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w-powers and descriptive set theory.

Dominique LECOMTE
J. Symbolic Logi@0, 4 (2005), 1210-1232

Abstract. We study the sets of the infinite sentences constructible avitictionary over a finite alphabet, from the view-
point of descriptive set theory. Among other things, thisegisome true co-analytic sets. The case where the digfigar
finite is studied and gives a natural example of a set at thed dewf the Wadge hierarchy.

1 Introduction.

We consider the finite alphabet= {0,...,n — 1}, wheren > 2 is an integer, and a dictionary
over this alphabet, i.e., a subsébf the setn <+ of finite words with letters im.

Definition 1 Thew-power associated t is the setA>° of the infinite sentences constructible with
A by concatenation. So we hav¥€® := {agpa; ... € n¥/Vicw a;€ A}.

The w-powers play a crucial role in the characterization of stdeén“ accepted by finite au-
tomata (see Theorem 2.2 in [St1]). We will study these obj&am the viewpoint of descriptive set
theory. The reader should see [K1] for the classical resilisis theory; we will also use the notation
of this book. The questions we study are the following:

(1) What are the possible levels of topological complexitythew-powers? This question was asked
by P. Simonnet in [S], and studied in [St2]. O. Finkel (in [Fahd A. Louveau proved independently
that X1-completew-powers exist. O. Finkel proved in [F2] the existence ®1%-completew-power
for each integefm > 1.

(2) What is the topological complexity of the set of dictioilea whose associated-power is of a
given level of complexity? This question arises naturallyew we look at the characterizations of
1Y, I1Y and = w-powers obtained in [St2] (see Corollary 14 and Lemmas 2p, 26

(3) We will recall that anu-power is an analytic subset af’. What is the topological complexity of
the set of codes for analytic sets which arpowers? This question was asked by A. Louveau. This
guestion also makes sense for the set of codeEfo(rresp.,Hg) sets which ares-powers. And also
for the set of codes for Borel sets which argowers.

As usual with descriptive set theory, the point is not only domputation of topological com-
plexities, but also the hope that these computations véll i a better understanding of the studied
objects. Many sets in this paper won't be clopen, in paricwon'’t be recursive. This gives unde-
cidability results.



e We give the answer to Question (2) for the very first levéls (its dual class anA ). This contains

a study of the case where the dictionary is finite. In particulve show that the set of dictionaries
whose associated-power is generated by a dictionary with two words i®a(=9)-complete set.
This is a surprising result because this complexity is nedicht all on the definition of the set.

e We give two proofs of the fact that the relation ‘c A" is X1-complete. One of these proofs
is used later to give a partial answer to Question (2). To tstded this answer, the reader should
see [M] for the basic notions of effective descriptive seioity. Roughly speaking, a set is effectively
Borel (resp., effectively Borel id) if its construction based on basic clopen sets can be coidbdw
recursive (resp., recursive i) sequence of integers. This answer is the

Theorem. The following sets are true co-analytic sets:
-{Ae 2" /A® e Al(A)).

-{A €2 /A® e BN AJ(A)}, for 1 < € <wy.

-{A €2 /A® e YN AL(A)}, for2 < € < wy.

This result also comes from an analysis of Bavgbowers: A* is Borel if and only if we can
choose in a Borel way the decomposition of any sentencé~®finto words of A (see Lemma 13).
This analysis is also related to Question (3) and to somel Baifwrmization result foiGs sets locally
with Borel projections. We will specify these relations.

e A natural ordinal rank can be defined on the complement of .appwer, and we study it; its
knowledge gives an upper bound of the complexity ofihpower.

¢ We study the link between Question (1) and the extensiorrimigien finite sequences of integers.

e Finally, we give some examples afpowers complete for the classas!, X9 @ I1{, Dy(X2Y),
DQ(E?), Dg(E?) andDg(Eg)

2 Finitely generatedw-powers.
Notation. In order to answer to Question (2), we set
o :={ACnY/A® =0}, I := {A Cn<Y/A>® = n*},
A= {ACn<¥/A*® e A},
Be:={ACn/A® e B}, T := {ACn™/A® e IIY} (£>1),
A= {ACn<Y/A® c AlL.
olf AC n<¢ thenwe sed™ := A\ {0}.

e We define, fors € n<“ anda € n*, o — s := (a(|s]), a(|s| + 1), ...).

o If S C (n<¥)<¥, then we se§* := {S* := S5(0)...S(]s| —1)/S € S}.



e We define a recursive map: n% x w* x w — n<% by

_ J(a(0),...,a(B[0])) if ¢ =0,
m(e, frq) = {(a(l + Sy B o (Si<q A1) Otherwise.

We always have the following equivalence:

a€A® & Jpew” [(Ym>0 B(m)>0)and(Vgew w(a, B,q) € A)].
Proposition 2 ([S]) A~ € X1 forall A C n<v. If A is finite, then4> < IIY.
Proof. We define a continuous map: (A~)¥ — n“ by the formulac((a;)) := aga; ... We have
A>® = c[(A7)¥], and(A™)“ is a Polish space (compactAfis finite). O
Proposition 3 If A ¢ AY, then there exists a finite subggtof A such thatd> = B>,

Proof. SetE), := {a € n¥/a[k € Aanda — o[k € A*}. Itis an open subset of’ since A is
open, andA*> C (J,., Ex. We can find an integer such thatA> C U0<k§p E}., by compactness
of A®. Let B := ANn=P. If « € A%, then we can find an integér < k; < p such that
alky € Aand o — afky € A*. Thusa[ky € B. Then we do it again witlw — « [k, and so on.
Thus we haver € B® = A%, O

Remark. This is not true if we only assume thaf® is closed. Indeed, we have the following counter-
example, due to O. Finkel:

A= {s€2%¥/Vi<|s| 2.Card{j < i/s(j) = 1}) > i}.

We haveAd>™ = {a € 2¥/Vi e w 2.Card{j < i/a(j) = 1}) > i} and if B is finite andB> = A°,
B C Aand10120%... ¢ B>,

Theorem 4 (a) o = {0, {0} } is IT{-complete.
(b) I, is a densex! subset o2~ In particular, I, is 9-complete.
(c) Ay isaK, \ ITY subset o2"~“. In particular, A; is 29-complete.

Proof. (a) Is clear.

(b) If we can findm € w with n™ C A, thenA>® = n¥. As{A C n<¥/3Im € wn™ C A} is adense
open subset ai”~*, the density follows. The formula

Aelly & ImVsen™Ig<m s[ge A~

shows thalll is X?, and comes from Proposition 3.

(¢) If A~ € AY, then we can fingp > 0 such thatA> = (4 N n=P)>, by Proposition 3. So
let s1,..., s, b1, ..., € 259 be such thatd™ = ;< N5, = n¥\ (U< Nt;). For each
1 < j <, and for each sequenee= [(A™)<“]*\ {0}, t; A s. So we have

Ip >0 3k, l€w sty sp by, €25 Uygicr Noy = 09\ (U< Niy)
A¥eA) & ¢ and V1 < j <1 Vse[(AT)<“I*\{0} t; #s and Yaen®
{a¢U1§i§k]V8i or3gep” [(Ym>0 B(m)>0)and(Vgew (o, [,q)€ A)]}.

This shows tha\; is a K, subset o™~



o show that it is noIl), it is enou 0 see that its intersection wi e closed se
To sh that it Hgt ght that its int t th the cl d set
{ACn< /A% £n*)

is dense and co-dense in this closed set (see (b)), by Béwexsem. So leD be a basic clopen
subset 02"~ meeting this closed set. We may assume that it is of the form

{ACn</Ni<k s; € AandVj <1 t; ¢ A},

whereso, . .., sk, to, ..., & € n<¢ and|sg| > 0. Let A := {s;/i < k}. ThenA € O andA* is in
0 \ {0, n“}. There are two cases.

If A e AY, then we have to findB € O with B* ¢ AY. Letug,...,u, € n<* with
Up<im Nu, = n\ A Letr € n\{uo(|uo| —1)}, s := ugrltol M%< Il andB := AU{s}. Then
B € O ands>* € B*. Let us show that* is not in the interior ofB>°. Otherwise, we could find an
integerqg such thatV,e C B>, We would havey := s%ugug(|ug| —1)r>° € B®. ASN,, N A>® =),
the decomposition of: into nonempty words oB would start withg timess. If this decomposition
could go on, then we would hawe) = (ug(|ug| — 1))'“0‘. Letv € n=“ be such thatV, C A>.
We havev(ug(Jug| — 1)) € A%, so(ug(|ug] — 1)) € N, N A>®. But this is absurd. Therefore

B> ¢ AY.

