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Topological expansion and boundary conditions

B. Eynard®, N. Orantin?

Service de Physique Théorique de Saclay,
F-91191 Gif-sur-Yvette Cedex, France.

Abstract:

In this article, we compute the topological expansion of all possible mixed-traces in a
hermitian two matrix model. In other words we give a recipe to compute the number
of discrete surfaces of given genus, carrying an Ising model, and with all possible
given boundary conditions. The method is recursive, and amounts to recursively
cutting surfaces along interfaces. The result is best represented in a diagrammatic

way, and is thus rather simple to use.

1 Introduction

1.1 Counting surfaces with given boundary conditions

The problem of boundary conditions is a very important one in statistical mechanics,
conformal field theory, string theory... (see for example [2 [I6, 9] for recent develop-
ments). In this article we address the problem of counting configurations of an Ising
model on a random lattice, with given boundary conditions. This problem can be
equivalently stated as computing mixed traces expectation values in a 2-matrix model.

The 2-matrix model was introduced by Kazakov [I7] as the Ising model on a random

lattice. Its partition function reads:

Z = / dMy dMy &N T Vi) Ve (M) =M1 (1-1)

'E-mail: eynard@spht.saclay.cea.fr
2E-mail: orantin@spht.saclay.cea.fr



<Tr M3 Tr M25>C =

Figure 1: Example of surface generated by (Tr M7 Tr MJ3)_, where one has associated
the blue color to M; and the red color to Ms: it is a cylinder with one boundary of
length 5 with red condition and one boundary of length 3 with blue condition.

where V) and V5 are polynomials, and where the integral is a formal hermitian matrix
integral (see for example [I3] for a definition of formal integrals), i.e. it is computed
by first expanding the exponential of the non-quadratic part of Vi and V5, and then
exchanging the sums and integrals. A formal integral is thus a formal series whose
general terms are moments of gaussian integrals [13].

It is well known from Wick’s theorem that such a formal integral is a combinatorial
generating function which enumerates discrete surfaces (also called maps in the com-
binatorists litterature) whose faces can have 2 possible colors 1 or 2, or let us say + or

—, or blue or red.

The moments:
< Tr M! > (1-2)

are generating functions for discrete connected surfaces with one boundary of color 1
and length | (more precisely, surfaces with one marked face of color 1 and of degree
[, and one marked edge on the boundary, removed from a closed surface). Similarly,
< Tr M} > is a generating function which counts surfaces with one boundary of color 2
and length 1. More generally, < Tr Mi' Tr M2 ... Tr M'™ Tr Méll Tr Méé o Mé;”' >
is a generating function which counts connected surfaces with m boundaries of color 1
and respective lengths [y, ..., 1,,, and m’ boundaries of color 2 and respective lengths
l,..., 1, (see figlll for an example). The subscript <>. in the expectation values
means ”connected part” or ”cumulant” | it ensures that only connected surfaces appear
in the Wick expansion.
More interesting is:
< Tr MIMY > . (1-3)

It is a generating function which counts surfaces with only one boundary of length

[ 41, with [ color 1 sites followed by I’ color 2 sites (see figl for an example).



(Tr MY M5) :=

Figure 2: Example of surface generated by (' Tr MZM3) : it is a disc with one boundary
of length 7 with red condition for 5 adjacent segments followed by two segments with
blue condition.

And more generally,
< Tr MUMMEME > (1-4)
counts surfaces with one boundary of length " I; 4+ I} with [; sites of color 1 followed

by [} sites of color 2 then I, sites of color 1, ..., etc.

It is easy to see that one can design such observables for any given boundary

conditions: any number of boundaries, and any pattern of sites on the boundaries.

In this article we show how to compute those generating functions for surfaces of

given topology.

1.2 Outline and main results

The paper is organized as follows:

e in section 2, we summarize briefly some previous knowledge of formal 2-matrix
model integrals. Namely, we recall how to compute the ”"disc amplitude”, and
the spectral curve, and from there the result of [I1], i.e. how to count surfaces

with uniform boundary conditions.

e in section 3, we define appropriate notations for describing arbitrary boundary

conditions. We recall which cases were already known in the literature.

e in section 4, we give the formula for computing the generating functions counting
surfaces of any genus and arbitrary boundary conditions. The formula is best

represented diagrammatically, and has a very intuitive interpretation.

e in section 5, we show some examples of applications of our formula, and in par-

ticular we show how to recover previously known cases.



e section 6 is the conclusion.

e the proof of the main formula of section 4, is written in the appendix, because it

is rather technical.

2 Reminder 2-matrix model

The 2-matrix model has generated a considerable number of works. Here, we use
the method of loop equations [I8, B, 20], which is well suited for genus expansion

computations.

