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Abstract:

In this article, we compute the topological expansion of all possible mixed-traces in a

hermitian two matrix model. In other words we give a recipe to compute the number

of discrete surfaces of given genus, carrying an Ising model, and with all possible

given boundary conditions. The method is recursive, and amounts to recursively

cutting surfaces along interfaces. The result is best represented in a diagrammatic

way, and is thus rather simple to use.

1 Introduction

1.1 Counting surfaces with given boundary conditions

The problem of boundary conditions is a very important one in statistical mechanics,

conformal field theory, string theory... (see for example [2, 16, 19] for recent develop-

ments). In this article we address the problem of counting configurations of an Ising

model on a random lattice, with given boundary conditions. This problem can be

equivalently stated as computing mixed traces expectation values in a 2-matrix model.

The 2-matrix model was introduced by Kazakov [17] as the Ising model on a random

lattice. Its partition function reads:

Z =

∫
dM1 dM2 e−N Tr [V1(M1)+V2(M2)−M1M2] (1-1)

1E-mail: eynard@spht.saclay.cea.fr
2E-mail: orantin@spht.saclay.cea.fr
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〈
Tr M3

1 Tr M5
2

〉
c
:=

Figure 1: Example of surface generated by 〈Tr M3
1 Tr M5

2 〉c, where one has associated
the blue color to M1 and the red color to M2: it is a cylinder with one boundary of
length 5 with red condition and one boundary of length 3 with blue condition.

where V1 and V2 are polynomials, and where the integral is a formal hermitian matrix

integral (see for example [13] for a definition of formal integrals), i.e. it is computed

by first expanding the exponential of the non-quadratic part of V1 and V2, and then

exchanging the sums and integrals. A formal integral is thus a formal series whose

general terms are moments of gaussian integrals [13].

It is well known from Wick’s theorem that such a formal integral is a combinatorial

generating function which enumerates discrete surfaces (also called maps in the com-

binatorists litterature) whose faces can have 2 possible colors 1 or 2, or let us say + or

−, or blue or red.

The moments:

< Tr M l
1 > (1-2)

are generating functions for discrete connected surfaces with one boundary of color 1

and length l (more precisely, surfaces with one marked face of color 1 and of degree

l, and one marked edge on the boundary, removed from a closed surface). Similarly,

< TrM l
2 > is a generating function which counts surfaces with one boundary of color 2

and length l. More generally, < Tr M l1
1 Tr M l2

1 . . . Tr M lm
1 Tr M

l′1
2 Tr M

l′2
2 . . . Tr M

l′
m′

2 >c

is a generating function which counts connected surfaces with m boundaries of color 1

and respective lengths l1, . . . , lm, and m′ boundaries of color 2 and respective lengths

l′1, . . . , l
′
m′ (see fig.1 for an example). The subscript <>c in the expectation values

means ”connected part” or ”cumulant”, it ensures that only connected surfaces appear

in the Wick expansion.

More interesting is:

< Tr M l
1M

l′

2 > . (1-3)

It is a generating function which counts surfaces with only one boundary of length

l + l′, with l color 1 sites followed by l′ color 2 sites (see fig.2 for an example).
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〈
Tr M2

1 M5
2

〉
:=

Figure 2: Example of surface generated by 〈Tr M2
1 M5

2 〉c: it is a disc with one boundary
of length 7 with red condition for 5 adjacent segments followed by two segments with
blue condition.

And more generally,

< Tr M l1
1 M

l′1
2 M l2

1 M
l′2
2 . . . > (1-4)

counts surfaces with one boundary of length
∑

li + l′i with l1 sites of color 1 followed

by l′1 sites of color 2 then l2 sites of color 1, ..., etc.

It is easy to see that one can design such observables for any given boundary

conditions: any number of boundaries, and any pattern of sites on the boundaries.

In this article we show how to compute those generating functions for surfaces of

given topology.

1.2 Outline and main results

The paper is organized as follows:

• in section 2, we summarize briefly some previous knowledge of formal 2-matrix

model integrals. Namely, we recall how to compute the ”disc amplitude”, and

the spectral curve, and from there the result of [11], i.e. how to count surfaces

with uniform boundary conditions.

• in section 3, we define appropriate notations for describing arbitrary boundary

conditions. We recall which cases were already known in the literature.

• in section 4, we give the formula for computing the generating functions counting

surfaces of any genus and arbitrary boundary conditions. The formula is best

represented diagrammatically, and has a very intuitive interpretation.

• in section 5, we show some examples of applications of our formula, and in par-

ticular we show how to recover previously known cases.
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• section 6 is the conclusion.

• the proof of the main formula of section 4, is written in the appendix, because it

is rather technical.

2 Reminder 2-matrix model

The 2-matrix model has generated a considerable number of works. Here, we use

the method of loop equations [18, 6, 20], which is well suited for genus expansion

computations.

2.1 The resolvent

The resolvent is defined as:

W 1(x) =

〈
Tr

1

x − M1

〉
=

∞∑

l=0

1

xl+1

〈
Tr M l

1

〉
(2-1)

it is a generating function for a disc of color 1 (i.e. discrete surface with only one

boundary of color 1 and of length l), and x is a complex ”fugacity” conjugated to the

boundary length l3.

Like any expectation value in a formal matrix model [3, 6], it admits a topological

1/N2 expansion:

W 1(x) =
∞∑

g=0

W
(g)

1 (x) N1−2g (2-2)

where W
(g)

1 (x) is the generating function for discrete surfaces of genus g.

