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On minimal non-potentially closed subsets of the plane.

Dominique LECOMTE

Topology Appl154,1 (2007), 241-262

Abstract. We study the Borel subsets of the plane that can be made dysesfining the Polish topology on the real
line. These sets are called potentially closed. We first @mBorel subsets of the plane using products of continuous
functions. We show the existence of a perfect antichain nudidainimal sets among non-potentially closed sets. We
apply this result to graphs, quasi-orders and partial srdéfe also give a non-potentially closed set minimum for leiot
notion of comparison. Finally, we show that we cannot hajeciivity in the Kechris-Solecki-Todor€evit dichotonapout
analytic graphs.

1 Introduction.

The reader should see [K] for the descriptive set theoratiation used in this paper. This work
is the continuation of a study made in [L1]-[L4]. The usualywa& comparing Borel equivalence
relationsE C X x X andE’ C X’ x X’ on Polish spaces is the Borel reducibility quasi-order:

E<p F & Ju:X— X' Borel with E= (uxu)"'(E')

(recall that a quasi-order is a reflexive and transitiveti@iy. Note that this makes sense eveljf

E' are not equivalence relations. It is known thath,) is a sequence of Borel subsets¥6f then we
can find a finer Polish topology ok making theB,,’s clopen (see Exercise 13.5 in [K]). So assume
that F <p E’ and leto be a finer Polish topology oA makingu continuous. IfE’ is in some Baire
classI', thenE € T'([X, o]?). This motivates the following (see [L02]):

Definition 1 (Louveau) LetX, Y be Polish spacesd a Borel subset oK x Y, andI" a Baire class.
We say thatd is potentially in I' (denotedA € pot(T')) iff we can find a finer Polish topology
(resp.,7) on X (resp.,Y’) such thatd € I'([X, o] x [Y, 7]).

This notion is a natural invariant fof z: if £/ € pot(I') andE <p F’, thenE € pot(T"). Using
this notion, A. Louveau showed that the coIIectionEg equivalence relations is not cofinal farg,
and deduces from this the inexistence of a maximum Borelafgrice relation foxK g.

A. Louveau has also more recently noticed that one can a@saziquasi-ordeR4 C (X x 2)2
to A C X2 as follows:

(z,1) Ra (y,5) & (x,0) = (y,4) or [(z,y) € A and (i,5) = (0,1)].

Note thatR 4 is also antisymmetric, so that it is actually a partial order



A. Louveau noticed the following facts, using the followingtion of comparison between Borel
subsetsAAC X x Y, A'C X'xY” of products of two Polish spaces:

ACL A & Ju:X— X' Jv:Y —Y’ one-to-one Borel withd = (uxv) 1 (4").
Here the letter means “rectangle”( andv may be different).

- Assume thatd C X? has full projections, and that’ C (X’)2. ThenA Ch A’ is equivalent to
Ry <p Ry

-IfAC X2is C%-minimal among non-potentially closed sets, then is <g-minimal among
non-potentially closed partial orders.

- Conversely, ifR4 is <p-minimal among non-potentially closed partial orders andl ihas full
projections, them is C';-minimal among non-potentially closed sets.

These facts show that, from the point of view of Borel redilityh the study of Borel partial
orders is essentially the study of arbitrary Borel subsktseplane. This strengthens the motivation
for studying arbitrary Borel subsets of the plane, from tbimpof view of potential complexity.

e A standard way to see that a set is complicated is to noticeititie more complicated than a
well-known example. For instance, we have the followingiliesee [SR]):

Theorem 2 (Hurewicz) LetP; := {a€2¥/Inew Vm>n «a(m)=0}, X be a Polish space and
a Borel subset ok . Then exactly one of the following holds:

(@) The setd is TI9(X).
(b) There is a continuous injectian: 2* — X such thatP; = u~!(4).

This theorem has been generalized to all Baire classes kSRJo We try to adapt this result to
the Borel subsets of the plane. In this direction, we havédit@ving result for equivalence relations
(see [H-K-Lo]):

Theorem 3 (Harrington-Kechris-Louveau) LeX be a Polish spacey a Borel equivalence relation
onX,andEy:={(a, ) €2¥ x2¥/Incw Vm>n a(m)=[F(m)}. Then exactly one of the following
holds:

(@) The relationE is po{(I1Y).
(b) We haveFy <p FE (with « continuous and one-to-one).

e We will study structures other than equivalence relatidos ¢xample quasi-orders), and even
arbitrary Borel subsets of the plane. We need some othesrmstif comparison.

Recall that Wadge's quasi-ordel,, on Borel subsets af“ is defined by
A<y A & FJu:w* —w” continuous withd =v"1(4’).

It is known that this quasi-order is well-founded (in the sethat there is no sequengg,,) with
Bni1 <w B, and B, €w B,.1 for eachn). Moreover, any<y -antichain is of cardinality at
most 2 (in fact of the form{ A, = A}). It follows that any clasg| \ TI¢ admits a unique (up to the
equivalence associated €gy) minimal element.



e There are several natural ways of comparing Borel subsétsX x Y, A'C X’xY” of products of
two Polish spaces. All of them will have the same behavioe h€he one we will use is the following:

A<t A & Fu:X — X' Fv:Y —Y’ continuous withAd = (uxv) ™ (A").
Here the letter: is for “continuous”. We have the following (see [L1]):

Theorem 4 Let A(2¥):={(a, )e 2¢ x 2%/a= B}, Lo:={(a, B) €2“x 2%/ a<|oxf}, X andY be
Polish spaces, and a pot(D2(X?)) subset ofX x Y. Then exactly one of the following holds:

(@) The setA is pot(TT?).
(b) ~A(2¥) < Aor Ly <! A (with v andv one-to-one).

e Things become much more complicated at the 1é¥g3?) (differences of two open setg), (XV)
is the dual Wadge class of unions of a closed set and an ogerotiee that we can extend Definition
1 to the classD,(2?)). We will show the following:

Theorem 5 There is a perfeck’-antichain (4, )ac2e € Do(XE9)(2¢ x 2¢) such that4,, is <'-
minimal amongA1 \ pot(T1Y) sets, for anyx € 2.

In particular, unlike for classical Baire classes afigt, one cannot characterize non-(:ﬂ@) sets
by an obstruction condition involving only one (or even calnly many) set(s). We will also show
that[Do(X9) \ pot(T1?), <7] is ill-founded.

) —cC

Theorem 5 can be applied to structures. We will show theioiig:

Theorem 6 There is a perfect g-antichain (R, )acae € D2(E9)((2¥ x 2)?) such thatR,, is <p-
minimal amongA !\ pot(T1?) sets, for anyv € 2*. Moreover,( R, ).c2+ can be taken to be a subclass
of any of the following classes:

- Directed graphs (i.e., irreflexive relations).

- Graphs (i.e., irreflexive and symmetric relations).

- Oriented graphs (i.e., irreflexive and antisymmetric tiglas).

- Quasi-orders.

- Strict quasi-orders (i.e., irreflexive and transitiveatbns).

- Partial orders.

- Strict partial orders (i.e., irreflexive, antisymmetriaétransitive relations).

Remarks. (a) Theorem 6 shows that Harrington, Kechris and Louveahsofem is very specific,
and that the combination of symmetry and transitivity isnv&rong.

(b) We produce concrete examples of such antichains. Thesaptes must be in any complete
family of minimal sets, up to bi-reducibility.



e Theorem 5 shows that any complete family of minimal set$o \ pot(I1Y), <”] has size contin-
uum. So we must find another notion of comparison. In [K-Sti@,following notion is defined. Let
X, X’ be Polish spaces, amiC X x X, A’C X’ x X’ be analytic sets. We set

(X,A) <. (X', A") & Ju: X — X’ continuous with4d C (uxu)~(A").
Whenu is Borel we write< g instead of<...

Lets : w — 2<¢ be the natural bijection/((0) = 0, 1)(1) = 0,9(2) = 1,%(3) = 0%,4(4) = 01,
¥(5) =10, 9(6) = 12, ...). Note that|y)(n)| < n, so that we can defing, := ) (n)0"~ ¥, The
crucial properties ofs,,) are that it isdense (there isn such that < s, for eacht € 2<v), and that
|sn| = n. We set

A1 :={(sn07,sp17)/new and y€2*}.

The symmetric sei(A;) generated byl; is considered in [K-S-T], where the following is essentiall
proved:

Theorem 7 (Kechris, Solecki, Tod@evi) Let X be a Polish space andl an analytic subset of
X x X. Then exactly one of the following holds:

@ (X,A) =B (w,#).
(b) (2, A1) <. (X, A).

Actually, the original statement in [K-S-T] is whet is a graph, and witl(A;) instead ofA;.
But we can get Theorem 7 without any change in the proof in {K}.S

e In [L3] the following is shown (see Theorem 2.9):

Theorem 8 Let X, Y be Polish spaces, and a pot AJ) subset of{ x Y. Then exactly one of the
following holds:

(@) The setA is pot(T19).
(b) There areu : 2¥ — X, v : 2¥ — Y continuous withd; = (uxv)~1(A) N A;.

(We can replaced; in [L3] by what we callA; here.) We generalize this result to arbitrary Borel
subsets ofX x Y

Theorem 9 LetX, Y be Polish spaces, and, B be disjoint analytic subsets &f x Y. Then exactly
one of the following holds:

(@) The setA is separable from by a potI1}) set.

(b) There areu : 2* — X andv : 2¥ — Y continuous such that the inclusiods C (u x v)~1(A)
andA; \ A; C (u x v)~%(B) hold.

Moreover, we can neither replacg, \ A; with (2 x 2«)\ A1, nor ensure that; andv are one-to-one.