2.1 The resolvent

The resolvent is defined as:

Wi(x) = <Tr $_1M1> = i# (Tr M7) (2-1)

=0

it is a generating function for a disc of color 1 (i.e. discrete surface with only one
boundary of color 1 and of length [), and x is a complex ”fugacity” conjugated to the
boundary length 3.

Like any expectation value in a formal matrix model [3, ], it admits a topological

1/N? expansion:

Wi(r) = iW&” (z) N1-% (2-2)

where W&g) (x) is the generating function for discrete surfaces of genus g.

The loop equations which allow to compute Wﬁg) have been known for a long time
[20]. More recently, Wig) was computed for any ¢ in [, 2, [[1]. The result for Wio)
can be written in terms of an algebraic equation. Let:

770
y(z) = Vi(x) = Wy (2). (2-3)

y(x) is solution of the following algebraic equation [d, R]:

0= E(z,y(z)) = (Vi(z) —y(@)(Va(y(x)) = 2) = PO(z,y(x)) + 1 (2-4)

where

P(x, y) _ < Ty Vl/(xa)7 : EfMl) V2/<y:3 : ]‘/W2/2(M2)> _ Z Nl_QQP(g)(:L', y) (2_5)

g=0
and y must be chosen as the branch of the solution of E(x,y) = 0 which behaves like
V{(x) for large x.

3Remark that these resolvents are properly defined when the fugacity z — oo
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2.2 The spectral curve

In general, correlation functions are multivalued functions of z, and it is better to write
them as functions on a Riemann surface.

Therefore, we view x and y as two meromorphic functions living on a compact

Riemann surface X.
E(z,y) =0 - Ipe¥/x=u(p)and y = y(p) (2-6)

Since the equation E(x,y) = 0 has deg V5 solutions in y for a given x, it means that
for every point p in 3, there are deg V5 points p’ in ¥ such that:

Vi=0,...,ds, x(p') = x(p) (2-7)

where dy = deg Vj, and by convention we assume p° = p.

Similarly, if we regard z as a function of y, then the equation E(x,y) = 0 has deg V}
solutions for a given y, which means that for every point p in 32, there are deg V points
P in ¥ such that:

Vi=0,....,di, y@)=yp) (2-8)

where d; = deg V/, and by convention we assume p° = p.

2.3 Examples

e If the algebraic curve ¥ build from E(z,y) = 0 has genus zero, it is possible to find

a rational parametrization [7, B, i.e. z(p) and y(p) are rational functions of p:

deg VJ _

z(p) =p+ Zkfg% axp g (2-9)
y(p) =~ + 35 B

where the coefficients ay, B and 7 are determined by y(p) ~p—oo Vi (2(p)) — 1/z(p) +

O(p~?) and 2(p) ~p—0 V3 (y(p)) — 1/y(p) + O(p?).
In that case the compact Riemann surface X is the Riemann sphere.

This is the case which counts the Ising model bicolored maps.

e If the algebraic curve X build from E(z,y) = 0 has genus 1, it is possible to find

a parametrization with elliptical functions.

Spectral curves E(x,y) = 0 of genus g > 0, are not generating functions which
counts maps, but they are still solutions of the loop equations, they have a more
complicated combinatorical interpretation, and they are very useful for applications to
string theory for instance. In what follows, we assume that the spectral curve may
have any genus, and one should keep in mind that only the genus zero case really

corresponds to the Ising model on random surfaces.



3 Definitions

We assume that the spectral curve E(z,y) = 0 is known, and that z and y are two

meromorphic functions on the compact Riemann surface 3.

3.1 Notations

The most general boundary condition for a discrete surface generated by the 2-matrix
model is made of several boundaries, some of them having color 1, some having color
2, and some having mixed color boundaries.

Let us say that we have:
e m boundaries of color 1, with conjugated parameters z(py), ..., z(pm),

e n boundaries of color 2, with conjugated parameters y(q1), ..., y(qn),

th

e [ mixed boundaries such that the " boundary is made of 2k; changes

of colors. It can be parameterized with 2k; conjugated length parameters

[2(Pi1), ¥(qi1), 2(Pi2), ¥(Gi2), ©(i3), ¥(¢i3)s - - 2 (Pik), ¥(Gik)]-
Notice that the p;’s and ¢;’s are points on the curve X.