The loop equations which allow to compute W
(g)

1 have been known for a long time

[20]. More recently, W
(g)

1 was computed for any g in [4, 12, 11]. The result for W
(0)

1

can be written in terms of an algebraic equation. Let:

y(x) = V ′
1(x) − W

(0)

1 (x). (2-3)

y(x) is solution of the following algebraic equation [7, 8]:

0 = E(x, y(x)) = (V ′
1(x) − y(x))(V ′

2(y(x)) − x) − P (0)(x, y(x)) + 1 (2-4)

where

P (x, y) =

〈
Tr

V ′
1(x) − V ′

1(M1)

x − M1

V ′
2(y) − V ′

2(M2)

y − M2

〉
=

∞∑

g=0

N1−2gP (g)(x, y) (2-5)

and y must be chosen as the branch of the solution of E(x, y) = 0 which behaves like

V ′
1(x) for large x.

3Remark that these resolvents are properly defined when the fugacity x → ∞
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2.2 The spectral curve

In general, correlation functions are multivalued functions of x, and it is better to write

them as functions on a Riemann surface.

Therefore, we view x and y as two meromorphic functions living on a compact

Riemann surface Σ.

E(x, y) = 0 ↔ ∃p ∈ Σ / x = x(p) and y = y(p) (2-6)

Since the equation E(x, y) = 0 has deg V2 solutions in y for a given x, it means that

for every point p in Σ, there are deg V2 points pi in Σ such that:

∀i = 0, . . . , d2 , x(pi) = x(p) (2-7)

where d2 = deg V ′
2 , and by convention we assume p0 = p.

Similarly, if we regard x as a function of y, then the equation E(x, y) = 0 has deg V1

solutions for a given y, which means that for every point p in Σ, there are deg V1 points

p̃i in Σ such that:

∀i = 0, . . . , d1 , y(p̃i) = y(p) (2-8)

where d1 = deg V ′
1 , and by convention we assume p̃0 = p.

2.3 Examples

• If the algebraic curve Σ build from E(x, y) = 0 has genus zero, it is possible to find

a rational parametrization [7, 5], i.e. x(p) and y(p) are rational functions of p:
{

x(p) = γp +
∑deg V ′

2
k=0 αkp

−k

y(p) = γp−1 +
∑deg V ′

1
k=0 βkp

k
(2-9)

where the coefficients αk, βk and γ are determined by y(p) ∼p→∞ V ′
1(x(p)) − 1/x(p) +

O(p−2) and x(p) ∼p→0 V ′
2(y(p)) − 1/y(p) + O(p2).

In that case the compact Riemann surface Σ is the Riemann sphere.

This is the case which counts the Ising model bicolored maps.

• If the algebraic curve Σ build from E(x, y) = 0 has genus 1, it is possible to find

a parametrization with elliptical functions.

Spectral curves E(x, y) = 0 of genus g > 0, are not generating functions which

counts maps, but they are still solutions of the loop equations, they have a more

complicated combinatorical interpretation, and they are very useful for applications to

string theory for instance. In what follows, we assume that the spectral curve may

have any genus, and one should keep in mind that only the genus zero case really

corresponds to the Ising model on random surfaces.
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3 Definitions

We assume that the spectral curve E(x, y) = 0 is known, and that x and y are two

meromorphic functions on the compact Riemann surface Σ.

3.1 Notations

The most general boundary condition for a discrete surface generated by the 2-matrix

model is made of several boundaries, some of them having color 1, some having color

2, and some having mixed color boundaries.

Let us say that we have:

• m boundaries of color 1, with conjugated parameters x(p1), . . . , x(pm),

• n boundaries of color 2, with conjugated parameters y(q1), . . . , y(qn),

• l mixed boundaries such that the ith boundary is made of 2ki changes

of colors. It can be parameterized with 2ki conjugated length parameters

[x(pi,1), y(qi,1), x(pi,2), y(qi,2), x(pi,3), y(qi,3), . . . , x(pi,k), y(qi,k)].

Notice that the pi’s and qj’s are points on the curve Σ.

The generating function for discrete surfaces with that boundary condition is:

Hk1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

=
〈 l∏

i=1

(Nδki,1 + Tr
1

Si

)
m∏

j=1

Tr
1

x(pj) − M1

n∏

s=1

Tr
1

y(qs) − M2

〉

c

+δl,0δm,2δn,0
1

(x(p1) − x(p2))2
+ δl,0δm,0δn,2

1

(y(q1) − y(q2))2

+δl,0δm,1δn,0(y(p1) − V ′
1(x(p1))) + δl,0δm,0δn,1(x(q1) − V ′

2(y(q1)))

(3 − 1)

where

Tr
1

Si
= Tr

(
1

x(pi,1) − M1

1

y(qi,1) − M2

1

x(pi,2) − M1

1

y(qi,2) − M2
. . .

1

y(qi,ki
) − M2

)

(3-2)

and

Si = [pi,1, qi,1, pi,2, qi,2, pi,3, qi,3, . . . , pi,k, qi,k] (3-3)

is the set ordered set of points {pi,l, qi,l}l=1...k up to cyclic permutations, i.e., using a
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graphical representation

Si =

i,1
pqi,1

qi,2

p
i,2

pi,k

qi,k

i,3
p

i,3q

. (3-4)

Each p variable stands for a piece of boundary of color 1, whereas each q stands for a

piece of color 2.

