
HAL Id: hal-00175853
https://hal.science/hal-00175853

Preprint submitted on 1 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the max-weight edge coloring problem
Giorgio Lucarelli, Ioannis Milis, Vangelis Th. Paschos

To cite this version:
Giorgio Lucarelli, Ioannis Milis, Vangelis Th. Paschos. On the max-weight edge coloring problem.
2007. �hal-00175853�

https://hal.science/hal-00175853
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour
l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

248

Mars 2007

On the max-weight edge coloring problem

Giorgio Lucarelli, Ioannis Milis, Vangelis Th. Paschos

On the max-weight edge coloring problem

Giorgio Lucarelli∗, Ioannis Milis

Dept of Informatics, Athens University of Economics and Business, 104 34, Athens, Greece

{gluc, milis}@aueb.gr

Vangelis Th. Paschos†

LAMSADE, Université Paris-Dauphine, 75016, Paris, France

paschos@lamsade.dauphine.fr

Abstract

We study the following generalization of the classical edge coloring
problem: Given a weighted graph, find a partition of its edges into
matchings (colors), each one of weight equal to the maximum weight
of its edges, so that the total weight of the partition is minimized. We
explore the frontier between polynomial and NP-hard variants of the
problem as well as the approximability of the NP-hard variants.

Keywords: weighted edge coloring, polynomial algorithms, approximation
algorithms

1 Introduction

In several communication systems messages are to be transmitted in a single
hop from senders to receivers through direct connections established by an
underlying switching network. In such a system, a sender (resp. receiver)
cannot send (resp. receive) more than one messages at a time, while the
transmission of messages between different senders and receivers can take
place simultaneously. The scheduler of such a system establishes successive
configurations of the switching network, each one routing a non-conflicting

∗Funded by the PENED 2003 Programme of the EU and the Greek General Secretariat

for Research and Technology
†Part of this work has been carried out while the author was visiting the Department

of Informatics of Athens University of Economics and Business

1

subset of the messages from senders to receivers. Given the transmission
time of each message, the transmission time of each configuration equals to
the heaviest message transmitted. Moreover, in practice there is a signif-
icant setup delay to establish each configuration. Note, for example, that
in optical switches this overhead may dominate the transmission time. The
aim of the scheduler is to find a sequence of configurations such that all the
messages to be finally transmitted and the total transmission time (includ-
ing setup delays) to be minimized.

This problem can be formulated in graph-theoretic terms as following:
senders and receivers can be considered as the vertices V of a weighted
graph G = (V,E), whose edges E correspond to messages and their weights
w(e), e ∈ E, to the lengths (transmission times) of messages. Although
the graph G obtained is originally a weighted directed one, it can be con-
sidered as an undirected one, since the directions of its edges do not play
any role in the objective function we study here. Clearly, a configuration
corresponds to a matching or a color (in terms of edge coloring) of the graph
G. In this context, we ask for a partition M = {M1,M2, . . . ,Ms} of E into
matchings (colors), each one of weight wi = max{w(e)|e ∈ Mi}, such that
W =

∑s
i=1 wi is minimized.

Due to the fact that the weight wi of each color is defined as the max-
imum weight of the edges colored i, in the following we shall refer to this
problem as Max-weight Edge Coloring (MEC) problem.

Clearly, if all the edges of G are of the same weight then the MEC prob-
lem reduces to the classical edge coloring problem, where the objective is
to minimize the number of colors (matchings) required in order to assign
different colors to neighbor edges.

The MEC problem is equivalent to the parallel batch scheduling problem
with incompatibilities between jobs. According to the standard notation for
scheduling problems we denote this variant as 1 | p − batch, graph | Cmax.
In this variant jobs are no more independent but they correspond to the
edges of a weighted graph. Edge weights correspond to processing times of
jobs and the graph G describes incompatibilities between jobs i.e., jobs cor-
responding to adjacent edges cannot be scheduled in the same batch (color).