So we get a minimum non-potentially closed set if we do notfasla reduction on the whole
product.



e In [K-S-T], it is conjectured that we can hausone-to-one in Theorem 7.(b). This is not the case:

Theorem 10 There is no graph( Xy, Ry) with X, Polish andR, € 31(XZ) such that for every
graph (X, A) of the same type, exactly one of the following holds:

(a) (X7 A) jB (U.), #)

(b) (Xo, Ro) Zc1-1 (X, A).

The proof is based on the counterexample used in [L3] to shatwte cannot have injectivity in
Theorem 2.9.

e The paper is organized as follows.
- In Section 2, we prove Theorem 9.
- In Section 3, we prove Theorem 10.

- In Section 4, we give a sufficient condition for minimalitgnang non-potentially closed sets. We
use it to prove Theorems 5 and 6.

- In Section 5, we give conditions afwhich allow us to replacel; \ A; with (2 x 2¢)\ A; in The-
orem 9 (and therefore come back4¢). We can writed, ={J,, Gr(f,), wheref,,(s,07):=s,17.
Roughly speaking, we require that thig's do not induce cycles. This is really the key property
making theA,’s appearing in the statement of Theorem 5 pairwise orthalgafde will deduce from
this the minimality ofA; among non-potentially closed sets fof, using the sufficient condition for
minimality in Section 4.

2 A minimum non-potentially closed set.

We will prove Theorem 9. The proof illustrates the link betnehe dichotomy results in [K-S-T]
and the notion of potential Baire class. We will see anothe ih Section 3. The next lemma is
essentially Lemma 3.5 in [L1], and the crucial point of iteqi.

Lemma 11 Let X be a nonempty Polish spacebe an integerD;, and f,,[D;, ] be densé&’; subsets
of some open subsets ®f and f,, : Dy, — f,[Dy,] a continuous and open map.

(a) LetG be a dens&s subset ofX. Then G( f,,) C Gr(f,) N G2, for eachn.

(b) LetA :=J,, Gr(f,). If A(X) C A\ A, thenA is not potII?).

Proof. (a) LetU (resp.,V) be an open neighborhoodofc Dy, (resp..fn(x)). Thenf,[Dy, |NVNG

is a dense3s subset off,[Dy,] NV, thus f, 1(V N G) is a dense&3s subset off, ! (V). Therefore
G N f74(V)andG N £, 1{(V N G) are densé&'s subsets off, (V). So we can find

yeUNGN 1 (VNG).
Now (y, f(y)) is in the intersectiodlU x V') N Gr(f,,) N G2, so this set is non-empty.

(b) We argue by contradiction: we can find a finer Polish togplon X such thatd becomes closed.
By 15.2, 11.5 and 8.38 in [K], the new topology and the old ogeea on a dens€'s subset ofX,
sayG: ANG? € TIY(G?). Letx € G. We have(z,z) € G2N A\ A. By (a) we getd C AN G2,
Thus(z,z) € G>N ANG2\ (AN G?), which is absurd. O




Corollary 12 The setd; = A1 \ A(2¥) is D2(X29) \ pot(I1?), and A; = A; U A(2¥).

Proof. As we saw in the introduction, we can writé =J,, Gr(f,), where f,,(s,07) :=s,17.
Notice thatf, is a partial homeomorphism with clopen domain and range.elh@r, we have

A(2¥) C A\ A

(in fact, the equality holds). Indeed,tife 2<¢, we have(s,,-1(;)0%, s4-1(;10) € NZ N A;. Thus
A = A1\ A(2¥) is D2(%9), and the corollary follows from Lemma 11. O

Proof of Theorem 9. We cannot have (a) and (b) simultaneously. Fdpifs potentially closed and
separates! from B, then we getd; = (u x v)~1(D) N Aj, thusA; € pot(I1Y), which contradicts
Corollary 12.

eletf:w” — X xY be a continuous map witfijw“] = B, and f, (resp.,f1) be the first (resp.,
second) coordinate of, so that(fy x f1)[A(w*)] = B. We setR := (fo x f1)~(A), which is
an irreflexive analytic relation on*. By Theorem 7, either there exists a Borel mapw” — w
such that(co, ) € R impliesc(a) # ¢(3), or there is a continuous mayp : 2* — w“ such that

(a, B) € Ay implies (ugp(a),uo(B)) € R.

e In the first case, we defin€, := ¢ ({n}). We getA(w*) C |J,, C? C —R, so that

B C | folCn] x f1[Cn] € -A.

By a standard reflection argument there is a sequeklige (resp.,(Y;,)) of Borel subsets oK (resp.,
Y') with
Ufo[Cn] x f1[Cn] C UXn XY, C —A.

But{J, X, x Y, ispot(x?), sowe are in the case (a).

e In the second case, lat:= fy o ug, v := f1 o ug. These maps satisfy the conclusion of condition
(b) becaused; \ A; C A(2¥), by Corollary 12.

e By the results in [L3], we can neither replade \ A; with (2* x 2¥)\ A, nor can we ensure that
u andv are one-to-one. O

Remarks. (a) In Theorem 9, we cannot ensure that v whenX =Y take X := 2%,

A:={(a,8) € Ny x N1/a <|y 0}
andB := (Ny x Ny) \ A.

(b) This proof cannot be generalized, in the sense that wa theefact that the range of a countable
union of Borel rectangles (a p&&!) set) by a product function is still a countable union of ragtas,

so more or less a paEY) set. This fails completely for the dual level. Indeed, we shat the
range of the diagonal (which is closed) by a product functian be any analytic set. So in view of
generalizations, it is better to have another proof of TeeD8.



3 The non-injectivity in the Kechris-Solecki-Todorcevic dichotomy.

Now we will prove Theorem 10. The proof we give is not the oraione, which used effective
descriptive set theory, and a reflection argument. The pr@ofiive here is due to B. D. Miller, and
is a simplification of the original proof.

Notation. If A C X2, A1 := {(y,z) € X?/(x,y) € A} ands(A) := AU A~ is the symmetric set
generated bw.

e Fix setsSy D S; D ... of natural numbers such that
(1) Sy \ Sn+1 is infinite for each integen.
@) Npew Sn=0.
e Foreachn € w, fix f,, : S,, — S, \ Sn+1 injective, and defing,, : 2* — 2¢ by

{a[fn(k:)] if k € S,

a(k) otherwise.

[gn (@)](K) :=

e Itis clear that each of the closed séf5, := {a € 2 /g, () = a} is meager, and since eaghis
continuous and open, it follows that tli¢ set

M= |J (gs©--°Gsgs-1) " (My)

SEWSY nEw

is also meager, so thaf := 2« \ M is a comeager, dengg; set which is invariant with respect to
eachg,. PutGy := U, ¢, s[Gr(gnlx)].

Proof of Theorem 10.We argue by contradiction: this givéX, Ry).

Claim 1. Let X be a Polish space, angy, g1,... : X — X fixed-point free Borel functions such
that g, © g» = gm if m < n. Then every locally countable Borel directed subgraph ef Borel
directed graphG := J,,.,, Gr(g») has countable Borel chromatic number, i.e., satisfies Gundi
(a) in Theorem 7.

Suppose thaf{ is a locally countable Borel directed subgraph(af By the Lusin-Novikov
uniformization theorem, there are Borel partial injecidn, on X such thatd = J,,c,, Gr(hy).
By replacing eacth,, with its restrictions to the setse € Dy, /hn(z) = gm(x)}, form € w, we
can assume that for all € w, there isk, € w such thath,, = gkn‘Dhn' It is easily seen that
the directed graph associated with a Borel function hastetils Borel chromatic number (see also
Proposition 4.5 of [K-S-T]), so by replaciny, with its restriction to countably many Borel sets,
we can assume also that for alle w, D} N, Gr(gx) = 0. It only remains to note that
D N Ugsp, Gr(gr) = 0. To see this, simply observe thatkf> k, andz, g;(z) € Dy, then
hn(z) = g, (x) = g, o gx(z) = hy, o gr(z), which contradicts the fact that, is a partial injection.
This proves the claim. o



Claim 2. The Borel graph7; has uncountable Borel chromatic number, buiifC G is a locally
countable Borel directed graph, theih has countable Borel chromatic number.

Condition (1) implies thay,, © g, = gm if m < n, so Claim 1 ensures thatif C G is a locally
countable Borel directed graph, théhhas countable Borel chromatic number.

To see thati; has uncountable Borel chromatic number, it is enough to shatif B € Al(2+)
is non-meager, the® N G? # (. Lets € 2<% such thatB is comeager inV;. It follows from
condition (2) that there is € w such thats| < k for eachk € S,,. Theng, is a continuous, open
map which send#V; into itself, thusB N X N N, N g, (B N X N Ny) is comeager inV;. Letting x
be any element of this set, it follows thatg, (z) areG;-related elements aB. o

We are now ready to prove the theorem{ &3, R,) satisfies (b), it does not satisfy (a). Therefore
Ry has uncountable Borel chromatic number. #sl;) andG; have uncountable Borel chromatic
number, we getXo, Ro) =c1-1 [2¥,s(A1)] and (X, Ro) =<c1-1 (2¥,G1) (with witnessm). As
s(A1) is locally countableRy is also locally countable. Therefofe x )R] is a locally countable
Borel subgraph of7; with uncountable Borel chromatic number, which contrad€taim 2. O

Remark. This proof also shows a similar theorem for irreflexive atialyelations, by considering
Uncw Gr(gn|x) (resp.,A;) instead ofG; (resp.,s(Ay1)).

4 Perfect antichains made of sets minimal among non-p¢kIY) sets.

As mentioned in the introduction, a great variety of veryfaliént examples appear at level
D, (X9), all of the same type. Let us make this more specific.