Each Hk1,...,kl;m;n admits a topological expansion:

Hk1,...,kl;m;n =
∞∑

g=0

N2−2g−l−m−n H
(g)
k1,...,kl;m;n (3-5)

where H
(g)
k1,...,kl;m;n is the generating function for discrete surfaces of genus g with the

same boundary conditions (indeed, the Euler characteristic of a surface of genus g with

l + m + n boundaries is χ = 2 − 2g − l − m − n).

We represent H
(g)
k1,...,kl;m;n graphically as a connected surface of genus g, with l cir-

cular boundaries, and n + m punctures:

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

1

1

2
2

3

m

S

S

S

S

ppp

(g)

q q
n1 l

. (3-6)

Since the correlation function H
(g)
k1,...,kl;m;n does not depend on the order of the traces

(i.e. one may permute the Si’s), we may choose one of the boundaries (for example

S1), and draw it on the exterior, and draw the whole surface in the interior of the circle

S1. Moreover, because of the cyclic invariance of the trace, we may choose a starting

point on each boundary (for example p1,1) by drawing an anticlockwise arrow on the

boundary from this point4.
4Remember that the boundaries are oriented according to the sequence of points in the traces of

the correlation functions.
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Thus, we represent the correlation function H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) by

a surface S
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) which is a disc equipped with g handles,

l− 1 holes corresponding to the l − 1 remaining non homogenous boundaries, m white

marked points corresponding to the homogenous boundaries of color 1 and n black

marked points corresponding to the homogenous boundaries of color 2. Note also that

every non homogenous boundary is equipped with a sequence of white and black points

representing the sequence of boundary conditions.

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,42

SS

nq2q1

p
1
p

2

p
m

Sl

q

3

.

(3-7)

Notice that the other boundaries S2, . . . , Sl also have a marked edge pi,1 → qi,1 whose

orientation is opposite (i.e. clockwise) of that of S1.

3.2 Previously known results

Some cases are already known in the literature:

• Planar case: all H
(0)
k1,...,kl;0;0

(i.e. planar surfaces only) were computed in [14].

• Non-mixed boundaries: all functions with only non-mixed boundaries, i.e.

H
(g)
∅;m;n were computed in [12, 4, 11, 15].

• Only one mixed boundary with k = 1: H
(g)
1;m;n was computed in [15].

• In particular the sphere with one puncture is the resolvent:

H
(0)
0;1;0(p) = W

(0)

1 (p) = V ′
1(x(p)) − y(p) (3-8)

• In particular the sphere with one bicolored boundary is [5, 9, 7]:

H
(0)
1;0;0({p, q}) =

E(x(p), y(q))

(x(p) − x(q))(y(q) − y(p))
(3-9)

Below, we compute all the other ones.
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4 Diagrammatic solution

Here, we show the recipe to compute recursively any HS1,...,Sl;m;n. The proof (which

relies on loop equations, and is explained in the appendix is very technical, whereas

the solution is rather simple and can be written pictorially.

4.1 In equations

In equations, the recursive solution of the loop equations (see the proof in appendix)

can be written:

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

Res
r→p1,1,pi,α,pj,q̃

j
1,k1

H
(0)
1;0;0(p1,1,q1,k1

)

(x(p1,1)−x(r))(y(q1,k1
)−y(r))H

(0)
1;0;0(r,q1,k1

)
{∑

h

∑
A
⋃

B={2,...,l}

∑k1

α=2

∑
I,J H

(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . p1,k1, q1,k1},SB;pM/I;qN/J)

×
H

(g−h)
α−1,kA ;|I|;|J|

({r,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)

x(p1,α)−x(r)

+
∑k1

α=2
1

x(p1,α)−x(r)
×

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({r, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1 , q1,k1},SL/{1};pM;qN)

+
∑l

i=2

∑ki

α=1
1

x(pi,α)−x(r)
×

×H
(g)
k1+ki,kL/{1,i};m;n({S1(r), pi,α, qi,α, pi,α+1, . . . , qi,ki

, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)

+
∑

h

∑
A
⋃

B={2,...,l}

∑
I,J H

(h)
k1,kA;|I|;|J |(S1(r),SA;pI;qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; r,pM/I;qN/J)

+
∑g

h=1 H
(h)
0;1;0(r)H

(g−h)
k1,...,kl;m;n(S1(r), S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+H
(g−1)
kL;m+1;n(SK(r); r,pM;qN)

}

(4-1)

It looks terrible, but each term can be represented diagrammatically, and it is in fact

rather simple and intuitive. Let us notice for the moment that this formula involves

residues (i.e. contour integrals on Σ) at various points, in particular the q̃j
1,k1

which are

defined in eq.2-8, and were we mean j 6= 0.

This formula also involves the function H
(0)
1;0;0 which is given in eq.3-9.

All the other terms in the RHS of eq.4-1 are either some H
(g)
S;m;n’s computed recur-

sively by the same formula, or some H
(g)
0;m;n which were computed in [12, 4, 11, 15].
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4.2 Diagrammatic representation

It is more convenient to represent equation 4-1 diagrammatically:

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,42

SS

nq2q1

p
1
p

2

p
m

Sl

q

3

= m−j

l−k−1

g−hh

k

j

i n−i

r

p

q

1,α 1,α−1

1,1p11,k

q

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

p
1
p

2

p
m

Sl

q
1q2 qn

S

q1,α−1

p1,α

32
S

r

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

Si

32
S

p
1
p

2

p
m

Sl

q
1q2 qn

S
r

+

g−h

k

i j

hn−i m−j

l−k−1

r1 p1,1
1,kq

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

p
1
p

2

p
m

Sl

q
1q2 qn

S 32
S

r

.