In this paper we study the frontier between polynomial and NP-variants
of the MEC problem as well as the approximability of its NP-hard variants.
In the next section we review briefly the related work, while in Section 3 we
give the notation we use and some preliminaries. As the complexity of the

2

problem on trees remains open, in Section 4 we present a polynomial algo-
rithm for trees of bounded degree and in Section 5 a polynomial algorithm
for stars of chains. Finally in Section 6 we present an approximation for bi-
partite graphs which beats the known one for bipartite graphs of maximum
degree ∆ ≤ 7.

2 Related work

It is known that the MEC problem is strongly NP-hard even for: (i) bipartite
graphs of maximum degree three and edge weights restricted to be to 1,
2 or 3 [8, 10], (ii) k-regular bipartite graphs for k ≥ 3 [5], and (iii) cubic
bipartite planar graphs [4]. Yet another NP-hardness proof for an equivalent
formulation of the MEC problem on bipartite graphs in terms of matrix
decomposition has been proposed in [15].

Demange et al. in [5] have been also shown that the MEC problem
on k-regular bipartite graphs cannot be approximated within a ratio less
than 2k

2k−1
, which for k = 3 becomes 8/7. This inapproximability result has

been improved, by the same authors in [4], to 7/6 for bipartite cubic planar
graphs.

On the other hand, a 2-approximation algorithm has been presented in
[10] for bipartite graphs. It is easy to see that the same algorithm applies
also for general graphs. In addition, a 5/3-approximation algorithm for bi-
partite graphs of maximum degree ∆ = 3 has been presented in [5]. In
general, this algorithm gives an approximation ratio equal to 2∆−1

3 for bi-
partite graphs with ∆ ≥ 3. In [4] has been presented a new algorithm for
bipartite graphs of maximum degree ∆ = 3 that achieves an approximation
ratio equal to the 7/6-inapproximability result.

A natural idea to decrease the cost of a solution to such a weighted edge
coloring problem is to allow the division of each edge e of G into parallel
edges of weights adding up to w(e). In fact, this idea corresponds to the
notion of preemption in scheduling problems: interrupt the execution of a
job (the transmission of a message) and complete it later. The weight of
each color Mi is now defined as wi = max{wi(e)|e ∈ Mi}, where wi(e) is
the portion of the e’s weight belonging to matching Mi, and we ask for a
partition M such that

∑s
i=1 wi(e) = w(e),∀e ∈ E, and W =

∑s
i=1 wi is

minimized. We shall refer to this variant as preemptive MEC (p-MEC)
problem.

The existence of a setup delay, d, encounter in practical applications to

3

establish each matching (configuration), does not make any difference for
the MEC problem: this can be taken into account by increasing the weight
of all edges of G by d. Thus, the weight of each matching in M will be also
increased be d, incorporating the set-up delay for this matching.

On the contrary, the presence of such a parameter affects crucially the
complexity of the p-MEC problem. In the absence of d the p-MEC problem
is equivalent to the preemptive open shop scheduling problem which can be
solved optimally in polynomial time [12]. However, in the presence of d
the p-MEC problem becomes strongly NP-hard [8] and non approximable
within a factor less than 7/6 [3]. Approximation algorithms of factors 2 and
2 − 1

d+1 have been presented in [1] and [3], respectively.

The analogous, to the MEC problem, Max-weight Vertex Coloring (MVC)
problem has been studied more extensively in the literature during last years
[2, 7, 5, 4, 6, 14, 13]. In the MVC problem we ask for a partition of the
vertices of G into independent sets (colors), each one of weight equal to the
maximum weight of its vertices, so that the total weight of the partition is
minimized.

Note that the MEC problem, on a general graph G, is equivalent to the
MVC problem on the line graph, L(G), of G and thus any algorithm for
the MVC problem applies also to the MEC problem. However, this is not
true for special graph classes, since the line graph of a special graph (e.g.
bipartite or tree) is not anymore in the same special class.