The generating function for discrete surfaces with that boundary condition is:

Hkl,...,kl;m;n(sla S2a sy Sl;pla cee >pm7 qi,--- aQTL)
l

1 m
— <H(N5ki’1 + Tr E) ]1:[1 Tr——— H Tr M2>

=1
1 1
+01,00m,20n + 01.00m.00n
L o) — w(p)? O () — y(ae))?
+0100m.180(y(p1) = Vi(2(p1)) + 8100m 001 {w(a1) = Va(y(an)

3-1)

where

1 1 1 1 1 1
Tr — = T .
S; (fv(pi,l) — Myy(qin) — My x(pi2) — Miy(giz) — Mo y(qig,) — Mz)

and
Si = [Pins 615 Di2, G2, Pi3: Gis3s - - > Dikes Gik) (3-3)

is the set ordered set of points {p;;, ¢i;}i=1.x up to cyclic permutations, i.e., using a



graphical representation

(3-4)

Each p variable stands for a piece of boundary of color 1, whereas each ¢ stands for a

piece of color 2.

Each Hy, .. g;:mx admits a topological expansion:

oo

Hk17~~~7k15m3” = Z N2—29—l—m—” ng??...,kl;m;n (3_5)
g=0
where H ,ﬁf’m ky:mn 15 the generating function for discrete surfaces of genus g with the

same boundary conditions (indeed, the Euler characteristic of a surface of genus g with
[+ m + n boundaries is y =2 — 29 — [ —m — n).

We represent H ,ﬁf) graphically as a connected surface of genus g, with [ cir-

s kpymm

cular boundaries, and n + m punctures:

P, p2 P

Hlii);m;n(SL;pb ey Pmsdy -, qn) =

)

.. kym:n d0€s 10t depend on the order of the traces

Since the correlation function H Ig‘l’
(i.e. one may permute the S;’s), we may choose one of the boundaries (for example
S1), and draw it on the exterior, and draw the whole surface in the interior of the circle
S1. Moreover, because of the cyclic invariance of the trace, we may choose a starting
point on each boundary (for example p; ;) by drawing an anticlockwise arrow on the

boundary from this point?.

4Remember that the boundaries are oriented according to the sequence of points in the traces of
the correlation functions.



Thus, we represent the correlation function Hl({i);mm(SL; Plye s Pmi Qs -« -5 qn) DY
a surface Sl(i);mm(SL;pl, ey Pmi s - - - Gn) Which is a disc equipped with g handles,
[ — 1 holes corresponding to the [ — 1 remaining non homogenous boundaries, m white
marked points corresponding to the homogenous boundaries of color 1 and n black
marked points corresponding to the homogenous boundaries of color 2. Note also that
every non homogenous boundary is equipped with a sequence of white and black points

representing the sequence of boundary conditions.

Hlii);m;n<SL;p17 e Pmsd, - e, qn) = (3_7)
Notice that the other boundaries Sy, ..., S; also have a marked edge p;; — ¢;1 whose

orientation is opposite (i.e. clockwise) of that of 5.

3.2 Previously known results

Some cases are already known in the literature:

e Planar case: all ng?)

ki0:0 (1-€. planar surfaces only) were computed in [14].
e Non-mixed boundaries: all functions with only non-mixed boundaries, i.e.
Hqggg1 were computed in [T2, 4, [T [T5)].

e Only one mixed boundary with k£ = 1: H1 “men Was computed in [T5].

e In particular the sphere with one puncture is the resolvent:
0) _ 17700 v
Hy0(p) = Wi (p) = Vi(z(p)) — y(p) (3-8)
e In particular the sphere with one bicolored boundary is [5, 9, [7:

(©) _ E(z(p) y(9)) ]
ool a) = G ) wte) — v &)

Below, we compute all the other ones.



4 Diagrammatic solution

Here, we show the recipe to compute recursively any Hg, s:mmn- The proof (which
relies on loop equations, and is explained in the appendix is very technical, whereas

the solution is rather simple and can be written pictorially.

4.1 In equations

In equations, the recursive solution of the loop equations (see the proof in appendix)
can be written:

Hl(cimn<SL;p17’”7pm;q17---7Qn) =

H{?(;;o(lnl,lvql,kl)
Res :0; -
TPLLPL P gy (z(p1,1) (1) (Y(a1,ky )=y (r)) Hy.6,0 (101,51

h
{ZhZAUB:{2 Z}Za 221,0 Igl)a+1,kB;m_\[\;n_|J|({pl,omC_I1,om"'pl,klaql,lﬂ}aSB;pM/I;qN/J)

—h
Hf(ilyllA;\I\;\J\ ({ra1,15-P1,0-1,91,a—1},SA;P1;93)

X 2(pr.0)—2(r)

+ (chv 2 m x
Hag_l,;)ﬁ_aﬂ,kw{l};mm({ﬁ Qs Pla—t1s a1} AP1as Qs - - Plikrs Qi }> SL/{1}; PM; AN)
+ i Yo m X

XH]&?l_khkL/{lyi};mm<{Sl(T>7pi,a7 Qiar Divatls - - Qigkis Disls - - - Pisa—1, Gisa—1) Sv/1.4); PM; an)
+ Zh ZAUB:{2,...,1} 21 J igl,)kA,m \J|<Sl (1), Sa; Pr; QJ)HliB, ) —I|4+1;n— |J|(837 T, PM/I; an/J)
+ 500 HY () HY hkl min (S1(7), 82, S5 P - P Qs -5 )

+H ;m A (S (r); 7, Pa; )

(4-1)
It looks terrible, but each term can be represented diagrammatically, and it is in fact
rather simple and intuitive. Let us notice for the moment that this formula involves
residues (i.e. contour integrals on X)) at various points, in particular the ‘ﬁ,kl which are
defined in eqB=8 and were we mean j # 0.

