Dominique Lecomte 
  
of the plane

On minimal non-potentially closed subsets

Theorem 2 (Hurewicz) Let P f := {α ∈ 2 ω /∃n ∈ ω ∀m ≥ n α(m) = 0}, X be a Polish space and A a Borel subset of X. Then exactly one of the following holds: (a) The set A is Π 0 2 (X). (b) There is a continuous injection u : 2 ω → X such that P f = u -1 (A).

This theorem has been generalized to all Baire classes in [Lo-SR]. We try to adapt this result to the Borel subsets of the plane. In this direction, we have the following result for equivalence relations (see [H-K-Lo]):

Theorem 3 (Harrington- Kechris-Louveau) Let X be a Polish space, E a Borel equivalence relation on X, and E 0 := {(α, β) ∈ 2 ω ×2 ω /∃n ∈ ω ∀m ≥ n α(m) = β(m)}. Then exactly one of the following holds: (a) The relation E is pot(Π 0 1 ). (b) We have E 0 ≤ B E (with u continuous and one-to-one).

• We will study structures other than equivalence relations (for example quasi-orders), and even arbitrary Borel subsets of the plane. We need some other notions of comparison.

Recall that Wadge's quasi-order ≤ W on Borel subsets of ω ω is defined by

A ≤ W A ′ ⇔ ∃u : ω ω → ω ω continuous with A = u -1 (A ′ ).
It is known that this quasi-order is well-founded (in the sense that there is no sequence (B n ) with B n+1 ≤ W B n and B n ≤ W B n+1 for each n). Moreover, any ≤ W -antichain is of cardinality at most 2 (in fact of the form {A, ¬A}). It follows that any class ∆ 1 1 \ Π 0 ξ admits a unique (up to the equivalence associated to ≤ W ) minimal element.

• There are several natural ways of comparing Borel subsets A ⊆ X × Y , A ′ ⊆ X ′ ×Y ′ of products of two Polish spaces. All of them will have the same behavior here. The one we will use is the following:

A ≤ r c A ′ ⇔ ∃u : X → X ′ ∃v : Y → Y ′ continuous with A = (u×v) -1 (A ′ ).
Here the letter c is for "continuous". We have the following (see [L1]):

Theorem 4 Let ∆(2 ω ) := {(α, β) ∈ 2 ω × 2 ω /α = β}, L 0 := {(α, β) ∈ 2 ω ×2 ω /α < lex β}, X and Y be Polish spaces, and A a pot( Ď2 (Σ 0 1 )) subset of X × Y . Then exactly one of the following holds: (a) The set A is pot(Π 0 1 ). (b) ¬∆(2 ω ) ≤ r c A or L 0 ≤ r c A (with u and v one-to-one).

• Things become much more complicated at the level D 2 (Σ 0 1 ) (differences of two open sets; Ď2 (Σ 0 1 ) is the dual Wadge class of unions of a closed set and an open set; notice that we can extend Definition 1 to the class Ď2 (Σ 0 1 )). We will show the following:

Theorem 5 There is a perfect ≤ r c -antichain

(A α ) α∈2 ω ⊆ D 2 (Σ 0 1 )(2 ω × 2 ω ) such that A α is ≤ r c - minimal among ∆ 1 1 \ pot(Π 0 1
) sets, for any α ∈ 2 ω .

In particular, unlike for classical Baire classes and ≤ W , one cannot characterize non-pot(Π 0 1 ) sets by an obstruction condition involving only one (or even countably many) set(s). We will also show that [D 2 (Σ 0 1 ) \ pot(Π 0 1 ), ≤ r c ] is ill-founded.

Theorem 5 can be applied to structures. We will show the following:

Theorem 6 There is a perfect ≤ B -antichain (R α ) α∈2 ω ⊆ D 2 (Σ 0 1 )((2 ω × 2) 2 ) such that R α is ≤ B - minimal among ∆ 1
1 \pot(Π 0 1 ) sets, for any α ∈ 2 ω . Moreover, (R α ) α∈2 ω can be taken to be a subclass of any of the following classes:

-Directed graphs (i.e., irreflexive relations).

-Graphs (i.e., irreflexive and symmetric relations).

-Oriented graphs (i.e., irreflexive and antisymmetric relations).

- Quasi-orders. -Strict quasi-orders (i.e., irreflexive and transitive relations).

-Partial orders.

- Strict partial orders (i.e., irreflexive, antisymmetric and transitive relations).

Remarks. (a) Theorem 6 shows that Harrington, Kechris and Louveau's Theorem is very specific, and that the combination of symmetry and transitivity is very strong.

(b) We produce concrete examples of such antichains. These examples must be in any complete family of minimal sets, up to bi-reducibility.

• Theorem 5 shows that any complete family of minimal sets for [∆ 1 1 \ pot(Π 0 1 ), ≤ r c ] has size continuum. So we must find another notion of comparison. In [K-S-T], the following notion is defined. Let X, X ′ be Polish spaces, and A ⊆ X ×X, A ′ ⊆ X ′ ×X ′ be analytic sets. We set

(X, A) c (X ′ , A ′ ) ⇔ ∃u : X → X ′ continuous with A ⊆ (u×u) -1 (A ′ ).
When u is Borel we write B instead of c .

Let ψ : ω → 2 <ω be the natural bijection (ψ(0) = ∅, ψ(1) = 0, ψ(2) = 1, ψ(3) = 0 2 , ψ(4) = 01, ψ(5) = 10, ψ(6) = 1 2 , . . .). Note that |ψ(n)| ≤ n, so that we can define s n := ψ(n)0 n-|ψ(n)| . The crucial properties of (s n ) are that it is dense (there is n such that t ≺ s n , for each t ∈ 2 <ω ), and that

|s n | = n. We set A 1 := {(s n 0γ, s n 1γ)/n ∈ ω and γ ∈ 2 ω }. The symmetric set s(A 1 ) generated by A 1 is considered in [K-S-T],
where the following is essentially proved:

Theorem 7 (Kechris, Solecki, Todorčević) Let X be a Polish space and A an analytic subset of X × X. Then exactly one of the following holds:

(a) (X, A) B (ω, =). (b) (2 ω , A 1 ) c (X, A).
Actually, the original statement in [K-S-T] is when A is a graph, and with s(A 1 ) instead of A 1 . But we can get Theorem 7 without any change in the proof in [K-S-T].

• In [L3] the following is shown (see Theorem 2.9): Theorem 8 Let X, Y be Polish spaces, and A a pot(∆ 0 3 ) subset of X × Y . Then exactly one of the following holds:

(a) The set A is pot(Π 0 1 ). (b) There are u : 2 ω → X, v : 2 ω → Y continuous with A 1 = (u×v) -1 (A) ∩ A 1 .
(We can replace A 1 in [L3] by what we call A 1 here.) We generalize this result to arbitrary Borel subsets of X × Y : Theorem 9 Let X, Y be Polish spaces, and A, B be disjoint analytic subsets of X × Y . Then exactly one of the following holds:

(a) The set A is separable from B by a pot(Π 0 1 ) set. (b) There are u : 2 ω → X and v : 2 ω → Y continuous such that the inclusions A 1 ⊆ (u × v) -1 (A) and A 1 \ A 1 ⊆ (u × v) -1 (B) hold.
Moreover, we can neither replace A 1 \A 1 with (2 ω ×2 ω )\A 1 , nor ensure that u and v are one-to-one.

So we get a minimum non-potentially closed set if we do not ask for a reduction on the whole product.

• In [K-S-T], it is conjectured that we can have u one-to-one in Theorem 7.(b). This is not the case:

Theorem 10 There is no graph (X 0 , R 0 ) with X 0 Polish and R 0 ∈ Σ 1 1 (X 2 0 ) such that for every graph (X, A) of the same type, exactly one of the following holds:

(a) (X, A) B (ω, =). (b) (X 0 , R 0 ) c,1-1 (X, A).
The proof is based on the counterexample used in [L3] to show that we cannot have injectivity in Theorem 2.9.

• The paper is organized as follows.

-In Section 2, we prove Theorem 9.

-In Section 3, we prove Theorem 10.

-In Section 4, we give a sufficient condition for minimality among non-potentially closed sets. We use it to prove Theorems 5 and 6.

-In Section 5, we give conditions on A which allow us to replace A 1 \ A 1 with (2 ω × 2 ω ) \ A 1 in Theorem 9 (and therefore come back to ≤ r c ). We can write A 1 = n Gr(f n ), where f n (s n 0γ) := s n 1γ. Roughly speaking, we require that the f n 's do not induce cycles. This is really the key property making the A α 's appearing in the statement of Theorem 5 pairwise orthogonal. We will deduce from this the minimality of A 1 among non-potentially closed sets for ≤ r c , using the sufficient condition for minimality in Section 4.

A minimum non-potentially closed set.

We will prove Theorem 9. The proof illustrates the link between the dichotomy results in [K-S-T] and the notion of potential Baire class. We will see another link in Section 3. The next lemma is essentially Lemma 3.5 in [L1], and the crucial point of its proof.

Lemma 11 Let X be a nonempty Polish space, n be an integer, D fn and f n [D fn ] be dense G δ subsets of some open subsets of X, and f n :

D fn → f n [D fn ] a continuous and open map. (a) Let G be a dense G δ subset of X. Then Gr(f n ) ⊆ Gr(f n ) ∩ G 2 , for each n. (b) Let A := n Gr(f n ). If ∆(X) ⊆ A \ A, then A is not pot(Π 0 1 ). Proof. (a) Let U (resp., V ) be an open neighborhood of x ∈ D fn (resp., f n (x)). Then f n [D fn ]∩V ∩G is a dense G δ subset of f n [D fn ] ∩ V , thus f -1 n (V ∩ G) is a dense G δ subset of f -1 n (V ). Therefore G ∩ f -1 n (V ) and G ∩ f -1 n (V ∩ G) are dense G δ subsets of f -1 n (V ). So we can find y ∈ U ∩ G ∩ f -1 n (V ∩ G). Now (y, f n (y)) is in the intersection (U × V ) ∩ Gr(f n ) ∩ G 2 ,
so this set is non-empty.

