Omega-powers and descriptive set theory
Dominique Lecomte

To cite this version:
Dominique Lecomte. Omega-powers and descriptive set theory. The Journal of Symbolic Logic, 2005, 70 (4), pp.1210-1232. hal-00175696
\(\omega \)-powers and descriptive set theory.

Dominique LECOMTE

J. Symbolic Logic 70, 4 (2005), 1210-1232

Abstract. We study the sets of the infinite sentences constructible with a dictionary over a finite alphabet, from the viewpoint of descriptive set theory. Among other things, this gives some true co-analytic sets. The case where the dictionary is finite is studied and gives a natural example of a set at the level \(\omega \) of the Wadge hierarchy.

1 Introduction.

We consider the finite alphabet \(n = \{0, \ldots, n - 1\} \), where \(n \geq 2 \) is an integer, and a dictionary over this alphabet, i.e., a subset \(A \) of the set \(n^{<\omega} \) of finite words with letters in \(n \).

Definition 1 The \(\omega \)-power associated to \(A \) is the set \(A^\omega \) of the infinite sentences constructible with \(A \) by concatenation. So we have
\[
A^\omega := \{a_0a_1 \ldots \in n^\omega / \forall \omega a_i \in A \}.
\]
The \(\omega \)-powers play a crucial role in the characterization of subsets of \(n^\omega \) accepted by finite automata (see Theorem 2.2 in [St1]). We will study these objects from the viewpoint of descriptive set theory. The reader should see [K1] for the classical results of this theory; we will also use the notation of this book. The questions we study are the following:

(1) What are the possible levels of topological complexity for the \(\omega \)-powers? This question was asked by P. Simonnet in [S], and studied in [St2]. O. Finkel (in [F1]) and A. Louveau proved independently that \(\Sigma^1_1 \)-complete \(\omega \)-powers exist. O. Finkel proved in [F2] the existence of a \(\Pi^0_m \)-complete \(\omega \)-power for each integer \(m \geq 1 \).

(2) What is the topological complexity of the set of dictionaries whose associated \(\omega \)-power is of a given level of complexity? This question arises naturally when we look at the characterizations of \(\Pi^0_1 \), \(\Pi^0_2 \) and \(\Sigma^0_1 \) \(\omega \)-powers obtained in [St2] (see Corollary 14 and Lemmas 25, 26).

(3) We will recall that an \(\omega \)-power is an analytic subset of \(n^\omega \). What is the topological complexity of the set of codes for analytic sets which are \(\omega \)-powers? This question was asked by A. Louveau. This question also makes sense for the set of codes for \(\Sigma^0_\xi \) (resp., \(\Pi^0_\xi \)) sets which are \(\omega \)-powers. And also for the set of codes for Borel sets which are \(\omega \)-powers.

As usual with descriptive set theory, the point is not only the computation of topological complexities, but also the hope that these computations will lead to a better understanding of the studied objects. Many sets in this paper won’t be clopen, in particular won’t be recursive. This gives undecidability results.
• We give the answer to Question (2) for the very first levels (\{\emptyset\}, its dual class and \(\Delta_0^1\)). This contains a study of the case where the dictionary is finite. In particular, we show that the set of dictionaries whose associated \(\omega\)-power is generated by a dictionary with two words is a \(\dot{D}_\omega(\Sigma_0^1)\)-complete set. This is a surprising result because this complexity is not clear at all on the definition of the set.

• We give two proofs of the fact that the relation “\(\alpha \in A^\infty\)" is \(\Sigma_1^1\)-complete. One of these proofs is used later to give a partial answer to Question (2). To understand this answer, the reader should see [M] for the basic notions of effective descriptive set theory. Roughly speaking, a set is effectively Borel (resp., effectively Borel in \(A\)) if its construction based on basic clopen sets can be coded with a recursive (resp., recursive in \(A\)) sequence of integers. This answer is the Theorem.

Theorem. The following sets are true co-analytic sets:
- \(\{A \in 2^{<\omega} / A^\infty = \emptyset\}\).
- \(\{A \in 2^{<\omega} / A^\infty \in \Sigma_\xi^0 \cap \Delta_1^1(A)\}, \) for \(1 \leq \xi < \omega_1\).
- \(\{A \in 2^{<\omega} / A^\infty \in \Pi_\xi^0 \cap \Delta_1^1(A)\}, \) for \(2 \leq \xi < \omega_1\).

This result also comes from an analysis of Borel \(\omega\)-powers: \(A^\infty\) is Borel if and only if we can choose in a Borel way the decomposition of any sentence of \(A^\infty\) into words of \(A\) (see Lemma 13).

• A natural ordinal rank can be defined on the complement of any \(\omega\)-power, and we study it; its knowledge gives an upper bound of the complexity of the \(\omega\)-power.

• We study the link between Question (1) and the extension ordering on finite sequences of integers.

• Finally, we give some examples of \(\omega\)-powers complete for the classes \(\Delta_0^0, \Sigma_1^0 \oplus \Pi_1^0, D_2(\Sigma_1^0), \dot{D}_2(\Sigma_1^0), \) and \(\dot{D}_2(\Sigma_2^0)\).