(4-2)

where we explain the meaning of those graphs below

4.2.1 Cutting surfaces

Consider a connected surface S with at least one boundary (i.e. l ≥ 1):

S = S
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,42

SS

nq2q1

p
1
p

2

p
m

Sl

q

3

.

(4-3)

Let Cut(S) be the set of all topologically inequivalent possibilities of cutting the

surface along a line p1,1 → pi,α (we allow the closed line (i, α) = (1, 1)). When we cut
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along such a line, we can either get a connected or a disconnected surface. The only

possibility of getting a disconnected surface is if the point pi,α belongs to S1, i.e. i = 1,

and if there is no handle going above the cut.

Here is the algorithm to construct Cut(S):

• one first has to choose any ending point pi,α on a mixed boundary and draw a

path going from the left of the starting point to the left of the ending point5:

– This point can belong to a boundary different from the starting one, i 6= 1:

1
q

1,k1 p
1,1q

1,1

1,k

ι,α−1
pι,α−1

pι,αqι,α

p

q

.

(4-4)

There are
∑l

i=2 ki such possibilities.

– It can belong to the same boundary, i = 1, α 6= 1 :

1,k1
q

1,k1 p
1,1q

1,1

p1,α q1,α−1

p

(4-5)

There are k1 − 1 such possibilities.

5The orientation is seen from the point of view of an observer living on the upper side of the disc.
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– It can be the same as the starting point i = 1, α = 1:

1,k1
q

1,k1 p
1,1q

1,1

p

(4-6)

There is only one such possibility.

• Once this ending point is chosen, it remains to fix the position of the handles and

the other boundaries and punctures with respect to this path. The number of

inequivalent possibilities depends on the respective position of the starting and

ending points:

– If the starting and ending points do not belong to the same boundary, the

surface is not disconnected by the cut, and every choices are equivalent

since the left and right side of the path belong to the same component of

the surface:

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

i

32
SS

p
1
p

2

p
m

Sl

q
1q2 qn

S (4-7)

There is only one possibility for the boundaries, punctures and handles

configuration.

– If the starting and ending points belong to the same boundary, two different

configurations can occur: either the path does cut the disc into two discon-

nected parts, i.e. no handle goes above the path. In this case, one has to

choose for each handle and boundary whether it lies to the left or the right
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of the path:

i

j

k

h g−h

l−k−1

m−j

n−i

(4-8)

There are 2n+m+g such configurations;

Either the path does not separate the disc into two parts, and all the posi-

tions of handles, punctures and boundaries are equivalent:

n−i

m−j

l−k−1

h

k

j

i

g−h−1

(4-9)

There is only one such configuration because one can transport the handles,

punctures and boundaries across the handle above the path.

We have then built the set Cut(S) of cut surfaces associated to any surface S.

4.3 Weights of graphs

Now, let us associate a weight to each cut surface. We define recursively a weight P

on the set of graphs:

Definition 4.1 The weight P of an uncut surface is given by the corresponding corre-

lation function:

P
(
S

(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn)

)
:= H

(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn). (4-10)

The weight of the disconnected union of two surfaces is the product of their respective

weights:

P(S
⋃

S ′) := P(S) × P(S ′). (4-11)

The weight of a cut surface is obtained from the weight of the surface(s) obtained

by cutting along the path γ following the rules:
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• If the starting and ending points of γ do not coincide:

P

(
pq

p’ q’

r
)

= Res
r→p,q̃j,p′

H
(0)
1;0;0(p, q)

(x(p) − x(r))(y(q) − y(r))(x(p′) − x(r))H
(0)
1;0;0(r, q)

P




q

p’ q’

r




(4-12)

• If the starting and ending points coincide:

P

(
r

q p
)

= Res
r→p,q̃j,pi

H
(0)
1;0;0(p, q)

(x(p) − x(r))(y(q) − y(r))H
(0)
1;0;0(r, q)

P




q rr’





(4-13)

where the pi’s are the points encircled inside the closed loop.

With such notations, equation 4-1 can be reinterpreted as:

Theorem 4.1 The weight of a given surface is equal to the sum of the weights of all

corresponding cut surfaces:

P(S) =
∑

S∈cut(S)

P(S) (4-14)

I.e. graphically:

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,42

SS

nq2q1

p
1
p

2

p
m

Sl

q

3

= m−j

l−k−1

g−hh

k

j

i n−i

r

p

q

1,α 1,α−1

1,1p11,k

q

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

p
1
p

2

p
m

Sl

q
1q2 qn

S

q1,α−1

p1,α

32
S

r

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

Si

32
S

p
1
p

2

p
m

Sl

q
1q2 qn

S
r

+

g−h

k

i j

hn−i m−j

l−k−1

r1 p1,1
1,kq

+

g

1,k −11
q

1,k −11
p

p
1,k

q1,k

p
1,1

q1,1

p
1,2 q

1,2
p
1,3q

1,3

q1,4

p
1,4

p
1
p

2

p
m

Sl

q
1q2 qn

S 32
S

r

.