3 Notation and Preliminaries

In the following we consider the MEC problem on a weighted graph G =
(V,E). By d(v), v ∈ V , we denote the degree of vertex v and by ∆(G) (or
simply ∆) the maximum vertex degree of G. We define the degree of each
edge e(u, v) ∈ E as d(u, v) = d(u) + d(v) and ∆′(G) (or simply ∆′) denotes
the maximum edge degree.

It is well known that the classical edge coloring problem, is NP-hard even
in cubic graphs [9], although its optimal solution is either ∆ or ∆ + 1 [16].
On the other hand, it is solvable in polynomial time for bipartite graphs
[11]. Obviously, applying such an algorithm on a weighted bipartite graph
we obtain a ∆-colors solution, in general non optimal, to the MEC problem.
For the number of matchings in an optimal solution of the MEC problem
the following bound holds.

4

Proposition 1 For the number of matchings, s∗, in an optimal solution it
holds that ∆ ≤ s∗ ≤ ∆′ − 1 ≤ 2∆ − 1.

Proof: Any solution consists of at least ∆ matchings, since there is a vertex
with exactly ∆ adjacent edges which belong in different matchings.

Assume that an optimal solution consists of ∆′ or more matchings. Con-
sider those matchings sorted in non-increasing order of their weights. Each
edge of G has at most ∆′ − 2 neighbor edges. So, for each edge e in any
(∆′ + i)-th matching, i > 0, there is one of the first ∆′ − 1 matchings where
e can be moved without increasing the weight of this matching.

The last part of the inequality follows directly by the definition of ∆′.

The MEC problem is also polynomial for graphs of maximum degree
∆ = 2. This result follows from the same variant of the MVC problem.
In [6] has been presented an O(|V |2) algorithm for the MVC problem on
chains, which can be easily adapted for the MVC problem on graphs of
maximum degree ∆ = 2 (collections of chains and cycles). Moreover, if G
is a graph of maximum degree two, then its line graph L(G) is also a graph
with ∆(L(G)) = 2 and the following theorem holds.

Theorem 1 An optimal solution to the MEC problem for graphs of maxi-
mum degree ∆ = 2 consists of at most three (i.e., two or three) matchings
and can be found in O(|E|2) time.

In the rest of this paper we consider the edges of G sorted in non-
increasing order of their weights, w(e1) ≥ w(e2) ≥ . . . ≥ w(em). Thus,
e1 denotes the heaviest edge of G.

By OPT we denote the cost of an optimal solution to the MEC problem.
We also assume that in such an optimal solution the graph is decomposed
into s∗ matchings each one of weight w∗

i . Without loss of generality we con-
sider the matchings of any solution in non-increasing order of their weights,
i.e. w1 ≥ w2 ≥ . . . ≥ ws, and for the optimal solution w∗

1 ≥ w∗
2 ≥ . . . ≥ w∗

s∗ .

4 Trees

In this section we first present a polynomial algorithm for a related decision
problem called Feasible k-Coloring. This algorithm is then used to derive a
polynomial algorithm for the MEC problem on trees of bounded degree.

The Feasible k-Coloring problem is formally defined as following. An
analogous problem is also defined and solved in [13] for the MVC problem

5

on trees.

Feasible k-Coloring:

Instance: A tree T (V,E), a weight function w(e) : E → N and a sequence
of k integer weights a1, a2, . . . , ak, such that a1 ≥ a2 ≥ . . . ≥ ak.
Question: Is there a partition of the set of edges E into exactly k match-
ings M1,M2, . . . ,Mk, such that wj ≤ aj, 1 ≤ j ≤ k?

We consider the tree T rooted at an arbitrary vertex, r. For each edge
e = (v, u) we define u to be the most distant from r endpoint of e, and T (e)
to be the subtree of T rooted at u. We denote by S(e) ⊆ {M1,M2, . . . ,Mk}
to be the set of matchings in which edge e can belong in order the subtree
T (e) ∪ {e} to be feasibly colorable.