If A% ¢ A9, then we have to find € O such thatB> € A\ {n*}. Notice thatn* #J; <, N,
So letv € n=* be non constant such that, N J;, Ns, = 0. We set

D:=AU [ Ao,
ren\{v(0)}

B:=AU{sen~/|s|>max<|t;| and3te D t < s}. We getB>® = |J,., N; € A and
N, N B> =),
S0 B> # n¥. O
Now we will studyF := {A C n<¥/3B C n<¥ finite A>° = B>}.
Proposition 5 F is a co-nowhere densBJ-hard subset 02"~ .

Proof. By Proposition 3, ifA> = n“, then there exists an integesuch thatd> = (A N n=P)>, so
IT, C F and, by Theorem 4F is co-nowhere dense. We define a continuous tap~ — 2"~ by
the formulag(v) :=={0¥1/y(k)=1}. If y€ Py:={a€2¥/IpVm>p a(m)=0}, theng(y) € F. If
v ¢ Py, then the concatenation map is an homeomorphism #6m~ onto ¢ (), thus¢(y)> is
not K,. So¢(v) ¢ F, by Proposition 2. Thus the preimage®y ¢ is Py, andF is £3-hard. O

LetG, == {A Cn~Y/3s1,...,8p € n=Y A% = {51,...,5,}*}, so thatF = J, G,. We have
Go = 2o, S0Gg is I \ 329.



Proposition 6 G isTI{ \ XY. In particular, G, is TI9-complete.

Proof. If p € w\ {0}, then{0,17} ¢ G, sinceB> = {s*} if B = {s}. Thus{0} is not an interior
point of G; since the sequendg0, 17}),~, tends to{0}. Sog,; ¢ %Y.

e Let(4,,) C G; tending toA C n<“. If A C {0}, thenA> =0 = {0}>°,s0A4 € G;. If A L {0},
then lett € A~ andag := t°°. There exists an integer, such that € A,, for m > mg. Thus we
may assume thate A,, and A% # 0. So lets,,, € n<“\ {0} be such thatd?? = {s,,}>° = {s>°}.
We havesS® = ap. Leth := min{a € w\ {0}/(a[a)™® = ap}.

e We will show that4,,, C {(ao[b)?/q € w}. Lets € Ay, \ {0}. Ass™ = ap, we can find an integer
a > 0 such thats = ag[a, andb < a. Letr < b andq be integers so that = ¢.b + r. We have, if
r >0,

ap = (agfa)™ = (ao[b)> = (ao[q.b)(an[a — ao[g.b)ag
= (ap[b)¥(ap[a — ap[q.b)ag = (ap[a — ap[g.b)ag = (ap[r)ag = (ag[r)™

Thus, by minimality ofb, » = 0 and we are done.

e Letu € A. We can find an integen,, such that. € A,, for m > m,,. So there exists an integey
such thatu = (ag[b)?. ThereforeA> = {(ap[b)*} = {ap[b}*>° andA € G;. O

Remark. Notice that this shows that we can find € n<“ \ {0} such thatA C {w?/q € w} if
A € G1. Now we studyG,. The next lemma is just Corollary 6.2.5 in [Lo].

Lemma 7 Two finite sequences which commute are powers of the saneestijtience.

Proof. Let x andy be finite sequences withy = yx. Then the subgroup of the free group on
generators generated lyandy is abelian, hence isomorphic #a One generator of this subgroup
must be a finite sequeneesuch thatr andy are both powers of. O

Lemma 8 Let A € Go. Then there exists a finite subdebf A such thatA® = >,
Proof. We will show more. Letd ¢ G satisfyingA> = {s1, s2}°°, with |s1| < |s2]. Then

(a) The decomposition af into words of{s;, s2} is unique for eaclx € A> (this is a consequence
of Corollaries 6.2.5 and 6.2.6 in [LO]).

(b) ss1 L s19s5 for each integefy > 0, andsgsy A s1989 = S182 A $957.
(©) A C [{s1,82} "

e We prove the first two points. We split into cases.
2.1. S1 1 S92.

The result is clear.



2.2.51 <4 83 A s7°.
Here also, the result is clear (autinto words of lengtHs; |).

2.3.51 <#£ 82 < Scfo.
We can writesy = s7's, wherem > 0 ands <. si. Thussys; = s7'ss; ands’lnﬂs < sisy if
> 0. Buts”ss; L s !s otherwisess; = s1s, ands, s; so would be powers of some sequence,
q 1 1

which contradictsA ¢ G .

e We prove (c). Let € A, so thatts{°, tses® € A>. These sequences split aftés; so A s251), and
the decomposition ofs$° (resp.,ts2s7°) into words of{sy, so} starts withus; (resp.,uss_;), where
u € [{s1,s2}¢]*. Sots° andtsesi® split afteru(sise A sas1) by (b). But we must have = «
because of the position of the splitting point.

e We prove Lemma 8. I € Gy, thenF := () works. If A € G; \ Gy, then letw € n<¥ \ {(} such
that A C {w?/q € w}, andg > 0 such thatw? € A. ThenF := {w?} works. So we may assume
thatA ¢ Gi, andA™ = {s1,52}>°. ASA® C (J,cq4- {a € Ni/s152 A sasy < a — t} is compact,
we get a finite subsel' of A~ such thatA> C J,.p {a € Ni/s152 A ses1 < a —t}. We have
F>* C A®. If a € A, then lett € F such thatt < «. By (c), we havet € [{s1,s2}<“]*. The
sequence is the beginning of the decomposition @finto words of{s;, so}. Thusa — t € A*> and
we can go on like this. This shows thatc F>°. O

Remark. The inclusion ofA*> = {s1, s5}°° into {¢1,t2}°° does not imply{ s, so} C [{t1,t2}<“]*,
evenifA ¢ G;. Indeed, take; := 01, sy := ¢; := 0 andte := 10. But we have

ta] + [t2] < [s1] + [s2],
which is the case in general:

Lemma9 Let A, B ¢ G, satisfyingA™ = {s1,s2}>° C B> = {t;,t2}*°. Then there ig € 2 such
that |t1.4;] < |Sl+[z’+j mod2]| for eachi € 2. In particular, [t1| + |t2| < |si| + |s2].

Proof. We may assume that;| < |ss|. Let, fori = 1, 2, (w?,),, € {t1,t2} be sequences such
thats$® = wjwi ... (resp.,s2s° = wiw? . ..). By the proof of Lemma 8, there is a minimal integer
my satisfyingw,., # w2,. We letu := wj...w}, _;. The sequencesi® and sys7° split after
8182 N\ 8981 = u(t1t2 A tgtl). Similarly, S<1>o andslsgscfo Split after81(81$2 A 8281) = U(tltg A tgtl),
wherev € [{t1,t2}<¢]*\ {0}. So we gek u = v. Similarly, with the sequences s ands2s°, we
see thakou € [{t1,t2}<“]*\ {0}. So we may assume that# () since{sy,so} & Gi. If t1 [ to, then
we may assume thédit# ¢; <. to. So we may assume that we are not in the ¢aset(°. Indeed,
otherwiset, = t7't, wherel) <. t < t; (see the proof of Lemma 8). Moreover,doesn't finishi,,
otherwise we would havg = t(t; —t) = (t; — t)t andt, t; — t, t1, t2 would be powers of the same
sequence, which contradicfs, t2} ¢ G1. Ass;u € [{t1,t2} <], this shows that; € [{t1,t2}<“]*.
So we are done sinde, s2} ¢ Gi as before.



Assume for example thag = w}no. Letm’ be maximal witht’ln' < t9. Notice that
ut{”/ < $182 < 515287°.

We haveuts < s15959°, otherwise we would obtaiat™ ! < 51598%° A 5957° = 5189 A S981 < S5°,
] : 1 : 1 1 1 Lo 1
which is absurd. So we géth| < |s1| since|u|+|ta|+|t1ta A tati| <|s1|+]|s152 A s2s1|. Similarly,
t1| < |so| sincewt™ T < s2s%°. The argument is similar if, = w2, (we get|t;| < |s;| in this case

1 251 g mo
fori =1, 2). O

Corollary 10 Gy is aD,(X9) \ D, (X?) set. In particular,G, is D,,(X{)-complete.