(4-15)

Performing this procedure recursively on any correlation functions, one can elim-

inate the mixed boundaries step by step until there is no mixed boundary left, i.e.
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until there are only punctures left. The correlation functions with only punctures are

computed in [12, 4, 11].

5 Examples of applications

In this section, we show how to use our formula to recover some previously known

results, in particular the planar case, and surfaces with uniform boundaries. We also

compute two simple examples: the generating function of discs with four boundary

operators and the generating function of cylinders with two boundary operators on

each boundary.

5.1 Link with former results

5.1.1 Planar mixed traces

If one is interested in the planar mixed correlation functions with only one boundary,

the recursion relation simplifies to:

1,k1
q

1,k1 p
1,1q

1,1

p

=
k1∑

α=2

1,k1
q

1,k1 p
1,1q

1,1

p1,α q1,α−1

p

(5-1)

One can thus draw the result of the whole recursive procedure as the sum over all

possible link patterns on the starting disc in such a way they separate all boundary

variables. This reproduce the decomposition used in [14] to compute the building

blocks Fk = Ck
id.

Example:

The three point mixed correlation function reads:

H
(0)
3;0;0(p1, q1, p2, q2, p3, q3) =

q
1

p
2

1

2

q3

p
3 q

p
1

q
1

p
2

q
2

q3

p
3

p
r r

r’

r’

+ (5-2)
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which gives:

H
(0)
3;0;0(p1, q2, p2, q2, p3, q3) =

Res
r→p1,p2,q̃j

3

Res
r′→p2,p3,q̃j

3

H
(0)
1;0;0(p1,q3)H

(0)
1;0;0(r,q1)H

(0)
1;0;0(p2,q3)H

(0)
1;0;0(p3,q3)H

(0)
1;0;0(r′,q2)

(x(p1)−x(r))(y(q3)−y(r))(x(p2)−x(r))H
(0)
1;0;0(r,q3)(x(p2)−x(r′))(y(q3)−y(r′))(x(p3)−x(r′))H

(0)
1;0;0(r′,q3)

+ Res
r→p1,p3,q̃j

3

Res
r′→r,p2,q̃j

2

H
(0)
1;0;0(p1,q3)H

(0)
1;0;0(r,q2)H

(0)
1;0;0(p3,q3)H

(0)
1;0;0(p2,q2)H

(0)
1;0;0(r′,q1)

(x(p1)−x(r))(y(q3)−y(r))(x(p3)−x(r))H
(0)
1;0;0(r,q3)(x(r)−x(r′))(y(q2)−y(r′))(x(p2)−x(r′))H

(0)
1;0;0(r′,q2)

(5-3)

One can easily show that this coincide with the result of [14] by using explicitly the

orientation-reversing symmetry6 of the correlation function:

H
(0)
3;0;0(p1, q1, p2, q2, p3, q3) = H

(0)
3;0;0(p1, q3, p3, q2, p2, q1). (5-4)

5.1.2 Simple traces topological expansion

One can remark that all this recursive procedure supposes that the non-mixed correla-

tion functions are known, since this new diagrammatic representation does not allow to

compute them. Nevertheless they were computed by a similar procedure in [12, 4, 11]

in terms of trivalent graphs and we show that these former rules could be written in a

graphical representation similar to the one presented in this paper.

Let us represent W
(h)
k+1(p, p1, . . . , pk) := H

(h)
0,k+1,0(p, p1, . . . , pk) as a disk with k punc-

tures instead of a sphere with k + 1 punctures (we have drawn the surface generated

by this function inside the boundary corresponding to p):

p

(h)

k
p

k-1
p

1
p

2
p

⇒

p
kp

1 2
p

p

h (5-5)

The recursion relation of [4, 11]

p

(h)

k
p

k-1
p

1
p

2
p

= p (h−m)

(m)

j

k−j

+

2

1

k

p

p

p
p

(h−1)

(5-6)

6Combinatoricaly, this means that summing over all oriented surfaces is equalt to summing over
all surfaces with the orientation reversed.
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can then be written:

p
kp

1 2
p

p

h =

p

j

m

h−m

k−j

+

p
kp

1 2
p

p

h (5-7)

where once again, the different terms on the RHS are obtained by drawing a basis of

homologically independent paths on the disk starting and ending on the boundary, and

the weight of a cutting along this path follows:

p

=
∑

i

Res
q→ai

dEq(p)

(y(q) − y(q))dx(q)

qq

(5-8)

where one sums over all branch points ai and q is the point conjugated to q (see [4, 11]

for more details).

5.2 Four point function on the disc

The correlation function H
(0)
4;0;0(p1, q1, p2, q2) has already been computed in [8, 14]. Nev-

ertheless, this computation used an Ansatz and a symmetry property of the correlation

function explicitly. Let us recover the same result without using any symmetry con-

sideration, but using our recursive formula instead.

The solution of the loop equations reads graphically:

q

p q

p
2 2

1 1

=

pq

p q
1

2 2

r

1

(5-9)

which is translated into7

H
(0)
4 (p1, q1, p2, q2) = Res

r→p1,p2,q̃j
2

H
(0)
2 (p1, q2)H

(0)
2 (p2, q2)

H
(0)
2 (r, q2)(x(p1) − x(r))(y(q2) − y(r))

H
(0)
2 (r, q1)

x(p2) − x(r)
.