(b) We argue by contradiction: we can find a finer Polish topology on X such that A becomes closed. By 15.2, 11.5 and 8.38 in [K], the new topology and the old one agree on a dense G δ subset of X,

say G: A ∩ G 2 ∈ Π 0 1 (G 2 ). Let x ∈ G. We have (x, x) ∈ G 2 ∩ A \ A. By (a) we get A ⊆ A ∩ G 2 . Thus (x, x) ∈ G 2 ∩ A ∩ G 2 \ (A ∩ G 2 ), which is absurd. Corollary 12 The set A 1 = A 1 \ ∆(2 ω ) is D 2 (Σ 0 1 ) \ pot(Π 0 1 ), and A 1 = A 1 ∪ ∆(2 ω ).
Proof. As we saw in the introduction, we can write A 1 = n Gr(f n ), where f n (s n 0γ) := s n 1γ.

Notice that f n is a partial homeomorphism with clopen domain and range. Moreover, we have

∆(2 ω ) ⊆ A 1 \ A 1
(in fact, the equality holds). Indeed, if t ∈ 2 <ω , we have

(s ψ -1 (t) 0 ∞ , s ψ -1 (t) 10 ∞ ) ∈ N 2 t ∩ A 1 . Thus A 1 = A 1 \ ∆(2 ω ) is D 2 (Σ 0
1 ), and the corollary follows from Lemma 11.

Proof of Theorem 9. We cannot have (a) and (b) simultaneously. For if D is potentially closed and separates A from B, then we get

A 1 = (u × v) -1 (D) ∩ A 1 , thus A 1 ∈ pot(Π 0 1
), which contradicts Corollary 12.

• Let f : ω ω → X × Y be a continuous map with f [ω ω ] = B, and f 0 (resp., f 1 ) be the first (resp., second) coordinate of f , so that (f 0 × f 1 )[∆(ω ω )] = B. We set R := (f 0 × f 1 ) -1 (A), which is an irreflexive analytic relation on ω ω . By Theorem 7, either there exists a Borel map c :

ω ω → ω such that (α, β) ∈ R implies c(α) = c(β), or there is a continuous map u 0 : 2 ω → ω ω such that (α, β) ∈ A 1 implies (u 0 (α), u 0 (β)) ∈ R.
• In the first case, we define

C n := c -1 ({n}). We get ∆(ω ω ) ⊆ n C 2 n ⊆ ¬R, so that B ⊆ n f 0 [C n ] × f 1 [C n ] ⊆ ¬A.
By a standard reflection argument there is a sequence

(X n ) (resp., (Y n )) of Borel subsets of X (resp., Y ) with n f 0 [C n ] × f 1 [C n ] ⊆ n X n × Y n ⊆ ¬A.
But n X n × Y n is pot(Σ 0 1 ), so we are in the case (a).

• In the second case, let u := f 0 • u 0 , v := f 1 • u 0 . These maps satisfy the conclusion of condition (b) because A 1 \ A 1 ⊆ ∆(2 ω ), by Corollary 12.

• By the results in [L3], we can neither replace A 1 \ A 1 with (2 ω × 2 ω ) \ A 1 , nor can we ensure that u and v are one-to-one.

Remarks. (a)

In Theorem 9, we cannot ensure that u = v when X = Y : take X := 2 ω ,

A := {(α, β) ∈ N 0 × N 1 /α < lex β} and B := (N 0 × N 1 ) \ A.
(b) This proof cannot be generalized, in the sense that we used the fact that the range of a countable union of Borel rectangles (a pot(Σ 0 1 ) set) by a product function is still a countable union of rectangles, so more or less a pot(Σ 0 1 ) set. This fails completely for the dual level. Indeed, we saw that the range of the diagonal (which is closed) by a product function can be any analytic set. So in view of generalizations, it is better to have another proof of Theorem 9.

3 The non-injectivity in the Kechris-Solecki-Todorčević dichotomy. Now we will prove Theorem 10. The proof we give is not the original one, which used effective descriptive set theory, and a reflection argument. The proof we give here is due to B. D. Miller, and is a simplification of the original proof.

Notation. If A ⊆ X 2 , A -1 := {(y, x) ∈ X 2 /(x, y) ∈ A} and s(A) := A ∪ A -1 is the symmetric set generated by A.

• Fix sets S 0 ⊇ S 1 ⊇ . . . of natural numbers such that (1) S n \ S n+1 is infinite for each integer n.

(2) n∈ω S n = ∅.

• For each n ∈ ω, fix f n : S n → S n \ S n+1 injective, and define g n : 2 ω → 2 ω by

[g n (α)](k) :=    α[f n (k)] if k ∈ S n , α(k) otherwise.
• It is clear that each of the closed sets M n := {α ∈ 2 ω /g n (α) = α} is meager, and since each g n is continuous and open, it follows that the F σ set

M := s∈ω <ω ,n∈ω (g s(0) • . . . • g s(|s|-1) ) -1 (M n )
is also meager, so that X := 2 ω \ M is a comeager, dense G δ set which is invariant with respect to each g n . Put

G 1 := n∈ω s[Gr(g n | X )].
Proof of Theorem 10. We argue by contradiction: this gives (X 0 , R 0 ).

Claim 1. Let X be a Polish space, and g 0 , g 1 , . . . : X → X fixed-point free Borel functions such that g m • g n = g m if m < n. Then every locally countable Borel directed subgraph of the Borel directed graph G := n∈ω Gr(g n ) has countable Borel chromatic number, i.e., satisfies Condition (a) in Theorem 7.

Suppose that H is a locally countable Borel directed subgraph of G. By the Lusin-Novikov uniformization theorem, there are Borel partial injections h n on X such that H = n∈ω Gr(h n ). By replacing each h n with its restrictions to the sets {x ∈ D hn /h n (x) = g m (x)}, for m ∈ ω, we can assume that for all n ∈ ω, there is k n ∈ ω such that h n = g kn | D hn . It is easily seen that the directed graph associated with a Borel function has countable Borel chromatic number (see also Proposition 4.5 of [K-S-T]), so by replacing h n with its restriction to countably many Borel sets, we can assume also that for all n ∈ ω, D 2 hn ∩ k≤kn Gr(g k ) = ∅. It only remains to note that

D 2 hn ∩ k>kn Gr(g k ) = ∅. To see this, simply observe that if k > k n and x, g k (x) ∈ D hn , then h n (x) = g kn (x) = g kn • g k (x) = h n • g k (x), which contradicts the fact that h n is a partial injection. This proves the claim. ⋄ Claim 2. The Borel graph G 1 has uncountable Borel chromatic number, but if H ⊆ G 1 is a locally countable Borel directed graph, then H has countable Borel chromatic number. Condition (1) implies that g m • g n = g m if m < n, so Claim 1 ensures that if H ⊆ G 1 is a locally countable Borel directed graph, then H has countable Borel chromatic number. To see that G 1 has uncountable Borel chromatic number, it is enough to show that if B ∈ ∆ 1 1 (2 ω ) is non-meager, then B ∩ G 2 1 = ∅. Let s ∈ 2 <ω such that B is comeager in N s . It follows from condition (2) that there is n ∈ ω such that |s| < k for each k ∈ S n . Then g n is a continuous, open map which sends N s into itself, thus B ∩ X ∩ N s ∩ g -1 n (B ∩ X ∩ N s ) is comeager in N s . Letting x be any element of this set, it follows that x, g n (x) are G 1 -related elements of B.
⋄

We are now ready to prove the theorem: as (X 0 , R 0 ) satisfies (b), it does not satisfy (a). Therefore R 0 has uncountable Borel chromatic number. As s(A 1 ) and G 1 have uncountable Borel chromatic number, we get

(X 0 , R 0 ) c,1-1 [2 ω , s(A 1 )] and (X 0 , R 0 ) c,1-1 (2 ω , G 1 ) (with witness π). As s(A 1 ) is locally countable, R 0 is also locally countable. Therefore (π × π)[R 0 ] is a locally countable Borel subgraph of G 1 with uncountable Borel chromatic number, which contradicts Claim 2.
Remark. This proof also shows a similar theorem for irreflexive analytic relations, by considering

n∈ω Gr(g n | X ) (resp., A 1 ) instead of G 1 (resp., s(A 1 )).
4 Perfect antichains made of sets minimal among non-pot(Π 0 1 ) sets.

As mentioned in the introduction, a great variety of very different examples appear at level D 2 (Σ 0 1 ), all of the same type. Let us make this more specific.

Definition 13

We say that (X, (

f n )) is a converging situation if (a) X is a nonempty 0-dimensional perfect Polish space. (b) f n is a partial homeomorphism with ∆ 0 1 (X) domain and range. (c) The diagonal ∆(X) = A f \ A f , where A f := n Gr(f n ).
This kind of situation plays an important role in the theory of potential complexity (see, for example, Definition 2.4 in [L3]).

Remarks. (a

) Note that if (X, (f n )) is a converging situation, then Lemma 11 ensures that A f is D 2 (Σ 0 1 ) \ pot(Π 0 1 ), since A f = A f \ ∆(X). (b) It is clear that an analytic graph (X, A) has countable Borel chromatic number if and only if A is separable from ∆(X) by a pot(∆ 0 1 ) set. By Remark (a), this implies that (2 ω , s(A f )) does not have countable Borel chromatic number if (X, (f n )) is a converging situation. Notation. In the sequel, we set f B n := f n | B∩f -1 n (B) if B ⊆ X and (X, (f n )) is a converging situation, so that Gr(f B n ) = Gr(f n ) ∩ B 2 .
The reader should see [Mo] for the basic notions of effective descriptive set theory. Let Z be a recursively presented Polish space.

• The topology ∆ Z is the topology on Z generated by ∆ 1 1 (Z). This topology is Polish (see the proof of Theorem 3.4 in [START_REF] Louveau | Ensembles analytiques et boréliens dans les espaces produit[END_REF]).