This formula also involves the function A 1(?3;0 which is given in eq[3=9

All the other terms in the RHS of quZ]] are either some H éf,)nm’s computed recur-

sively by the same formula, or some HO “men Which were computed in [T2, &, [T, [T5].



4.2 Diagrammatic representation

It is more convenient to represent equation B=Il diagrammatically:

where we explain the meaning of those graphs below

4.2.1 Cutting surfaces

Consider a connected surface S with at least one boundary (i.e. [ > 1):

S = Sl(:i);m;n(SL;pb <oy Pms gy .- aQn) =

Let Cut(S) be the set of all topologically inequivalent possibilities of cutting the

surface along a line py 1 — p; o (we allow the closed line (i, ) = (1,1)). When we cut

10



along such a line, we can either get a connected or a disconnected surface. The only
possibility of getting a disconnected surface is if the point p; , belongs to Sy, ie. ¢ =1,

and if there is no handle going above the cut.

Here is the algorithm to construct Cut(S):

e one first has to choose any ending point p;, on a mixed boundary and draw a

path going from the left of the starting point to the left of the ending point®:

— This point can belong to a boundary different from the starting one, ¢ # 1:

(4-4)

There are 2222 k; such possibilities.

— It can belong to the same boundary, i = 1,a # 1 :

H,a ql,ot—l

There are k1 — 1 such possibilities.

5The orientation is seen from the point of view of an observer living on the upper side of the disc.

11



— It can be the same as the starting point i = 1, = 1:

pl,k ql,kl

(4-6)

There is only one such possibility.

e Once this ending point is chosen, it remains to fix the position of the handles and
the other boundaries and punctures with respect to this path. The number of
inequivalent possibilities depends on the respective position of the starting and

ending points:

— If the starting and ending points do not belong to the same boundary, the
surface is not disconnected by the cut, and every choices are equivalent
since the left and right side of the path belong to the same component of

the surface:

There is only one possibility for the boundaries, punctures and handles

configuration.

— If the starting and ending points belong to the same boundary, two different
configurations can occur: either the path does cut the disc into two discon-
nected parts, i.e. no handle goes above the path. In this case, one has to
choose for each handle and boundary whether it lies to the left or the right

12



of the path:

(4-8)

There are 2" %9 such configurations;

Either the path does not separate the disc into two parts, and all the posi-
tions of handles, punctures and boundaries are equivalent:

(4-9)

There is only one such configuration because one can transport the handles,

punctures and boundaries across the handle above the path.

We have then built the set Cut(S) of cut surfaces associated to any surface S.

4.3 Weights of graphs

Now, let us associate a weight to each cut surface. We define recursively a weight P
on the set of graphs:

Definition 4.1 The weight P of an uncut surface is given by the corresponding corre-

lation function:

P (5£gL);m;n(SL;p1, R T -,qn)) = HY  (SLiDs e Pmi - Gn). (4-10)

The weight of the disconnected union of two surfaces is the product of their respective
weights:
PSS JS) :=P(S) x P(S). (4-11)

The weight of a cut surface is obtained from the weight of the surface(s) obtained
by cutting along the path v following the rules:

13



o [f the starting and ending points of v do not coincide:

e 00 (p,9)
P = Res — P
( [ ) o'’ (w(p) — () (y(a) — y(r) (2(0') — () Hig(r, ) > C

~—

(4-12)
e [f the starting and ending points coincide:
q p (0) 9 S
R Hi.0(p,
(0 ) s 1)
r=p@pi (2(p) — x(r))(y(a) — y(r)) Hio0(r, )
(4-13)

where the p;’s are the points encircled inside the closed loop.
With such notations, equation =1l can be reinterpreted as:

Theorem 4.1 The weight of a given surface is equal to the sum of the weights of all
corresponding cut surfaces:

PS) = > P(S) (4-14)

Secut(S)

L.e. graphically:

(4-15)

Performing this procedure recursively on any correlation functions, one can elim-

inate the mixed boundaries step by step until there is no mixed boundary left, i.e.

14



until there are only punctures left. The correlation functions with only punctures are
computed in [T2, 4 [TT].