Proof. We will apply the Hausdorff derivation t6 C 2"~“. This means that we define a decreasing
sequencéF; )¢, of closed subsets @'~ as follows:

Fe:=| () Fy | ngif¢iseven | () F, | \Gif ¢is odd.

n<§ n<é

Recall that if¢ is even, thenfy = 0 is equivalent toG € D¢(XY). Indeed, we set; = I.
We haveUg \ Ug = F¢ \ Fepq € G if (is even andUeyy \ Ug C G if § is odd. Similarly,
Ue \ (U< Un) € G if ¢is limit. If Fx = 0, then lety be minimal such thaf;, = (. We have
G =Up<y. 0 0dd Us \ (U,<p Up)- If nis odd, therG = Uy, ¢ evenUo \ (U,<¢ Uy) € Dy(=9),
thusG € D, (29) C De(%9). If nis even, ther§ = U,_, 5 odd Us \ (U,<s Up) € Dy(=9) and
the same conclusion is true. Converselyy ie D,(X9), then let(V;)),<¢ be an increasing sequence
of open sets witl§ = U, _ , odd ¥ \ (Up<,, Vo). By induction, we check thal,, C V;, if n < &.
This clearly implies thaf; = () becausé is even.

e We will show that ifA ¢ G, satisfiesA> = {s1, 52}, thenA ¢ Fy; := Fy(G2), whereM is the
smallest odd integer greater than or equafte;, s2) 1= 25 <|s, | |5y 2 n2{511Hls2170),

We argue by contradictionA is the limit of (A,), whereA, € Fi/—1 \ Go. Lemma 8 gives a
finite subset” of A, and we may assume thatC A, for eachg. Thus we haved> C AL, and the
inclusion is strict. Thus we can find € [A5“]* such thatV, N A> = §). Let g, ..., S, € Aq be
such thats? = s8 . .. si,, .

Now A, is the limit of (4,,),, whereA, , € Fir_2 N G2, and we may assume that
{sd, ..., Sh dUE C Ay,

for eachr, and thatd,, . ¢ G, becaused, ¢ G C Go. Lets{", 53" such thatA2, = {s]", s5"}.
By Lemma 9 we havés?" |+ [s3"| < |s1]+ |s2|. Now we letBy := Ag o ands? := s> fori = 1, 2.
We haveBj € Fu—2 N G2 \ G1, A* C B = {s?,53}>, and

|91 + [s5] < [s1] + |s2l.



Now we iterate this: for each < k < n2(s11*ls2) we getBy, € Fys_o(11) N G2 \ G1 such that
By | Cu B = {sh,s5}> and|s¥| + [sk| < |si| + [sh71|. We can findky < n2(s11+1s2)) such
that|s5°| + [s5°| < [shoY| + [sho!| (with the conventions; ! := s;). We setCy := By, t? := s,
So we haveCy € Fyy_oko41) N G2 \ G1, Cg° = {89, 15} and [t + [t9] < [s1] + |s2|. Now we
. . I—1) ;-1
iterate this: for each < |s1| + |s2| — 2, we gett!, th, k; < n2(4 1+t 1) and

Cr€ Fyras,o) (kmt1) G2\ G1

satisfyingCpe = {¢}, 4} and|t}| + [t5] < [t\71| + [t5~1] (with the conventiort; ! := s;). We have
185+ [£5] < |s1] + |s2| — 1 — 1, thus

-1 -1
25 o1 sal—2 (Rt 1) < 25 a1 fso) o 20T 127D < f (s, 50)

and this construction is possible. But we hay@! 152172 ¢l Fls=l=2) < thusCis, |4 [ss/—2 € G1,
which is absurd.

LetA ¢ Go. As A ¢ G, we canfinds, ¢t € A which are not powers of the same sequence. Indeed,
let s € A~ andw with minimal length such that is a power ofu. Then anyt € A\ {u?/q € w}
works, because i andt are powers ofv, thenw has to be a power af. Indeed, as < w, w = u*v
with v < u, andv has to be a power af by minimality of |u| and Lemma 7. Assume that moreover
A € Fyyo. Now A is the limit of (A ), C Fapp1 N Go for each integek, and we may assume
thats, t € Ag, ¢ Gi. Lets™", s5" be such thatd; ,> = {s*", s5"}>. By Lemma 9 we have

%7+ |sh7| < |s| 4 |t| and f (s, s57) < f(s,t). By the preceding point, we must have
2k+1 < f(s,t).
Thus(),, Fin € Go. Notice thatF, . 1(G2) C Fiy, S0 thatF,(G2) = # andGs € D, (X9).

e Now let us show thaf0} € F,(Gz) (this will imply G» ¢ D,,(29)). Itis enough to see that

{0} € Fm.

Let E(z) be the biggest integer less than or equat i@y, ; := 28+1=F(sl/2) andk € w. We define
Ay = {0} and, fors € (w\ {0,1}H)=H+ andm > 1, Agy = AU{(01P%5)™; (021Pks)™ ) if
|s| is even,A;U{s € [{0, 1Pk }<¥]*/m <|s| <m—+py s} If |s| is odd. Let us show thatl; € G,
(resp.,Go) if |s| is even (resp., odd). First by induction we gét,, C {0, 17%:}<%. Therefore
A2 ={0,1Pks}f |s| is odd, because ik is in {0, 1P+ }°° andt € [{0, 1P+ }<“]* with minimal
length> m beginsa, thent € As,. Now if |s| is even andd3>, = {s1, s2}°°, then0™ € {s1, s2}*°,
thus for examples; = 051, (01P%5)> € {51, 52}, thussy < (017%5)> and |sy| > |(01Pks)™|
sinces 0 € {s1, s9}°°. But then(0217%5)™ ¢ {s1, 52} sincem > 1. ThusAy,, ¢ Gs.

AS (Asm)m tends toA; and(As) s —2k4+2 € G2, we deduce from this that is in Foy_ 5 \ G2
if |s| <2k + 1isodd, and thatd; € Fo, 1|5 N Go if [s| < 2k + 1 is even. Thereforg0} is in
i Forr1 =y Fin- 0



Remarks. (1) The end of this proof also shows th@t ¢ D, (XY) if p > 2. Indeed,{0} € F,(G,).
The only thing to change is the definition 4f,,, if |s| is even: we set

Agm = A U {(07T11PRsY™ /5 < p

(2) If {81, 82} ¢ g1 and{sl, 32}00 = {tl,tQ}Oo, then{sl, 82} = {tl,tg}. |nd69d,{t1,t2} ¢ Gy, thus
by Lemma 9 we gelts1| + |s2| = |t1] + [t2|. By (c) in the proof of Lemma 8 and the previous fact,
s; = 12, wherea; > 0, ¢;, i € {1,2}. As{s1,52} ¢ G1,€1 # €2. Thusa; = 1.

Conjecture 1.Let A € F. Then there exists a finite subgétof A such thatd> = F°.

Conjecture 2.Letp > 1, A, B ¢ G, with A® = {s1,...,5,}>° C B>® = {t1,...,tp11}>°. Then
Si<icpr [til < Bi<igq |sil-

Conjecture 3.We haveG,1 \ G, € D, (XY) for eachp > 1. In particular,F € K, \ II3.

Notice that Conjectures 1 and 2 imply Conjecture 3. IndeBd= G1 U U,>; Gp+1 \ Gp, SO
F € K, if Goy1\ G, € D,(29) C AY, by Proposition 6. By Proposition 5 we hage¢ T19. Itis
enough to see thdt, := F,,(Gp+1 \ Gp) = 0. We argue as in the proof of Corollary 10. This time,
Fs1,0089) = 281cx, o i —2 nA1=iza s =D for 51, .., s, € n=¥. The fact to notice is that
A ¢ Fr(Gpy1 \ Gp) if A ¢ G, satisfiesA™ = {s1,...,s,4+1}° and M is the minimal odd integer
greater than or equal t(s1, ..., spt1). SOIfA € Fyp0 N F \ Gy, then Conjecture 1 gives a finite
subsetr’ := {s1,...,s,} of A. The setdisthe limitof (A, ), C Fary1 N Gpy1 \ G, for each integer
k, and we may assume that C Ay,,. Conjecture 2 implies that(s}", ..., sb7)) < f(s1,...,sq)

and2k + 1 < f(s1,...,84). Thus(,, E, C FUG,. SOF, C (FUG,)NGpi1\Gp=0.

3 1s A*° Borel?

Now we will see that the maximal complexity is possible. Weeeially give O. Finkel's exam-
ple, in a lightly simpler version.

Proposition 11 LetT" := 2% or a Baire class. The existenceofe w \ 2 and A C n<“ such that
A isT-complete is equivalent to the existence3of 2<¢ such thatB> is I'-complete.