• The Gandy-Harrington topology Σ Z on Z is generated by Σ 1 1 (Z). Recall that

Ω Z := {z ∈ Z/ω z 1 = ω CK 1 } is Borel and Σ 1 1 , and [Ω Z , Σ Z ] is a 0-dimensional Polish space (in fact, the intersection of Ω Z with any nonempty Σ 1 1 set is a nonempty clopen subset of [Ω Z , Σ Z ]-see [L1]).
Lemma 14 Let (X, (f n )) be a converging situation, P a Borel subset of X such that A f ∩ P 2 is not pot(Π 0 1 ), and σ a finer Polish topology on P . Then we can find a Borel subset S of P and a topology τ on S finer than σ such that ([S, τ ], (f S n ) n ) is a converging situation. Proof. We may assume that [P, σ] is recursively presented and

f P n , A f ∩ P 2 are ∆ 1 1 . We set D := {x ∈ P/x ∈ ∆ 1 1 }, and S := {x ∈ P/(x, x) ∈ A f ∩ P 2 ∆ 2 P } ∩ Ω P \D. As S ∈ Σ 1 1 , [S, Σ P ] is a 0- dimensional perfect Polish space. We set E := A f ∩ (P \ D) 2 . Note that D is countable. By Remark 2.1 in [L1], E is not potentially closed since A f ∩ P 2 = [A f ∩ ((P ∩ D) × P )] ∪ [A f ∩ (P × (P ∩ D))] ∪ E. Therefore E ∆ 2 P \ E is a nonempty subset of (P \ D) 2 ∩ A f \ A f ⊆ ∆(X). Thus S = ∅. Note also that (x, x) ∈ A f ∩ P 2 ∆ 2 P ∩ S 2 = A f ∩ P 2 Σ 2 P ∩ S 2 = A f ∩ S 2 [S,Σ P ] 2 if x ∈ S.
Conversely, we have

A f ∩ S 2 [S,Σ P ] 2 \(A f ∩ S 2 ) ⊆ S 2 ∩ A f \A f ⊆ ∆(S). We have proved that S is a Borel subset of P such that ([S, Σ P ], (f S n ) n ) is a converging situation. Theorem 15 Let Y , Y ′ be Polish spaces, A ∈ ∆ 1 1 (Y × Y ′
), (X, (f n )) a converging situation. We assume that A ≤ r c A f . Then exactly one of the following holds: (a) The set A is pot(Π 0 1 ). (b) We can find a Borel subset B of X and a finer topology τ on B such that

([B, τ ], (f B n ) n ) is a converging situation and A f ∩ B 2 ≤ r c A. Proof.
Let u and v be continuous functions such that A = (u × v) -1 (A f ). We assume that A is not potentially closed. By Theorem 9 we can find continuous maps u

′ : 2 ω → Y and v ′ : 2 ω → Y ′ such that A 1 = (u ′ × v ′ ) -1 (A) ∩ A 1 . We set H := u[u ′ [2 ω ]], K := v[v ′ [2 ω ]
] and P := H ∩ K. Then H, K and P are compact and

A f ∩ (H × K) is not pot(Π 0 1 ) since A 1 = [(u • u ′ ) × (v • v ′ )] -1 (A f ∩ (H × K)) ∩ A 1 (we have A 1 / ∈ pot(Π 0 1 ) by Corollary 12). Therefore A f ∩ P 2 is not pot(Π 0 1 ), since A f ∩ (H × K) = [A f ∩ ((H \ K) × K)] ∪ [A f ∩ (H × (K \ H))] ∪ [A f ∩ P 2 ] = [A f ∩ ((H \ K) × K)] ∪ [A f ∩ (H × (K \ H))] ∪ [A f ∩ P 2 ].
By Lemma 14 we can find a Borel subset S of P and a finer topology σ on S such that

([S, σ], (f S n ) n ) is a converging situation.
By the Jankov-von Neumann Theorem there is f ′ : S → u -1 (S) (respectively, g ′ : S → v -1 (S)) Baire measurable such that u(f ′ (x)) = x (respectively, v(g ′ (x)) = x), for each x ∈ S. Notice that f ′ and g ′ are one-to-one. Let G be a dense G δ subset of S such that f ′ | G and g ′ | G are continuous. These functions are witnesses to the inequality

A f ∩ G 2 ≤ r c A. By Lemma 11, we get Gr(f S n ) ⊆ Gr(f S n ) ∩ G 2 . Therefore A f ∩ S 2 = A f ∩ G 2 , ∆(G) = G 2 ∩ A f ∩ G 2 \ (A f ∩ G 2 ), and A f ∩ G 2 is not pot(Π 0 1
) by Lemma 11.

By Lemma 14 we can find a Borel subset B of G, equipped with some topology τ finer than σ, such that

([B, τ ], (f B n ) n ) is a converging situation.
Corollary 16 Let (X, (f n )) be a converging situation. The following statements are equivalent:

(a) A f is ≤ r c -minimal among ∆ 1 1 \ pot(Π 0 1 ) sets. (b) For any Borel subset B of X and any finer Polish topology τ on B, A f ≤ r c A f ∩ B 2 if A f ∩ B 2 is not pot(Π 0 1 ). (c) For any Borel subset B of X and for each finer topology τ on B, A f ≤ r c A f ∩B 2 if ([B, τ ], (f B n ) n ) is a converging situation. Proof. (a) ⇒ (b) and (b) ⇒ (c) are obvious. So let us show that (c) ⇒ (a). Let Y , Y ′ be Polish spaces, A ∈ ∆ 1 1 (Y × Y ′ ) \ pot(Π 0 1
). We assume that A ≤ r c A f . By Theorem 15 we get a Borel subset B of X and a finer topology τ on B such that

([B, τ ], (f B n ) n ) is a converging situation and A f ∩ B 2 ≤ r c A. By (c) we get A f ≤ r c A f ∩ B 2 . Therefore A f ≤ r c A.
This is the sufficient condition for minimality that we mentioned in the introduction. The following definitions, notation and facts will be used here and in Section 5 to build the reduction functions in the minimality results that we want to show.

Definition 17

Let R be a relation on a set E.

• An R-path is a finite sequence (e i ) i≤n ⊆ E such that (e i , e i+1 ) ∈ R for i < n.

• We say that E is Rconnected if there is an R-path (e i ) i≤n with e 0 = e and e n = e ′ for each e, e ′ ∈ E.

• An R-cycle is an R-path (e i ) i≤n such that n ≥ 3 and [0 ≤ i = j ≤ n and e i = e j ] ⇔ {i, j} = {0, n}.

• We say that R is acyclic if there is no R-cycle.

Recall that if R is symmetric and acyclic, e, e ′ ∈ E and (e i ) i≤n is an R-path with e 0 = e and e n = e ′ , then we can find a unique R-path p e,e ′ := (f j ) j≤m without repetition with f 0 = e and f m = e ′ . We will write |p e,e ′ | = m + 1.

Notation. Let Θ := (θ n ) ⊆ 2 <ω with |θ n | = n. We will use two examples of such Θ's: θ n = 0 n and θ n = s n (where s n has been defined in the introduction to build A 1 ). We define a tree R Θ on 2 × 2:

R Θ := {(e, e ′ ) ∈ (2×2) <ω /e = e ′ or ∃n ∈ ω ∃w ∈ 2 <ω (e, e ′ ) = (θ n 0w, θ n 1w)}. Recall that s(R Θ ) is the symmetric set generated by R Θ . Proposition 18 (a) (2 n , s(R Θ )) is connected, for each n ∈ ω. (b) The relation s(R Θ ) is acyclic. (c) If e,
e ′ ∈ 2 n and l < n is maximal with e(l) = e ′ (l), the coordinate l is changed only once in p e,e ′ , and the other changed coordinates are at a level less than l.

Proof. (a) We argue by induction on n. As (∅) is an s(R Θ )-path from ∅ to ∅, the statement is true for n = 0. Assume that it is true at the level n, and let e, e ′ ∈ 2 n+1 . We can write e = sǫ and e ′ = s ′ ǫ ′ , where s, t ∈ 2 n and ǫ, ǫ ′ ∈ 2. If ǫ = ǫ ′ , then let (f i ) i≤m be an s(R Θ )-path with f 0 = s and f m = s ′ . Let e i := f i ǫ. Then (e i ) i≤m is an s(R Θ )-path with e 0 = e and e m = e ′ . If ǫ = ǫ ′ , then let (f i ) i≤m be an s(R Θ )-path with f 0 = s and f m = θ n , and (g j ) j≤p be an s(R Θ )-path with g 0 = θ n and g p = s ′ . We set e i :=

f i ǫ if i ≤ m, g i-m-1 ǫ ′ if m < i ≤ m + p + 1.
Then (e i ) i≤m+p+1 is an s(R Θ )-path with e 0 = e and e m+p+1 = e ′ .

(b) We argue by contradiction. Let (e i ) i≤n be an s(R Θ )-cycle, p > 0 be the common length of the e i 's, and l < p maximal such that the sequence (e i (l)) i≤n is not constant. We can find i 1 minimal with e i 1 (l) = e i 1 +1 (l). We have e i 1 (l) = e 0 (l) = e n (l). We can find i 2 > i 1 + 1 minimal with e i 1 +1 (l) = e i 2 (l). Then e i 1 (l) = e i 2 (l) and e i 1 = e i 2 , because |θ l | = l. Thus i 1 = 0 and i 2 = n. But e i 1 +1 = e i 2 -1 , which is absurd. Note that this proof of (b) is essentially in [L3], Theorem 2.7.

(c) This follows from (b) and the proof of (a). Now we come to some examples of converging situations, with some cycle relations involved.

Notation. Let S ⊆ ω, and

A S := {(s0γ, s1γ)/ s ∈ 2 <ω and Card(s) ∈ S and γ ∈ 2 ω }.

(Card(s) is the number of ones in s.) We define partial homeomorphisms

f S n : s∈2 n , Card(s)∈S N s0 → s∈2 n , Card(s)∈S N s1
by f S n (s0γ) := s1γ. Notice that A S = A f S is Borel. One can show the existence of A : 2 ω → 2 ω continuous such that A(S) is a Borel code for A S , for each S ⊆ ω. Notice that (2 ω , (f S n ) n ) is a converging situation if and only if S is infinite. This is also equivalent to A S / ∈ pot(Π 0 1 ). Indeed, if S is finite, A S \ A S is a countable subset of ∆(2 ω ). So in the sequel we will assume that S is infinite.