5 Examples of applications

In this section, we show how to use our formula to recover some previously known
results, in particular the planar case, and surfaces with uniform boundaries. We also
compute two simple examples: the generating function of discs with four boundary
operators and the generating function of cylinders with two boundary operators on

each boundary.

5.1 Link with former results

5.1.1 Planar mixed traces

If one is interested in the planar mixed correlation functions with only one boundary,

the recursion relation simplifies to:

(5-1)

q,a ql,a—l

One can thus draw the result of the whole recursive procedure as the sum over all
possible link patterns on the starting disc in such a way they separate all boundary
variables. This reproduce the decomposition used in [I4] to compute the building
blocks F}, = C’fd.

Example:

The three point mixed correlation function reads:

H?E?O);O(phq17p27q27p37q3) = + (5_2)

15



which gives:

0
Hgs;o);o(plv 42, P2, 42, P3, q3) =
Res Res Hi 000 (P1,43) Hi 0,0 (ruan) H1 0,0 (p2,03) Hy 0,0 (p.a3) i, (' 2)
raprpos@ v/ —paps,), (D)2 () ((a3) —y(r) (w(02)—(r) H{(g o (3 (@(p2) ~x(r")) (wlas)~y(r) ((ps) () Hy g, (" 3)

0 0 0 0 0
H{;&,o(m,qs)Hi&o(T,qz)Hi&o(ps,qs)Hi({O(pz,qz)Hi&o(r’m)

+ Res Res

P 17—, 1) —2(1) (0(a3) (1) (@(ps)—(r) H {10 o (r.as) (2(r)—(r")) (w(a2) =y (") (2(p2)—(r') H 0. (' a2)
(5-3)
One can easily show that this coincide with the result of [T4] by using explicitly the

orientation-reversing symmetry® of the correlation function:

0 0
H?E;(?;O(Pb q1,D2,q2, D3, q3) = Hé;&o(pl, 43,03, 42, P2, q1)- (5-4)

5.1.2 Simple traces topological expansion

One can remark that all this recursive procedure supposes that the non-mixed correla-
tion functions are known, since this new diagrammatic representation does not allow to
compute them. Nevertheless they were computed by a similar procedure in [12, 4, [1T]
in terms of trivalent graphs and we show that these former rules could be written in a
graphical representation similar to the one presented in this paper.

Let us represent Wéi)l (P, P1s - DE) = Héngrl’O(p,pl, ..., k) as a disk with k& punc-
tures instead of a sphere with k& + 1 punctures (we have drawn the surface generated

by this function inside the boundary corresponding to p):

R
R

(5-5)

(h P,

pl
The recursion relation of [ [I1]
n 9
k-1 k—_ plpz
=P e (5-6)
() o, j N
P (m)

6Combinatoricaly, this means that summing over all oriented surfaces is equalt to summing over
all surfaces with the orientation reversed.

16



can then be written:

(5-7)

where once again, the different terms on the RHS are obtained by drawing a basis of
homologically independent paths on the disk starting and ending on the boundary, and
the weight of a cutting along this path follows:

p q

. o5 qu(p) )
=2 o (y(q) — y(@)dz(q) (58)

)

where one sums over all branch points a; and G is the point conjugated to ¢ (see [, [[1]

for more details).

5.2 Four point function on the disc

The correlation function H z&?o);o(Pb ¢1, P2, ¢2) has already been computed in [8, T4]. Nev-
ertheless, this computation used an Ansatz and a symmetry property of the correlation
function explicitly. Let us recover the same result without using any symmetry con-
sideration, but using our recursive formula instead.

The solution of the loop equations reads graphically:

P P %
— (5-9)
d, P q, R,
which is translated into”
0 0 0
H(O)(pl a1, s q2) —  Res Hz( )(p17Q2)H2( )(p27Q2) Hz( )(7”7 Ch)
4 ) ) ) - . .
remmdd Hy (v, o) (@(pr) — () (y(a2) — y(r)) #(p2) = 2(1)
(5-10)
"For shortening the notations, we write all along this section H,gg) (P1,91,P2,G2, - - s Py Q) =

H]i?o);o(plaqlup2uq27 cee 7pk7qk)'

17



Writing
1 y(r) —y(q) 1

@) 30 W) — @) ) v e Y
one gets
Hio)(ph q1, P2, Q2)
= Res Hz(o) (p1, Q2)H2(0) (P2, ¢2) H2(0) (r,q1)
repimeds HY (7, ¢0) (2 (p1) — 2(r)) (y(g2) — y(q)) ©(p2) — (r)
© Res 1y (o1, a2) Hy (p2, a2) (y(r) = y(a)) Hy" (r. )
rprpady (T(01) = (1) (@(p2) — (1) (W(e2) — y(@r)) (y(g2) — y(r) HY (7, 42)
(5—12)
Since