Our algorithm initializes the sets S(e) for each leaf edge e to contain the
matchings that are heaviest than its weight w(e). Moreover, a fictive edge
e0 of weight w(e0) = 0 is connected to the root of the tree, as in Figure 1.a,
in order to treat the root of the tree as the rest vertices. The Feasible
k-Coloring algorithm follows.

Algorithm 1

1. Initialization:

Leaf edges: S(e) = {Mj |1 ≤ j ≤ k and w(e) ≤ aj}
Rest edges: S(e) = {}
Add a fictive vertex r′,
a fictive edge e0 = (r′, r) with w(e0) = 0
and a fictive matching M0 with w0 = a0 = 0

2. For each e ∈ E ∪ {e0} in post-order do

3. For each matching Mj such that w(e) ≤ aj do

4. If there is coloring of T (e) ∪ {e} such that e ∈ Mj then

5. S(e) = S(e) ∪ {Mj}
6. If S(e) = ∅ then return

7. Create a feasible coloring using the S(e)’s

In line 4, Algorithm 1 decides if a feasible coloring for the subtree T (e)∪
{e} exists (see Figure 1.b). For each edge e = (v, u), we define Eu =
{eu

1 , eu
2 , . . . , eu

d} to be the set of edges from u to its children (recall that u is
the most distant from the root of the tree endpoint of e). Each edge eu

i can
belong in one of the matchings in its S(eu

i). Let Q be the union of the sets

S(eu
i), but the matching Mj edge e is assigned to, i.e. Q =

d
⋃

i=1

S(eu
i)−{Mj}.

6

r

'r

(a)

T

0
e e

(b)

v

u

u
e

1

u

de
…

u
e

2

u
e

(c)

u

de

1

u
e

2

……

Q

…

qM

u
e

u

de

11

u
e

2

…

ts

Figure 1: (a) The fictive edge e0. (b) An instance of the graph in line 4 of
Algorithm 1. (c) The flow network constructed in line 4 of Algorithm 1. All
edges have weight equal to 1.

We create a bipartite graph B(Eu, Q;S), where there is an edge between
eu
i ∈ Eu and Mq ∈ Q iff Mq ∈ S(eu

i). Then we create a flow network F by
joining a source vertex s to each vertex in Eu and a terminal vertex t to
each vertex in Q, as in Figure 1.c. We assign to all the edges in F a weight
equal to 1. Then, it follows that there is coloring of T (e) ∪ {e} such that
e ∈ Mj iff there is in F an s − t flow of value d.

In line 7, Algorithm 1 creates a partition of the edges of T into matchings.
This can be done by considering the edges of T in pre-order and assigning
an edge e in an arbitrary matching in its set S(e).

Algorithm 1 performs k · |E| iterations and in each one of them runs a
maximum flow algorithm of O(poly) time. Thus, the next Theorem follows.

Theorem 2 There a polynomial time algorithm for the Feasible k-Coloring
problem.

Algorithm 1 can be used to solve the MEC problem on trees, as following.

Algorithm 2

1. For k = ∆ to ∆′ − 1 do

2. For all
(

|E|
k

)

combinations of edge weights,

such that w1 ≥ w2 ≥ . . . ≥ wk and w1 = max{w(e)|e ∈ E}) do

3. Run Algorithm 1

4. Return the best of the solutions found

Line 3 of Algorithm 2 is repeated O(∆ · |E|∆) times, and therefore it is
polynomial only for trees of polynomially bounded degree.

Theorem 3 There a polynomial time algorithm for the MEC problem in
trees with polynomially bounded degree.

7

5 Stars of chains

A star consists of m edges e1, e2, . . . , em sharing a common endpoint. Obvi-
ously, the optimal solution to the MEC problem for such a weighted star is
of cost OPT =

∑m
i=1 w(ei) and consists of exactly ∆ = m matchings.

A star of chains consists of p chains C1, C2, . . . , Cp all starting from a
common vertex, say u. We consider each chain Ci, 1 ≤ i ≤ p, starting from
u with an edge eu

i which we call start edge. We also assume w.l.o.g. that
w(eu

1) ≥ w(eu
2) ≥ . . . ≥ w(eu

p).