Definition 13 We say that X, (f,,)) is aconverging situation if
(a) X is a nonempty 0-dimensional perfect Polish space.

(b) f,, is a partial homeomorphism witA?(X') domain and range.
(c) The diagonalA(X) = AT \ Af, whereA/ :=J,, Gr(fn).

This kind of situation plays an important role in the theoffypotential complexity (see, for
example, Definition 2.4 in [L3]).

Remarks. (a) Note that if(X, (f,)) is a converging situation, then Lemma 11 ensures Mais
Dy(29) \ pot(T1Y), sinced’ = A/ \ A(X).

(b) Itis clear that an analytic graglX’, A) has countable Borel chromatic number if and onlytifs
separable from\(X) by a pofA?) set. By Remark (a), this implies thé2, s(A/)) does not have
countable Borel chromatic number(iX, (f,)) is a converging situation.

Notation. In the sequel, we sgt? := fn’Bmfgl(B) if B C X and(X, (f,)) is aconverging situation,
so that G(f,2) = Gr(f,,) n B2.



The reader should see [Mo] for the basic notions of effeafiescriptive set theory. Lef be a
recursively presented Polish space.

e The topologyA # is the topology orZ generated byll (7). This topology is Polish (see the proof
of Theorem 3.4 in [L02]).

e The Gandy-Harrington topolog¥~ on Z is generated b)Ell( ). Recall that

Qg ={z€Z/wi —wl }
is Borel andEll, and[Qz, X] is a0-dimensional Polish space (in fact, the intersectiof2gfwith
any nonemptyr;! set is a nonempty clopen subsefQf;, ¥7|-see [L1]).

Lemma 14 Let (X, (f,,)) be a converging situatior?” a Borel subset ok such thatA/ N P? is not
pot(TI9), ando a finer Polish topology o®. Then we can find a Borel subsg¢bf P and a topology
7 on S finer thano such that([S, 7], (f2),) is a converging situation.

Proof. We may assume thdf, o] is recursively presented angf’, A’ N P? are Al. We set
- A2 .
D:={xeP/reAl}, andS:={ze€P/(z,2)e Af NP2 "} NQp\D. As Se X}, [S, Xp]is a O-
dimensional perfect Polish space. WeBet= A/ N (P \ D)2. Note thatD is countable. By Remark
2.1in[L1], E is not potentially closed since
ATnP?=[ATn((PNnD)x PJU[ATN(Px (PND))JUE.

ThereforeE7 \Ei |s a nonempty subset 6P \ D)2 N A\ A/ C A(X). ThusS # 0. Note also
that (z, z) € AT N P? AT AP A st = AT n S i g € S. Conversely, we have

AT A g \(Af N 52)C 52N A\ A CA(S). We have proved thaf is a Borel subset of
such that([S, £p], (f2),) is a converging situation. O

Theorem 15 LetY, Y’ be Polish spacesd € AL(Y x Y'), (X, (f,)) a converging situation. We
assume thatl <" Af. Then exactly one of the following holds:

(@) The setA is pot(TT9).

(b) We can find a Borel subsét of X and a finer topology- on B such that([B, 7], (7)) is a
converging situation andlf N B2 <7 A.

Proof. Letu andv be continuous functions such that= (u x v)~'(Af). We assume that is not
potentially closed. By Theorem 9 we can find continuous mdp* — Y andv’ : 2“ — Y’ such
that A; = (v x v')~1(A) N Ay. We setH = u[u/'[2¥]], K = v[v'[2*]] and P := H N K. ThenH,
K and P are compact and/ N (H x K) is not pot{I1}) since
Ap=[(u o ') x (v o o) THA N (H x K))NA;

(we haveA; ¢ pot(I1}) by Corollary 12). Thereforet/ N P2 is not potI1Y), since

ATN(H x K)=[A"n((H\K) x K)JU[A/ n(H x (K \ H))]U[A] 0 P?|

=[ATN((H\K)x K)JU[Af N (H x (K \ H))]u[A/ n P?.

By Lemma 14 we can find a Borel subsebf P and a finer topology on S such tha([S, o], (f5),)
is a converging situation.



By the Jankov-von Neumann Theorem therg’is S — u~1(S) (respectivelyg’ : S —v~1(S))
Baire measurable such thaff’(z)) = x (respectivelyy(¢'(x))=x), for eachz € S. Notice that
f/ and ¢’ are one-to-one. Lef be a dens&7; subset ofS such thatf’|; and ¢'|s are contin-
uous. These functions are witnesses to the inequalityn G?> <% A. By Lemma 11, we get
Gr(fJ) C Gr(fS)NG2. ThereforeA/ N S2 = AfNG2, A(G) = G* N AFnG2\ (A nG?),
andA’ N G2 is not potTIY) by Lemma 11.

By Lemma 14 we can find a Borel subgetof GG, equipped with some topology finer thano,
such that([B, 7], (f2),,) is a converging situation. O

Corollary 16 Let(X, (f,)) be a converging situation. The following statements arévadgent:

(@) A is <7-minimal amongA{ \ pot(TIY) sets.

(b) For any Borel subseB of X and any finer Polish topology on B, A/ <" A’ n B2 if A/ N B?
is not potTIY).

(c) For any Borel subseB of X and for each finer topology on B, A/ <" A'nB2if ([B, 7], (f5).)
is a converging situation.

Proof. (a)=- (b) and (b)= (c) are obvious. So let us show that {g)(a). LetY, Y’ be Polish spaces,
Aec ALY xY')\ pot(I19). We assume that <" A/. By Theorem 15 we get a Borel subgeiof
X and a finer topology on B such tha([B, 7], (f2),,) is a converging situation and’ N B2 <" A.
By (c) we getA/ <" Af N B2. Therefored/ <’ A. a

This is the sufficient condition for minimality that we memied in the introduction. The follow-
ing definitions, notation and facts will be used here and ictiSe 5 to build the reduction functions
in the minimality results that we want to show.

Definition 17 Let R be a relation on a sekF.
e An R—path is a finite sequences;);<, C E such that(e;, e;11) € R for i <n.

e We say thatt is R — connected if there is anR-path (e;);<, with ey = e ande,, = ¢’ for each
e, ¢ € E.
e An R—cycle is an R-path (e;);<, such that, >3 and

[0<i#j<nande;=e;|] < {i,j}={0,n}.
e We say thaRR is acyclic if there is noR-cycle.

Recall that if R is symmetric and acyclic;, ¢’ € E and(e; )<y, is an R-path withey; = e and
e, = ¢, then we can find a uniqu&-pathp. .. := (f;);<m Without repetition withf, = e and
fm = €. We will write |p. /| = m + 1.

Notation. Let © := (6,,) C 2<“ with |6,,| = n. We will use two examples of sud’s: 6,, = 0" and
0, = s, (wheres,, has been defined in the introduction to builg). We define a tre@ig on2 x 2:

Ro = {(e,¢')€(2x2)¥/e=¢€ or Incw Iwe2<¥ (e,e)=(0,0w,0,1w)}.

Recall thats(Re ) is the symmetric set generated %y, .
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Proposition 18 (a) (2", s(PRe)) is connected, for each € w.

(b) The relations(Re ) is acyclic.

(c) Ife, ¢ € 2" andl < n is maximal withe(l) # €'(1), the coordinate is changed only once in
Pe,e'» and the other changed coordinates are at a level less than

Proof. (a) We argue by induction om. As () is ans(Re )-path from( to (), the statement is true for
n = 0. Assume that it is true at the leve] and lete, ¢/ € 2"t1. We can writee = se ande’ = s'¢/,
wheres, t € 2" ande, €’ € 2. If e = €, then let(f;);<,» be ans(Re)-path with fy = s and f,,, = s'.
Lete; := fie. Then(e;)i<nm is ans(Re)-path withey = e ande,,, = €. If € # €, then let(f;)i< be
ans(Re)-path with fo = s and f,,, = 6,,, and(g;) <, be ans(Re)-path withgy = 6,, andg, = s'.
We sete; := fieif i < m, gi—m—1€ if m < i < m+p+ 1. Then(e;)i<mip+1 iS ans(Re)-path
with ey = e ande,p+1 = €.

(b) We argue by contradiction. Lét;);<,, be ans(fRe)-cycle,p > 0 be the common length of the
e;'s, andl < p maximal such that the sequengg(!));<, is not constant. We can find minimal
with e;, (1) # e;,;+1(1). We havee;, (I)=eo(l)=e,(l). We can findiy > i; + 1 minimal with
ei;+1(1) # e, (1). Thene;, (1) = e, (1) ande;, = e;,, becaused;| = I. Thusi; = 0 andiy = n. But
ei,+1 = €i,—1, Which is absurd. Note that this proof of (b) is essentiatlyLi3], Theorem 2.7.

(c) This follows from (b) and the proof of (a). O
Now we come to some examples of converging situations, withescycle relations involved.
Notation. Let S C w, and
A% = {(507, s17)/ s€2<“and Cards) € S andy € 2*}.
(Card s) is the number of ones in) We define partial homeomorphisms

e U No— U Na

sean, Cards)es sean, Cards)es

by £5(s07) := s1v. Notice thatAS = A/* is Borel. One can show the existencef 2 — 2
continuous such thall(S) is a Borel code ford®, for eachS C w. Notice that(2«, (f5),) is a
converging situation if and only i is infinite. This is also equivalent td° ¢ pot(T1?). Indeed, ifS
is finite, AS \ A% is a countable subset df(2+). So in the sequel we will assume tha$ is infinite.