2 Finitely generated \(\omega\)-powers.

Notation. In order to answer to Question (2), we set
\[
\Sigma_0 := \{A \subseteq n^{<\omega} / A^\infty = \emptyset\}, \quad \Pi_0 := \{A \subseteq n^{<\omega} / A^\infty = n^\omega\},
\]
\[
\Delta_1 := \{A \subseteq n^{<\omega} / A^\infty \in \Delta_1^0\},
\]
\[
\Sigma_\xi := \{A \subseteq n^{<\omega} / A^\infty \in \Sigma_\xi^0\}, \quad \Pi_\xi := \{A \subseteq n^{<\omega} / A^\infty \in \Pi_\xi^0\} \quad (\xi \geq 1),
\]
\[
\Delta := \{A \subseteq n^{<\omega} / A^\infty \in \Delta_1^1\}.
\]

• If \(A \subseteq n^{<\omega}\), then we set \(A^- := A \setminus \{\emptyset\}\).

• We define, for \(s \in n^{<\omega}\) and \(\alpha \in n^\omega\), \(\alpha - s := (\alpha(|s|), \alpha(|s| + 1), \ldots)\).

• If \(S \subseteq (n^{<\omega})^{<\omega}\), then we set \(S^* := \{S^* := S(0) \ldots S(|s| - 1) / S \in S\}\).
• We define a recursive map \(\pi : n^\omega \times \omega^\omega \times \omega \rightarrow n^{<\omega} \) by
 \[
 \pi(\alpha, \beta, q) := \begin{cases}
 (\alpha(0), \ldots, \alpha(\beta[0])) & \text{if } q = 0, \\
 (\alpha(1 + \Sigma_{j<q} \beta[j]), \ldots, \alpha(\Sigma_{j<q} \beta[j])) & \text{otherwise}.
 \end{cases}
 \]
We always have the following equivalence:
 \[
 \alpha \in A^\infty \iff \exists \beta \in \omega^\omega \left[(\forall m > 0 \beta(m) > 0) \text{ and } (\forall q \in \omega \pi(\alpha, \beta, q) \in A) \right].
 \]

Proposition 2 (IS) \(A^\infty \in \Sigma^1_1 \) for all \(A \subseteq n^{<\omega} \). If \(A \) is finite, then \(A^\infty \in \Pi^0_1 \).

Proof. We define a continuous map \(c : (A^-)^\omega \rightarrow n^\omega \) by the formula \(c((a_i)) := a_0a_1 \ldots \). We have \(A^\infty = c((A^-)^\omega) \), and \((A^-)^\omega \) is a Polish space (compact if \(A \) is finite).

Proposition 3 If \(A^\infty \in \Delta^0_1 \), then there exists a finite subset \(B \) of \(A \) such that \(A^\infty = B^\infty \).

Proof. Set \(E_k := \{ \alpha \in n^\omega / \alpha[k \in A \text{ and } \alpha \not\prec \alpha[k \in A^\infty] \}. \) It is an open subset of \(n^\omega \) since \(A^\infty \) is open, and \(A^\infty \subseteq \bigcup_{k \geq 0} E_k \). We can find an integer \(p \) such that \(A^\infty \subseteq \bigcup_{0 < k \leq p} E_k \), by compactness of \(A^\infty \). Let \(B := A \cap n^\leq p \). If \(\alpha \in A^\infty \), then we can find an integer \(0 < k_0 < p \) such that \(\alpha[k_0] \in A \) and \(\alpha \not\prec \alpha[k_0] \in A^\infty \). Thus \(\alpha[k_0] \in B \). Then we do it again with \(\alpha \not\prec \alpha[k_0] \), and so on. Thus we have \(\alpha \in B^\infty = A^\infty \).

Remark. This is not true if we only assume that \(A^\infty \) is closed. Indeed, we have the following counter-example, due to O. Finkel:
 \[
 A := \{ s \in 2^{<\omega} / \forall i \leq |s| 2.\text{Card}(\{ j < i / s(j) = 1 \}) \geq i \}.
 \]
We have \(A^\infty = \{ \alpha \in 2^\omega / \forall i \in \omega 2.\text{Card}(\{ j < i / \alpha(j) = 1 \}) \geq i \} \) and if \(B \) is finite and \(B^\infty = A^\infty \), \(B \subseteq A \) and \(101^20^2 \ldots \notin B^\infty \).

Theorem 4 (a) \(\Sigma^0_1 = \{ \emptyset, \{ \emptyset \} \} \) is \(\Pi^0_1 \)-complete.
(b) \(\Pi_0 \) is a dense \(\Sigma^0_1 \) subset of \(2^{<\omega} \). In particular, \(\Pi_0 \) is \(\Sigma^0_1 \)-complete.
(c) \(\Delta_1 \) is a \(K_n \setminus \Pi^0_0 \) subset of \(2^{<\omega} \). In particular, \(\Delta_1 \) is \(\Sigma^0_2 \)-complete.

Proof. (a) Is clear.

(b) If we can find \(m \in \omega \) with \(n^m \subseteq A \), then \(A^\infty = n^\omega \). As \(\{ A \subseteq n^{<\omega} / \exists m \in \omega n^m \subseteq A \} \) is a dense open subset of \(2^{<\omega} \), the density follows. The formula
 \[
 A \in \Pi_0 \iff \exists m \forall s \in n^m \exists q \leq m s[q] \in A^-
 \]
shows that \(\Pi_0 \) is \(\Sigma^0_1 \), and comes from Proposition 3.