(5-10)

7For shortening the notations, we write all along this section H
(g)
k (p1, q1, p2, q2, . . . , pk, qk) :=

H
(g)
k;0;0(p1, q1, p2, q2, . . . , pk, qk).
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Writing
1

y(q2) − y(r)
=

y(r) − y(q1)

(y(q2) − y(q1))(y(q2) − y(r))
+

1

y(q2) − y(q1)
(5-11)

one gets

H
(0)
4 (p1, q1, p2, q2)

= Res
r→p1,p2,q̃j

2

H
(0)
2 (p1, q2)H

(0)
2 (p2, q2)

H
(0)
2 (r, q2)(x(p1) − x(r))(y(q2) − y(q1))

H
(0)
2 (r, q1)

x(p2) − x(r)

+ Res
r→p1,p2,q̃j

2

H
(0)
2 (p1, q2)H

(0)
2 (p2, q2)

(x(p1) − x(r))(x(p2) − x(r))(y(q2) − y(q1))

(y(r) − y(q1))H
(0)
2 (r, q1)

(y(q2) − y(r))H
(0)
2 (r, q2)

.

(5 − 12)

Since

H
(0)
2 (p, q)(y(q) − y(p)) =

E(x(p), y(q))

x(p) − x(q)
(5-13)

the integrand of the first term in the RHS is a rational function in x(r) and it is easily

checked that the integration contour encircles all its poles (this function is regular when

x(r) → ∞). Thus this first term vanishes.

The second terms involves only simple poles when r → p1, p2 and we recover the

known result [8, 14]:

H
(0)
4 (p1, q1, p2, q2) =

H
(0)
2 (p1, q1)H

(0)
2 (p2, q2) − H

(0)
2 (p1, q1)H

(0)
2 (p2, q2)

(x(p1) − x(p2))(y(q1) − y(q2))
. (5-14)

Even if this new derivation of an old result seems more involved technically, it has

the advantage of being constructive and does not suppose any additional symmetry of

the correlation functions.

5.3 Generating function of cylinders

The generating function of cylinders with 2 boundary operators on both boundaries is

obtained by:

p
22

1

q

1 qp

= p
2

q

2q

p
1 1

r

+ p
2

q

2q

p
1 1

r

(5-15)

which can be translated into

H
(0)
2,2;0;0({p1, q1}, {p2, q2}) = Res

r→p1,p2,q̃j
1

H
(0)
2 (p1, q1)

H
(0)
2 (r, q1)(x(p1) − x(r))(y(q1) − y(r))

×
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×

[
H

(0)
4 (r, q1, p2, q2)

x(p2) − x(r)
+ H

(0)
2 (r, q1)H

(0)
2;1;0(p2, q2; r)

]

(5 − 16)

where the second term was computed in [15]:

H
(0)
2;1;0(p2, q2; r) = Res

r′→p2,r,q̃2
j

H
(0)
2 (p2, q2)H

(0)
0,2,0(r, r

′)

(x(p2) − x(r′))(y(r′) − y(q2))
. (5-17)

6 Conclusion

In this article we have found a recursive and graphical method to compute correlation

functions corresponding to every possible boundary condition for the 2-matrix model,

i.e. bicolored discrete surfaces.

The result seems to have a nice combinatorial interpretation, as all the possibilities

of drawing interfaces (between the + and - spins of the Ising model) in all possible

ways. However, a combinatorial derivation is missing.

Also, our result can have interpretations in conformal field theories when one goes

to the so called double-scaling-limit [6, 5], and should be compared with recent results

from Liouville theory [19, 16, 2]. In particular, in [2], our formula for planar disc

amplitudes is interpreted in terms of the interactions of a long folded strings and it

would be interesting to check the non-planar cases as well.

It would be interesting also to understand how the structure we exhibit in this

article, and which seems to be related to integrability like in [14], is related to the

Langlands programm as claimed by [16].
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Appendix A Loop equations

Here we prove the equation 4-1, using loop equations. Loop equations is a standard

and powerful tool in random matrix theory, they are the Ward identities, or Schwinger-

Dyson equations, they implement the Virasoro or W-algebra constraints, in combina-

torics they can be viewed as an extension of Tutte’s equations, and in fact they just

consist in integration by parts, or said differentely, the fact that an integral is invariant

under (an infinitesimal) change of variable.

For the 2-matrix model, loop equations were first exploited by Staudacher [20], and

then by many authors, and they led to the solution of [12, 4, 15].

A.1 The loop equations

In order to prove eq.4-1, we consider the change of variables

δM1 := 1
x(p1,1)−M1

1
y(p1,1)−M2

1
x(p1,2)−M1

1
y(p1,2)−M2

. . . 1
x(p1,k1

)−M1

1
y(p1,k1

)−M2∏l
i=2 Tr

(
1

x(pi,1)−M1

1
y(pi,1)−M2

1
x(pi,2)−M1

1
y(pi,2)−M2

. . . 1
x(pi,ki

)−M1

1
y(pi,ki

)−M2

)

∏m
j=1 Tr 1

x(pj)−M1

∏n
s=1 Tr 1

y(qs)−M2
.