Lemma 1 For an optimal solution of the MEC problem on a star of chains
the following hold:
i) The number of matchings s∗ equals to either p or p + 1.
ii) Only k ≤ 3 matchings have cardinality |Mj | > 1.
iii) At least the k − 1 heaviest start edges appear in these k matchings.

Proof:

i) By Proposition 1, ∆ ≤ s∗ ≤ ∆′ − 1. Here, ∆ = p and ∆′ = p + 2.
ii) Assume that an optimal solution has more than three matchings of car-
dinality |Mj | > 1. Consider those matchings sorted in non-increasing order
of their weights. Each non start edge e has at most 2 neighbor edges. So,
such an edge e can be moved in one of the three first heaviest matchings,
since its neighbor edges can belong in at most two different matchings.
iii) Consider first that k = 2. Assume that in the optimal solution the heav-
iest start edge eu

1 does not belong to neither of two matchings of cardinality
|Mj | > 1. Then eu

1 can be either inserted in one of those two matchings (if
this does not contain another start edge) or eu

1 can replace an existing start
edge. In both cases the cost of the optimal solution decreases or remains
the same.

Assume next that k = 3. As in the previous case eu
1 can be inserted

in one of the three matchings of cardinality |Mj | > 1. Similarly, eu
2 can be

inserted in one of the rest two of those matchings.

In the following we distinguish between two cases according to possible
number of matchings in an optimal solution, i.e. p + 1 or p.

If an optimal solution consists of p+1 matchings then it contains exactly
one matching without any start edge. Algorithm 3 finds such an optimal
schedule with p + 1 matchings.

8

Algorithm 3

1. Remove from the star the p − 2 lightest start edges

(this creates a graph H consisting of p − 1 chains)

2. Find an optimal solution S∗(H) for the graph H,

using Theorem 1

3. If there are 3 non empty matchings in S∗(H) then

4. Return the solution consisting of these 3 matchings

of S∗(H) plus p − 2 matchings each one containing

one of the removed p − 2 lightest start edges

Note that Algorithm 3 is possible to return p− 1 matchings of |Mi| = 1,
in the case where the one of the three matchings of S∗(H) found in line
2 consists of a single edge. Taking into account Lemma 1, it follows that
Algorithm 3 returns the optimal solution of p + 1 matchings since: (i) the
p− (k− 1) matchings of cardinality |Mi| = 1 contain the p− (k− 1) lightest
start edges (one per each matching) and (ii) the cost of k matchings is
optimal.

The complexity of Algorithm 3 is dominated by line 2 and by Theorem 1
it is O(|E|2).

If an optimal solution consists of p matchings, then each of them contains
a start edge. Algorithm 4 returns such an optimal schedule with p matchings.

Algorithm 4

1. For i = 3 to p do

2. Remove p − 3 start edges eu
3 , eu

4 , . . . , eu
i−1, e

u
i+1, . . . , e

u
p

(this creates a star T of 3 chains

and a graph H of p − 3 chains)

3. Find the optimal solution S∗(T) using Theorem 3

4. If there are exactly 3 matchings in S∗(T) then

5. Find the optimal solution S∗(H) using Theorem 1

6. Combine the solutions S∗(T) and S∗(H)
into exactly 3 matchings

7. Find a solution for the initial star consisting of

these 3 matchings plus p − 3 matchings each one

containing one of the removed p − 3 start edges

8. Return the best solution found

Algorithm 2 is used in line 3 since T is a bounded degree tree with ∆ = 3
and it returns an optimal solution S∗(T) of at least three matchings. In line

9

6, a 3-matchings optimal solution for the edges in T and H can be obtained
by considering the matchings in both solutions in non-increasing order of
their weights and merging the matchings of each solution having the same
rank, since T and H are vertex-disjoint. The optimality of the solution that
Algorithm 4 returns follows by Lemma 1 using the same arguments as for
Algorithm 3.