Letng := min S, andS’ := {n—ng/n € S}. Then0 € S" and the maps andv defined by
u(a) = v(a) = 1"5a are witnesses tal®" <7 AS. So in the sequel we will also assume that
0esS.

o If S C wandt € w<¥\ {0}, then we seff := ff?()) . f£?|t\_1)’ when it makes sense. We will
also use the following treg% on2 x 2. If s,t € 2<%, then we set
sRt & |s|=|t|and(Ns x N;) N A° #0.

In particular, ifng < ny and1 € S, then we getf2, , - (0°)=f2, . .(0°). This is the
kind of cycle relation we mentioned in the introduction. Hist cases(R) is not acyclic since
< omtl groggri—ro gropgri—mo—ly gmil, 0™t > is ans(R)-cycle. We seffC = f;?|cmf§_l(c)
for each Borel subset of 2, whenS is fixed.
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e Let (H) be the following hypothesis ofi:

LetC € Al(2¥), o be afiner topology o' such that[C, o], (f),)
(H) | isaconverging situatior, p € w. Then we can finsh > [ and~y € Do
with Cardy[n) + (SN [0,p]) = 5N (Cardy[n) + [0, p]).

The next result will lead to a combinatorial condition Srimplying the minimality of A among
non-potentially closed sets.

Theorem 19 Let S satisfy(H), B € A}(2¢), andr a finer topology onB such that([B, 7, (f2),)
is a converging situation. Thea® <7 A% N B2,

Proof. Let X := [B,7], fn := fP. We are trying to build continuous maps v : 2¥ — X
such thatd® = (u x v)~!(A/). We will actually have moreu = v will be one-to-one. We set
sANt:=s[max{ncw/s[n=t[n}, for s, t € 2<.

¢ We construct a sequen(¥; ) ;co<«~ 0f nonempty clopen subsets &f, ¢ : w — w strictly increasing,
andf : w — w such that

(i)  Us~; C U,
(11)  diam(Us) < 1/[s]| if s # 0.
{ U= foqsnt)) [Us],
(1ii) (sRtands#t) = < O(|sAt])+(SN[0,[sAt]])=S N (O(|sAt])+]0,]sAt]]),
VzeUs Cardz[o(|sAt]))=0(|sAt])+Cards[|sAt]).
(v) (msRtandls|=[t]) = (Us x Up) N [Uyeps GNfe) UAX)] = 0.

e First we show that this construction is sufficient to get theorem. We define a continuous map
w:2¥ — X by {u(a)} := N, Uamn- If a <jgx B, then we have-g[r R ofr if r is big enough,
thus by condition (iv),(u(8), u(e)) is in Ugp, x U,p € X2\ A(X). Thereforeu is one-to-one. If
(o, B) € A, fix n such that3 = f2(«). Thena[r and3[r satisfy the hypothesis in condition (i)
for eachr > n. Thereforeu(B) = f,(n)(u()) and(u(a),u(B)) € A7, If a = 3, then(a, 3) ¢ A®
and (u(a),u(B)) € A(X) C ~Af. Otherwise,(a, 3) ¢ AS and there is-, such thata[r and 5[r
satisfy the hypothesis in condition (iv) far > ry. This shows thatu(a),u(3)) ¢ A/. Soitis
enough to do the construction.

e We setly := X. Suppose thatUs)co<r, (¢())),, and(6(j)),, satisfying conditions (i)-(iv)
have been constructed, which is donegot 0.

e We will use the relatiomMg defined before Proposition 18 with :=0". Notice thatRg C R. We
setto:=0,0. We define a partition a#?*! as follows. Using Proposition 18.(b) we set, fof w,

HkI:{t€2p+1/’pt7t0‘:k+1}.

If Hy1 is non-empty, therfl;, is non-empty. Thus we can find an integesuch thatH,, ..., H, are
not empty andHy, is empty ifk > ¢g. We order2P™! as follows: to, then H; in any order withd, 1
first, Hy in any order, .., H, in any order. This givesy, ..., to»+1_1. Notice that we can fingd < n
such thatt; s(Re) t,, if 0 < n < 2PTL In particular, ifE" := {t;/j < n}, then(E", s(Re)) is
connected for each < 2P+1,

12



e We will construct integers(p), 6(p) and nonempty clopen subséf§ of X, for n < 2P*! and
k < n, satisfying

(2) diamU;') <1/p+1.

(3) (tk R andtkaétl) =

Ul = foqeant) [UR]
O(tiAtu])+ (SN0, [txAtl]) = SO Ot Ati) [0, [tx Atl]),

VZEU]? Carc{zﬂb(\tk/\tl])):Q(Itk/\tl])JrCarc(tkHtk/\tll).
(4) ~t B/t = (UP x UP) 1 Uy, Gl fy) UA(X)] = 0.
(5) Upttcup.

We will then setl;, := U2p+ ~Lfor k < 2¢*1, so that conditions (i)-(iv) are fullfilled.

o LetC e AY(Uyp,) \ {0} such thatC?n Uy<p GI(fq) = 0. Apply hypothesig H) to C' ando :=7.
This givesny > sup{¢(q)+1/qg<p} andy € va% such that

Cardy[no) + (SN [0, p]) = SN (Cardy[ng) + [0, p]).
We seto(p) := no, 0(p) := Cardy[no).

We then choos&{ € AY(Cn f,.1(C))\ {0} with suitable diameter such that, [UJ1NUY = 0,
and z[ng = y[ng for eachz € UJ. Assume that’y, ..., Ur~!, ... ,U""} satisfying conditions
(1)-(5) have been constructed (which has already been aliisbmd forn =1). Asn > 1, we
havet,, # to and|ps, +,| > 2. So fixr < n such thatp;, ;,(1) = t,. Notice thatU”~! has been
constructed.

Case 1i,[p = t,[p.

- We havet,[p = 0,, thus|p;, +,| = 2,7 =0, t, = 6,1 andn = 1. Moreover,Ug is a subset
of fdjl (Ut,1p), SO we can choose a nonempty clopen subgeof To) [UJ] with suitable diameter.

Then we set/} := f (UH) CUY. SoUY,...,Ur are constructed and fullfill (1)-(3) and (5). It
remains to check concfltlon (4).

- Fix k, I < 1such that= ¢, R #;. Thenk =1 =1 — 1. We havelU| = f,,[Uj]. Thus
Ut x Uy = fo)[Up] x Us = FuolUg] x Ug C fa [Ug] x Up S C2,

so we are done by the choice GfandUy.

Case 24, [p # t,[p.

2.1.t, Re ty.

- By the induction hypothesis we ha¥® 1, = fs(, at.|) (U, [p] @nd urt Ccu, rp- We choose a
nonempty clopen subset; of fo ¢, a¢, ) (U~ 17 with suitable diameter, so that conditions (1)-(5) for
k = [ = n are fullfilled.

- We then define th&/;’s for ¢ < n, by induction onpy, ;, |: fix m < n with p;, ;, (1) = t,,. Notice
thatg = r if m = n.

13



2.1.1.t,, Ro t,.

We havem < n since we cannot have, 1, (1) Re t, andt, Re pr, 1, (1) (5 <jex T if § Re 1).
SoUS ™ = fo(tmnty)[Um '] We put

Uy = fotmnta) [Uml-
The setl/!" is a nonempty clopen subset@f~* sinceU;, € U, ".
2.1.2.t, Ro tm.
If m < n, then we havé/), ! = fo . ac) (U7 1]. We put
Uy = fq;(%thtm\)(UgL)’

so thatU;" is a nonempty clopen subset Ug—l. If m = n, theng = r and the same conclusion
holds, by the choice d¥’;.

- So condition (5) is fullfilled in both cases. Conditions @nd (2) are fullfilled fork = ¢, too.

Let us check that the first part of condition (3) restrictedrg is fullfilled. Fix k& # | < n with

tr Re t1. If [y, 1| = 1 and|py, +,| = 2, then the link betweeny, and¢; has already been considered.
The argument is similar ifp;, 1| = 2 and|py, +,| = 1. If |ps, +.| and|py, ., | are at least 2, then
Dty tn (1) = P11, (0) O py, 1. (0) = py, 1, (1), by Proposition 18.(b). Here again, the link has already
been considered. So condition (3) restrictetiig is fullfilled. It remains to check conditions (3) and

(4).
- Fix k # [ such that;, ;R t;. Thent,, t; differ at one coordinate only, ang <oy .
Claim. Assume thaty, ¢, differ at one coordinate only, and thgt <|gy t;- Then
Card(z[¢([ty Ati])) = Otk A ta]) + Card(tg [t A ti])
for eachz € U}
We can write
tp =0"10™1...0%-110"10™+11...0"a-110"q,
t; = 0m010™1... 0% 110" 10™10%+11 ... 010" (0 + 1 +m = ny).
By construction we have

Ui = fomo)fos,<r (nei1)-1) - - fo(=<qes (net1)-1) (UG,

Ul = fomo)- - Fo(sr<jmr (et )=1) Fo(S o1 et )4 4D)-1) 6(8, <5 (npt1)=1)- -
f¢(2r§q—1 (nr+1)—1) [Uon]
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Notice that the length ofi At; is equal to¥,<; 1 (n,+1)+(n}+1)—1. Set
f= Totmo)- - fo(scsm1 -1
ThenU" = f fouunty S (UR). Fix k' # ' < n such that
ty = 0%r<i-1 (net1)4n1gni41] . Qla—1 107,
ty = 0Frsit (DA gmygne] | Qra-110na,

Note that Cardly [ o (|t A ti])) = 0(|tx A ty]) + Cardty [|tx A i), for eachy € U], sincety Re tyr.
But Card z[¢(|tx Ati)) = Cardy[o(|tx Ati])) + j, for eachz in U;' = f[U]]. As

Carc{tk/ Htk VAN tl‘) = Carc(tk Htk VAN tl’) — 7,

we get
(+) Cardz[¢(|tk A ti])) = 0([ti Atu]) + Cardity [ [ty Ata]).
This proves the claim. o

- The second assertion in condition (3) is clearly fullfillgidce|t; A t;| = |ty A ty|. Asty 2R ¢ and
ti # t; we get Cardt ||t A t;]) € S. This implies thatS containsd(|t; A t;|) + Cardtx [|tx A t1]).
By the claim we get

U = foquna ST UR) = Fouena [UR]

(the compositiong"f¢(|tk/\tlDf—l and f¢(|tkAtlfo—1 are defined o/}, so they are equal on this
set). Thus condition (3) is fullfilled.