Let n S := min S, and S ′ := {nn S /n ∈ S}. Then 0 ∈ S ′ and the maps u and v defined by u(α) = v(α) := 1 n S α are witnesses to A S ′ ≤ r c A S . So in the sequel we will also assume that 0 ∈ S.

• If S ⊆ ω and t ∈ ω <ω \ {∅}, then we set f S t := f S t(0) . . . f S t(|t|-1) , when it makes sense. We will also use the following tree R on 2 × 2. If s, t ∈ 2 <ω , then we set

s R t ⇔ |s| = |t| and (N s × N t ) ∩ A S = ∅.
In particular, if n 0 < n 1 and 1 ∈ S, then we get f S <n 0 ,n 1 > (0 ∞ ) = f S <n 1 ,n 0 > (0 ∞ ). This is the kind of cycle relation we mentioned in the introduction. In this case s(R) is not acyclic since

< 0 n 1 +1 , 0 n 0 10 n 1 -n 0 , 0 n 0 10 n 1 -n 0 -1 1, 0 n 1 1, 0 n 1 +1 > is an s(R)-cycle. We set f C n := f S n | C∩f S n -1 (C)
for each Borel subset C of 2 ω , when S is fixed.

• Let (H) be the following hypothesis on S:

(H)    Let C ∈ ∆ 1 1 (2 ω ), σ be a finer topology on C such that ([C, σ], (f C n ) n ) is a converging situation, l, p ∈ ω. Then we can find n ≥ l and γ ∈ D f C n with Card(γ⌈n) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n) + [0, p]).
The next result will lead to a combinatorial condition on S implying the minimality of A S among non-potentially closed sets.

Theorem 19 Let S satisfy (H), B ∈ ∆ 1 1 (2 ω ), and τ a finer topology on B such that

([B, τ ], (f B n ) n ) is a converging situation. Then A S ≤ r c A S ∩ B 2 . Proof. Let X := [B, τ ], f n := f B n .
We are trying to build continuous maps u, v : 2 ω → X such that A S = (u × v) -1 (A f ). We will actually have more: u = v will be one-to-one. We set s ∧ t := s⌈max{n ∈ ω/s⌈n = t⌈n}, for s, t ∈ 2 <ω .

• We construct a sequence (U s ) s∈2 <ω of nonempty clopen subsets of X, φ : ω → ω strictly increasing, and θ : ω → ω such that

(i) U s ⌢ i ⊆ U s . (ii) diam(U s ) ≤ 1/|s| if s = ∅. (iii) (s R t and s = t) ⇒    U t = f φ(|s∧t|) [U s ], θ(|s∧t|)+(S ∩ [0, |s∧t|]) = S ∩ (θ(|s∧t|)+[0, |s∧t|]), ∀z ∈ U s Card(z⌈φ(|s∧t|)) = θ(|s∧t|)+Card(s⌈|s∧t|). (iv) (¬ s R t and |s| = |t|) ⇒ (U s × U t ) ∩ [ q<|s| Gr(f q ) ∪ ∆(X)] = ∅.
• First we show that this construction is sufficient to get the theorem. We define a continuous map u : 2 ω → X by {u(α)} := n U α⌈n . If α < lex β, then we have ¬β⌈r R α⌈r if r is big enough, thus by condition (iv), (u(β), u(α)) is in U β⌈r × U α⌈r ⊆ X 2 \ ∆(X). Therefore u is one-to-one. If (α, β) ∈ A S , fix n such that β = f S n (α). Then α⌈r and β⌈r satisfy the hypothesis in condition (iii) for each r > n. Therefore u(β) = f φ(n) (u(α)) and (u(α), u(β)) ∈ A f . If α = β, then (α, β) / ∈ A S and (u(α), u(β)) ∈ ∆(X) ⊆ ¬A f . Otherwise, (α, β) / ∈ A S and there is r 0 such that α⌈r and β⌈r satisfy the hypothesis in condition (iv) for r ≥ r 0 . This shows that (u(α), u(β)) / ∈ A f . So it is enough to do the construction.

• We set U ∅ := X. Suppose that (U s ) s∈2 ≤p , (φ(j)) j<p and (θ(j)) j<p satisfying conditions (i)-(iv) have been constructed, which is done for p = 0.

• We will use the relation R Θ defined before Proposition 18 with θ n := 0 n . Notice that R Θ ⊆ R. We set t 0 := θ p 0. We define a partition of 2 p+1 as follows. Using Proposition 18.(b) we set, for k ∈ ω,

H k := {t ∈ 2 p+1 /|p t,t 0 | = k+1}.
If H k+1 is non-empty, then H k is non-empty. Thus we can find an integer q such that H 0 , ..., H q are not empty and H k is empty if k > q. We order 2 p+1 as follows: t 0 , then H 1 in any order with θ p 1 first, H 2 in any order, . . ., H q in any order. This gives t 0 , . . ., t 2 p+1 -1 . Notice that we can find j < n such that t j s(R Θ ) t n if 0 < n < 2 p+1 . In particular, if E n := {t j /j ≤ n}, then (E n , s(R Θ )) is connected for each n < 2 p+1 .

• We will construct integers φ(p), θ(p) and nonempty clopen subsets U n k of X, for n < 2 p+1 and k ≤ n, satisfying

(1) U n k ⊆ U t k ⌈p . (2) diam(U n k ) ≤ 1/p + 1. (3) (t k R t l and t k = t l ) ⇒    U n l = f φ(|t k ∧t l |) [U n k ], θ(|t k ∧t l |)+(S ∩[0, |t k ∧t l |]) = S ∩(θ(|t k ∧t l |)+[0, |t k ∧t l |]), ∀z ∈ U n k Card(z⌈φ(|t k ∧t l |)) = θ(|t k ∧t l |)+Card(t k ⌈|t k ∧t l |). (4) ¬ t k R t l ⇒ (U n k × U n l ) ∩ [ q≤p Gr(f q ) ∪ ∆(X)] = ∅. (5) U n+1 k ⊆ U n k .
We will then set U t k := U 2 p+1 -1 k for k < 2 p+1 , so that conditions (i)-(iv) are fullfilled.

• Let C ∈ ∆ 0 1 (U t 0 ⌈p ) \ {∅} such that C 2 ∩ q≤p Gr(f q ) = ∅.
Apply hypothesis (H) to C and σ := τ . This gives n 0 ≥ sup{φ(q)+1/q < p} and γ

∈ D f C n 0 such that Card(γ⌈n 0 ) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n 0 ) + [0, p]).
We set φ(p) := n 0 , θ(p) := Card(γ⌈n 0 ).

We then choose U

0 0 ∈ ∆ 0 1 (C ∩ f -1 n 0 (C)) \ {∅} with suitable diameter such that f n 0 [U 0 0 ] ∩ U 0 0 = ∅, and z⌈n 0 = γ⌈n 0 for each z ∈ U 0 0 . Assume that U 0 0 , . . . , U n-1 0 , . . . , U n-1
n-1 satisfying conditions (1)-( 5) have been constructed (which has already been accomplished for n = 1). As n ≥ 1, we have t n = t 0 and |p tn,t 0 | ≥ 2. So fix r < n such that p tn,t 0 (1) = t r . Notice that U n-1 r has been constructed.

Case 1. t n ⌈p = t r ⌈p.

-We have t n ⌈p = θ p , thus |p tn,t 0 | = 2, r = 0, t n = θ p 1 and n = 1. Moreover, U 0 0 is a subset of f -1 φ(p) (U t 1 ⌈p ), so we can choose a nonempty clopen subset U 1 1 of f φ(p) [U 0 0 ] with suitable diameter. Then we set U 1 0 := f -1 φ(p) (U 1 1 ) ⊆ U 0 0 . So U n 0 , . . . , U n n are constructed and fullfill (1)-( 3) and ( 5). It remains to check condition (4).

-Fix k, l ≤ 1 such that ¬ t k R t l . Then k = 1 = 1 -l. We have U 1 1 = f φ(p) [U 1 0 ]. Thus U 1 1 × U 1 0 = f φ(p) [U 1 0 ] × U 1 0 = f n 0 [U 1 0 ] × U 1 0 ⊆ f n 0 [U 0 0 ] × U 0 0 ⊆ C 2 ,
so we are done by the choice of C and U 0 0 .

Case 2. t n ⌈p = t r ⌈p.

2.1. t r R Θ t n .
-By the induction hypothesis we have

U tn⌈p = f φ(|tr∧tn|) [U tr⌈p ] and U n-1 r ⊆ U tr⌈p . We choose a nonempty clopen subset U n n of f φ(|tr∧tn|) [U n-1 r
] with suitable diameter, so that conditions (1)-( 5) for k = l = n are fullfilled.

-We then define the U n q 's for q < n, by induction on |p tq,tn |: fix m ≤ n with p tq,tn (1) = t m . Notice that q = r if m = n.

2.1.1. t m R Θ t q .
We have m < n since we cannot have p tq,tn (1) R Θ t q and t q R Θ p tq,tn (1)

(s ≤ lex t if s R Θ t). So U n-1 q = f φ(|tm∧tq|) [U n-1 m ]. We put U n q := f φ(|tm∧tq|) [U n m ].
The set U n q is a nonempty clopen subset of

U n-1 q since U n m ⊆ U n-1 m . 2.1.2. t q R Θ t m . If m < n, then we have U n-1 m = f φ(|tq∧tm|) [U n-1 q
]. We put

U n q := f -1 φ(|tq∧tm|) (U n m ), so that U n q is a nonempty clopen subset of U n-1 q
. If m = n, then q = r and the same conclusion holds, by the choice of U n n .

-So condition ( 5) is fullfilled in both cases. Conditions ( 1) and ( 2) are fullfilled for k = q, too.

Let us check that the first part of condition (3 3) and ( 4).

) restricted to R Θ is fullfilled. Fix k = l ≤ n with t k R Θ t l . If |p t k ,tn | =
-Fix k = l such that t k R t l . Then t k , t l differ at one coordinate only, and t k < lex t l .

Claim. Assume that t k , t l differ at one coordinate only, and that t k < lex t l . Then

Card(z⌈φ(|t k ∧ t l |)) = θ(|t k ∧ t l |) + Card(t k ⌈|t k ∧ t l |)
for each z ∈ U n k .