Proof. Let p, := min{p € w/n < 2P} > 1. We definep : n — 2P := {oy,...,0n_1} by
the formulag(m) := oy, ® : n<¥ — 2<% by the formula®(t) := ¢(¢(0)) ... ¢(¢(|t|] — 1)) and
f:n¥ — 2¥ by the formulaf(y) := ¢(7(0))¢(y(1)) ... Then f is an homeomorphism from“
onto its range and reduces™ to B>, whereB := ®[A]. The inverse function of reducesB>
to A°. So we are done if' is stable under intersection with closed sets. Otherviise; AY or
S fA={s€2%0 < sorl1? < s}, thenA>® = Ny U N2, which is Al-complete. If
A={5€2<%/0 < s} U{10F171/k,l € w}, thenA>® = 2¢ \ {10>}, which isX{-complete. [

Theorem 12 The setl := {(a, A) € n¥ x 2"~ Ja € A>} is T1-complete. In fact,
(@) (O. Finkel, see [F1]) There existéy C 2<“ such thatA is X1-complete.
(b) There existay € 2 such thatl,,, is i-complete.



Proof. (a) We setl := {2,3} and
T:={7C2%%x L/N(u,v) €2 x L [(u,v) ¢ T]or
(Vo <u3dpe L (v,p) €r)and((u,5—v) ¢ 7)and(3(e,m) € 2 x L (ue,m) € 7)] }.

The setT is the set of pruned trees ovemith labels inL. It is a closed subset &®~“*%, thus a
Polish space. Then we set

o:={r€T/3(u,v) € 2% x L* Vm (u[m,v(m)) € 7] and[Vp Im > p v(m) = 3|}.

e Thens € XI(7). Let us show that it is complete. We sét:= {T" € 2¥~° /T is a treg and
IF :={T € T/Tislll-founded}. It is a well-known fact thatZ is a Polish space (it is a closed
subset 0£2+~), and that/ F" is >1-complete (see [K1]). Itis enough to find a Borel reductior 6
to o (see [K2)]).

We definey : w<¥ < 2<¢ by the formulay(t) := 04©10tW 1. .. o!H-D1, and¥ : T — T by
U(T) :={(u,v) €2~ x L/3t € Tu < Y(t) andv = 3 if u =0, 2 + u(Ju| — 1) otherwisg
U{((t)0F*1,2)/t € TandVq € witq ¢ T,k € w}.

The mapV is Baire class one. Let us show that it is a reductionT’ IE IF, then lety € w* be
such thaty[m € T for each integefm. We have(y)(y[m),3) € U(T). Letu be the limit ofy(y[m)
andv(m) := 2+ u(m — 1) (resp.,3) if m > 0 (resp.,,m = 0). These objects show th@(7T") € o
Conversely, we havé € IFif U(T) € o

o If 7 € 7T andm € w, then we enumeraten (2™ x L) := {(u]""
the lexicographic ordering. We defige: 7 — 5% by the formula

mT)7 (’LLZZ”TT,qu 7')} In

(OT 0,7 0,7 07—4)( 1,7 1,7 1,7 7'4)

(‘P(T) ul Vl ° uqO T 40,7 ul Vl : uql T ql T

The set4 will be made of finite subsequences of sentences/#|. We set

Ag = {u v w T T €T, mA1<p, 0 < ¢ < gy, 1<r<qpr,

[((m =0andg = 0) or (¢ > 0 andyy™” = 3 anduy"” < ul’")], '™ =3}

m,T

(with the conventiomgz;i“u 1 = 4). Itis clear thaty is continuous, and itis enough to see that
it reducesr to Ag°.

So let us assume that € 0. This means the existence of an infinite branch in the treb wit
infinitely many3 labels. We cuty(7) after the firsB label of the branch corresponding to a sequence
of lengthm > 1. Then we cut after the first label corresponding to a sequence of length at least
m + 2 of the branch. And so on. This clearly gives a decompositfop(e) into words inAy.

If such a decomposition exists, then the first wordﬁs? V?’ L ubdTURST, and the second is
up L vty gy TR T, So we haver " < uyyT. And so on. ThIS gives an infinite branch with
infinitely many3 labels.
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e By Proposition 11, we can also havig C 2<%,

(b) Letag := 1010%103.. . ., (¢;) be the sequence of prime numbefs:= 2, q¢; := 3, M : w<¥ — w

defined byM, := qg<°>+1 . qfs(ﬂf‘l_l)“ +1,¢: w<¥ — 2<¥\ {0} defined by the formulas

$(0) := 1010* = 1010*M0
andg(sm) := 102Ms+1102Ms+2 | 102Mom  and® : 24 — 2™ defined byd(T') := ¢[T].
e ltis clear thatM,,,, > M,, and thatd/ and¢ are well defined and one-to-one. §ads continuous:

se¢[T] < 3t (t € Tando(t) = s)
& s € plws¥]andvt (t € T oré(t) # s).

If T € IF, then we can findd € w* such thatp(5[l) € ®(T) for each integet. Thus
ap = (1010*Ms10)(102Marott  102Msn) e (®(T))*.

Conversely, ifag € (®(T))°, then there exist; € T such thaig = ¢(to)é(t1) ... We havetg = 0,
and, if7 > 0, theththi‘_l = M, ,; from this we deduce that[|t;| — 1 = ¢;_;, becauséV! is
one-to-one. So le be the limit of thet;'s. We haves[i = t;, thusg € [T] andT € IF. Thus®r
reduced F to I,,. Therefore this last set &1-complete. Indeed, it is clear thais %

a€A* & Jpew” [(Vm >0 B(m) > 0)and(Vgew w(a, 3,q) € A)].

Finally, the map fronT into n* x 2"~ which associateg, ®(T')) to T clearly reduced F to I.
So[I is Zi-complete. O

Remark. This proof shows that ifx = sgs; ... and(s;) is an antichain for the extension ordering,
then I,, is Xi-complete (here we have = 10%*110%%2). To see it, it is enough to notice that
#(0) = so andp(sm) = sy, - . . sp1.,,—1- SOI, is i-complete for a dense set afs.

We will deduce from this some true co-analytic sets. But wedna lemma, which has its own
interest.

Lemma 13 (a) The setd*° is Borel if and only if there exist a Borel functigh: n“ — w*“ such that
acA* & (Vm >0 f(a)(m)>0)and(Vqg € w m(e, f(a),q) € A).
(b) Lety € w¥ and A C n<¥. ThenA> € Al(A4,~) if and only if, fora € n¥, we have
a€A® & B Al(A,y,a) [(Ym >0 B(m)>0)and(Vq € w 7(a, 3,q) € A)].

Proof. The “if” directions in (a) and (b) are clear. We have seen phoof of Proposition 4 the “if”
direction of the equivalences (the existence of an arlitfais necessary and sufficient). So let us
show the “only if” directions.

11



(a) We definef : n¥ — w* by the formulaf(«) := 0 if a ¢ A>°, and, otherwise,
f(@)(0) :==min{p e w/a[(p+1) € Aanda — af(p+ 1) € A7},
f@)(r+1) =
min{k > 0/[a — (1 + Ej<, f(a)()][k € Aanda — af(k + 1+ Xj<r f(@)(j)) € A7}
We getr(a, f(a),0) = o[ f(a)(0) +1 € Aand, ifg > 0,

m(a, f(a),q) = (1 +Xj<q f(@)[j]); s (Zj<q f(Q)]F])) € A

As f is clearly Borel, we are done.
(b) If A= € Al(A, ), thensoisf and3 := f(a) € Al(A,~, a) is what we were looking for. [

Remark. Lemma 13 is a particular case of a more general situationualligtwe have the following
uniformization result. It was written after a conversatioith G. Debs.

Proposition 14 Let X and Y be Polish spaces, anfil € TI3(X x Y) such that the projection
IIx[F N (X x V)] is Borel for eachV € £{(Y). Then there exists a Borel mgp: X — Y such
that (z, f(z)) € F for eachz € IIx[F).

Proof. Let (Y,,) be a basis for the topology &f with Y, := Y, B, = IIx[F' N (X x Y,)], and
7 be a finer0-dimensional Polish topology oA making theB,,’s clopen (see 13.5 in [K1]). We
equip X with a completer-compatible metrial. Let (O,,) € Z¢(X x Y') be decreasing satisfying
Op = X xY andF = (),, O,,. We construct a sequen¢¥ )¢, <~ of clopen subsets dBy, 7]
with Uy := By, and a sequend@’;)sc.,<~ Of basic open sets d&f satisfying

(a) Us C IIx[F N (Us x V)]

a)

(b) diamy(Us), diam(Vy) < 17 if s # 0
(C) Us = Um,dISJ Us~m; Vs~n C Vs
(d) US X VS g O|s‘

e Assume that this construction has been achieved.4fB, then we sef (z) := yo € Y (we may
assume thak” # (). Otherwise, we can find a unique sequence w* such that: € U, ,, for each
integerm. Thus we can find € V,,,, such that(z,y) € F, and(T[m)m is a decreasing sequence
of nonempty closed sets whose diameters tertl which defines a continuous mgp [By, 7] — Y.