- To get condition (4), fixk,l < n with =t R ¢, v(i) = |ps, 1, (1) A peet, (0 + 1)], ande(i) =1
(resp.,—1) if py, 1, (i) Re pr,1, (0 + 1) (resp.,py, 1, (1 + 1) Re pr,. ,(4)), fori + 1 < |py, +,|. We set
fe= fqiELih;ﬁjm e f;’;gggo)), so thatU;" = f£(U}). Letm be maximal such tha,(m) # t;(m). As
¢ is strictly increasing, we géU; x U;") N A(X) = 0, by Proposition 18.(c).

- If ¢, t; differ in at least two coordinates # m/, then the number of appearancesofindm’ in
v is odd. Asg is strictly increasing, this is also true fgm) # ¢(m’) in {¢(v(i))/i < |v|}. This
implies that(U! x U7") N [U,<, Gr(fy)] = 0.

- If 11, t; differ at only one coordinaten andt; >|ax ti, thena(o(m)) > B(o(m)) if (a, 3) is in
Up x U, and(U! x U") N [Uqu Gr(fy)] = 0.

- So we may assume thay, ¢; differ only at coordinates—!(q), and that;, <Jex ti- By the Claim we

have(+) for eachz € U;'. But Cardt, ||ty At;]) ¢ S, since—t, Rt;. So Cardz[q) ¢ Sif z € U],
and f, is not defined or/;!.

15



2.2.t, Re t,.
This cannot hold since.Ret,. Indeed, ift,, =0"10™1...0"%-110"4, then

Dt to(1) = Qrotmatly - (Qra-11Qn,

oty = 2) = Qg
This finishes the proof. 0
Lemma 20 The setS satisfies hypothesig?) if the following is fullfilled:
(M) Vpew Ikcw Vgcw Icewn(q, q+k] c+ (SN0, p])=SN(c+[0,p]).
In particular, condition (M) implies that!® is minimal among non-potentially closed sets 4dr.

Proof. Note thatd # A(C) € U,s; Gr(f¢), since([C, o], (f9),,) is a converging situation. So fix
go > lsuch thath(% # (), andOy := Df(%. Assume that;, andO,. have been constructed. We then

chooseg,;1 > ¢ such thato, N (¢, )~1(O,) # 0, and we define,,; := O, N (f¢ )~1(O,).

. ) qr+1 dr+1
This gives(q, )< and(O,.) <, WhereM = p + k.

o Fort € w=, we letf{" := f{ ... f{,_1)» when it makes sense. We choose

n > maxsup{q, + 1/r < M},1)

with f& o [On—1] N fnc_l(chor__,qul[OM_l]) #0. Letg = f& .., (a)beinthe intersec-
tion. Notice thaly := Card5[n) — M € w. Thisgivescinw N g, q + k]. AsO € S, thereisj < k
with ¢ = Card 3[n) —p — j € S. Notice thats = f . (v),wherey=fo . (). As
Cardy[n) = ¢, f5(y) is defined. ButfS(8) isin f& . [Om—1]andf3(y)isinC. Soff(v)
is defined.

e The lemma now follows from Corollary 16 and Theorem 19. O

Example. We setS,, r := {n€w/n (modm)ec{0}UF}, wherem € w \ {0} andF C m \ {0}.
ThenS,, r fullfills condition (M). In particular,A“ is minimal. But this gives only countably many
examples. To get more, we need some more notation:

Notation. For 3 € w®, we setSs := {¥,; (1 + ((i))/l €w}. Notice that0 € Sz, S is infinite,
and that any infinite5' containing0 is of this form. Moreover, the map — S is continuous since
neSs e A <n n=3%,. (1+4(i)). We will define a family(3,)qc2~. Actually, we can find at
least two examples:

e The original example is the following. Fore 2, we recursively define a sequer(eg ,,), C 2<¥
as follows: s, 0 := 0, sa.1 == 1, Sant2 == sgf?“sgfgﬂ)“. Notice thats, , < Sa,n+2, SO that

Ba = iMoo Sa,2n € 2 is defined.
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e A. Louveau found another example for which it is simpler tedk property (M) (and_{) later),
and in the sequel we will work with it. Far € 2¥, n € w ande € 2, we set

Yol(dn + 2¢) :=

Yo (2n 4+ 1) := a(n) (so thaty, has infinitely many zeros and ones, and the map -, is continu-
ous). Fori € w, we then seti), := max{m cw/2™ dividesi+1}. Finally, we putG, (i) := 74((7)o)-

Notice that the map. — (3, is continuous, so that the map— A4« is continuous in the codes.

Corollary 21 Leta € 2¥. ThenS;, satisfies condition (M). In particulatd®# is minimal among
non-potentially closed sets fet?.

Proof. First notice that it is enough to show that the following iffilled:
(MM) VPew IK cwVQew ICewN[Q,Q+K] Bo[P < La—Lu|C.

Indeed, this condition associatésto P := p. Setk := 2K + 1. Forg € w, let Q be minimal with
Yicq (14 Ba(1)) > ¢, and fixC € wN [Q, @ + K] such that3, [ P < B, — B.[C. We put

C = Ei<C (1 + ﬂa(z))

Notice thatc < g+k sincec<X;cg_1 (48, (1) HEg—1<i<c (H84(7)) < ¢H2(C—Q+H1) < ¢H2(KH1).
Finally, note that + ;< (14 34(i)) = Ziccss (1 + Ba(4)), by induction onj < p.

Notice that for any integers, ¢ andl with i < 2" —1, we have(2"™-1+i)y = (i)o. Indeed, we can
find N with i = 200 (2N + 1) — 1, and(i)g < n. Thus2" - 1 +i = 2@o(2n=Co . L aN + 1) — 1
and (2" -l + i) = (i)o. Now, if P € w, then letny be minimal with K := 2" — 1 > P.
If Q € w, thenletl € wN [34, % +1[andC := 2" - . If i < P, theni < 2™ — 1, so
(2" -1 +1)o = (i)o = (C + i)o- ThUSSa (i) = Fa(C +1). O

Now we come to the study of the cardinality of complete fagsilof minimal sets.

Lemma 22 Let (X, (fn)), (X/ (f!)) be converging situations, and v : X — X’ continuous maps
such thatdf = (u x v) (AT, Thenu = v.

Proof. Forz € X, fix z;, € X andny, € w such that(zy, f, (zx)) tends to(z,z). Note that
(u(z),v(z)) ¢ AT, Moreover,(ulzi], v]fn, (z)]) € AT, Thus(u(z),v(z)) € AT\ A" = A(X"),
thereforeu = v. O

Recall thatd=! := {(y,z) € X?/(z,y) € A} if A C X2

Theorem 23 Fix S, S’ satisfying condition (M). Then
(a) A5 17 AS', provided that the following condition is fullfilled:

(1) dpewVeew c+(SN[0,p]) #S N(c+[0,p]).
(b) AS L (AS’)—l, provided that the following condition is fullfilled:
(L1 dpew Veew c—(SNI0,p]) #S' N(c—10,p]).
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Proof. (a) We argue by contradiction: by Lemma 20, we can find contisumapsu, v : 2% —2%
such thatd® = (u x v)~1(4%"). By Lemma 22, we have = v.

Claim. Letn, ¢ be integers andV € X9(2%) \ {#}. Then we can find integerg > n, ¢’ >q and a
nonempty open subsat’ of N N f;ffl(N) with f(f,’ [u(y)]=ulf3(v)], and

Card(y[n') + (SN [0,p]) = SN (Card(y[n') + [0,p]),
for eachy € N'.

Indeed, lety € u[N]. As(é,0) is notinlJ, ., Gr(f;:’), we can find a clopen neighborhodd of
§ such thatv2 N U, , Gr(f5) = 0. LetN € A9(2¥)\ {0} with N C N nu~'(W). By Lemma
20, we can findh’ >n andyo€ N N £5~ 1( N) with

Cardyo[n') + (SN0, p]) = SN (Cardyo [n') +10, p]).

Now there is¢/(v) such thatf(f,/(v) [w(y)] = ulfS (7)), for v € N S (N) N Ny We have
¢ (v) > g, by the choice of¥. By Baire’s Theorem we gef and N'. o

By the Claim we getu1, g1 andNy C Dys with £ u()] = ulf3 (v)] and
Cardv[n1) + (SN [0,p]) = SN (Cardy[n1) + [0, p]),
for eachry € Ny.