The complexity of the algorithm is dominated by line 3 which takes
O(|E|3) time and is executed ∆ − 2 times.

The optimal solution to the MEC problem on stars of chains is the best
between the solution found by Algorithm 3 (optimal with p + 1 matchings)
and the one found by Algorithm 4 (optimal with p matchings), since, accord-
ing to Lemma 1, the optimal solution consists of either p+1 or p matchings.
Thus, the following theorem holds.

Theorem 4 The MEC problem on stars of chains can be solved optimally
in O(∆ · |E|3) time.

6 Bipartite graphs

In this section we present an algorithm, denoted by A(G), that improves
the 2 approximation ratio given in [10] for the MEC problem in bipartite
graphs of maximum degree ∆ ≤ 7. The main idea of our algorithm is the
following: for a given bipartite graph G, of maximum degree ∆, run ∆ − 1
algorithms, A∆, A∆+1, . . . , A2∆−1, and select the best solution found. Each
A∆+k, 0 ≤ k ≤ ∆ − 1, algorithm splits the graph G into two subgraphs
G1 and G2 such that the graph G1 contains heavy edges and has maximum
degree ∆(G1) ≤ k. Note that in general ∆(G2) ≤ ∆(G). Given this splitting
of G each algorithm A∆+k returns a solution of cost W∆+k, by concatenating
the following solutions of the MEC problem on G1 and G2: (i) for the graph
G2 the algorithm finds a ∆-matchings solution by solving the classical edge
coloring problem on G2, (ii) for the graph G1 the algorithm finds a solution
of at most 2∆(G1) − 1 matchings using (recursively) algorithm A(G1).

For k = 0, G2 coincides with G and therefore algorithm A∆ returns a
∆-matchings solution found as in point (i) above. For the weight of such a
solution it holds that W∆ ≤ ∆ ·w∗

1 , since for the weight, wi, of any matching
of this solution it holds that wi ≤ w(e1) = w∗

1.
For k = 1, G1 is a maximal matching of G created by examining its

edges in non-increasing order of their weights. This matching is of weight
w1 = w(e1). Algorithm A∆+1 uses also algorithm A∆(G2). The cost of

10

the solution that algorithm A∆+1 returns is W∆+1 ≤ w∗
1 + ∆ · w∗

2, since no
edge e of weight w(e) > w∗

2 belongs to G2 (if such an edge belongs to G2,
then it is not in M1 because a heavier one of its adjacent edges is in M1, a
contradiction).

In general, algorithm A∆+k, k ≥ 2, repeatedly splits the graph G into
graphs G1 and G2, with G1 containing edges heavier than a parameter c,
taking as values the weights of the edges of the graph G. The algorithm
returns the best of the solutions found in these iterations.

Algorithm 5 - A∆+k

1. For each weight c = w(e1), w(e2), . . . do

2. Split G into edge induced subgraphs G1 = {e|w(e) > c} and

G2 = {e|w(e) ≤ c}
3. If ∆(G1) ≤ k then

4. If ∆(G1) = 2 then find an optimal solution for the graph

G1

5. Else run A(G1)
6. Use A∆ for G2

7. Return the best solution found

The case of k = 2 is treated in a different way than the cases of k ≥ 3,
since in this case ∆(G1) = 2, and an optimal solution for G1 can be found
by Theorem 1. Thus, for k = 2 we obtain

Lemma 2 Algorithm A∆+2 returns a solution of cost W∆+2 ≤ w∗
1 + w∗

2 +
∆ · w∗

3.

Proof: A∆+2 returns the best solution found with weight W∆+2 = min{w1+
w2 + w3 + ∆ · w4} for different values of c = w4. Consider the cost of the
solution found by the algorithm in the iteration for which w4 = w∗

3. In
this iteration the edges of G1 are a subset of the edges in the two heaviest
matchings of the optimal solution. Therefore for this iteration it holds that
W∆+2 ≤ w∗

1 + w∗
2 + ∆ · w∗

3, since ∆(G1) = 2 and thus the optimal solution
for G1 can be found by Theorem 1.