0 B _ E(x(p),y(q))
Hy"(p, @) (y(a) — y(p) = =) — 2(q)

the integrand of the first term in the RHS is a rational function in z(r) and it is easily

(5-13)

checked that the integration contour encircles all its poles (this function is regular when
x(r) — 00). Thus this first term vanishes.
The second terms involves only simple poles when r — pq, po and we recover the

known result [8, [4]:

H(O)(pl 01, D q2) _ H2(0)(P17Q1)H2(0)(P27Q2) - HQ(O)(p17QI>H2(O)(p27Q2)
T ((p1) — x(p2))(y(@1) — y(q2))

Even if this new derivation of an old result seems more involved technically, it has

(5-14)

the advantage of being constructive and does not suppose any additional symmetry of

the correlation functions.

5.3 Generating function of cylinders

The generating function of cylinders with 2 boundary operators on both boundaries is
obtained by:

Ra

which can be translated into

(5-15)

2 (p1, g
Hz(,o2);o;o({p1,€h}>{Pz,%}) = Res 2 (P} X

vl HY (r, q0) (2(p1) — 2(r)) (y(q1) — y(r))

18



HAEO) (7"7 q1, P2, Q2)

HO (0o VHO ,
z(p2) — z(r) + Hy ' (r,q1) 2,1,0(P27Q2,7’)

(5 — 16)

where the second term was computed in [I5]:

(5-17)

aY (p2,q2;7) = Res H2(0)(p2’q2)H(§?2),0(7°> ')
-1 25 Y2, — . .
vt (2(D2) — (1) (y(r') — y(q2))

6 Conclusion

In this article we have found a recursive and graphical method to compute correlation
functions corresponding to every possible boundary condition for the 2-matrix model,
i.e. bicolored discrete surfaces.

The result seems to have a nice combinatorial interpretation, as all the possibilities
of drawing interfaces (between the + and - spins of the Ising model) in all possible
ways. However, a combinatorial derivation is missing.

Also, our result can have interpretations in conformal field theories when one goes
to the so called double-scaling-limit [6, ], and should be compared with recent results
from Liouville theory [T9, 16, 2]. In particular, in [2], our formula for planar disc
amplitudes is interpreted in terms of the interactions of a long folded strings and it
would be interesting to check the non-planar cases as well.

It would be interesting also to understand how the structure we exhibit in this
article, and which seems to be related to integrability like in [T4], is related to the

Langlands programm as claimed by [16].
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Appendix A Loop equations

Here we prove the equation B=Il, using loop equations. Loop equations is a standard
and powerful tool in random matrix theory, they are the Ward identities, or Schwinger-
Dyson equations, they implement the Virasoro or W-algebra constraints, in combina-
torics they can be viewed as an extension of Tutte’s equations, and in fact they just
consist in integration by parts, or said differentely, the fact that an integral is invariant
under (an infinitesimal) change of variable.

For the 2-matrix model, loop equations were first exploited by Staudacher [20)], and
then by many authors, and they led to the solution of [T2, & [T5].

A.1 The loop equations

In order to prove eq =1l we consider the change of variables

M. — 1 1 1 1 1 1
Lo x(p1,1)—Mi1 y(p1,1)— M2 z(p1,2)—M1 y(p1,2)—M2 " x(p1,x;)— M1 y(p1,x;)— Mo

1 1 1 1 1 1
Hi:z Tr @(pi,1)— M1 y(pi,1) — M2 2(pi,2)—M1 y(pi2)—M2 * " " x(pir;)— M y(pi,ki)_M2>
[T% T s s T g
(1-1)
Writing that the matrix integral is invariant under this change of variable gives the

loop equation:

(Y(Pl,l) - y(Ql,]ﬁ) - POlm(pl,l)VY(z(pl,l)))Hkl,...,kl;m;n(sla SZ> ey Sl;pla o Pmiqay -, qn) =
DAy B={2..13 217 Hrykeasi11171(S1, Sa; P 43) Hiegom— 114130171 (S8 P1,1PMyT; AN/ J)

k
+ ZAUB:{Q,,,,,I} Zalzg ZI,J Hk1—a+1,kB;m—\I|;n—\J\({pl,aa di,ay - - - P1k1s Ch,kl}, Sg; PwM/1; OlN/J)

% Ho 13050115101 ({P1,1,01,15-P1,0-1,01,0-1 1,8 A3P1503) — Ho— 1 % 0 3171517 ({P1,0,01,15--P1,0-1,01,0—1},8 A5 P1;A3)

x(p1,a)—x(p1,1)
Zz 22(1 196pza z(p1,1)