We then getns > n, ¢2 > ¢1, and a nonempty open subs&b of N; N f ( 1) with
fa ()] = ulfn,(7)] and

Cardy[ng) + (SN [0,p]) = SN (Cardy[ns) + [0, p]),

for eachy in N,. We continue in this fashion, until we ge}.;1, ¢,+1 andN,,. Fix y€ N, and
setc := Cardu(v)[gp+1).

e Fix m € SN[0,p]. Fort € w<v, we setf; := ft“?o) . ft%t‘fl), when it makes sense. Notice that

fo it () = s ivnmy (7) i defined. Therefored® contains

(6N C ) B - G0 )}

which implies thatAs" contains(ulfy .. . (Mulfs . . . (y)]). This shows thatts’
contains(f ., o [ fo i gpi [0 )])’t us

PN 1101 = N (11010)

soc+ (SN[0,p]) €S N(c+[0,p]).
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e Conversely, lein :=c+m' € S’ N (¢ + [0, p]). Again f;fp (v) is defined. Notice that

_m/+1,...,np+1
S _ S _ S
u[fnp_m/+1,...,np+1 (PY)] - fqp_m/+1,...,qp+1 [u(f}/)] - fqp+1 WAp—m!+1>9p [u(f}/)] .

Therefore(u[f? (], ulf (7)]) € AS', AS contains the pair

N/ 1905 Tp T/ 41905 Tpt1
S S
N 0 N SN )}

and ffp_m,+l,...,n,,+1(7) = f5 (v). Therefore Cartly[n,+1) +m' € S andm/ € S,

np+1,np_m/+1,...,np
s0 5" N (¢+[0,p]) € c+(SNJ0,p]). Butthis contradicts conditionl() since we actually have the
equality.

(b) The proof is similar to that of (a). This timé® = (u x v)~1((4%)~1). We construct sequences
. . . r—1
(nj)1<j<pr1s (@5)1<j<p+1 @NA(Nj)1<j<p1 Satisfying the equalityy  [u(y)] = u[f; ()] and

Cardy[n;) + (SN [0,p]) = SN (Cardy[n;) + [0, p]),
for eachy € ;. This gives
o)™ G ) ] = U )T ) ) ),
thusc— (S N [0,p]) € 5" N (c—10,p]), and we complete the proof as we did for (a). O

Corollary 24 Leta # o € 2¢. ThenSg,_, Sg,, satisfy conditions (M), ) and (L™D. In particular,
ASsa 17 A% and ASpa 1T (A%%ar) L,

Theorem 5 is a corollary of this result. We saw that the map> A5« is continuous in the
codes, and it is injective by Corollary 24. This implies thaf’s« ). is a perfect antichain fox?,
made of minimal sets (we use Corollaries 21 and 24).

Proof. If s € 2<% andt € 2<%, we say that C ¢ if we can find an integelr < |¢| such thats < t—¢[1.
We defines—! € 2IsI by s71(i) := s(|s| — 1 —1), fori < |s|. We say that is symmetricif s = s~ 1.

e It is enough to prove the following condition:

(LL) AP cw Bo[PZ By and (Bo[P) 1 Bu.

Indeed, we will see thatl L) implies(.L) and(_L~!) of Theorem 23. Conditiof L L) givesP > 0.
Letp := 2P andc € w. We argue by contradiction.

(L) Assume that: + (Sg, N [0,p]) = Sg_, N (c+ [0,p]). AsO € S3,, we can find with

C:Ei<l (1"’_6&/ (Z))

It is enough to prove that it < P, thenj,, (n) =By (I+n).
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We argue by induction on.
- Notice thatg,(0) = 0 is equivalent tal € S3, and tog, (1) = 0. Therefores, (0) = By ().
- Now suppose that + 1 < P andf8,(m) = 8. (I +m), for eachm < n. As
24 Ymen (L4 fa(m)) <p,
we getf,(n+1) = B (I +n+1).

(L~1) Assume that: — (Sg, N [0,p]) = Sp_, N (c—[0,p]). Letl’ := 1 — P (@as2P —1or2Pis
in Sg, N[0,p], ¢ > 2P —2andl’ > 0). As (B,[P)"! € B, we can findn < P such that
Ba(n) # Bu(l — 1 —n), siNce(Ba[P)~! £ Bar — Buar[I'. We conclude as in the cage:).

e First notice that3, [(2" — 1) = [B.[(2" — 1)]~! for each integern. Indeed, let < 2" — 1. Itis
enough to see that), = (2" — 2 — i)y. But we have

M2 —j=2"—2-200aN 4 1)+1=2002n(o _9oN _ 1)1,

so we are done, sinc®—(Jo — 2N — 1 is odd and positive. So it is enough to findsuch that

ﬁoz [(2n - 1) g Ba/-

e Let ng minimal with v, (n9) # Yo (no), @andn; > ng+1 with v, (ng + 1) #~vw (n1). We put
n:=n; + 2. We argue by contradiction: we gewvith v, ((7)o) =7« (( + 7)o), for eachi <2 — 1.

e Notice that for eachn < n — 1 we can findi < 2"~ with (I + i)g = m. Indeed, let
Newn[2ml14+1)—27 27m -l nl 414 1) — 271
It is clear thati := 2™ (2N + 1) — [ — 1 is suitable.
eLet M > ngand(e;)j<p C 2withl = S;<p ¢; - 27. Fork < ng we define
ii=Yck (1—gj) - 29 4+ ¢4 - 2.
Note thatij, < 25! andi+i;, = 2 —1 (mod2*+1). We will show the following, by induction ok:

- The sequenceBa(i)); gn-1 ;—or 1 (mod2++1) IS constant with value,, (k), and equal to

(Bar (1 +14));con-1 j=ok_1 (mod2k+1)-

- The sequencé&s, (I + 1)) moda#+1y IS constant with value,, (k).

i<an—1 =i, (

- The sequencés, (I +1)) modat-+1) IS NOt constant.

i<an—1 i=i,+2k (
-e, =0 and')/oz(k) = 7a/(k)'

This will give the desired contradiction with= n.
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So assume that these facts have been shown4ok < ny.
- The first point is clear.

- The second one comes from the fact thati is of the form2* (2K + 1) — 1if i = 4, (mod2*+1),
sincel + i, = 2¥ — 1 (mod2F+1).

- To see the third one, choose< 2"~! such that(l + i)g = ng + 1 (or n1). We have to see that
i =i + 2% (mod2*+1). We can findn;) j<n—1 With i = 3,1 n; - 27, so that

I4+i+1=1+%5m; 2 + (e +mp) - 27 (mod2FT),

by the induction hypothesis. This inductively shows that= 1if j < k andn, =1 —¢. Thus
i =2F — 14 (1 —¢g;)- 2F (mod2Ft1). Butiy 428 =2F — 1 + ¢ - 28 + 28 (mod2F*1). Thus
ir +2F = —1 4+, - 2% (mod2F+1). Finally, 2% — 1 = i, (resp.,ix +2¥) (mod2F+1) if £, = 0 (resp.,
ex = 1).

- Soeg, = 0 andy, (k) = vo ().
This finishes the proof. 0
Now we prove thafD,(X9) \ pot(T1Y), <] is not well-founded.

Notation. LetS : w* — w® be the shift mapS(a)(k) := a(k+1), By be the sequena®, 1,2, .. .),
andg, := S™(). Notice that3, (i) = i + n, by induction om. We putB,, := A%n.

Proposition 25 We haveB,,+; </ B,, and B,, £ B, for each integem.

Proof. We define injective continuous maps= v : 2 — 2% by u(a) := 1'7"a. They are clearly
witnesses foB,, 1 <. B,.

e Conversely, we argue by contradiction. This gives contisumaps: andv such that
B, = (u x v) Y (Bpy1).

By Lemma 22, we have = v. We setf” := fo', andf} := fitoy - Hys -y Tor t € w=<\ {0},
when it makes sense. Lete Nyn+3, SO thato = O3+,

o If f'(a) is defined, then fixn, € w with u[f]*(a)] = ,ﬁjl(u[fﬁtfl(a)]), and set/:=u(«) (with
the convention thaf’ :=1da«). Thenu[f(a)]= ntl (U). In particular,

MMy g My g (8] —1)

n+1 _ o+l
fm(1 ,,,,, n+2)5M(2,..., n+2),---7mn+2(U)_ M(n42,1,...,n+1)17(1,..., n+1)7'--7m"+1(U)'
Therefore
{m(l,...,n+2), M2, n+2) - M2} = {m(n+2,1,...,n+1), ma,..n+1)- -  Mig1 )
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If mpi2 = mpi1, then we getu(0"21y) = w(0"F110y). As fF(0"T110y) = 10"10y, we
get (u(0"*1104),v(10"10y)) € B,y and (0"*21+,10"10vy) € B,, which is absurd. Now sup-
pose thatM := max(m(y,... n+2), M(2,...n42)s - - - s Mn+2) IS IN {my 11, mpy2}. Then we can find
1 < k <n+1such that

CardU[M), CardU[M)+k € {Eici (1+Fnt1(2))/l€w}.
But this is not possible, sinG8;; 1 (1+6,+1(7)) —Zici (14 8n+41(7)) =l+n+2.
¢ We then get the contradiction by induction, since we can k&md from both
{ma, nv2) M@, nt2) - M2},
M nt2,1, 1), M1, g 1)s - - - s Mg} 0

Remarks. (a) We showed thatA“s«),co is a perfect antichain made of sets minimal among non-
pot(T1?) sets for<”. There are other natural notions of reduction. We defiggéh the introduction.