We can write t k := 0 n 0 10 n 1 1 . . . 0 n j-1 10 n j 10 n j+1 1 . . . 0 n q-1 10 nq ,

t l := 0 n 0 10 n 1 1 . . . 0 n j-1 10 n ′ j 10 m 10 n j+1 1 . . . 0 n q-1 10 nq (n ′ j + 1 + m = n j ).
By construction we have

U n k = f φ(n 0 ) f φ(Σ r≤1 (nr+1)-1) . . . f φ(Σ r≤q-1 (nr+1)-1) [U n 0 ], U n l = f φ(n 0 ) . . .f φ(Σ r≤j-1 (nr+1)-1) f φ(Σ r≤j-1 (nr+1)+(n ′ j +1)-1) f φ(Σ r≤j (nr+1)-1) . . . f φ(Σ r≤q-1 (nr+1)-1) [U n 0 ].
Notice that the length of t k ∧t l is equal to

Σ r≤j-1 (n r +1)+(n ′ j +1)-1. Set f := f φ(n 0 ) . . .f φ(Σ r≤j-1 (nr+1)-1) . Then U n l = f f φ(|t k ∧t l |) f -1 (U n k ). Fix k ′ = l ′ ≤ n such that t k ′ := 0 Σ r≤j-1 ( 
nr+1)+n j 10 n j+1 1 . . . 0 n q-1 10 nq , t l ′ := 0 Σ r≤j-1 (nr+1)+n ′ j 10 m 10 n j+1 1 . . . 0 n q-1 10 nq .

Note that Card(y⌈φ

(|t k ∧ t l |)) = θ(|t k ∧ t l |) + Card(t k ′ ⌈|t k ∧ t l |), for each y ∈ U n k ′ , since t k ′ R Θ t l ′ . But Card(z⌈φ(|t k ∧ t l |)) = Card(y⌈φ(|t k ∧ t l |)) + j, for each z in U n k = f [U n k ′ ]. As Card(t k ′ ⌈|t k ∧ t l |) = Card(t k ⌈|t k ∧ t l |) -j,
we get

(+) Card(z⌈φ(|t k ∧ t l |)) = θ(|t k ∧ t l |) + Card(t k ⌈|t k ∧ t l |).
This proves the claim.

⋄ -The second assertion in condition (3) is clearly fullfilled since |t k ∧ t l | = |t k ′ ∧ t l ′ |. As t k R t l and t k = t l we get Card(t k ⌈|t k ∧ t l |) ∈ S. This implies that S contains θ(|t k ∧ t l |) + Card(t k ⌈|t k ∧ t l |).
By the claim we get

U n l = f φ(|t k ∧t l |) f f -1 (U n k ) = f φ(|t k ∧t l |) [U n k ] (the compositions f f φ(|t k ∧t l |) f -1 and f φ(|t k ∧t l |) f f -1 are defined on U n
k , so they are equal on this set). Thus condition (3) is fullfilled.

-To get condition (4), fix k, l ≤ n with ¬ t k R t l , v(i) := |p t k ,t l (i) ∧ p t k ,t l (i + 1)|, and ε(i

) := 1 (resp., -1) if p t k ,t l (i) R Θ p t k ,t l (i + 1) (resp., p t k ,t l (i + 1) R Θ p t k ,t l (i)), for i + 1 < |p t k ,t l |. We set f ε v := f ε(|v|-1) φ(v(|v|-1)) . . . f ε(0) φ(v(0)) , so that U n l = f ε v (U n k ). Let m be maximal such that t k (m) = t l (m). As φ is strictly increasing, we get (U n k × U n l ) ∩ ∆(X) = ∅, by Proposition 18.(c).
-If t k , t l differ in at least two coordinates m = m ′ , then the number of appearances of m and m ′ in v is odd. As φ is strictly increasing, this is also true for φ

(m) = φ(m ′ ) in {φ(v(i))/i < |v|}. This implies that (U n k × U n l ) ∩ [ q≤p Gr(f q )] = ∅. -If t k , t l differ at only one coordinate m and t k > lex t l , then α(φ(m)) > β(φ(m)) if (α, β) is in U n k × U n l , and (U n k × U n l ) ∩ [ q≤p Gr(f q )] = ∅.
-So we may assume that t k , t l differ only at coordinate φ -1 (q), and that t k < lex t l . By the Claim we have

(+) for each z ∈ U n k . But Card(t k ⌈|t k ∧ t l |) / ∈ S, since ¬ t k R t l . So Card(z⌈q) / ∈ S if z ∈ U n k , and f q is not defined on U n k . 2.2. t n R Θ t r .
This cannot hold since t r R Θ t n . Indeed, if t n = 0 n 0 10 n 1 1 . . . 0 n q-1 10 nq , then p tn,t 0 (1) = 0 n 0 +n 1 +1 1 . . . 0 n q-1 10 nq , . . . p tn,t 0 (|p tn,t 0 | -2) = 0 n 0 +n 1 +...+n q-1 +q-1 10 nq . This finishes the proof.

Lemma 20

The set S satisfies hypothesis (H) if the following is fullfilled:

(M ) ∀p ∈ ω ∃k ∈ ω ∀q ∈ ω ∃c ∈ ω∩[q, q+k] c+(S ∩[0, p]) = S ∩(c+[0, p]).
In particular, condition (M) implies that A S is minimal among non-potentially closed sets for ≤ r c .

Proof. Note that ∅ = ∆(C) ⊆ q≥l Gr(f C q ), since ([C, σ], (f C n ) n ) is a converging situation. So fix q 0 ≥ l such that D f C q 0 = ∅, and O 0 := D f C q 0
. Assume that q r and O r have been constructed. We then choose q r+1 > q r such that O r ∩ (f C q r+1 ) -1 (O r ) = ∅, and we define

O r+1 := O r ∩ (f C q r+1 ) -1 (O r
). This gives (q r ) r<M and (O r ) r<M , where M := p + k.

• For t ∈ ω <ω , we let f C t := f C t(0) . . . f C t(|t|-1)
, when it makes sense. We choose

n ≥ max(sup{q r + 1/r < M }, l) with f C q 0 ,...,q M -1 [O M -1 ] ∩ f C n -1 (f C q 0 ,...,q M -1 [O M -1 ]) = ∅.
Let β := f C q 0 ,...,q M -1 (α) be in the intersection. Notice that q := Card(β⌈n) -M ∈ ω. This gives c in ω ∩ [q, q + k]. As 0 ∈ S, there is j ≤ k with c = Card(β⌈n)pj ∈ S. Notice that β = f C q 0 ,...,q p+j-1 (γ), where γ = f C q p+j ,...,q M -1 (α). As Card(γ⌈n

) = c, f S n (γ) is defined. But f C n (β) is in f C q 0 ,...,q M -1 [O M -1 ] and f S n (γ) is in C. So f C n (γ) is defined.
• The lemma now follows from Corollary 16 and Theorem 19.

Example. We set S m,F := {n ∈ ω/n (mod m) ∈ {0}∪F }, where m ∈ ω \ {0} and F ⊆ m \ {0}. Then S m,F fullfills condition (M). In particular, A ω is minimal. But this gives only countably many examples. To get more, we need some more notation:

Notation. For β ∈ ω ω , we set S β := {Σ i<l (1 + β(i))/l ∈ ω}. Notice that 0 ∈ S β , S β is infinite,
and that any infinite S containing 0 is of this form. Moreover, the map β → S β is continuous since n ∈ S β ⇔ ∃l ≤ n n = Σ i<l (1+β(i)). We will define a family (β α ) α∈2 ω . Actually, we can find at least two examples:

• The original example is the following. For α ∈ 2 ω , we recursively define a sequence (s α,n ) n ⊆ 2 <ω as follows: s α,0 := 0, s α,1 := 1, s α,n+2 := s

α(n)+1 α,n s α(n+1)+1 α,n+1
. Notice that s α,n ≺ = s α,n+2 , so that β α := lim n→∞ s α,2n ∈ 2 ω is defined.

• A. Louveau found another example for which it is simpler to check property (M) (and (⊥) later), and in the sequel we will work with it. For α ∈ 2 ω , n ∈ ω and ε ∈ 2, we set γ α (4n + 2ε) := ε, γ α (2n + 1) := α(n) (so that γ α has infinitely many zeros and ones, and the map α → γ α is continuous). For i ∈ ω, we then set (i) 0 := max{m ∈ ω/2 m divides i+1}. Finally, we put β α (i) := γ α ((i) 0 ).

Notice that the map α → β α is continuous, so that the map α → A S βα is continuous in the codes.

Corollary 21 Let α ∈ 2 ω . Then S βα satisfies condition (M). In particular, A S βα is minimal among non-potentially closed sets for ≤ r c .

Proof. First notice that it is enough to show that the following is fullfilled:

(M M ) ∀P ∈ ω ∃K ∈ ω ∀Q ∈ ω ∃C ∈ ω∩[Q, Q+K] β α ⌈P ≺ β α -β α ⌈C.
Indeed, this condition associates K to P := p. Set k := 2K + 1. For q ∈ ω, let Q be minimal with

Σ i<Q (1 + β α (i)) ≥ q, and fix C ∈ ω ∩ [Q, Q + K] such that β α ⌈P ≺ β α -β α ⌈C. We put c := Σ i<C (1 + β α (i)). Notice that c ≤ q+k since c ≤ Σ i<Q-1 (1+β α (i))+Σ Q-1≤i<C (1+β α (i)) < q+2(C-Q+1) ≤ q+2(K+1). Finally, note that c + Σ i<j (1 + β α (i)) = Σ i<C+j (1 + β α (i))
, by induction on j ≤ p.

Notice that for any integers n, i and l with i < 2 n -1, we have (2 n •l +i) 0 = (i) 0 . Indeed, we can find N with i = 2 (i) 0 (2N + 1) -1, and (i) 0 < n. Thus

2 n • l + i = 2 (i) 0 (2 n-(i) 0 • l + 2N + 1) -1 and (2 n • l + i) 0 = (i) 0 . Now, if P ∈ ω, then let n 0 be minimal with K := 2 n 0 -1 ≥ P . If Q ∈ ω, then let l ∈ ω ∩ [ Q 2 n 0 , Q 2 n 0 + 1[ and C := 2 n 0 • l. If i < P , then i < 2 n 0 -1, so (2 n 0 • l + i) 0 = (i) 0 = (C + i) 0 . Thus β α (i) = β α (C + i).
Now we come to the study of the cardinality of complete families of minimal sets.