(c) If \(A^\infty \in \Delta^0_1 \), then we can find \(p > 0 \) such that \(A^\infty = (A \cap n^{<\rho})^\infty \), by Proposition 3. So let \(s_1, \ldots, s_k, t_1, \ldots, t_l \in 2^{<\omega} \) be such that \(A^\infty = \bigcup_{1 \leq i \leq k} N_{s_i} = n^\omega \setminus \left(\bigcup_{1 \leq j \leq l} N_{t_j} \right) \). For each \(1 \leq j \leq l \), and for each sequence \(s \in [(A^-)^{<\omega}]^\ast \setminus \{ \emptyset \} \), \(t_j \notin s \). So we have
 \[
 A^\infty \in \Delta^0_1 \iff \begin{cases}
 \exists p > 0 \exists k, l \in \omega \exists s_1, \ldots, s_k, t_1, \ldots, t_l \in 2^{<\omega} \bigcup_{1 \leq i \leq k} N_{s_i} = n^\omega \setminus \left(\bigcup_{1 \leq j \leq l} N_{t_j} \right) \text{ and } \forall 1 \leq j \leq l \forall s \in [(A^-)^{<\omega}]^\ast \setminus \{ \emptyset \} t_j \notin s \text{ and } \forall \alpha \in n^\omega \\{ \alpha \notin \bigcup_{1 \leq i \leq k} N_{s_i} \text{ or } \exists \beta \in p^\omega \left[(\forall m > 0 \beta(m) > 0) \text{ and } (\forall q \in \omega \pi(\alpha, \beta, q) \in A) \right] \}.\end{cases}
 \]
This shows that \(\Delta_1 \) is a \(K_n \) subset of \(2^{<\omega} \).
To show that it is not Π_2^0, it is enough to see that its intersection with the closed set

$$\{ A \subseteq n^{<\omega}/A^\infty \neq n^\omega \}$$

is dense and co-dense in this closed set (see (b)), by Baire’s theorem. So let O be a basic clopen subset of $2^{n^{<\omega}}$ meeting this closed set. We may assume that it is of the form

$$\{ A \subseteq n^{<\omega}/\forall i \leq k \ s_i \in A \text{ and } \forall j \leq l \ t_j \notin A \},$$

where $s_0, \ldots, s_k, t_0, \ldots, t_l \in n^{<\omega}$ and $|s_0| > 0$. Let $A := \{ s_i/i \leq k \}$. Then $A \in O$ and A^∞ is in $\Pi_1^0 \setminus \{0, n^\omega\}$. There are two cases.

If $A^\infty \in \Delta^0_1$, then we have to find $B \in O$ with $B^\infty \notin \Delta^0_1$. Let $u_0, \ldots, u_m \in n^{<\omega}$ with $\bigcup_{p \leq m} N_{u_p} = n^\omega \setminus A^\infty$. Let $r \in n \setminus \{ u_0(|u_0| - 1) \}$, $s := u_0 r |u_0| + \max\{ |t_j| \} |j| \leq l$ and $B := A \cup \{ s \}$. Then $B \in O$ and $|s| \in B^\infty$. Let us show that $|s| \in B^\infty$ is not in the interior of B^∞. Otherwise, we could find an integer q such that $N_{|s|} \subseteq B^\infty$. We would have $A^\infty \in \Delta^0_1$. We have $v(u_0(|u_0| - 1))^\infty \in A^\infty$, so $v(u_0(|u_0| - 1))^\infty \in N_{u_0} \cap A^\infty$. But this is absurd. Therefore $B^\infty \notin \Delta^0_1$.

If $A^\infty \notin \Delta^0_1$, then we have to find $B \in O$ such that $B^\infty \in \Delta^0_1 \setminus \{ n^\omega \}$, and $\forall i \leq k \ N_{s_i} = \emptyset$.

So let $s \in n^{<\omega}$ be non constant such that $N_s \cap \bigcup_{i \leq k} N_{s_i} = \emptyset$. We set

$$D := A \cup \bigcup_{r \in n \setminus \{v(0)\}} \{ (r) \} \cup \{ v(0)^{|v|} \},$$

$$B := A \cup \{ s \in n^{<\omega}/|s| > \max_{j \leq l} |t_j| \text{ and } \exists t \in D \ t < s \}. $$

We get $B^\infty = \bigcup_{t \in D} N_t \in \Delta^0_1$ and $N_s \cap B^\infty = \emptyset$.

Now we will study $\mathcal{F} := \{ A \subseteq n^{<\omega}/\exists B \subseteq n^{<\omega} \text{ finite } A^\infty = B^\infty \}$.

Proposition 5 \mathcal{F} is a co-nowhere dense Σ^0_2-hard subset of $2^{n^{<\omega}}$.