If z € By, then(z, f(x)) € Uy X Vi C Om, thusGr(fig,) C F. Notice thatf : [X, 7] — Yis
continuous, sq : X — Y is Borel.

e Let us show that the construction is possible. Welggt:= By and V) := Y. Assume that
(Us) sew<r and (Vy) e <» satisfying conditions (a)-(d) have been constructed, Wwische case for
p = 0. Lets € wP. If (x,y) € Fn (Us x V;), then we can find/, € AY(U,) and a basic
open set, C Y such that(z,y) € U, x V,, C U, x Vy C (Us x V5) N Opy1, and whose diameters
are at most-1-. By the Lindelof property, we can writ€' N (Us x V) € U,, Uz, x V,,, and

L
FAWU,xV,) =, FN(Us, xV,,).

12



If « € Us, then letn andy be such thatz,y) € F N (U, x V4, ). Then
r € 0" = Ix[F 0 (X x V)| N Us, € AY([Bo, 7]).

ThusU, = J,, O™. We setU;~,, := O™\ (IJ Or) andV,~,, :=V,,, and we are done. O

p<n

In our context,F' = {(«, 3) en® xw* /(Ym>0 B(m)>0)and(Vgew w(a,[,q) <€ A)}, which
is a closed subset of x Y. The projectionlIx[F N (X x Nj)] is Borel if A> is Borel, since it is
{S*y/S € (Ann* O+ x Ty 1y (ANn*0)) andy € A*}.

Theorem 15 The following sets arél}! \ Al:

(@) I := {(4,7,0) € 2" x w” x w*/f € WO andA> € TIf, N A}(4,7)}. The same thing is
true with ¥ := {(4,7,0) € 2"~ x w* x w* /0 € WO andA™ € £f, N A}(4,7)}.

(b) &y := {A € 27™7/A® € £ n A}(A)}. Infact, ¢ := {A € 27" /A € B2 N Al(A)} is
IM\A}if1 <& < wy. Similarly, T := {A € 2™ /A € TIY N A} (A)}isTI}\ A} if 2 < £ < w.

(€©)A:={Aec2""/A® e Al(A)}.
Proof. Consider the way of coding the Borel sets used in [Lou]. By i3 we get

dpew P(p,A,~,0) andVaen®
(A,y,0)ell & ¢ (ag A*or (p, A,v,a) €C) and([(p, 4,v) €W and(p, A,v,a) ¢ C] or
e Af(A,y,a) [(Ym>0 B(m)>0) and(Vgew 7(a, 8, q) € A))).

This shows thafT is I7}'. The same argument works with. From this we can deduce th&t is 7,
if we forget~y and take the section df atd € WO N A{ such thatd| = 1. Similarly, X and I are
co-analytic if¢ > 1. Forgettingd, we see that the relatiomdd™ € Al (A,~)" is I1}.

e Let us look at the proof of Theorem 12. We will show thag it 1 (resp.,§ > 2), thenXe \ I,
(resp.,II¢ \ 1,,) is a true co-analytic set. To do this, we will reduder' to X \ I, (resp.,/I¢ \ In,)
in a Borel way. We change the definition &f We set

tCay & Jk t=< Oéo—Oé(]UC,
B = {(oofp)r/pe\(2hren\{ao@)}},  Fi={U" Cao/U€g[T]™},
' (T) := ¢[T|U{sen<¥/IHEEUF t < s}.
This time,®’ is Baire class one, since

se®(T) & se¢[T] or IteE t <s or
AU e (2<w)<w (Vj<|u|U(j)€o[T]) andU* Z oy andU* < s.

The proof of Theorem 12 remains valid, sincevif € (®'(T"))°, then the decompositions af, into
words of®’(T") are actually decompositions into wordsggf].
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e Let us show that®'(T))>* e =0 N AL(®/(T)) if TEWF. The set(®'(T))™ is
U I( U Ng+s) U Ng=; U Ng«1m U (Ng+101 \ {S* 0 })]-
Seg|T)<w,len\{1},men\{0} s/JtEF t<s

If & € n¥, thena contains infinitely many € n \ {1} or finishes with1>. As 12 and the sequences
beginning withl are in®’(T), the clopen sets are subsetg ®f(7"))> since¢|T] and the sequences
beginning witht € F, 1 or Im are in®'(T). If a € Ng«101 \ {S*ao}, then letp > 3 be maximal such
thata[(]S*| + p) = S*(ao[p). We haven € (®(T))* since the sequences beginning w(ith [p)r
are in®'(T). Thus we get the inclusion int@’ (7).

If a € (®'(T))>, thena = agay ..., Wherea; € ®'(T). Either for alli we haven; € ¢[T]. In this
case, there issuch thaty . . . a; € g, otherwise we could find with cg — ag[k € (®(T)). But
this contradicts the fact thdt € W F, as in the proof of Theorem 12. So we have | J5,c ;. Ns.
Or there exist$ minimal such that,; ¢ ¢[T]. In this case,

-Eitherdt e Ft < a; anda € US€¢[T]<”,len\{l},men\{(}} [NS*[ U NS*lm U (NS*lol \ {S*Oco})],
-Or3t € F't < a;anda € Ugegiry<e Usjater 1<s Nses:
From this we deduce tha®’(T"))> is XV.

Finally, we have

<w <w _ . -
0 e (B(T))> < Jten<¥ Ibew [(]t]—1+2]</‘b‘ b(j)) and (Y0 <m < |b| b(m) >2O)
and (Vg <|b] w(t0>°, b0, q) € ®'(T))] and[Flen\{1} ti<a Ort1* < al.

This shows that®’(T"))™ is A1 (®'(T)).

Therefore,cb’v reducedV F to X¢ \ I, if £ > 1, and toll; \ 1, if £ > 2. So these sets are true
co-analytic sets. Bub; N 1,, is 11, by Lemma 13. AsZy \ I, = 21 \ (21N L,,), 1 is not Borel.
Thus X is not Borel, as before. The argument is similar ¥ 17 (£ > 2) and/I. And for A too.[

Question. DoesA® € Al imply A* € Al(A)? Probably not. If the answer is positivA, and
more generally, (for £ > 1) andIl; (for £ > 2) are true co-analytic sets.

Remark. In any caseA is X} because 4> € Al”is equivalent to Ty cw® A® € Al(A,~)”. This
argument shows tha, andIl, are X; (9), whered € WO satisfiegf| = £&. We can say more about
I1;: itis AL. Indeed, in [St2] we have the following characterization:

A®CIl) & Vaen® [Vsen™ (s<a = 3IS€ A s<5*)] = ac A™.
This gives all; definition of IT;. The same fact is true fag;:

Proposition 16 3, andII, are co-nowhere densdl \ D,(X%9) subsets 02, If £ > 2, thenX,
andTI, are co-nowhere densB} \ Dy(9) subsets 02" ~“. A is a co-nowhere densg] \ Dy(%9)
subset 02"~

14



Proof. We have seen th&; is X}; itis alsoI1; because
A® e & Vaen® a¢g A® ordsen~ [s<aandV3en® (s AL or € A)].

By Proposition 411 is co-nowhere dense, and it is a subseEein I N A. SoX¢, IT; and A are
co-nowhere dense, and it remains to see that they are not tpemenough to notice thdtis not in
their interior. Look at the proof of Theorem 12; it shows tfateach integern, there is a subset,,,
of {s € 5<%/|s| > m} such thatd>® ¢ Al. But the argument in the proof of Proposition 11 shows
that we can have the same thingriR* for eachn > 2. This gives the result because the sequence
(A,,) tends to. O

We can say a bit more abollf; andX;:
Proposition 17 T1;, II; and X, are 39-hard (so they are ndiI9).

Proof. Consider the mag defined in the proof of Proposition 5. By Proposition 2yit Py, then
#(v)> is II{. Moreover, as)(v) is an antichain for the extension ordering, the decompmusitito
words of¢(v) is unique. This shows that(y)> is Al, because

a€p(7)® & 3B A(a) [(Ym>0 B(m)>0) and(Vgew n(a, B, q)€d())].