Lemma 22 Let (X, (f n )), (X ′ , (f ′ n )) be converging situations, and u, v : X → X ′ continuous maps such that

A f = (u × v) -1 (A f ′ ). Then u = v. Proof. For x ∈ X, fix x k ∈ X and n k ∈ ω such that (x k , f n k (x k )) tends to (x, x). Note that (u(x), v(x)) / ∈ A f ′ . Moreover, (u[x k ], v[f n k (x k )]) ∈ A f ′ . Thus (u(x), v(x)) ∈ A f ′ \ A f ′ = ∆(X ′ ), therefore u = v. Recall that A -1 := {(y, x) ∈ X 2 /(x, y) ∈ A} if A ⊆ X 2 .
Theorem 23 Fix S, S ′ satisfying condition (M). Then (a) A S ⊥ r c A S ′ , provided that the following condition is fullfilled:

(⊥) ∃p ∈ ω ∀c ∈ ω c+(S ∩[0, p]) = S ′ ∩(c+[0, p]).
(b) A S ⊥ r c (A S ′ ) -1 , provided that the following condition is fullfilled: ...,qp [u(γ)].

(⊥ -1 ) ∃p ∈ ω ∀c ∈ ω c-(S ∩[0, p]) = S ′ ∩(c-[0, p]). • Conversely, let m := c + m ′ ∈ S ′ ∩ (c + [0, p]). Again f S n p-m ′ +1 ,...,n p+1 (γ) is defined. Notice that u[f S n p-m ′ +1 ,...,n p+1 (γ)] = f S ′ q p-m ′ +1 ,...,q p+1 [u(γ)] = f S ′ q p+1 ,q p-m ′ +1 ,
Therefore (u[f S n p-m ′ +1 ,...,np (γ)], u[f S n p-m ′ +1 ,...,n p+1 (γ)]) ∈ A S ′ , A S contains the pair (f S n p-m ′ +1 ,...,np (γ), f S n p-m ′ +1 ,...,n p+1 (γ)), and f S n p-m ′ +1 ,...,n p+1 (γ) = f S n p+1 ,n p-m ′ +1 ,...,np (γ). Therefore Card(γ⌈n p+1 ) + m ′ ∈ S and m ′ ∈ S, so S ′ ∩ (c+[0, p]) ⊆ c+(S ∩ [0, p]). But this contradicts condition (⊥) since we actually have the equality.

(b) The proof is similar to that of (a). This time A S = (u × v) -1 ((A S ′ ) -1 ). We construct sequences (n j ) 1≤j≤p+1 , (q j ) 1≤j≤p+1 and (N j ) 1≤j≤p+1 satisfying the equality

f S ′ q j -1 [u(γ)] = u[f S n j (γ)] and Card(γ⌈n j ) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n j ) + [0, p]),
for each γ ∈ N j . This gives

(f S ′ q p-m+1 ) -1 . . . (f S ′ q p+1 ) -1 [u(γ)] = (f S ′ q p+1 ) -1 (f S ′ q p-m+1 ) -1 . . . (f S ′ qp ) -1 [u(γ)], thus c-(S ∩ [0, p]) ⊆ S ′ ∩ (c-[0, p]
), and we complete the proof as we did for (a).

Corollary 24 Let α = α ′ ∈ 2 ω . Then S βα , S β α ′ satisfy conditions (M), (⊥) and (⊥ -1 ). In particular,

A S βα ⊥ r c A S β α ′ and A S βα ⊥ r c (A S β α ′ ) -1 .
Theorem 5 is a corollary of this result. We saw that the map α → A S βα is continuous in the codes, and it is injective by Corollary 24. This implies that (A S βα ) α∈2 ω is a perfect antichain for ≤ r c made of minimal sets (we use Corollaries 21 and 24).

Proof. If s ∈ 2 <ω and t ∈ 2 ≤ω , we say that s ⊆ t if we can find an integer l ≤ |t| such that s ≺ t-t⌈l. We define s -1 ∈ 2 |s| by s -1 (i) := s(|s| -1i), for i < |s|. We say that s is symmetric if s = s -1 .

• It is enough to prove the following condition:

(⊥⊥) ∃P ∈ ω β α ⌈P ⊆ β α ′ and (β α ⌈P ) -1 ⊆ β α ′ .
Indeed, we will see that (⊥⊥) implies (⊥) and (⊥ -1 ) of Theorem 23. Condition (⊥⊥) gives P > 0.

Let p := 2P and c ∈ ω. We argue by contradiction.

(⊥) Assume that c + (S βα ∩ [0, p]) = S β α ′ ∩ (c + [0, p]). As 0 ∈ S βα , we can find l with c = Σ i<l (1+β α ′ (i)).
It is enough to prove that if n < P , then β α (n) = β α ′ (l+n).

We argue by induction on n.

-Notice that β α (0) = 0 is equivalent to 1 ∈ S βα and to β α ′ (l) = 0. Therefore β α (0) = β α ′ (l).

-Now suppose that n + 1 < P and β α (m) = β α ′ (l + m), for each m ≤ n. As

2 + Σ m≤n (1 + β α (m)) ≤ p, we get β α (n + 1) = β α ′ (l + n + 1). (⊥ -1 ) Assume that c -(S βα ∩ [0, p]) = S β α ′ ∩ (c -[0, p]). Let l ′ := l -P (as 2P -1 or 2P is in S βα ∩ [0, p], c > 2P -2 and l ′ ≥ 0). As (β α ⌈P ) -1 ⊆ β α ′ we can find n < P such that β α (n) = β α ′ (l -1 -n), since (β α ⌈P ) -1 ≺ β α ′ -β α ′ ⌈l ′ .
We conclude as in the case (⊥).

• First notice that

β α ⌈(2 n -1) = [β α ⌈(2 n -1)] -1 for each integer n. Indeed, let i < 2 n -1. It is enough to see that (i) 0 = (2 n -2 -i) 0 . But we have 2 n -2 -i = 2 n -2 -2 (i) 0 (2N + 1) + 1 = 2 (i) 0 (2 n-(i) 0 -2N -1) -1,
so we are done, since 2 n-(i) 0 -2N -1 is odd and positive. So it is enough to find n such that

β α ⌈(2 n -1) ⊆ β α ′ .
• Let n 0 minimal with γ α (n 0 ) = γ α ′ (n 0 ), and n 1 > n 0 + 1 with γ α ′ (n 0 + 1) = γ α ′ (n 1 ). We put n := n 1 + 2. We argue by contradiction: we get l with γ α ((i) 0 ) = γ α ′ ((l + i) 0 ), for each i < 2 n -1.

• Notice that for each m < n -1 we can find i < 2 n-1 with (l + i) 0 = m. Indeed, let

N ∈ ω ∩ [2 -m-1 (l + 1) -2 -1 , 2 -m-1 (2 n-1 + l + 1) -2 -1 [.
It is clear that i := 2 m (2N + 1)l -1 is suitable.

• Let M ≥ n 0 and (ε j ) j≤M ⊆ 2 with l = Σ j≤M ε j • 2 j . For k ≤ n 0 we define

i k := Σ j<k (1-ε j ) • 2 j + ε k • 2 k .
Note that i k < 2 k+1 and l+i k ≡ 2 k -1 (mod 2 k+1 ). We will show the following, by induction on k:

-The sequence (β α (i)) i<2 n-1 ,i≡2 k -1 (mod 2 k+1 ) is constant with value γ α (k), and equal to

(β α ′ (l + i)) i<2 n-1 ,i≡2 k -1 (mod 2 k+1 ) . -The sequence (β α ′ (l + i)) i<2 n-1 ,i≡i k (mod 2 k+1 ) is constant with value γ α ′ (k). -The sequence (β α ′ (l + i)) i<2 n-1 ,i≡i k +2 k (mod 2 k+1 ) is not constant. -ε k = 0 and γ α (k) = γ α ′ (k).
This will give the desired contradiction with k = n 0 .

So assume that these facts have been shown for j < k ≤ n 0 .

-The first point is clear.

-The second one comes from the fact that l + i is of the form 2 k (2K + 1) -

1 if i ≡ i k (mod 2 k+1 ), since l + i k ≡ 2 k -1 (mod 2 k+1 ).
-To see the third one, choose i < 2 n-1 such that (l + i) 0 = n 0 + 1 (or n 1 ). We have to see that i ≡ i k + 2 k (mod 2 k+1 ). We can find (η j ) j<n-1 with i = Σ j<n-1 η j • 2 j , so that

l + i + 1 ≡ 1 + Σ j<k η j • 2 j + (ε k + η k ) • 2 k (mod 2 k+1 ),
by the induction hypothesis. This inductively shows that

η j = 1 if j < k and η k = 1 -ε k . Thus i ≡ 2 k -1 + (1 -ε k ) • 2 k (mod 2 k+1 ). But i k + 2 k ≡ 2 k -1 + ε k • 2 k + 2 k (mod 2 k+1 ). Thus i k + 2 k ≡ -1 + ε k • 2 k (mod 2 k+1 ). Finally, 2 k -1 ≡ i k (resp., i k + 2 k ) (mod 2 k+1 ) if ε k = 0 (resp., ε k = 1). -So ε k = 0 and γ α (k) = γ α ′ (k).
This finishes the proof.

Now we prove that

[D 2 (Σ 0 1 ) \ pot(Π 0 1 ), ≤ r c ] is not well-founded.
Notation. Let S : ω ω → ω ω be the shift map: S(α)(k) := α(k +1), β 0 be the sequence (0, 1, 2, . . .), and β n := S n (β 0 ). Notice that β n (i) = i + n, by induction on n. We put B n := A S βn .

Proposition 25

We have B n+1 ≤ r c B n and B n ≤ r c B n+1 for each integer n.