Proof. By Proposition 3, if $A^\infty = n^\omega$, then there exists an integer p such that $A^\infty = (A \cap n^{<\omega})^\infty$, so $\Pi_0 \subseteq \mathcal{F}$ and, by Theorem 4, \mathcal{F} is co-nowhere dense. We define a continuous map $\phi : 2^\omega \rightarrow 2^{n^{<\omega}}$ by the formula $\phi(\gamma) := \{ 0^k 1/\gamma(k) = 1 \}$. If $\gamma \in P_f := \{ \alpha \in 2^\omega/\exists p \forall m \geq p \ \alpha(m) = 0 \}$, then $\phi(\gamma) \in \mathcal{F}$. If $\gamma \notin P_f$, then the concatenation map is an homeomorphism from $\phi(\gamma)^\infty$ onto $\phi(\gamma)\infty$, thus $\phi(\gamma)\infty$ is not K_σ. So $\phi(\gamma) \notin \mathcal{F}$, by Proposition 2. Thus the preimage of \mathcal{F} by ϕ is P_f, and \mathcal{F} is Σ^0_2-hard. □

Let $\mathcal{G}_p := \{ A \subseteq n^{<\omega}/\exists s_1, \ldots, s_p \in n^{<\omega} A^\infty = \{ s_1, \ldots, s_p \}^\infty \}$, so that $\mathcal{F} = \bigcup_p \mathcal{G}_p$. We have $\mathcal{G}_0 = \Sigma_0$, so \mathcal{G}_0 is $\Pi^0_1 \setminus \Sigma^0_1$. \[4\]
Proposition 6 \(G_1 \) is \(\Pi^0_1 \setminus \Sigma^0_1 \). In particular, \(G_1 \) is \(\Pi^0_1 \)-complete.

Proof. If \(p \in \omega \setminus \{0\} \), then \(\{0, 1^p\} \notin G_1 \) since \(B^\infty = \{s^\infty\} \) if \(B = \{s\} \). Thus \(\{0\} \) is not an interior point of \(G_1 \) since the sequence \(\{(0, 1^p)\}_{p>0} \) tends to \(\{0\} \). So \(G_1 \notin \Sigma^0_1 \).

- Let \((A_m) \subseteq G_1\) tending to \(A \subseteq n^{<\omega} \). If \(A \subseteq \{\emptyset\} \), then \(A^\infty = \{\emptyset\}^\infty \), so \(A \in G_1 \). If \(A \not\subseteq \{\emptyset\} \), then let \(t \in A^\infty \) and \(\alpha_0 := t^\infty \). There exists an integer \(m_0 \) such that \(t \in A_m \) for \(m \geq m_0 \). Thus we may assume that \(t \in A_m \) and \(A_m^\infty \neq \emptyset \). So let \(s_m \in n^{<\omega} \setminus \{\emptyset\} \) be such that \(A_m^\infty = \{s_m\}^\infty = \{s_m^\infty\} \). We have \(s_m^\infty = \alpha_0 \). Let \(b := \min\{a \in \omega \setminus \{0\}\} / (\alpha_0[a]^\infty = \alpha_0 \} \).

- We will show that \(A_m = \{(\alpha_0[b]^q/q \in \omega\} \). Let \(s \in A_m \setminus \{\emptyset\} \). As \(s^\infty = \alpha_0 \), we can find an integer \(a > 0 \) such that \(s = \alpha_0[a] \), and \(b \leq a \). Let \(r < b \) and \(q \) be integers so that \(a = qb + r \). We have, if \(r > 0 \),

\[
\begin{align*}
\alpha_0 &= (\alpha_0[a]^\infty = (\alpha_0[b]^\infty = (\alpha_0[q,b](\alpha_0[a] - \alpha_0[q,b]) \alpha_0 \\
&= (\alpha_0[b]^q(\alpha_0[a] - \alpha_0[q,b]) \alpha_0 = (\alpha_0[a] - \alpha_0[q,b]) \alpha_0 = (\alpha_0[r]) \alpha_0 = (\alpha_0[r]^\infty.
\end{align*}
\]

Thus, by minimality of \(b, \ r = 0 \) and we are done.

- Let \(u \in A \). We can find an integer \(m_u \) such that \(u \in A_m \) for \(m \geq m_u \). So there exists an integer \(q_u \) such that \(u = (\alpha_0[b]^q_u) \). Therefore \(A^\infty = \{ (\alpha_0[b]^\infty \} = \{\alpha_0[b]^\infty \} \) and \(A \in G_1 \). \(\square \)

Remark. Notice that this shows that we can find \(w \in n^{<\omega} \setminus \{\emptyset\} \) such that \(A \subseteq \{w^q/q \in \omega\} \) if \(A \in G_1 \). Now we study \(G_2 \). The next lemma is just Corollary 6.2.5 in [Lo].

Lemma 7 Two finite sequences which commute are powers of the same finite sequence.

Proof. Let \(x \) and \(y \) be finite sequences with \(xy = yx \). Then the subgroup of the free group on \(n \) generators generated by \(x \) and \(y \) is abelian, hence isomorphic to \(\mathbb{Z} \). One generator of this subgroup must be a finite sequence \(u \) such that \(x \) and \(y \) are both powers of \(u \). \(\square \)

Lemma 8 Let \(A \in G_2 \). Then there exists a finite subset \(F \) of \(A \) such that \(A^\infty = F^\infty \).