So¢(y) € II; if v € Py. So the preimage of any of the sets in the statemeuitisy”;, and the result
follows. O

4 Which sets arew-powers?

Now we come to Question (3). Let us specify what we mean byésddrI'-sets”, wherd" is a
given class, and fix some notation.

e For the Borel classes, we will essentially consider2tiainiversal sets used in [K1] (see Theorem
22.3). Forg > 1,U%4 (resp.us™M) is 2¢-universal forsg(n) (resp.ITg(n*)). So we have

~UYA = {(vy,0) €2¥xn¥/TIp € w(p) =0 ands; < o}, where(sy), enumerates <.

-USM = —&A for eache > 1.

“USA = {(y,0) € 2¢xn%/Tp € w ((7)p, @) €UPMYiF € =n+1.

SUSA = {(v,0) € 2%xn¥/TFp € w ((7)p, @) € UMY if € is the limit of the strictly increasing
sequence of odd ordinalg, ).

e For the clas&1, we fix some bijection — ((p)o, (p)1) betweenv andw?. We set
(v,a)eU < 3F€2¥ (VmIp>m [(p)=1)and(¥p [y(p)=1or S%p)o ABorsp, Aal).

It is not hard to see that is 2«-universal fors1(n), and we use it here because of the compactness
of 2¢ xn¥, rather than the*-universal set foB1(n“) given in [K1] (see Theorem 14.2).
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e For the clas\1, it is different because there is no universal set. But weusarthell; set of codes
D C 2 for the Borel sets in [K1] (see Theorem 35.5). We may assug1hS and P are effective,
by [M].

e The sets we are interested in are the following:
Ag = {ye2* /USH is anw-power, M, = {ye2*/UsM is anw-power}
B :={de D/D, is anw-power},
A= {ye2¥/U, is anw-power}.

As we mentionned in the introduction, Lemma 13 is also rdlaeQuestion (3). A rough answer to
this question is¥}. Indeed, we have, foy € 2,

veA & JA€2 Vaen® ([(v,a)¢U or ae A®] and[aré A® or (v, o) €U]).
With Lemma 13, we have a better estimation of the compleXitg:at is 221. Indeed, ford € D,
Dy is anw-power < 3A€2"" Yaen® ([(d,a)¢S or I8 AL(A,d, )
[(Ym>0 B(m)>0)and(Vgew 7(a, 5,q)€ A)]] and[a¢ A or (d, a) € P)).
This argument also shows thdt and M, areX). We can say more about these two sets.

Proposition 18 If 1 < ¢ < wy, then.A¢ and M, are X1 \ D,(X?) co-meager subsets af. If
moreovert = 1, then they are co-nowhere dense.

Proof. We setE; := {y € 2“’/2/171’“4 =n“}, Epy1 = {y€2¥/Vp (v)p, € E} if n > 1, and
E¢ = {y€2“/Vp (v), € E;,} (Where(n,) is a strictly increasing sequence of odd ordinals cofinal
in the limit ordinal¢). If s € 2<¥, then we sety(p) = s(p) if p < |s|, 0 otherwise. Ther < ~
anduyl’A = nY, sSOFE; is dense. Ifyy € E1, then for alla € n“ we can find an integey such that
Y0(p) = 0 ands; < «. By compactness af* we can find a finite subset of {p € w/y0(p) =0}
such that for eaclr € n“, sp < o for somep € F. Now {y € 2¥/¥p € F' y(p) = 0} is an open
neighborhood ofy, and a subset of’;. So E; is an open subset @. Now the mapy — (), is
continuous and open, 96,1 and ¢ are densé&/'s subsets o2~. Then we notice thak’; is a subset
of {y e 2“/u§’“4 =n} (resp.,{v € 2“/6{%’“4 =(}) if £ is odd (resp., even). Indeed, this is clear for
¢ = 1. Then we use the formuldg ™" = J, - L{(’Z;)f; andu5™ = U, - ug)’:‘, and by induction
we are done. A9 andn“ arew-powers, we get the results about Baire category. Now it iesna
see that4, and M, are not open. But by induction agaif® € A, N Mg, so it is enough to see that
1°°is not in the interior of these sets.

e Let us show that, foO € A9(n®) \ {0,n~} and for each integen, we can findy, v/ € 2* such
thaty(j) = +'(j) = 1 for j < m,u5™ = O andu5™ = 0.

Foré =1, write O = Up NS&’ whereg;, > m. Let~(q) := 0 if there existsk such thayy = ¢,
v(q) := 1 otherwise. The same argument appliedtgives the complete result fgr= 1.
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o
Y)p
Then definey by v(<p,q¢>) := 7,(q); we havey(j) = 1if j <m andUﬂ“’A =U, u(@;‘; = 0.

The argument witlD still works. The argument is similar for limit ordinals.

Now we argue by induction. Let, € 2* be such that,(¢) = 1 for <p, ¢>< m andi/

e Now we apply this fact t@D := N(g. This givesy,, v, € Ni» such thatuﬁf = Ny and

u§pM N(g). But (), (7,) tend to1*, v, ¢ A andy), ¢ Me. O

Corollary 19 Aj is Do(X9) \ D2(29). In particular, A; is Do (X9)-complete.

Proof. By the preceding proof, it is enough to see that\ {1°°} is open. So let, € A; \ {1},
po In w with v (po) = 0, and Ay C n<* with L{WA A If a € n¥, thensy o € UVOA, so we
can findm > 0 such thair — o[m € Ag°; thus there eX|sts an integgrsuch thatyo( ) = 0 and
sy < a — a[m. By compactness of“, there are finite sets C w\ {0} andG C {pcw/v(p)=0}
such that” = U, ,cppeq {@€N”/sp <a—alm}.

We setd, := {s € n~¥/Ip~(p) = 0 andsy < s} for y € 2¢, so thatA® C Uy’ 1A Assume that
~(p) = 0 for eachp € G and leta € Llyl’A. Letp® € w be such that/(p®) = 0 andspO < «a. We can
find mg > 0 andp! € G such thats?, < a — af(|sj| + mo), anda[([s]o| + mo) € A,. Then we
can findm; > 0 andp? € G such that?, < a — a[(|sl| + mo +[s4| +m1), and

af([sjol +mo + [sp] +m1) — af(|spl +mo) € A,

And so on. Thugy € A%° and{y€2¥/VpeG ~(p)=0} is a clopen neighborhood of and a subset
of A;. ]

Proposition 20 A is X1 \ Dy (XY) and is co-nowhere dense.

Proof. Let U := {y € 2¥/V3 € 2¥ Yoo € n¥ Jp [y(p) =0 and S%p)o < B ands(, = al}. By
compactness dt¥ x n“, U is a dense open subset f. Moreover, ify € U, thenl, = 0, so
U C AandA is co-nowhere dense. It remains to see thad not open, as in the proof of Proposition
18. AsUi~ = n*, 1*° € A. Letp be an integer satisfying(?p)o = () and S?p)l = 09. We set
~p(m) := 0if and only if m = p, and alsaPy, := {a €2¥/Vr 3m>r a(m)=1}. Then(y,) tends
to 1°° and we have

U,, ={aen?/3pe Py Vm m#pors )y ABOr s, 7404}
_{QEnW/EIBGP (, )¢2wXN0q}——|N0q

Sov, ¢ A. 0
5 Ordinal ranks and w-powers.

Notation. The fact that thes-powers arex! implies the existence of a co-analytic rank on the com-
plement of A (see 34.4 in [K1]). We will consider a natural one, definedakeds. We set, for
aen?, Ty(a) :={Se(A7)<¥/S* <a}. Thisis atree o, which is well founded if and only if

o ¢ A®.
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The rank of this tree is the announced raRk : - A* — w; (see page 10 in [K1]): we have
Ra(a) := p(Ta(a)). Letp : A~ — w be one-to-one, and(S) := (¢[S(0)], ..., ¢[S(]s| — 1)]) for
S € (A7)<¥. This allows us to define the mapfrom the set of trees oA~ into the set of trees on
w, which associateép(S)/S €T} to T. As ¢ is one-to-one is continuous:

te®(T) e ted[(A7)“ando~1(t) € T.

Moreover,T' is well-founded if and only if®(T") is well-founded. Thus, itx ¢ A>, then we have
p(Ta(a)) = p(®[T4(a)]) becausep is strictly monotone (see page 10 in [K1]). This is a co-
analytic rank because the function frarvi into the set of trees an<* which associate®[7'4(«)] to
« is continuous, and because the rank of the well-founded ae defines a co-analytic rank (see
34.6 in [K1]). We set

R(A) :=sup{Ra(a)/a¢ A®}.
By the boundedness theorems® is Borel if and only if R(A) < w; (see 34.5 and 35.23 in [K1]).