(1-1)

Writing that the matrix integral is invariant under this change of variable gives the

loop equation:

(Y (p1,1) − y(q1,k1) − Polx(p1,1)V
′
1(x(p1,1)))Hk1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn) =∑

A
⋃

B={2,...,l}

∑
I,J Hk1,kA;|I|;|J |(S1,SA;pI;qJ)HkB;m−|I|+1;n−|J |(SB; p1,1pM/I;qN/J)

+
∑

A
⋃

B={2,...,l}

∑k1

α=2

∑
I,J Hk1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . p1,k1, q1,k1},SB;pM/I;qN/J)

×
Hα−1,k

A
;|I|;|J|({p1,1,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)−Hα−1,k

A
;|I|;|J|({p1,α,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)

x(p1,α)−x(p1,1)∑l
i=2

∑ki

α=1
1

x(pi,α)−x(p1,1)[
Hk1+ki,kL/{1,i};m;n({S1, pi,α, qi,α, pi,α+1, . . . , qi,ki

, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)

− Hk1+ki,kL/{1,i};m;n({S1, pi,α, qi,α, pi,α+1, . . . , qi,ki
, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)

∣∣∣
p1,1:=pi,α

]

−
∑m

i=1 ∂pi

[
HkL;m−1;n(SL;pM/{i};qN)−HkL;m−1;n(SL;pM/{i};qN)|

p1,1:=pi

x(pi)−x(p1,1)

]

+ 1
N2

∑k1

α=2
1

x(p1,α)−x(p1,1)
×[

Hα−1,k1−α+1,kL/{1};m;n({p1,1, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1, q1,k1},SL/{1};pM;qN)

−Hα−1,k1−α+1,kL/{1};m;n({p1,α, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1, q1,k1},SL/{1};pM;qN)
]

+ 1
N2 HkL;m+1;n(SK; p1,1,pM;qN)

(1-2)

where Polxf(x) denotes the polynomial part in x of f , i.e. the sum of the positive

terms in the large x Laurent expansion of f(x).
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Let us now write its gth order in the topological expansion:

(y(p1,1) − y(q1,k1) − Polx(p1,1)V
′
1(x(p1,1)))H

(g)
k1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn) =∑g

h=1 H
(h)
0;1;0(p1,1)H

(g−h)
k1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+
∑

h

∑
A
⋃

B={2,...,l}

∑
I,J H

(h)
k1,kA;|I|;|J |(S1,SA;pI;qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; p1,1pM/I;qN/J)

+
∑

h

∑
A
⋃

B={2,...,l}

∑k1

α=2

∑
I,J H

(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . p1,k1, q1,k1},SB;pM/I;qN/J)

×
H

(g−h)
α−1,kA;|I|;|J|

({p1,1,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)−H
(g−h)
α−1,kA ;|I|;|J|

({p1,α,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)

x(p1,α)−x(p1,1)

+
∑l

i=2

∑ki

α=1
1

x(pi,α)−x(p1,1)[
H

(g)
k1+ki,kL/{1,i};m;n({S1, pi,α, qi,α, pi,α+1, . . . , qi,ki

, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)

− H
(g)
k1+ki,kL/{1,i};m;n({S1, pi,α, qi,α, pi,α+1, . . . , qi,ki

, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)
∣∣∣
p1,1:=pi,α

]

+
∑m

i=1 ∂pi

[
HkL;m−1;n(SL;pM/{i};qN)|

p1,1:=pi

x(pi)−x(p1,1)

]

+
∑k1

α=2
1

x(p1,α)−x(p1,1)
×[

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({p1,1, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1, q1,k1},SL/{1};pM;qN)

−H
(g−1)
α−1,k1−α+1,kL/{1};m;n({p1,α, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1, q1,k1},SL/{1};pM;qN)

]

+H
(g−1)
kL;m+1;n(SK; p1,1,pM;qN).

(1-3)

Notice that we have used the normalizations H0;2;0 = 〈Tr Tr 〉c + 1
(x−x)2

explicitly.

A.2 Solution of the equations

We can solve this hierarchy of equations by induction in the number of traces in the

correlations and the genus. Indeed, one can remark that the RHS of Eq. (1-3) contains

correlation functions with either less traces (that is to say less arguments) either lower

genus compare to the correlation function in the LHS. One also knows that the last

term of the LHS is a polynomial in x(p1,1) of degree d1−1 and one can compute its value

in the d1 points p1,1 → q̃j
1,k1

for j = 1 . . . d1 independently of H
(g)
kL;m;n(SK;pM;qN).

For this purpose, let us study the behavior of the LHS when p1,1 → q̃j . If p lies in

the x-physical sheet and q1,k1 to the y-physical sheet, the definition of the correlation

function reads:

(y(p1,1) − y(q1,k1))H
(g)
k1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn) =

= (y(p1,1) − y(q1,k1))
〈 l∏

i=1

(Nδki,1 + Tr
1

Si
)

m∏

j=1

Tr
1

x(pj) − M1

n∏

s=1

Tr
1

y(qs) − M2

〉(g)

c

= −
〈
(Nδki,1 + Tr

1

Ŝ1

)

l∏

i=2

(Nδki,1 + Tr
1

Si
)

m∏

j=1

Tr
1

x(pj) − M1

n∏

s=1

Tr
1

y(qs) − M2

〉(g)

c
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+
〈
(Nδki,1 + Tr

1

Š1

)

l∏

i=2

(Nδki,1 + Tr
1

Si
)

m∏

j=1

Tr
1

x(pj) − M1

n∏

s=1

Tr
1

y(qs) − M2

〉(g)

c

(1 − 4)

where one notes:

Tr
1

Ŝi

= Tr

(
1

x(p1,1) − M1

1

y(q1,1) − M2

1

x(p1,2) − M1

1

y(q1,2) − M2

. . .
1

x(p1,k1) − M1

)

(1-5)

and

Tr
1

Ŝi

= Tr

(
1

x(p1,1) − M1

1

y(q1,1) − M2

1

x(p1,2) − M1

1

y(q1,2) − M2

. . .
1

x(p1,k1) − M1

y(p1,1) − M2

y(q1,k1) − M2

)
.