Using algorithms A∆, A∆+1 and A∆+2, algorithm A(G) returns a solu-
tion of cost W = min{W∆,W∆+1,W∆+2}, that is

W ≤ ∆ · w∗
1

W ≤ w∗
1 + ∆ · w∗

2

W ≤ w∗
1 + w∗

2 + ∆ · w∗
3

11

Multiplying these inequalities by z1, z2 and z3, respectively, and adding
them we obtain

W · (z1 + z2 + z3) ≤ w∗
1 · (z1 · ∆ + z2 + z3) + w∗

2 · (z2 · ∆ + z3) + w∗
3 · (z3 ·∆)

W

OPT
≤

t

z1 + z2 + z3

where t = z1 ·∆+z2 +z3 = z2 ·∆+z3 = z3 ·∆. Thus, the best approximation
ratio is achieved when the quantity t

z1+z2+z3
is minimized. Therefore, we

want to:

min

{

t

z1 + z2 + z3

}

such that
(z1 · ∆ + z2 + z3) = t
(z2 · ∆ + z3) = t
(z3 · ∆) = t
z1, z2, z3 ≥ 0

Solving this problem we obtain a new approximation ratio for the MEC

problem in bipartite graphs with ∆ ≥ 3, which is:

W

OPT
≤

∆3

3∆2 − 3∆ + 1
= ̺∆+2

This ratio is unbounded, but gives better results than the approximation
ratio (2∆−1)/3 given in [5], for any ∆, as well as than the 2-approximation
algorithm given in [10], for ∆ = 3 and ∆ = 4. In fact, ̺∆+2 becomes
27/19 ≃ 1.42 for ∆ = 3 and 64/37 ≃ 1.73 for ∆ = 4. Note, however, that an
1.17-approximation algorithm is known [4] for bipartite graphs with ∆ = 3.

The behavior of algorithm A(G) for bipartite graphs of ∆ ≥ 4, is im-
proved if one allows the use of algorithms A∆+3, A∆+4 and so on. In fact,
for k = 3 we have:

Lemma 3 Algorithm A∆+3 returns a solution of cost W∆+3 ≤ ̺∆+2 · (w
∗
1 +

w∗
2 + w∗

3) + ∆ · w∗
4.

Proof: Similarly to the proof of Lemma 2, in some iteration of algorithm
A∆+3, the maximum edge in G2 is equal to w∗

4 and the edges of G1 are a
subset of the edges in the three heaviest matchings of the optimal solution.
As ∆(G1) = 3, the algorithm A(G1) return a ̺∆+2 approximate solution for

12

the graph G1.

Working as above we obtain that algorithm A(G), for bipartite graphs
with ∆ ≥ 4, leads to an approximation ratio

̺∆+3 =
19∆4

76∆3 − 138∆2 + 100∆ − 27
.

This ratio improves the result for ∆ = 4, where the ratio becomes 1.61 from
1.73. Moreover, for ∆ = 5 this ratio becomes 1.82.

In general, the algorithm A(G) gives a better approximation ratio than
2 for bipartite graphs with ∆(G) ≤ 7. The following table summarizes the
best approximation ratio achieved by our algorithm and the previous best
known ratio for different values of ∆.

∆ 3 4 5 6 7 8

our ratio 1.42 1.61 1.75 1.86 1.95 2.03
previous ratio 1.17 2 2 2 2 2

In general, the complexity of algorithm A(G) is dominated by the com-
plexity of A2∆(G)−1, which calls recursively at most |E| times algorithm
A(G1), where ∆(G1) ≤ ∆(G) − 1. The recursion depth is at most ∆ − 2,
since the recursion stops in A∆+2. Each iteration of each A∆+k algorithm,
0 ≤ k ≤ ∆ − 1, calls algorithm A∆, which runs in polynomial time. Thus,
algorithm A∆ is called O(|E|∆(G)−2) times, in total, by algorithm A(G).