We can ask the question of the link between the complexittdfand the ordinalR(A) when A>
is Borel.

Proposition 21 If ¢ < wy,r € wandR(A4) = w. + r, thenA>® € =Y 41

Proof. The reader should see [L] for operations on ordinals.

e If 0 < A < wy is a limit ordinal, then le{)\,) be a strictly increasing co-final sequence\irnwith
N =wbh+qif A=w.(0+1),and); = w.&, if A = w.§, where(¢,) is a strictly increasing co-final
sequence in the limit ordingl otherwise. By induction, we define

Ey :={aen¥/Vse€ A~ sAa},
Epiq:={aen?/Vsec A~ sAa or a—se Ey},
Ey ={aenv/Vs€cA” sAa Of dgcw a—sc k) }.

e Let us show thaf,, ¢, € ITY ¢+1- We may assume that# 0 and thatr = 0. If £ = 6 + 1, then
B, € I3y, , by induction hypothesis, thus, ¢ € I19 5, 5 = II) ., ;. Otherwise )y, € I,

by mductlon hypothesis, thus,, ¢, € 1'[§+1 =115 11

e Let us show that itx € A, thena ¢ E,¢q,. If & =17 =0, itis clear. Ifr = m + 1 and
s € A” satisfiess < o anda — s € A, then we havex — s ¢ E,, ¢, by induction hypothesis,
thusa ¢ E, ¢ If r = 0ands € A~ satisfiess < o anda — s € A*, then we haver — s ¢ E),
for each integey, by induction hypothesis, thus ¢ E, ¢,.

e Lets € A~ such thats < o ¢ A*. We have

p(Ta( = ) = SUP{prya_o)(t) + 1/t € Tala — )}
< SUP{pry o) ((3)8) + 1/ ()t € Ta(a)}
< Prae () + 1
< prae(0) < p(Ta(a)).



The first inequality comes from the fact that the map ffBgia— s) into 74 («), which associates
(s)t to t is strictly monotone (see page 10 in [K1]). We have

p(Ta(a)) = [sup{p(Tala—s)) /s € A7, s <o} + 1.
Let us show that we actually have equality. We have

p(TA(a)) = pTA(a)(w) +1= Sup{pTA(a)((S)) +1 / sEAT, 5= a} + 1

Therefore, it is enough to notice thatsitt A~ ands < a, thenpy, () ((s)) < pr,(a—s) (). But this
comes from the fact that the map fropy € T4(«) / S(0) = s} into Ta(« — s), which associates
S — (s) to S, preserves the extension ordering (see page 352 in [K1]).

e Let us show that, itv ¢ A, then p(Ts(a)) < w.§+r+1"is equivalentto & € E, ¢,,". We do
it by induction orw.£+r. If { = r = 0, then itis clear. Ifr = m+1, then p(Ts(a)) < w.+r+1"
is equivalenttoVs € A=, s £ aorp(Ta(a —s)) <w.£ +m+ 1", by the preceding point. This is
equivalenttoVs € A=, s Aaora—s e E,¢,", Whichis equivalentto& € E, ¢, If =0,
then “p(T4 () < w.§ +r+ 1" is equivalent to ¥s € A, s £ « or there exists an integersuch
thatp(Ta (o —s)) < A, +1". Thisis equivalent toVs € A™, s £ a or there exists an integersuch
thata — s € E),”, which is equivalentto & € E ¢,

olf a ¢ A, thenp(Ta(a)) < w.§ +r + 1. By the preceding pointy € E, ¢,,. Thus we have
AOO = 7 Lygtr < 28.£+1. O

We can find an upper bound for the raRkfor some Borel classes:

Proposition 22 (a) A~ = n* ifand only if R(A) = 0.

(b) If A~ =0, thenR(A) = 1.

(c) If A € Af, thenR(A) < w, and there exists, C 2<“ such thatA>® € A} and R(4,) =p
for each integemp.

(d) If A% € TIY, thenR(A) < w, and (4> ¢ 20 & R(A) = w).
Proof. (a) If a ¢ A>°, then() € Ta(«) andp(Ta()) > pr, () (0)+1>1.
(b) We havely (a) = {0} for eacha, andp(T'a(e)) = pr, () (D) +1=1.

(c) By compactness, there exisis. . . , s, € n=“ suchthatd> = {J,,,,<, Ns,, € A ifa ¢ A=,
then we haveV,max <, [sm| © 7 A%, thusp(Ta(a)) < MaXi<m<p [sm|+1 < w. Sowe getthe
first point. To see the second one, we dgt:= 2<“. If p > 0, then we set

Ay ={0* U] {s€2%/0%1 <5} U {s€27 /0P <5},
q<p

ThenAy® = U,<, No2a1 U Nozp+1 € AY. I ap == 07711, thenp(Ta, (op)) = p. If a ¢ A,
then(T, (a))'< p.
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(d) If A* € TI{ anda ¢ A, then lets € n<¥ with a € Ny C = A%, Thenp(Ta(a)) < |s| + 1.
ThusR(A) < w. If A* ¢ X9, then we haveR(A) > w, by Proposition 21. Thu®(A4) = w.
Conversely, we apply (c). O

Remark. Notice that it is not true that if the Wadge classA*> >, having A*> as a complete set, is
a subclass ok B> >, thenR(A) < R(B). Indeed, forA we take the exampléd, in (c), and forB
we take the example faE! that we met in the proof of Proposition 11. If we exchange ties of
A and B, then we see that the converse is also false. This examfde ¢ shows that Proposition
21 is optimal foré = 0 sinceR(A) = 1 andA* € X9\ II). We can say more: it is not true that if
A>® = B> thenR(A) < R(B). We use again (c): we také := A, andB := A\ {0%}. We have
A>® = B*® = AP, R(A) =2andR(B) = 1.

Proposition 23 For each < wy, there existsd, C 2<* with Az° € s andR(4¢) > &

Proof. We use the notation in the proof of Theorem 15. Tet 7, andy : T — T/ () (ao) defined
by the formulap(s) := (¢(s[0),...,d(s[|s| — 1)). Then is strictly monotone. Ifl' € WF,
thenag ¢ (9'(T))™ and Ty () (o) € WE. Inthis casep(T) < p(To/(1)(w)) = Ry () (S€e
page 10 in [K1]). Letl € WF be a tree with rank at leagt(see 34.5 and 34.6 in [K1]). We set
A¢ == P'(Ty). Itis clear thatd, is what we were looking for. O

Remark. Let ¢ : 2"~ — {Trees omi<“} defined by (A) :=Ta(ap), andr : - I, — w; defined
by r(A) := p(Ta(a)). Theny is continuous, thus is aIl}i-rank on

Y~ ({Well-founded trees on<“})=- I,,.

By the boundedness theorem, the rard&nd R are not bounded on I,,. Proposition 23 specifies
this result. It shows thak is not bounded ot \ I,,.

6 The extension ordering.

Proposition 24 We equipA with the extension ordering.

(@) If A C n<¥is an antichain, them> is in {}} U {n*} U [ITI{ \ Y] U [I19(A) \ £9I], and any of
these cases is possible.

(b) If A C n<¥ has finite antichains, thed> < IIj (and is not} in general).

Proof. LetG := {a € n® /Vr Im Ip > r a[m € [(A7)P]*}. ThenG € IIY(A) and containsdA®™.
Conversely, ife € G, then we hav@ s () N (A™)P # () for each integep, thusT 4 («) is infinite.

(a) If Ais an antichain, then each sequenc@iri«) has at most one extension in this tree adding one

to the length. Thug4(«) is finite splitting. This implies thal’4 («) has an infinite branch t € G,
by Konig's lemma. Therefore>® = G € I19(A).
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- If we take A := (), then A is an antichain andl> = (.
- If we take A := {(0),...,(n — 1)}, thenA is an antichain andl™ = n*.

-1f A% ¢ {0,n}, thenA>® ¢ XY. Indeed, letny ¢ A® andsy € A~. By uniqueness of the
decomposition into words ol ~, the sequencésjag), C n* \ A tends tasg® € A,

- If we take A := {(0)}, thenA is an antichain andi>® = {0~} € I1 \ 0.

- If A'is finite, thenA> is II{ \ X9 or is in {, n~’}, by the facts above and Proposition 2.

- If Aisinfinite, thenA> ¢ X9 because the magpin the proof of Proposition 2 is an homeomorphism
and(A~)“ is not K.

-1f A:={0*1/kcw}, thenA is an antichain andl>® = P,,, which is 7)) \ 9.