Proof. We will show more. Let \(A \notin G_1 \) satisfying \(A^\infty = \{s_1, s_2\}^\infty \), with \(|s_1| \leq |s_2| \). Then

(a) The decomposition of \(\alpha \) into words of \(\{s_1, s_2\} \) is unique for each \(\alpha \in A^\infty \) (this is a consequence of Corollaries 6.2.5 and 6.2.6 in [Lo]).

(b) \(s_2s_1 \perp s_1s_2 \) for each integer \(q > 0 \), and \(s_2s_1 \wedge s_1^qs_2 = s_1s_2 \wedge s_2s_1 \).

(c) \(A \subseteq \{[s_1, s_2]^{<\omega}\}^* \).

- We prove the first two points. We split into cases.

2.1. \(s_1 \perp s_2 \).

The result is clear.
2.2. \(s_1 \not<_{\neq} s_2 \not< s_1^\infty \).

Here also, the result is clear (cut \(\alpha \) into words of length \(|s_1|\)).

2.3. \(s_1 \not<_{\neq} s_2 \not< s_1^\infty \).

We can write \(s_2 = s_1^m s \), where \(m > 0 \) and \(s \not<_{\neq} s_1 \). Thus \(s_2 s_1 = s_1^m s s_1 \) and \(s_1^{m+1} s \not< s_1^q s_2 \) if \(q > 0 \). But \(s_1^m s s_1 \perp s_1^{m+1} s \) otherwise \(s s_1 = s_1 s \), and \(s, s_1, s_2 \) would be powers of some sequence, which contradicts \(A \not\subseteq G_1 \).

• We prove (c). Let \(t \in A \), so that \(ts_1^\infty, ts_2 s_1^\infty \in A^\infty \). These sequences split after \(t(s_1 s_2 \wedge s_2 s_1) \), and the decomposition of \(ts_1^\infty \) (resp., \(ts_2 s_1^\infty \)) into words of \(\{s_1, s_2\} \) starts with \(u s_i \) (resp., \(u s_3 \ldots \)), where \(u \in [\{s_1, s_2\}^\infty]^* \). So \(ts_1^\infty \) and \(ts_2 s_1^\infty \) split after \(u(s_1 s_2 \wedge s_2 s_1) \) by (b). But we must have \(t = u \) because of the position of the splitting point.

• We prove Lemma 8. If \(A \in G_0 \), then \(F := 0 \) works. If \(A \in G_1 \setminus G_0 \), then let \(w \in n^{\omega} \setminus \{0\} \) such that \(A \subseteq \{w^q/q \in \omega\} \), and \(q > 0 \) such that \(w^q \in A \). Then \(F := \{w^q\} \) works. So we may assume that \(A \not\subseteq G_1 \), and \(A^\infty = \{s_1, s_2\}^\infty \). As \(A^\infty \subseteq \bigcup_{\alpha \in A} \{\alpha \in N_i/s_1 s_2 \wedge s_2 s_1 < \alpha - t\} \) is compact, we get a finite subset \(F \) of \(A^\infty \) such that \(A^\infty \subseteq \bigcup_{f \in F} \{\alpha \in N_i/s_1 s_2 \wedge s_2 s_1 < \alpha - t\} \). We have \(F^\infty \subseteq A^\infty \). If \(\alpha \in A^\infty \), then let \(t \in F \) such that \(\alpha \prec t \). By (c), we have \(t \in \{\{s_1, s_2\}^\infty\}^* \). The sequence \(t \) is the beginning of the decomposition of \(\alpha \) into words of \(\{s_1, s_2\} \). Thus \(\alpha - t \in A^\infty \) and we can go on like this. This shows that \(\alpha \in F^\infty \).

\[\square \]

Remark. The inclusion of \(A^\infty = \{s_1, s_2\}^\infty \) into \(\{t_1, t_2\}^\infty \) does not imply \(\{s_1, s_2\} \subseteq \{t_1, t_2\}^{\omega, *}, \) even if \(A \not\subseteq G_1 \). Indeed, take \(s_1 := 01, s_2 := t_1 := 0 \) and \(t_2 := 10 \). But we have

\[|t_1| + |t_2| \leq |s_1| + |s_2|, \]

which is the case in general:

Lemma 9 Let \(A, B \notin G_1 \) satisfying \(A^\infty = \{s_1, s_2\}^\infty \subseteq B^\infty = \{t_1, t_2\}^\infty \). Then there is \(j \in 2 \) such that \(|t_1 + i| \leq |s_1 + [i + j \mod 2]| \) for each \(i \in 2 \). In particular, \(|t_1| + |t_2| \leq |s_1| + |s_2| \).