[Hk1+ki,kL/{1,i};m;n({Slapi,a, Gisoos Disat 1y« + + 5 Qikys Disls -+ + s Disa1 Qiva—1 SL/{1,i}; PM; an)

- Hk1+ki,kL/{17i};m;n<{Sl7pi,om Qi,aapi,a—i—la ey qi,k“pi,lv e 7pi,a—17 qi,a—1}7 SL/{I,i}; Pwm; qN)

p1,1:=pi,a]

Hyep im—1;n(SL5PM/(i}:9N) = Hiep ;m—1;n (SL:PM// (45} ?CIN)‘

- Zi:l api z(ps)—x(p1,1)

P1,1:=P;

+N2 Za 2 z(p1,a)— (101,1)><
[Ha—l,kl—a+1,kL/{1};m;n({pl,lv qi1,1, - - - Pla—1, QI,a—l}u {pl,a, q1,a5 - - - P1ky s Ch,kl}, SL/{1}; Pwm; QN)

- a—l,kl—a—i-l,kL/{l};m;n({pl,om qi,1, - - - P1,a—-1, Q1,a—1}a {pl,m qi,a5 + - - P1k1s Ch,kl}a SL/{1}; Pwm; QN)]

+ 52 Hicpm+1:n (Sk; P11, P AN)
(1-2)

where Pol, f(z) denotes the polynomial part in z of f, i.e. the sum of the positive

terms in the large = Laurent expansion of f(x).
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Let us now write its g order in the topological expansion:

(y(p11) — y(qir) — Polyp, ) Vl( (p1, 1)))ng!1]?...,kl;m;n(517 Soy e s SEPL - Pmi ALy -5 Gn) =

L H o0 ) B, (51 S Sapt i)
D h 2 AU B2} 2o1 Igll,)kA;\I|;|J|(SlaSA;pI§qJ>H1(<i_;:,L¢)_\[\+1m_|J|(SB;pl,lpM/I;QN/J)
+22n ZAU B={2,...,l} Zilzz ZI,J H;g?)_a+1,k3;m_\1\;n_|J|({pl,a, Qas - - - PLks QLk: )} SBS PMyT; AN/J)

g—7) “h
H,i 1 kA 1); ‘J‘({pl,l7‘11,17---p1,a—17q1,a71}7SA§pI§QJ)_HLg,1Y1)<A;‘I‘;U‘({pl,a7‘11,17---171,04717q1,a71}7SA§pI§QJ)

X 2(pr.0)—2(p1.1)

l k; 1
+2im2 2 a1 S
[ngﬂ—ki,k[‘/{l’i};m;n({Slapi,om Qisas Piad1y « « s ik Pily o+ o3 Dija—1, qi,a—1}> SL/{l,i}; Pw; qN)

(9) g
- Hk1+ki,kL/{1,i};m;n({Shpi,a, Gisoor Disart 15 -+« > Qikss Dils « + + s Pira—1; Gia—11 Sv/{1,i}; PM; an)

p1,1:=pi,a:|

Hiep ;m—1:n (SLiPMy (1}59N) |

+ Zizl api z(ps)—z(p1,1)

+Ea 2 z(p1,a) —SL‘(1!711)><
1)
[H(ig Lki—a+1ky 1y mn({pl,la q1,1 - - -P1,a-1, QI,a—l}u {pl,a, q1,a5 - - - P1ky s Ch,kl}, SL/{1}; Pwm; QN)

P1,1:=P;

1
Ho(ég 1 l)cl a+1 kL/{l} m; n({pl s (J171, .. -p170¢—17 Q1,a—1}, {pl,a, q17a, . .kal, ql,kl}a SL/{I}; PwM; QN)]
1)
+H1(<i im+1; n(SK P11, Pm; QN)
(1-3)
Notice that we have used the normalizations H.o,0 = (Tr Tr )+ —(m—lx)z explicitly.

A.2 Solution of the equations

We can solve this hierarchy of equations by induction in the number of traces in the
correlations and the genus. Indeed, one can remark that the RHS of Eq. ([=3)) contains
correlation functions with either less traces (that is to say less arguments) either lower
genus compare to the correlation function in the LHS. One also knows that the last
term of the LHS is a polynomial in z(p; 1) of degree d; —1 and one can compute its value
in the d; points p;; — q{kl for j = 1...d; independently of Hl(ci);m;n(SK; PM; ON)-
For this purpose, let us study the behavior of the LHS when p;; — ¢’. If p lies in
the x-physical sheet and ¢, to the y-physical sheet, the definition of the correlation

function reads:

(y(p11) — y((h,kl))ng??___7k“m;n(sla S, .- 5122917 s Pmi Q5 Qn) =

l n

1 (9)

= (pn) = vl JTVb + T H v ),
1 ! n 1 (9)