Proof. We define injective continuous maps u = v : 2 ω → 2 ω by u(α) := 1 1+n α. They are clearly witnesses for B n+1 ≤ r c B n .

• Conversely, we argue by contradiction. This gives continuous maps u and v such that

B n = (u × v) -1 (B n+1 ).
By Lemma 22, we have u = v. We set f n m := f S βn m , and f n t := f n t(0) . . . f n t(|t|-1) for t ∈ ω <ω \ {∅}, when it makes sense. Let α ∈ N 0 n+3 , so that α = 0 n+3 γ.

• If f n t (α) is defined, then fix m t ∈ ω with u[f n t (α)] = f n+1 mt (u[f n t-t⌈1 (α)]), and set U:= u(α) (with the convention that f n ∅ := Id 2 ω ). Then u[f n t (α)] = f n+1 mt,m t-t⌈1 ,...,m t-t⌈(|t|-1) (U ). In particular, f n+1 m (1,...,n+2) ,m (2,...,n+2) ,...,m n+2 (U ) = f n+1 m (n+2,1,...,n+1) ,m (1,...,n+1) ,...,m n+1 (U ).

Therefore {m (1,...,n+2) , m (2,...,n+2) , . . . , m n+2 } = {m (n+2,1,...,n+1) , m (1,...,n+1) , . . . , m n+1 }.

• We have to see that B n ≤ r B B n+1 . We argue by contradiction, so that we get u and v Borel.

• Let us show that we can find a dense G δ subset G of 2 ω such that u| G = v| G is continuous, and f n m (α) ∈ G, for each α ∈ G ∩ D f n m . Claim. The set H := {α ∈ 2 ω /∀p ∃m ≥ p α ∈ D f n m } is a dense G δ subset of 2 ω . We argue by contradiction. We can find a nonempty clopen set V disjoint from H. The set B n ∩ V 2 has finite sections, so is pot(Π 0 1 ) (see Theorem 3.6 in [START_REF] Louveau | A separation theorem for Σ 1 1 sets[END_REF]). But (V, (f n m | V ∩f n m -1 (V ) )) is a converging situation, so that B n ∩V 2 is not pot(Π 0 1 ). ⋄

So we can find a dense G δ subset K of 2 ω such that u| K , v| . We have f n m k (α) ∈ K 0 , so (u(α), v[f n m k (α)]) tends to (u(α), v(α)) ∈ B n+1 \ B n+1 = ∆(2 ω ). So u| K 1 = v| K 1 . Now it is clear that G is suitable.

• We take α ∈ G ∩ N 0 n+3 and complete the proof as we did for Proposition 25.

Proof of Theorem 6. We will actually prove a stronger statement. We set (P 0 , P 1 , P 2 , P 3 , P 4 ) := (reflexive, irreflexive, symmetric, antisymmetric, transitive).

Let σ ∈ 2 5 \ {{2, 4}, {0, 2, 4}} such that the class Γ of ∆ 1 1 \ pot(Π 0 1 ) relations satisfying ∧ j∈σ P j is not empty. Then we can find a perfect ≤ B -antichain (R α ) α∈2 ω in D 2 (Σ 0 1 ) ∩ Γ such that R α is ≤ B -minimal among ∆ 1 1 \ pot(Π 0 1 ) sets, for any α ∈ 2 ω .

• First, notice that if {0, 1} ⊆ σ or σ = {1, 2, 4}, then every relation satisfying ∧ j∈σ P j is empty, thus pot(Π 0 1 ). If {2, 3} ⊆ σ, then every Borel relation satisfying ∧ j∈σ P j is a subset of the diagonal, and is therefore pot(Π 0 1 ). If σ = {0, 2, 4}, we are in the case of Borel equivalence relations, and by Harrington, Kechris and Louveau's Theorem, E 0 is minimum among non-pot(Π 0 1 ) equivalence relations. If σ = {2, 4}, then any Borel relation A ⊆ X 2 satisfying ∧ j∈σ P j is reflexive on its domain {x ∈ X/(x, x) ∈ A}, which is a Borel set. Thus we are reduced to the case of equivalence relations. In the sequel, we will avoid these cases and show the existence of a perfect antichain made of minimal sets for [Γ, ≤ B ].

• Let A := {A S βα /α ∈ 2 ω }. In the introduction, we defined R A for A ⊆ 2 ω × 2 ω .

Claim 1. {R

A /A ∈ A} is a ≤ B -antichain. Assume that A = A ′ ∈ A satisfy R A ≤ B R A ′ . Then there is f : 2 ω × 2 → 2 ω ×2 with R A = (f ×f ) -1 (R A ′ ).
We set F ε := {x ∈ 2 ω ×2/x 1 = ε} and b ε := R A ∩ (F ε ×F ε ), for ε ∈ 2. We then put a := R A ∩ (F 0 ×F 1 ). We have R A = a ∪ b 0 ∪ b 1 , and b ε = {(x, y) ∈ F ε ×F ε /x 0 = y 0 } is pot(Π 0 1 ). We set

F ′ ε := {x ∈ 2 ω × 2/f 1 (x) = ε} and b ′ ε := R A ∩ (F ′ ε × F ′ ε ), for ε ∈ 2.
Then (2 ω , (g ′ n )) is not a commuting situation, since otherwise C 1 ⊑ C E 0 ∩ L ′ 0 , which is absurd since E 0 ∩ L ′ 0 is transitive and C 1 is not. But the reason for that is that E 0 ∩ L ′ 0 / ∈ Π 0 2 .

B. D. Miller has also a version of Theorem 32 for directed graphs of uncountable Borel chromatic number (in [M2]). Its proof uses some methods analogous to those in the proof of Theorem 30. All of this shows the existence of numerous analogies between non potentially closed directed graphs and directed graphs of uncountable Borel chromatic number.

  K are continuous and K ⊆ H. Now let K 0 := K, K p+1 := K p \ ( m D f n m \ f n m -1 (K p )),andG := p K p . If α ∈ K 1 , fix (m k ) infinite such that α ∈ k D f n m k

  1 and |p t l ,tn | = 2, then the link between t k and t l has already been considered. The argument is similar if |p t

k ,tn | = 2 and |p t l ,tn | = 1. If |p t k ,tn | and |p t l ,tn | are at least 2, then p t k ,tn (1) = p t l ,tn (0) or p t k ,tn (0) = p t l ,tn (1), by Proposition 18.(b). Here again, the link has already been considered. So condition (3) restricted to R Θ is fullfilled. It remains to check conditions (

Proof. (a) We argue by contradiction: by Lemma 20, we can find continuous maps u, v : 2 ω → 2 ω such that A S = (u × v) -1 (A S ′ ). By Lemma 22, we have u = v.

Claim. Let n, q be integers and N ∈ Σ 0 1 (2 ω ) \ {∅}. Then we can find integers n ′ > n, q ′ > q and a nonempty open subset

and Card(γ⌈n ′ ) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n ′ ) + [0, p]),

for each γ ∈ N ′ .

Indeed, let δ ∈ u [N ]. As (δ, δ) is not in q ′ ≤q Gr(f S ′ q ′ ), we can find a clopen neighborhood W of δ such that W 2 ∩ q ′ ≤q Gr(f

. By Lemma 20, we can find n ′ > n and γ 0 ∈ Ñ ∩ f S n ′ -1 ( Ñ ) with Card(γ 0 ⌈n ′ )+(S ∩[0, p]) = S ∩(Card(γ 0 ⌈n ′ )+[0, p]).

-1 ( Ñ ) ∩ N γ 0 ⌈n ′ . We have q ′ (γ) > q, by the choice of W . By Baire's Theorem we get q ′ and N ′ . ⋄

By the Claim we get n 1 , q 1 and N

Card(γ⌈n 1 ) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n 1 ) + [0, p]),

for each γ ∈ N 1 .

We then get n 2 > n 1 , q 2 > q 1 , and a nonempty open subset N 2 of N 1 ∩ f S n 2

-1 (N 1 ) with

Card(γ⌈n 2 ) + (S ∩ [0, p]) = S ∩ (Card(γ⌈n 2 ) + [0, p]),

for each γ in N 2 . We continue in this fashion, until we get n p+1 , q p+1 and N p+1 . Fix γ ∈ N p+1 and set c := Card(u(γ)⌈q p+1 ).

• Fix m ∈ S ∩[0, p]. For t ∈ ω <ω , we set f S t := f S t(0) . . . f S t(|t|-1) , when it makes sense. Notice that f S n p-m+1 ,...,n p+1 (γ) = f S n p+1 ,n p-m+1 ,...,np (γ) is defined. Therefore, A S contains

If m n+2 = m n+1 , then we get u(0 n+2 1γ) = u(0 n+1 10γ). As f n 0 (0 n+1 10γ) = 10 n 10γ, we get (u(0 n+1 10γ), v(10 n 10γ)) ∈ B n+1 and (0 n+2 1γ, 10 n 10γ) ∈ B n , which is absurd. Now suppose that M := max(m (1,...,n+2) , m (2,...,n+2) , . . . , m n+2 ) is in {m n+1 , m n+2 }. Then we can find

• We then get the contradiction by induction, since we can remove M from both {m (1,...,n+2) , m (2,...,n+2) , . . . , m n+2 }, {m (n+2,1,...,n+1) , m (1,...,n+1) , . . . , m n+1 }.

Remarks. (a) We showed that (A S βα ) α∈2 ω is a perfect antichain made of sets minimal among nonpot(Π 0 1 ) sets for ≤ r c . There are other natural notions of reduction. We defined ≤ r c in the introduction. If we moreover ask that u and v are one-to-one, this defines a new quasi-order that we denote ⊑ r c . If u and v are only Borel, we have two other quasi-orders, denoted ≤ r B and ⊑ r B . If X = Y , X ′ = Y ′ and u = v, we get the usual notions ≤ c , ⊑ c , ≤ B and ⊑ B . Let ≤ be any of these eight quasi-orders. Then (A S βα ) α∈2 ω is a perfect antichain made of sets minimal among non-pot(Π 0 1 ) sets for ≤:

• Let us go back to Theorem 15 first. Assume this time that A ≤ A f . Then in the second case we can have

The changes to make in the proof are the following. Let ν (resp., ν ′ ) be a finer Polish topology on Y (resp., Y ′ ) making u (resp., v) continuous. We get continuous maps u

• In Corollary 16, we can replace ≤ r c with ≤.