If we moreover ask that andv are one-to-one, this defines a new quasi-order that we dérjot

u andv are only Borel, we have two other quasi-orders, denetgdandC’;. If X =YV, X' =Y’
andu = v, we get the usual notions,., C., <p andCp. Let < be any of these eight quasi-orders.
Then (A% ),co is a perfect antichain made of sets minimal among non-p¢I1Y) sets for <:

e Let us go back to Theorem 15 first. Assume this time that A’. Then in the second case we can
haveA/ N B2 T Aif <is rectangular, andl/ N B2 C. A otherwise. The changes to make in the
proof are the following. Let (resp.,.’) be a finer Polish topology oW (resp.,Y’) makingu (resp.,

v) continuous. We get continuous mags: 2 — [Y,v] andv’ : 2¢ — [Y’,v/]. The proof shows
that f| andg|s are actually witnesses fot/ N G? C% A if < is rectangular, andl/ N G? C. A
otherwise.

e In Corollary 16, we can replace] with <.

e The proof of Theorem 19 shows that, in its statement, we céte W T, A° N B2.

e The proof of Lemma 20 shows that, in its statement, we camcept!’ with <.

e It follows from Corollary 21 thatd“s« is, in fact, minimal among non-p@{) sets for<.

e To see that A% )¢9+ is an antichain foK’,, it is enough to see that in the statement of Theorem
23, we can replace:], with L’;. We only have to change the beginning of the proof of Theor8m 2
This timew andv are Borel. Letr be a finer Polish topology o2t making« andv continuous, and

X := [2¢,7]. By Lemma 20,4° is <’-minimal, so(2¥, A%) <’ (X, A%) < A%, and we may
assume that andwv are continuous.

(b) We proved thafD»(%9) \ pot(I1?), <] is not well-founded. Lek be any of the eight usual
quasi-orders. ThefDy(X9) \ pot(T1?), <] is not well-foundedt

e The proof of Proposition 25 shows th&t, 1 C. B, thusB, 11 < B,,.
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¢ We have to see that,, £ B,1. We argue by contradiction, so that we geandv Borel.

e Let us show that we can find a denSg subsetG of 2¢ such thatu|; = v|¢ is continuous, and
fm(a) € G, foreacha € G N Dyn.

Claim. The setH := {a€2¥/Vp Im>p ac Dyx } is a denses’s subset oR.

We argue by contradiction. We can find a nonempty cloperi/sédisjoint from H. The set
B, N V? has finite sections, so is g#1Y) (see Theorem 3.6 in [Lo1]). BV, (£ |y 1)) is @
converging situation, so thd, NV? is not potI1?). o

So we can find a dens@; subsetK of 2¢ such thatu|x, v|x are continuous and& C H.
Now let Ko = K, Ky11 := K, \ (U, Dyn \ fri 1K), and G := N, K, If a € K, fix
(my) infinite such thate € ), Dyn . We havefy, (a) € Ko, so (u(a),v[f, ()]) tends to

(u(a),v(a)) € Bpg1 \ Bny1 = A(2¥). Sou|k, = v|k,. Now it is clear thatG is suitable.
e We takea € G N Ny»+3 and complete the proof as we did for Proposition 25.

Proof of Theorem 6. We will actually prove a stronger statement. We set
(Py, P1, Py, P3, Py) := (reflexive, irreflexive, symmetric, antisymmetric, traivaj.

Leto € 2°\ {{2,4},{0,2,4}} such that the clasE of A{ \ pot(ILY) relations satisfying\;c, P;
is not empty. Then we can find a perfeci-antichain (R, )ac2- in Do(X9) N T such thatR,, is
<p-minimal amongA1 \ pot(T1?) sets, for anyx € 2.

e First, notice that if{0,1} C o or o = {1,2,4}, then every relation satisfying ;c,P; is empty,
thus potII?). If {2,3} C o, then every Borel relation satisfying; <, P; is a subset of the diagonal,
and is therefore poflY). If o = {0,2,4}, we are in the case of Borel equivalence relations, and
by Harrington, Kechris and Louveau’s Theorefy, is minimum among non-p6fLY) equivalence
relations. Ifo = {2,4}, then any Borel relationl C X? satisfyingA <, P; is reflexive on its domain

{z € X/(x,x) € A}, which is a Borel set. Thus we are reduced to the case of dgnaarelations.

In the sequel, we will avoid these cases and show the exestaracperfect antichain made of minimal
sets for[I", <p|.

o Let A:={A%a /ac2¥}. In the introduction, we definel 4 for A C 2% x 2«.
Claim 1. {R4/A€A} is a<p-antichain.
Assume thatd # A’ € A satisfyR4 <p R.. Then there i : 2¢ x 2 — 2% x 2 with

Ra=(fxf)""(Ra).

We setF, :={x€2“x2/x1 =¢c} andb.:= Ry N (F: x F.), fore €2. We then puti:=R4 N (Fy X FY).
We haveR 4 =a U by U by, andb. = {(z, y) € F. x F./xo =1} is pofT1?). We set

Fl:={z €2 x2/fi(z) =€}
andb. := Ra N (F. x F.),fore € 2.
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We then put’ := R4 N (Fj x F]). We haveR4 = o’ U b U b}, and
b= (flr % flr)7H(A(2” x 2)) € pol(ILY).

Notice thatA <, Ry, so thatR 4 is not pofI1?). SoR4 = (aNa’) Uby U by Uby Ub,, andana’is
not po(I1Y). It remains to defin€' := and/, viewed as a subset 6f, N F}) x (F1 N F}). We equip
Fy N Fj (resp.,Fy N FY) with a finer Polish topology making| g~ (resp.,f|rnr;) continuous.
ThenC <’ A andC <! A’, which contradicts Corollaries 21 and 24. o

Claim 2. Let A= A% € A. ThenR 4 is minimal for<p amongA1} \ pot(TI?) relations.

- Assume that? <p R4. This givesf : X — 2 x2 Borel with R=(f x f)~'(R4). Again we set
F.:={z € X/fi(x) = ¢} for e € 2, and we see thak N (Fy x F}) is not potTIY).

- Let 7 be a finer Polish topology oA making f continuous. By Theorem 9 there are
u: 2% — [Fy, 7],

v:2¥ — [Fy, 7] continuous withA; = (uxv) (RN (Fyx F1)) N A;. We defineH = fo[u[2¥]],
K = fy[v[2*]] and P := H N K; this defines compact subsets2f. ThenA N (H x K) is not
pot(T1?) since

Ar=[(foou)x(foov)] N AN (H x K))N4A;.
As in the proof of Theorem 15, this implies thatn P? is not potII}). By Lemma 14, we can find
a Borel subsef of P and a finer topology on S such tha([S, o], (f),) is a converging situation.

- By 18.3in [K], we can find a Baire measurable map S — f~1(S x {e}) such that
fo(ge(@) = o,

for o in S ande € 2. Let G be a densé&’; subset ofS such that eacly. | is continuous. Now
we defineF : G x 2 — X by F(a,¢) := g-(a). ThenR4 N (G x 2)? = (F x F)"Y(R), so
R4N (G x 2)?2 <g R. As in the proof of Theorem 15, we see that G? is not potII}). But
ANG? C. A. By Remark (a) above, we get C. AN G2 ThusR4 C. Ra N (G x 2)? and
Ra <p R. o

Finally, one easily checks the existence of a continuous map® — 2“ such thatc() is a
Borel code forR 4 if § is a Borel code forA. So there is a continuous map 2* — 2% such that
r(a) is a Borel code forRAsﬁa . This shows, in particular, the existence of a perfect aatit made
of minimal sets fofAl \ pot(TI}) quasi-orders< ] and[A1l \ pot(II}) partial orders<g]. More
generally, this works it- C {0, 3,4}.

e Similarly, we define, ford C X?, a strict partial order relatio®’, on X x 2 by
(z,i) Ry (y,7) < [(z,y) € Aandi = 0andj = 1].

The proof of the previous point shows thavifC {1, 3,4}, then{R’,/A € A} is a perfect antichain
made of minimal sets fdil", <]. Notice that this applies whehis the class ofA{ \ pot(I1?) strict
quasi-orders, strict partial orders, directed graphs iented graphs.
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e Similarly again, we can define, for C X2, S4 reflexive symmetric orX x 2 by

(z,1) Sa (y,§) < (x,i) = (y,7)or[(z,y) € Aandi = 0andj = 1] or
[(y,z) € Aandi = 1 andj = 0].

Let Ay := AandA; := A~'. The proof of Claim 1 shows that il # A’ € A satisfyS4 <p Sa,
then we can find>' ¢ pot(I19) ande, &' € 2 such thatlC' < A. andC <! A’,. But this contradicts
Corollaries 21 and 24. This shows thatif= {0, 2}, then{S4/A € A} is a perfect antichain made
of minimal sets fofl", <jp|.

e Similarly again, we can define, fot C X?, a graph relatiort’; on X x 2 by
(2,4) Sy (y,§) & [(z,y)eAandi=0andj=1]or[(y,z)€ Aandi=1andj=0].

The proof of the previous point shows thabifC {1,2}, then{S’,/A € A} is a perfect antichain
made of minimal sets fdi", <]. Notice that this applies whdhis the class oA} \ pot(T1}) graphs.
This finishes the proof. 0

Remarks. (a) We showed thatR 4)4ca is a perfect antichain made of sets minimal among non-
pot(T1?) sets for<p. Fix <in {<.,C.,<p,Cp}. Then(Ra)acx is a perfect antichain made of
sets minimal among non-pofT1Y) sets for <. It is enough to check the minimality. The only thing
to notice, in the proof of Claim 2 of the proof of Theorem 6,hattwe haveR4 N (G x 2)? C. R
andR4 C. R. Similarly, Ry, S, andS’, (A € A) are minimal for<., C. andCp.

(b) We have~A(2¥) L7, Lo. Indeed, assume thatA(2<) = (u x v) "1 (Lg). Thenu(a) <jex v(6)
if a # 3, andv(a) <jox u(). Thus

u(fB) <lex V(@) Sjex u(@) <jex v(8) <jex u(8),

which is absurd. Now assume thiag = (u x v) "} (=A(2¥)). Thens <|gy o impliesu(a) = v(B),
thusu = v has to be constant. Thus<gy 3 implies thatu(a) andv(/3) are different and equal.