:—<(N(Sk“1+ Tr E)E(N(Sk 1+ TI' ]J MlgTI’ m>c
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(1—4)

where one notes:

Tr i =Tr ( ! L ! L . L )
S; x(pl,l) — M, y(Q1,1) — M, l’(pl,z) — M, y(q1,2) — M, x(kal) - M,
(1-5)
and
Tri = Tr ( L ! L ! L y(pr1) = My
i (p11) = Miy(qra) — Max(pio) — Miy(q2) — Mo x(piw) — Ml(?{(ga,kl) — M,

These terms are monovalued functions as long as the p and ¢ variables stay in their
respective physical sheets. When ¢; , belongs to the y-physical sheet in the vincinity
of ooy, all its images cj{,kl lie in the z-physical sheet in the vincinity of co,. Thus, this

expression vanishes for p;; — ¢ kls. Hence the Lagrange interpolation formula reads

O 1 01U ) (51 — 9(@)d(r)
U imen (@ (011 Res — 1 A o
(0B = B () — ¥ @) Hlr ana)

)

(1-7)
where we have defined:

U]g’),,,kl;m;n(x(pl,l)) = POlw(plyl)‘G,(x(pl,l)))H]gl]?m’kl;mm(sl7 527 R Sl;plv <oy Pms gy .- 7%)
(1-8)
Insert this formula into Eq. (=) and get:

(0)
Hlig). ZSLip1, - Pmi 1y -, qn) = Res Hi0(P11, D) RES]p 1=
a repnd (2(pry) — 2(r) (y(q) — y(r) Higo(r, cz(l,kl))
1-9

where RHS denotes all the terms in the right hand side of Eq. ([X3).
One can simplify some of the terms by changing the integration contour. Indeed,
consider any term of the form d, <M> in the RHS of Eq. ([I=3), one can

z(p1,1)—%(Pi,a)
compute its contribution to the preceding formula:

(p1,1)~2(r)Y(@)~y (") (@(P1,1) 2 (Dia) Higo (1a1ky ) N -
H{?&O(Z’l,lﬂh,kl)f(pi,a) (1 10)
(@(p1.1)—2(r)(Y(@)—y(r)(@(@1.1)~2(pi.a) Hi o (rari,)

8This term does not vanish when p; 1 — ¢ x, because of the discontinuity of these functions when
p1,1 changes x-sheets.

(0)
Hy0.0(P1,1,91,%, ) f(Pisa)
dpz @ Res T_)pl,lyqj (

= dpi,a Res z(r)—z(p1,1),2(¢7)
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since one can check that the integrand is a polynomial in z(r). We can now move the

integration contour in the x basis and we get:

d Res Hl(?g;O(lev Q11 ) f (Pia)
Pi,a .
2(r)=a@ie) (2(p11) — 2(r))(y(q) — y(r))(@(p1,1) — x(pi,a))Hl(?o);o(T, dr)

This residue can be evaluated by using one more time Eq. ([53)) and recalling that only

(1-11)

the terms of the form H.o.0(7, pio) have such poles. This finally gives the result, i.e.
eq =11

(9) . ) B
HkL;m;n(SLﬂpb sy Pmi gl - Qn) =
Hi?(g:o(pl,lﬂl,kl)
Res, o :0; -
PLLPLooPi T kg (2(p1,1)—2(r) (a6, )=y (1) Hy 0,0 (1,51

h h)
{ }gzzl [—[(g;l);O(,'ﬂ)]qliil7 Lk mn(Sl( ) 529 ) Sl;pla <oy Pmsi iy - qn)
—h
+ Zh ZAU B={2,..1} ZLJ kly)kA§I|(§h=§|(Sl (1), Sa; Pr; QJ)ngi;m)_\f\+1;n_|J|(SBS T, PMm/1; an/J)
k
+2on ZAUB {2,..,0} D 2ZIJ k1—a+1,kg;m u|m_|J|({p1,a>Q1,m---Pl,/qukl},SB;PM/I;QN/J)

Ha 1kA ‘I“J‘({quly -P1,a—1,91,a— 1} SAPLCIJ)
X
z(p1,a)—2(r)

+ i Yot s X

Xngill-kl,kL/{l i} m;n({Sl (r)>pi,on i,y Piyat+1s - - -5 ik s Pigly - - -5 Pia—1, %’,a—l}? SL/{l,i}; PM; qN)
+ Za 2 m X
Ho(cg 11k1 a+1 kL/{l} m; n({r7 d1,1,---Pl,a—1, q1,a—1}7 {pl,om Q1,05+ - P1ks s q1,k1}7 SL/{l}’ Pwm; qN)

Hl(ci ;L—l—l n(SK< )7 T, Pm; qN)}

(1-12)
This recursion equation is a triangular system, thus it allows to compute any H(S)
recursively.
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