(1-6)

These terms are monovalued functions as long as the p and q variables stay in their

respective physical sheets. When q1,k1 belongs to the y-physical sheet in the vincinity

of ∞y, all its images q̃j
1,k1

lie in the x-physical sheet in the vincinity of ∞x. Thus, this

expression vanishes for p1,1 → q̃j
1,k1

8. Hence the Lagrange interpolation formula reads

U
(g)
k1,...,kl;m;n(x(p1,1)) =

d1∑

j=1

Res
r→q̃j

H
(0)
1;0;0(p1,1, q1,k1)U

(g)
k1,...,kl;m;n(x(r))(y(p1,1) − y(q))dx(r)

(x(p1,1) − x(r))(y(r)− y(q))H
(0)
1;0;0(r, q1,k1)

,

(1-7)

where we have defined:

U
(g)
k1,...,kl;m;n(x(p1,1)) := Polx(p1,1)V

′
1(x(p1,1)))H

(g)
k1,...,kl;m;n(S1, S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn).

(1-8)

Insert this formula into Eq. (1-3) and get:

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) = Res

r→p1,1,q̃j

H
(0)
1;0;0(p1,1, q1,k1) RHS|p1,1:=r

(x(p1,1) − x(r))(y(q) − y(r))H
(0)
1;0;0(r, q1,k1)

(1-9)

where RHS denotes all the terms in the right hand side of Eq. (1-3).

One can simplify some of the terms by changing the integration contour. Indeed,

consider any term of the form dpi,α

(
f(pi,α)

x(p1,1)−x(pi,α)

)
in the RHS of Eq. (1-3), one can

compute its contribution to the preceding formula:

dpi,α
Res r→p1,1,q̃j

H
(0)
1;0;0(p1,1,q1,k1

)f(pi,α)

(x(p1,1)−x(r))(y(q)−y(r))(x(p1,1 )−x(pi,α))H
(0)
1;0;0(r,q1,k1

)
=

= dpi,α
Res x(r)→x(p1,1),x(q̃j)

H
(0)
1;0;0(p1,1,q1,k1

)f(pi,α)

(x(p1,1)−x(r))(y(q)−y(r))(x(p1,1 )−x(pi,α))H
(0)
1;0;0(r,q1,k1

)

(1-10)

8This term does not vanish when p1,1 → q1,k1
because of the discontinuity of these functions when

p1,1 changes x-sheets.
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since one can check that the integrand is a polynomial in x(r). We can now move the

integration contour in the x basis and we get:

dpi,α
Res

x(r)→x(pi,α)

H
(0)
1;0;0(p1,1, q1,k1)f(pi,α)

(x(p1,1) − x(r))(y(q) − y(r))(x(p1,1) − x(pi,α))H
(0)
1;0;0(r, q1,k1)

. (1-11)

This residue can be evaluated by using one more time Eq. (1-3) and recalling that only

the terms of the form H0;2;0(r, pi,α) have such poles. This finally gives the result, i.e.

eq.4-1:

H
(g)
kL;m;n(SL; p1, . . . , pm; q1, . . . , qn) =

Res r→p1,1,pi,α,pj ,q̃j
1,k1

H
(0)
1;0;0(p1,1,q1,k1

)

(x(p1,1)−x(r))(y(q1,k1
)−y(r))H

(0)
1;0;0(r,q1,k1

){∑g
h=1 H

(h)
0;1;0(r)H

(g−h)
k1,...,kl;m;n(S1(r), S2, . . . , Sl; p1, . . . , pm; q1, . . . , qn)

+
∑

h

∑
A
⋃

B={2,...,l}

∑
I,J H

(h)
k1,kA;|I|;|J |(S1(r),SA;pI;qJ)H

(g−h)
kB;m−|I|+1;n−|J |(SB; r,pM/I;qN/J)

+
∑

h

∑
A
⋃

B={2,...,l}

∑k1

α=2

∑
I,J H

(h)
k1−α+1,kB;m−|I|;n−|J |({p1,α, q1,α, . . . p1,k1 , q1,k1},SB;pM/I;qN/J)

×
H

(g−h)
α−1,kA ;|I|;|J|

({r,q1,1,...p1,α−1,q1,α−1},SA;pI;qJ)

x(p1,α)−x(r)

+
∑l

i=2

∑ki

α=1
1

x(pi,α)−x(r)
×

×H
(g)
k1+ki,kL/{1,i};m;n({S1(r), pi,α, qi,α, pi,α+1, . . . , qi,ki

, pi,1, . . . , pi,α−1, qi,α−1},SL/{1,i};pM;qN)

+
∑k1

α=2
1

x(p1,α)−x(r)
×

H
(g−1)
α−1,k1−α+1,kL/{1};m;n({r, q1,1, . . . p1,α−1, q1,α−1}, {p1,α, q1,α, . . . p1,k1 , q1,k1},SL/{1};pM;qN)

+H
(g−1)
kL;m+1;n(SK(r); r,pM;qN)

}

(1-12)

This recursion equation is a triangular system, thus it allows to compute any H(S)

recursively.
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