C∞∞ε5

2

m−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω) .
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Thus, after a suitable choice of εi, i = 1, ..., 4 and by applying the error of the solution computed by one
iteration of Euler’s scheme established in Proposition 3.3, we obtain

(N−1∑

n=1

∆t ‖ δ1en
h ‖2

L2(Ω)

)1/2

+
√

ν sup
1≤n≤N

|en
h|H1(Ω) +

√
ν sup

1≤n≤N
|2en

h − en−1
h |H1(Ω)

+
√

ν
(N−1∑

n=1

|δ2en
h|2H1(Ω)

)1/2

≤ C(h2 + H3 + (∆t)2).

�

These two lemmas yield immediately the following theorem.

Theorem 6.5. Under the assumptions of Lemma 6.4, we have :

(N−1∑

n=1

∆t ‖ p(tn+1) − pn+1
h ‖2

L2(Ω)

)1/2

≤ C(h2 + H3 + (∆t)2), (6.11)

with a constant C that does not depend on h, H and ∆t.

Remark 6.6. As a consequence, h, H and ∆t satisfy (3.16), then

(N−1∑

n=1

∆t ‖ p(tn+1) − pn+1
h ‖2

L2(Ω)

)1/2

≤ Ch2. (6.12)

This theoretical analysis is confirmed by numerical results cf. [1].
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