Proof. We may assume that \(|s_1| \leq |s_2| \). Let, for \(i = 1, 2 \), \((w_i)^m \subseteq \{t_1, t_2\} \) be sequences such that \(s_i^c = w_0^i w_1^i \ldots \) (resp., \(s_2 s_1^\infty = w_0^i w_1^i \ldots \)). By the proof of Lemma 8, there is a minimal integer \(m_0 \) satisfying \(w_0^i \neq w_0^{m_0} \). We let \(u := w_0^1 \ldots w_0^{m_0-1} \). The sequences \(s_1^c \) and \(s_2 s_1^\infty \) split after \(s_1 s_2 \wedge s_2 s_1 = u(t_1 t_2 \wedge t_2 t_1) \). Similarly, \(s_1^c \) and \(s_1 s_2 s_1^\infty \) split after \(s_1(s_1 s_2 \wedge s_2 s_1) = v(t_1 t_2 \wedge t_2 t_1) \), where \(v \in \{t_1, t_2\}^{\omega, *}, \) \(\emptyset \}. \) So we get \(s_1 u = v \). Similarly, with the sequences \(s_2 s_1^\infty \) and \(s_2 s_1^\infty \), we see that \(s_2 u \in \{t_1, t_2\}^{\omega, *}, \emptyset \}. \) So we may assume that \(u \not= 0 \) since \(\{s_1, s_2\} \notin G_1 \). If \(t_1 \not= t_2 \), then we may assume that \(0 \not= t_1 \not<_{\neq} t_2 \). So we may assume that we are not in the case \(t_2 < t_1 \). Indeed, otherwise \(t_2 = t_1^\infty, \) where \(\emptyset \not<_{\neq} \emptyset \). We have that \(t_1 \not= t_2 \). Otherwise we would have \(t_1 = t(t_1 - t) = (t_1 - t)t \) and \(t, t_1 - t, t_1, t_2 \) would be powers of the same sequence, which contradicts \(\{t_1, t_2\} \notin G_1 \). As \(s_1 u \in \{t_1, t_2\}^{\omega}, \) this shows that \(s_i \in \{t_1, t_2\}^{\omega, *}, \) \(s_i \notin G_1 \) as before.
Assume for example that \(t_2 = w_{m_0}^1 \). Let \(m' \) be maximal with \(t_1^{m'} < t_2 \). Notice that
\[
vt_1^{m'} < s_1 s_2 < s_1 s_2 s_2 s_1^\infty.
\]
We have \(ut_2 < s_1 s_2 s_2^\infty \), otherwise we would obtain \(ut_1^{m' + 1} < s_1 s_2 s_2^\infty \land s_2 s_1^\infty = s_1 s_2 \land s_2 s_1 < s_1^\infty \), which is absurd. So we get \(|t_2| \leq |s_1| \) since \(|u| + |t_2| + |t_1| t_2 t_1| \leq |s_1| + |s_1 s_2 \land s_2 s_1| \). Similarly, \(|t_1| \leq |s_2| \) since \(ut_1^{m' + 1} < s_2 s_1^\infty \). The argument is similar if \(t_2 = w_{m_0}^2 \) (we get \(|t_i| \leq |s_i| \) in this case for \(i = 1, 2 \)).

Corollary 10 \(G_2 \) is a \(D_\omega(\Sigma_1^0) \setminus D_\omega(\Sigma_0^0) \) set. In particular, \(G_2 \) is \(D_\omega(\Sigma_0^0) \)-complete.

Proof. We will apply the Hausdorff derivation to \(G \subseteq 2^{n^<\omega} \). This means that we define a decreasing sequence \((F_\xi)_{\xi<\omega_1}\) of closed subsets of \(2^{n^<\omega} \) as follows:
\[
F_\xi := \bigcap_{\eta<\xi} F_\eta \quad \text{if} \xi \text{ is even,} \quad \bigcap_{\eta<\xi} F_\eta \setminus G \quad \text{if} \xi \text{ is odd.}
\]
Recall that if \(\xi \) is even, then \(F_\xi = \emptyset \) is equivalent to \(G \subseteq D_\xi(\Sigma_1^0) \). Indeed, we set \(U_\xi := \hat{F}_\xi \). We have \(U_{\xi+1} \setminus U_\xi = F_\xi \setminus F_{\xi+1} \subseteq \hat{G} \) if \(\xi \) is even and \(U_{\xi+1} \setminus U_\xi \subseteq \hat{G} \) if \(\xi \) is odd. Similarly, \(U_\xi \setminus (\bigcup_{\eta<\xi} U_\eta) \subseteq \hat{G} \) if \(\xi \) is limit. If \(F_\xi = \emptyset \), then let \(\eta \) be minimal such that \(F_\eta = \emptyset \). We have \(G = \bigcup_{\theta<\eta, \theta \text{ odd}} U_\theta \setminus \bigcup_{\rho<\theta} U_\rho \). If \(\eta \) is odd, then \(G \subseteq \bigcup_{\theta<\eta, \theta \text{ even}} U_\theta \setminus \bigcup_{\rho<\theta} U_\rho \subseteq D_\eta(\Sigma_1^0) \) and the same conclusion is true. Conversely, if \(G \subseteq D_\xi(\Sigma_1^0) \), then let \((V_\eta)_{\eta<\xi} \) be an increasing sequence of open sets with \(G \subseteq \bigcup_{\eta<\xi, \eta \text{ odd}} V_\eta \setminus \bigcup_{\eta<\xi} V_\eta \). By induction, we check that \(F_\eta \subseteq V_\eta \) if \(\eta < \xi \).
This clearly implies that \(F_\xi = \emptyset \) because \(\xi \) is even.

- We will show that if \(A \notin G_1 \) satisfies \(A^\infty = \{s_1, s_2\}^\infty \), then \(A \notin F_M \) := \(F_M(G_2) \), where \(M \) is the smallest odd integer greater than or equal to \(f(s_1, s_2) := 2^{\Sigma_{i=0}^{s_1}[s_1]+s_2} + 2^{\Sigma_{i=0}^{s_2}[s_2]} \).