Remark: Concerning general graphs, note that an edge coloring using (∆+
1) matchings can be found in polynomial time. Thus, modifying algorithm
A∆ to find such a coloring of ∆+1 (instead of ∆) matchings, algorithm A(G)
works also for general graphs. Furthermore, it beats the 2-approximation
algorithm in [10] for graphs of ∆ = 3 and ∆ = 4, achieving ratios 1.73 and
1.93, respectively.

References

[1] F. N. Afrati, T. Aslanidis, E. Bampis, and I. Milis. Scheduling in
switching networks with set-up delays. J. Combinatorial Optimization,
9(1):49–57, 2005.

[2] P. Brucker, A. Gladky, H. Hoogeveen, M. Koyalyov, C. Potts, T. Taut-
enham, and S. van de Velde. Scheduling a batching machine. J. Schedul-
ing, 1(1):31–54, 1998.

13

[3] P. Crescenzi, X. Deng, and C. H. Papadimitriou. On approximating
a scheduling problem. J. Combinatorial Optimization, 5(3):287–297,
2001.

[4] D. de Werra, M. Demange, B. Escoffier, J. Monnot, and V. Th. Paschos.
Weighted coloring on planar, bipartite and split graphs: complexity and
improved approximation. In Rudolf Fleischer and Gerhard Trippen, ed-
itors, Proc. International Symposium on Algorithms and Computation,
ISAAC’04, volume 3341 of Lecture Notes in Computer Science, pages
896–907. Springer-Verlag, 2004.

[5] M. Demange, D. de Werra, J. Monnot, and V. Th. Paschos. Weighted
node coloring: when stable sets are expensive. In L. Kučera, editor,
Proc. International Workshop on Graph Theoretical Concepts in Com-
puter Science, WG’02, volume 2573 of Lecture Notes in Computer Sci-
ence, pages 114–125. Springer-Verlag, 2002.

[6] B. Escoffier, J. Monnot, and V. Th. Paschos. Weighted coloring: fur-
ther complexity and approximability results. Inform. Process. Lett.,
97(3):98–103, 2006.

[7] G. Finke, V. Jost, M. Queyranne, and A. Sebő. Batch processing with
interval graph compatibilities between tasks. Technical report, Cahiers
du laboratoire Leibniz, 2004. Available at http://www-leibniz.imag.
fr/NEWLEIBNIZ/LesCahiers/index.xhtml.

[8] I. S. Gopal and C. Wong. Minimizing the number of switchings
in a SS/TDMA system. IEEE Transactions On Communications,
33(6):497–501, 1985.

[9] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput.,
10(4):718–720, 1981.

[10] A. Kesselman and K. Kogan. Non-preemptive scheduling of opti-
cal switches. In Proc. IEEE Global Telecommunications Conference,
GLOBECOM’04, volume 3, pages 1840–1844, 2004.

[11] D. König. ber graphen und iher anwendung auf determinantentheorie
und mengenlehre. Math. Ann., 77:453–465, 1916.

[12] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated
parallel processors by linear programming. J. Assoc. Comput. Mach.,
25(4):612–619, 1978.

14

[13] S. V. Pemmaraju and R. Raman. Approximation algorithms for the
max-coloring problem. In Proc. ICALP’05, number 3580 in Lecture
Notes in Computer Science, pages 1064–1075. Springer-Verlag, 2005.

[14] S. V. Pemmaraju, R. Raman, and K. R. Varadarajan. Buffer minimiza-
tion using max-coloring. In Proc. Symposium on Discrete Algorithms,
SODA’04, pages 562–571, 2004.

[15] F. Rendl. On the complexity of decomposing matrices arising in satellite
communication. Oper. Res. Lett., 4(1):5–8, 1985.

[16] V. G. Vizing. On an estimate of the chromatic class of a p-graph.
Diskret. Analiz., 3:25–30, 1964.

15