(b) The intersection of,, with N; can be made with the chaifl0* /k € w}. So let us assume that
A has finite antichains.

e Let us show thatd is the union of a finite set and of a finite union of infinite subse sets of the
form A,,, := {s € n<¥/s < a,,}. Let us enumeratél := {s,/r € w}. We construct a sequence
(Ar,), finite or not, of subsets ofl. We do it by induction onr, to decide in which se#,,, the
sequence, is. First,sgp € Ag. Assume thas, ..., s, have been putintelg,..., A, , withp, <r
and A, N {so,...,s-} # 0if m < p.. We choosen < p, minimal such thas,; is compatible
with all the sequences i4,, N {so, ..., s}, we puts,; into A,, and we sep,; := p, if possible.
Otherwise, we pus, . into 4, 1 and we sep, 1 :=p, + 1.

Let us show that there are only finitely many infinidg,’s. If A,, is infinite, then there exists
a unigue sequence,, € n“ such that4,, C A,,, . Let us argue by contradiction: there exists an
infinite sequencém,), such thatA,, is infinite. Lett, be the common beginning of the,, 's.
There existsy € n such thatVy,., N {am,/q € w} is infinite. We choose a sequenag in A
extendingtoug, Wherepy # 9. Then we do it again: letyegt; be the common beginning of the
elements ofVy., N {au,, /qg€w}. There exists; € n such thatVy.¢,, N {am, /g €w} is infinite.
We choose a sequenag in A extendingtoeoti 1, Wwherep; # 1. The sequencéy;) is an infinite
antichain inA. But this is absurd. Now let us choose the longest sequeneacim nonempty finite
A,; this gives an antichain id and the result.

e Now leta € G. There are two cases. Either for eaehand for each integek, o[k ¢ [A<“]* or
a — alk # an,. Inthis casel's(«) is finite splitting. AsT4(«) is infinite, T'4(«) has an infinite
branch witnessing that € A, by Konig's lemma. Otherwisey € ;¢ <v|s ,n{s0m}, Which is
countable. Thug' \ A® € XJandA>® = G\ (G \ A®)cII). O

7 Examples.
e We have seen examples of subsétef 2<“ such thatA> is complete for the class€9}, {n*},
A, 39, 119, 19 and 1. We will give some more examples, for some classes of Bots! étice

that to show that a set in such a non self-dual class is coaplés enough to show that it is true (see
21.E, 22.10 and 22.26 in [K1]).
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eFortheclasS{ @ 1Y := {(UNO)U (F\O0) /U € 9, 0 € A, F € I1V}, we can take
A:={s5€2<%/0*1<s0r s=0% or Ipcw 10P1 < s}, sinceA> = {0>°}UlJ, Noza+21 UN1\{10%}.

e For the classDy(XY) := {UUF /U € X9 F ¢ IV}, we can take Example 9 in [St2]:
A:={se2¥ /0=<sordgew (101)713 < sors = 10?}. We have

A = U [No2yro U (U N(io2yr(101)a13)] U {(10*)>},

pew gEW
which is a= Dy (X)) set. Towards a contradiction, assume thét is Do (X9):
A =UiNF =UU Fy,

where thel/’s are open and thé’s are closed. LeD be a clopen set separatingl/; from F, (see
22.Cin [K1]). ThenA*> = (UNO)U (F\ O) would be inx{ @ ITY. If (10%)>° € O, then we would
haveN(jp2yp, C O for some integep. But the sequencg10?)?(120)>),»,,, € O\ U and tends to
(10%)>°, which is absurd. 1f10%)>* ¢ O, then we would haveV(;52y4, € — O for some integet.
But the sequencg(10?)%(101)91%), ... C F'\ O and tends t¢10?)%(101)°, which is absurd.

e For the clas»(X9), we can taked := [AT¥]* \ [A5“]*, whereA4, := {010, 01} and
Ay == {010,01%,0%,0%,10%,1%0,10%,120%}.

We haveA™ = A° \ AF. Indeed, asd C [AT¥]*, we haveA>™ C A$°. If a € AF°, then its
decomposition into words of; is unique and made of words #y. Thusa ¢ A> and

A® C AT\ AP

Conversely, ifa = apa;... € A\ AF°, with a; € Aj, then there are two cases. Either there
are infinitely many indexes (say i, i1, . ..) such thata; ¢ Ay. In this case, the wordsy .. . a;,,
Qig+1 - - - iy, - - -, Are inA anda € A>. Or there exists a maximal indésuch that; ¢ Ay. In this
caseqy . .. a;0, 102, 120 € A, thusa € A® = A$°\ AZ. Proposition 2 shows that € Dy(X9). If
A® =UUF,withU € ¢ andF € 1Y, then we havé/ = () becaused$® is nowhere dense (every
sequence iM; containsy, thus the sequences #° have infinitely many)'s). ThusA> would be
closed. But this contradicts the fact th@12)"0>°), C A> and tends t@01?)> ¢ A>. ThusA>

is a trueDy(XY) set.

e For the classD;3(XY), we can taked := ([A5“]* \ [AT¥]*) U [A5“]*, where 4y = {07},

Ay == {02%,01}, and 45 := {0%,01,10,10%}. We haveAd>® = (A3° \ A°) U AP. Indeed, as
A C [A5¥]*, we haveA™ C A®. If a € A$°, then its decomposition into words df, is unique
and made of words ial;. If moreovera ¢ AS°, then it is clear that ¢ A and

A® C (AF\AP) U AT

Conversely, it is clear thall® C A*. If a = apa; ... € AP \ A7°, then the argument above still
works. We have to check that= ay . ..a;, ¢ [AT“]*. Itis clear ifa;, = 10. Otherwisea;, = 10?
and we argue by contradiction.
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The length ofs is even and the decomposition ointo words ofA; is unique. It finishes witlo?,
and the even coordinates of the sequenaee(. Thereforega;,—; =02 or 10; we have the same thing
with a;,—2, a;,—3, ... Because of the parity, sonferemains at the beginning. But this is absurd.
Now we have to check thak, . .. a;0 ¢ [AT“]*. Itis clear ifa; = 10%. Otherwisea; = 10 and the
argument above works.

Finally, we have to check that if € A°, theny — (0) € A*. There is a sequeng®, p1, ...,
finite or not, such that = (0%70)(01)(0%1)(01)...0°°. Therefore

v — (0) = (0?P°10)(0%110). ..(0%)> € A™.

If we setlU; := — AS°,, then we see thal™ € D3(9). If a finishes with1%°, thena ¢ AS;
thus A3° is nowhere dense, just liké>. Thus if A~ = (U \ Uy ) UUp with U; open, therU/y = (). By
uniqueness of the decomposition of a sentencé’tninto words ofA4; 1, we see thatl?° is nowhere
dense inA% . So letzy € AF°, (z,) C A\ A§° converging targ, and (zpm)m € A5\ A°
converging tac,,. Thenz,, ,, € Uy, which is absurd. Thud> ¢ D3(%9).

e For the clas)y(X9), we can taked := {s€2<¥ / 12 < s or s = (0)}. We can write

A>® = ({0*} U UNOplQ) N(PrU{ae2”/¥n3am >na(m)=a(m+1)=1}).

Then A® ¢ Dy(X9), otherwiseA® N N2 € Do(X9) and would be a comeager subset/f:.
We could finds € 2<% with even length such tha> N N2, € II3. We define a continuous
function f : 2¢ — 2¢ by formulasf(a)(2n) := «a(n) if n > 's‘TH (125)(2n) otherwise, and

fl@)(2n+1):=0if n > ‘i2| (1%s)(2n+ 1) otherwise. It reduce®; to A N N2, which is absurd.
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Summary of the complexity results in this paper:

Baire category | complexity| { =1 \ £E=2 £E>3
3o nowhere dense P\ =9
11, co-nowhere dense YO\ 19
Ay co-nowhere dense K, \ 11
e co-nowhere dense I\ Al I} \ Af
11 co-nowhere densg T\ 119 \ I\ Af I\ Af
A co-nowhere dense i\ Al
¢ co-nowhere dense AL\ Dy(29) X4\ I I\ Do(29)
I, co-nowhere dense AL\ TIY X3\ Do(X9) 1\ Do(29)
A co-nowhere dense 23\ D2(2Y)
G (¢ € w) | DD\ D) | D)
¢ nowhere dense RO R T B e
F i i 111\ 119
D2(21)\D2(21) 1 0 1 0
Ae co-meager co-nowhere dense| 2 \ P2(Z1) 2\ Do(20)
2y \ Da(29) 1 0 1 0
Me co-meager co-nowhere dense| > \ P2(¥1) 2\ Do(20)
B Ly
A co-nowhere dense 2\ D2(29)
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