We argue by contradiction: \(A \) is the limit of \((A_q)\), where \(A_q \in F_{M-1} \setminus G_2 \). Lemma 8 gives a finite subset \(F \) of \(A \), and we may assume that \(F \subseteq A_q \) for each \(q \). Thus we have \(A^\infty \subseteq A_\infty \), and the inclusion is strict. Thus we can find \(s^q \in [A^\infty_q]^\ast \) such that \(N_{s^q} \cap A^\infty = \emptyset \). Let \(s^q_0, \ldots, s^q_{m_q} \in A_q \) be such that \(s^q = s^q_0 \ldots s^q_{m_q} \).

Now \(A_q \) is the limit of \((A_{q,r})_r\), where \(A_{q,r} \in F_{M-2} \setminus G_2 \), and we may assume that
\[
\{s^q_0, \ldots, s^q_{m_q}\} \cup F \subseteq A_{q,r}
\]
for each \(r \), and that \(A_{q,r} \notin G_1 \) because \(A_q \notin G_1 \subseteq G_2 \). Let \(s^q_{1,r}, s^q_{2,r} \) such that \(A^\infty_{q,r} = \{s^q_{1,r}, s^q_{2,r}\}^\infty \).

By Lemma 9 we have \(|s^q_{1,r}| + |s^q_{2,r}| \leq |s_1| + |s_2| \). Now we let \(B_0 := A_{0,0} \) and \(s^q_i := s^q_{i,0} \) for \(i = 1, 2 \).
We have \(B_0 \in F_{M-2} \setminus G_2 \setminus G_1 \), \(A^\infty \subseteq B_0^\infty = \{s^q_0, s^q_2\}^\infty \), and
\[
|s^q_1| + |s^q_2| \leq |s_1| + |s_2|.
\]
Now we iterate this: for each $0 < k < n^{2(|s_1|+|s_2|)}$, we get $B_k \in F_{M-2(k+1)} \cap \mathcal{G}_2 \setminus \mathcal{G}_1$ such that $B_k^\infty \subseteq B_k \subseteq \{s_1^k, s_2^k\}^\infty$ and $|s_1^k| + |s_2^k| \leq |s_1^{k-1}| + |s_2^{k-1}|$. We can find $k_0 < n^{2(|s_1|+|s_2|)}$ such that $|s_1^{k_0}| + |s_2^{k_0}| < |s_1^{k_0-1}| + |s_2^{k_0-1}|$ (with the convention $s_i^{-1} := s_{i0}$). We set $C_0 := B_{k_0}, t_1^0 := s_i^{k_0}$. So we have $C_0 \in F_{M-2(k_0+1)} \cap \mathcal{G}_2 \setminus \mathcal{G}_1$, $C_0^\infty = \{t_1^0, t_2^0\}^\infty$ and $|t_1^0| + |t_2^0| < |s_1| + |s_2|$. Now we iterate this: for each $l \leq |s_1| + |s_2| - 2$, we get $t_1^l, t_2^l, k_l < n^{2(|t_1^{l-1}|+|t_2^{l-1}|)}$ and

$$C_l \in F_{M-2\sum_{m \leq l} (k_m+1)} \cap \mathcal{G}_2 \setminus \mathcal{G}_1$$

satisfying $C_l^\infty = \{t_1^l, t_2^l\}^\infty$ and $|t_1^l| + |t_2^l| < |t_1^{l-1}| + |t_2^{l-1}|$ (with the convention $t_i^{-1} := s_i$). We have $|t_1^l| + |t_2^l| \leq |s_1| + |s_2| - 1 - l$, thus

$$2\sum_{l \leq |s_1|+|s_2|-2} (k_l + 1) \leq 2\sum_{l \leq |s_1|+|s_2|-2} n^{2(|t_1^{l-1}|+|t_2^{l-1}|)} \leq f(s_1, s_2)$$

and this construction is possible. But we have $|t_1^{|s_1|+|s_2|-2} + |t_2^{|s_1|+|s_2|-2}| \leq 1$, thus $C_{|s_1|+|s_2|-2} \in \mathcal{G}_1$, which is absurd.

Let $A \notin \mathcal{G}_2$. As $A \notin \mathcal{G}_1$, we can find $s, t \in A$ which are not powers of the same sequence. Indeed, let $s \in A^-$ and u with minimal length such that s is a power of u. Then any $t \in A \setminus \{s^v\} \in \omega$ works, because if s and t are powers of u, then w has to be a power of u. Indeed, as $u < w$, $w = u^kv$ with $v < u$, and v has to be a power of u by minimality of $|u|$ and Lemma 7. Assume that moreover $A \in F_{2k+2}$. Now A is the limit of $(A_{k,r})_r \subseteq F_{2k+1} \cap \mathcal{G}_2$ for each integer k, and we may assume that $s, t \in A_{k,r} \notin \mathcal{G}_1$. Let $s_1^{k,r}, s_2^{k,r}$ be such that $A_{k,r}^\infty = \{s_1^{k,r}, s_2^{k,r}\}^\infty$. By Lemma 9 we have $|s_1^{k,r}| + |s_2^{k,r}| \leq |s| + |t|$ and $f(s_1^{k,r}, s_2^{k,r}) \leq f(s, t)$. By the preceding point, we must have

$$2k + 1 < f(s, t).$$

Thus $\bigcap F_m \subseteq \mathcal{G}_2$. Notice that $F_{m+1}(\mathcal{G}_2) \subseteq F_m$, so that $F_{\omega}(\mathcal{G}_2) = \emptyset$ and $\mathcal{G}_2 \subseteq \mathcal{D}_\omega(\Sigma)^0_0$.