In the introduction, we saw thdt-A(2¥), Ly} is a complete family of minimal sets for
[pot(D> (1)) \ pot(IT}), E7].

We just saw thaf—A(2¢), Ly} is an antichain fox’;, and therefore for any of the eight usual quasi-
orders. These facts imply thatA(2«) and Ly are minimal among non-pdi?) sets for<’, C7,
<% andC’;. But—=A(2¥) and L, are also minimal forl., C., <p andCp. Indeed, ifO is any

of these two open sets, we ha@e\ O = A(2*). This givesG such thatO N G? C. A, as in the
proof of Theorem 15 (and Remark (a) after Proposition 25gnTdny increasing continuous injection
¢:2¥ — Gisawitness t@ T, O N G2.

5 The minimality of A, for the classical notions of comparison.

As announced in the introduction, we will show a result inidythat A, is minimal among non-
potentially closed sets. The following definition specifies meaning of the expression “tlig’s do
not induce cycles” mentioned in the introduction. This kofdhotion has already been used in the
theory of potential complexity (see Definition 2.10 in [L3])
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Definition 26 We say that X, (f,)) is anacyclic situation if

(@) (X, (fn)) is a converging situation, with onlx(X) C Af \ A/ in condition (c).

(b) Forv € w<v\ {0} ande € {—1, 1}/"], the following implication holds:

(Vi< |v|—1 v(i)#v(i+1) ore(i)#—e(i+1)) = (VU € AY(X)\{0} 3V e AY(U)\{0}

VreV [fj((l‘fj":ll)) . fj((g)) () is not defined or not i ]).

Notation. We definef} : N, o — Ns,1 by f}(s,0v) := s,1y (wheres, is as defined in the
introduction, to build4; = |J,, Gr(f})).

Lemma27 Leta € 2¥, v € w<¥\ {#} ande € {—1,1}"|. Assume thav(i) # v(i + 1) or
e(i) # —e(i+1)ifi < |v| — 1. Thenfj(‘v‘_l)g(w'_l) . fj(o)g(o)(a) is either undefined, or of value
different thana.

Proof. We argue by contradiction. Letbe a counter-example of minimal length. Note that> 3.
Setl := max., v(i), e := ey = a[(l+1), and, for0 < i < |v|:

7—1 0
ei =iy £ @) T (1),

Set® := (0,), whered,, := s,. Then(e;);<, is ans(Re)-cycle, which contradicts Proposition
18.(b). O

Example. (2¥, (f!)) is an acyclic situation. Indee~, (f;})) is a converging situation, by Corollary
12. Let us show that condition (b) in the definition of an amysituation is true for(2«, (f1)).

The domainD of fj(‘v‘_l)e(‘”‘*l.).. 1}(0)5(0) is clopen. IfU is not included inD, then we can take

V = U\ D. Otherwise, leta € U. By Lemma 27, and by continuity, we can find a clopen

neighborhood/ of « included inU such thatfl}(‘v‘fl)e('”'_l) e 5(0)5(0) Vinv =40.

Theorem 28 Let (X, (f,)) be an acyclic situation. Thed; <” A7.

Proof. It looks like those of Theorems 2.6 and 2.12 in [L3]. The maifedence is that we want a
reduction defined on the whole product. It is also similat® proof of Theorem 19. Let us indicate
the differences with the proof of Theorem 19. We replace= | J,, Gr(f5) with A; =, Gr(f}).

e We only constructUy),c2<~ ande, so that (iii) becomes

(iii) (s Mt ands#t) = Uy = fo(sne)) [Us)-
e Here we choos® = (6,,) with 6,, := s,,. Notice thathg = fA.
e Condition(3) becomes

(3) (txe Rty andty #t;) = UJ" = foeonn)) [UE]-
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e We can findC' € AY(Uy,p,) \ {0} such thalC* nJ, ., Gr(f,) = 0, and also

q<p
no > sup{¢(q)+1/q < p}

with C? N GI(f,) #0, sinceA(X) C A\ A/, We setg(p) := ng. We first construct clopen sets
U} as in the proof of Theorem 19.

Case 2. t,[p # t,[p.
2.1.t, Re ty.

To get condition (4), fixk,l < n with = t; R t;. Setf:: f¢(L”||v|1 ) f¢( ) SO that

= fe[U7], and we havep(v(i i)) # ¢(v(i + 1)), since is strictly increasing. Ae{X (fn))is
without cycles, we can find € Uk with f2(x) # =. We can therefore find a clopen neighborhood
U} of z, included inU}’, such thaU N f5[U}] = (. We construct clopen setg’, for k # r < n,
as before, ensuring condition (3). Notice thgt C U”, so that the hereditary conditions (1), (2) and
(5) remain fullfilled. In finitely many steps we g&/;} x U}') N A(X) = 0, for each pairk, ). The
argument is similar for Grf,) instead ofA (X).

2.2.t, Ro t.

This case is similar to case 2.1. O
Remark. We actually showed that; C. A7.
Corollary 29 A; is minimal among non-potentially closed sets for the eighialiquasi-orders.

Proof. Let B € Al(2¥), T a finer topology onB, Z := B, 7] andfn::f%]Bﬂf{l(B). We assume
that (Z, (f,)) is a converging situation. By Corollary 16 and Remark (agraRroposition 25, it is
enough to show thati; T, 4; N Z2 = Af. By Theorem 28 and the remark above, it is enough to
check that Z, (f,,)) is an acyclic situation, i.e., condition (b). Fixc U and f< := fj((ﬂ;’":ll)) .. fj((g))

If U is not included iang, then we can tak& := U \ Dye, because the domain is a clopen subset
of Z. As f¢ is continuous, it is enough to see thydt(a) # «, if U is included inDy-. But this is

clear, sincefg(‘v‘ N e(lvl=1) f1 ©)(a) is different froma, by Lemma 27. a
Remarks. (a) Theorem 28 is also a consequence of the following result:

Theorem 30 (Miller) Let X be a Polish space, and a locally countableX! oriented graph onX
whose symmetrization is acyclic (in the sense of DefinitiBn Then exactly one of the following
holds:

(a) A has countable Borel chromatic number.

(b) A, Ec A.

Theorem 30 is actually a corollary of a more general resutitivated by the results of this
paper, which gives a basis for locally countable Borel d@#d@raphs of uncountable Borel chromatic
number, with respect ta.. The proof of both Theorem 30 and the basis result appear 1j.[M
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(b) We saw thatd; C. A7 if (X, (f,)) is an acyclic situation. There is another example of a
Dy(=9) \ pot(I1y)
set, which seems more “natural” thahn. It is
Cr:={(a,8)€2“x2¥/3s€2<¥ Iy 2¥ (a, B)=(s07,s1v)}.

Its symmetric version plays an important role in the thedrpatential complexity (see for example
Theorem 3.7 and Corollary 4.14 in [L1]). We wonder wKé&t, } is a basis for. Roughly speaking,
{C1} will be a basis for situations where commuting relationsveen thef,,’s are involved. More
specifically,

Definition 31 We say that X, (f,,)) is acommuting situation if

(a) X is a nonempty perfect closed subsetof

(b) f,, is a partial homeomorphism with disjoizk{(X) domain and range. Moreover <lex fn(@)
if o« € Dy,.

(€) A(X) C AT\ A, and AT e TI9(X?2).

(d) For eacha € f,'(Dy,) we haven € f,1(Dy,,) and fi,(fn()) = fu(fm(a)). Moreover the
graphs of thef,,’s are pairwise disjoint.

A 0-dimensional Polish space is homeomorphic to a closed sulbsg”. So condition (a) is
essentially the same as condition (a) of a converging sitatVe use this formulation for the last part
of condition (b). The disjunction of the domain and the raafy¢,, and the inequalityr <|oy fn ()
come from symmetry problems. We will come back later to thiée will also come back to the
IT) condition. It is linked with transitivity properties. Thedt part of condition (d) expresses the
commutativity of the functions. One can show the followiegult, whose proof contains a part quite
similar to the proof of Theorems 19 and 28.

Theorem 32 Let (X, (f,)) be a commuting situation. Then C, A/.
The proof of this uses the fact th@g = A, where(2, (f,,)) is a commuting situation. Let
Ggn @ 2¥Y — 2%

be defined byy,(a)(k) = a(k) if & # n, 1 — a(n) otherwise. Thers(C1) = U,, Gr(gn), SO
(2¥,(gn)) is Not a commuting situation, since otherwise we would h@yeC s(C4), which is
absurd since(C1) is symmetric and’; is not. But the two reasons for that are tha¥ |y g, (),
and that the domain and the range of the bijectignare not disjoint.

Similarly, let¢ : w — Py \ {0°°} be a bijective map. We let, (a)(p) := a(p) if ¢(n)(p)=0, 1
otherwise. This defineg, : {a €2“/Vp ¢(n)(p) =0 or a(p) =0} — 2*. Note that

EonLy=|_JGr(g,),
q

whereL{:={(a, 8) €2 x2¥/Vicw a(i) <[(i) anda# [}.
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Then(2¥,(g,)) is not a commuting situation, since otherwiSe C Ej N L, which is absurd
since Ey N Lj is transitive and”; is not. But the reason for that is th&t N Ly, ¢ I19.

B. D. Miller has also a version of Theorem 32 for directed gsapf uncountable Borel chromatic
number (in [M2]). Its proof uses some methods analogousasetin the proof of Theorem 30. All of
this shows the existence of numerous analogies betweenatentglly closed directed graphs and
directed graphs of uncountable Borel chromatic number.
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