• The proof of Theorem 19 shows that, in its statement, we can write A S ⊑ c A S ∩ B 2 .

• The proof of Lemma 20 shows that, in its statement, we can replace ≤ r c with ≤.

• It follows from Corollary 21 that A S βα is, in fact, minimal among non-pot(Π 0 1 ) sets for ≤.

• To see that (A S βα ) α∈2 ω is an antichain for ≤ r B , it is enough to see that in the statement of Theorem 23, we can replace ⊥ r c with ⊥ r B . We only have to change the beginning of the proof of Theorem 23. This time u and v are Borel. Let τ be a finer Polish topology on 2 ω making u and v continuous, and

, and we may assume that u and v are continuous.

We then put a which contradicts Corollaries 21 and24.

-Let τ be a finer Polish topology on X making f continuous. By Theorem 9 there are

As in the proof of Theorem 15, this implies that A ∩ P 2 is not pot(Π 0 1 ). By Lemma 14, we can find a Borel subset S of P and a finer topology σ on S such that

-By 18.3 in [K], we can find a Baire measurable map g ε :

As in the proof of Theorem 15, we see that

Finally, one easily checks the existence of a continuous map c : 2 ω → 2 ω such that c(δ) is a Borel code for R A if δ is a Borel code for A. So there is a continuous map r : 2 ω → 2 ω such that r(α) is a Borel code for R A S βα . This shows, in particular, the existence of a perfect antichain made of minimal sets for

The proof of the previous point shows that if σ ⊆ {1, 3, 4}, then {R ′ A /A ∈ A} is a perfect antichain made of minimal sets for [Γ, ≤ B ]. Notice that this applies when Γ is the class of ∆ 1 1 \ pot(Π 0 1 ) strict quasi-orders, strict partial orders, directed graphs or oriented graphs.

• Similarly again, we can define, for A ⊆ X 2 , S A reflexive symmetric on X × 2 by (x, i) S A (y, j) ⇔ (x, i) = (y, j) or [(x, y) ∈ A and i = 0 and j = 1] or [(y, x) ∈ A and i = 1 and j = 0].

But this contradicts Corollaries 21 and 24. This shows that if σ = {0, 2}, then {S A /A ∈ A} is a perfect antichain made of minimal sets for [Γ, ≤ B ].

• Similarly again, we can define, for A ⊆ X 2 , a graph relation S ′

A on X × 2 by (x, i) S ′ A (y, j) ⇔ [(x, y) ∈ A and i = 0 and j = 1] or [(y, x) ∈ A and i = 1 and j = 0].

The proof of the previous point shows that if σ ⊆ {1, 2}, then {S ′ A /A ∈ A} is a perfect antichain made of minimal sets for [Γ, ≤ B ]. Notice that this applies when Γ is the class of ∆ 1 1 \pot(Π 0 1 ) graphs. This finishes the proof.

Remarks. (a)

We showed that (R A ) A∈A is a perfect antichain made of sets minimal among nonpot(Π 0 1 ) sets for

A∈A is a perfect antichain made of sets minimal among non-pot(Π 0 1 ) sets for ≤. It is enough to check the minimality. The only thing to notice, in the proof of Claim 2 of the proof of Theorem 6, is that we have

which is absurd. Now assume that L 0 = (u × v) -1 (¬∆(2 ω )). Then β ≤ lex α implies u(α) = v(β), thus u = v has to be constant. Thus α < lex β implies that u(α) and v(β) are different and equal.

In the introduction, we saw that {¬∆(2 ω ), L 0 } is a complete family of minimal sets for

We just saw that {¬∆(2 ω ), L 0 } is an antichain for ≤ r B , and therefore for any of the eight usual quasiorders. These facts imply that ¬∆(2 ω ) and L 0 are minimal among non-pot(Π 0 1 ) sets for ≤ r c , ⊑ r c , ≤ r B and ⊑ r B . But ¬∆(2 ω ) and L 0 are also minimal for ≤ c , ⊑ c , ≤ B and ⊑ B . Indeed, if O is any of these two open sets, we have O \ O = ∆(2 ω ). This gives G such that O ∩ G 2 ⊑ c A, as in the proof of Theorem 15 (and Remark (a) after Proposition 25). Then any increasing continuous injection

The minimality of A 1 for the classical notions of comparison.

As announced in the introduction, we will show a result implying that A 1 is minimal among nonpotentially closed sets. The following definition specifies the meaning of the expression "the f n 's do not induce cycles" mentioned in the introduction. This kind of notion has already been used in the theory of potential complexity (see Definition 2.10 in [L3]).

Definition 26 We say that (X, (f

(b) For v ∈ ω <ω \ {∅} and ε ∈ {-1, 1} |v| , the following implication holds:

Notation. We define f 1 n : N sn0 → N sn1 by f 1 n (s n 0γ) := s n 1γ (where s n is as defined in the introduction, to build

Proof. We argue by contradiction. Let v be a counter-example of minimal length. Note that |v| ≥ 3.

Set l := max i<|v| v(i), e 0 := e |v| := α⌈(l+1), and, for 0 < i < |v|:

Set Θ := (θ n ), where θ n := s n . Then (e i ) i≤|v| is an s(R Θ )-cycle, which contradicts Proposition 18.(b).

Example.

(2 ω , (f 1 n )) is an acyclic situation. Indeed, (2 ω , (f 1 n )) is a converging situation, by Corollary 12. Let us show that condition (b) in the definition of an acyclic situation is true for

Otherwise, let α ∈ U . By Lemma 27, and by continuity, we can find a clopen

Theorem 28 Let (X, (f n )) be an acyclic situation. Then A 1 ≤ r c A f .

Proof. It looks like those of Theorems 2.6 and 2.12 in [L3]. The main difference is that we want a reduction defined on the whole product. It is also similar to the proof of Theorem 19. Let us indicate the differences with the proof of Theorem 19. We replace

• We only construct (U s ) s∈2 <ω and φ, so that (iii) becomes

• We can find C ∈ ∆ 0 1 (U t 0 ⌈p ) \ {∅} such that C 2 ∩ q≤p Gr(f q ) = ∅, and also

We set φ(p) := n 0 . We first construct clopen sets Ũ n k as in the proof of Theorem 19.

Case 2. t n ⌈p = t r ⌈p.

We can therefore find a clopen neighborhood

We construct clopen sets U n r , for k = r ≤ n, as before, ensuring condition (3). Notice that U n r ⊆ Ũ n r , so that the hereditary conditions (1), ( 2) and (5) remain fullfilled. In finitely many steps we get (U n k × U n l ) ∩ ∆(X) = ∅, for each pair (k, l). The argument is similar for Gr(f q ) instead of ∆(X).

t

This case is similar to case 2.1.

Remark. We actually showed that

Corollary 29 A 1 is minimal among non-potentially closed sets for the eight usual quasi-orders.

Proof. Let B ∈ ∆ 1 1 (2 ω ), τ a finer topology on B, Z := [B, τ ] and

. We assume that (Z, (f n )) is a converging situation. By Corollary 16 and Remark (a) after Proposition 25, it is enough to show that A 1 ⊑ c A 1 ∩ Z 2 = A f . By Theorem 28 and the remark above, it is enough to check that (Z, (f n )) is an acyclic situation, i.e., condition (b). Fix α ∈ U and

Remarks. (a) Theorem 28 is also a consequence of the following result:

Theorem 30 (Miller) Let X be a Polish space, and A a locally countable Σ 1 1 oriented graph on X whose symmetrization is acyclic (in the sense of Definition 17). Then exactly one of the following holds: (a) A has countable Borel chromatic number.

Theorem 30 is actually a corollary of a more general result, motivated by the results of this paper, which gives a basis for locally countable Borel directed graphs of uncountable Borel chromatic number, with respect to ⊑ c . The proof of both Theorem 30 and the basis result appear in [M1].

(b) We saw that A 1 ⊑ c A f if (X, (f n )) is an acyclic situation. There is another example of a D 2 (Σ 0 1 ) \ pot(Π 0 1 ) set, which seems more "natural" than A 1 . It is

Its symmetric version plays an important role in the theory of potential complexity (see for example Theorem 3.7 and Corollary 4.14 in [L1]). We wonder what {C 1 } is a basis for. Roughly speaking, {C 1 } will be a basis for situations where commuting relations between the f n 's are involved. More specifically,

. Moreover the graphs of the f n 's are pairwise disjoint.

A 0-dimensional Polish space is homeomorphic to a closed subset of ω ω . So condition (a) is essentially the same as condition (a) of a converging situation. We use this formulation for the last part of condition (b). The disjunction of the domain and the range of f n , and the inequality α < lex f n (α) come from symmetry problems. We will come back later to this. We will also come back to the Π 0 2 condition. It is linked with transitivity properties. The first part of condition (d) expresses the commutativity of the functions. One can show the following result, whose proof contains a part quite similar to the proof of Theorems 19 and 28.

Theorem 32 Let (X, (f n )) be a commuting situation. Then C 1 ⊑ c A f . The proof of this uses the fact that C 1 = A f , where (2 ω , (f n )) is a commuting situation. Let g n : 2 ω → 2 ω be defined by g n (α)(k) := α(k) if k = n, 1α(n) otherwise. Then s(C 1 ) = n Gr(g n ), so (2 ω , (g n )) is not a commuting situation, since otherwise we would have C 1 ⊑ C s(C 1 ), which is absurd since s(C 1 ) is symmetric and C 1 is not. But the two reasons for that are that α < lex g n (α), and that the domain and the range of the bijections g n are not disjoint.

Similarly, let φ : ω → P f \ {0 ∞ } be a bijective map. We let g ′ n (α)(p) := α(p) if φ(n)(p) = 0, 1 otherwise. This defines g ′ n : {α ∈ 2 ω /∀p φ(n)(p) = 0 or α(p) = 0} → 2 ω . Note that

where L ′ 0 := {(α, β) ∈ 2 ω ×2 ω /∀i ∈ ω α(i) ≤ β(i) and α = β}.