* Now let us show that $\{0\} \in F_{\omega}(\mathcal{G}_2)$ (this will imply $\mathcal{G}_2 \notin D_\omega(\Sigma)^0_0$). It is enough to see that

$$\{0\} \in \bigcap F_m.$$

Let $E(x)$ be the biggest integer less than or equal to x, $p_k,s := 2^{k+1-E(|s|^2)}$ and $k \in \omega$. We define $A_0 := \{0\}$ and, for $s \in (\omega \setminus \{0\})^{\leq 2k+1}$ and $m > 1$, $A_{sm} := A_s \cup \{01^{p_k,s}m: (02^{p_k,s})^m \}$ if $|s|$ is even, $A_s \cup \{s \in [0, 1p_k,s)^{\omega}\}^* / m \leq |s| \leq m + p_k,s\}$ if $|s|$ is odd. Let us show that $A_s \in \mathcal{G}_2$ (resp., \mathcal{G}_2) if $|s|$ is even (resp., odd). First by induction we get $A_{sm} \subseteq \{0, 1p_k,s\}^{<\omega}$. Therefore $A_{sm}^\infty = \{0, 1p_k,s\}^\infty$ if $|s|$ is odd, because if α is in $\{0, 1p_k,s\}^\infty$ and $t \in [0, 1p_k,s)^{\omega}\}^*$ with minimal length $\geq m$ begins α, then $t \in A_{sm}$. Now if $|s|$ is even and $A_{sm}^\infty = \{s_1, s_2\}^\infty$, then $0n \in \{s_1, s_2\}^\infty$, thus for example $s_1 = 0^{k+1}, (01p_k,s)^\infty \in \{s_1, s_2\}^\infty$, thus $s_2 \prec (01p_k,s)^\infty$ and $|s_2| \geq |(01p_k,s)^m|$ since $s_20\in \{s_1, s_2\}^\infty$. But then $(02^{p_k,s})^\infty \notin \{s_1, s_2\}^\infty$ since $m > 1$. Thus $A_{sm} \notin \mathcal{G}_2$.

As $(A_{sm})_m$ tends to A_s and $(A_0)_{|s|=2k+1} \subseteq \mathcal{G}_2$, we deduce from this that A_s is in $F_{2k+1-|s|} \setminus \mathcal{G}_2$ if $|s| \leq 2k + 1$ is odd, and that $A_s \in F_{2k+1-|s|} \cap \mathcal{G}_2$ if $|s| \leq 2k + 1$ is even. Therefore $\{0\}$ is in $\bigcap F_{2k+1} = \bigcap F_m$. \]
Remarks. (1) The end of this proof also shows that \(G_p \notin D_\omega(\Sigma^0_1) \) if \(p \geq 2 \). Indeed, \(\{0\} \in F_\omega(G_p) \).

The only thing to change is the definition of \(A_{sm} \), if \(|s| \) is even: we set
\[
A_{sm} := A_s \cup \{(j^{p+1}p_k^p)_m/j < p\}.
\]

(2) If \(\{s_1, s_2\} \notin G_1 \) and \(\{s_1, s_2\}^\infty = \{t_1, t_2\}^\infty \), then \(\{s_1, s_2\} = \{t_1, t_2\} \). Indeed, \(\{t_1, t_2\} \notin G_1 \), thus by Lemma 9 we get \(|s_1| + |s_2| = |t_1| + |t_2| \). By (c) in the proof of Lemma 8 and the previous fact, \(s_i = t_i^{a_i} \), where \(a_i > 0, \epsilon_i, i \in \{1, 2\} \). As \(\{s_1, s_2\} \notin G_1, \epsilon_1 \neq \epsilon_2 \). Thus \(a_i = 1 \).

Conjecture 1. Let \(A \in \mathcal{F} \). Then there exists a finite subset \(F \) of \(A \) such that \(A^\infty = F^\infty \).

Conjecture 2. Let \(p \geq 1, A, B \notin G_p \) with \(A^\infty = \{s_1, \ldots, s_q\} \subseteq B^\infty = \{t_1, \ldots, t_{p+1}\} \). Then \(\Sigma_1 \leq p+1 \leq \Sigma_1 \leq q \).

Conjecture 3. We have \(G_{p+1} \setminus G_p \subset D_\omega(\Sigma^0_1) \) for each \(p \geq 1 \). In particular, \(\mathcal{F} \in \mathcal{K}_\sigma \setminus \Pi^0_2 \).

Notice that Conjectures 1 and 2 imply Conjecture 3. Indeed, \(\mathcal{F} = \mathcal{G}_1 \cup \bigcup_{p \geq 1} G_{p+1} \setminus G_p \), so \(\mathcal{F} \in \mathcal{K}_\sigma \) if \(G_{p+1} \setminus G_p \subset D_\omega(\Sigma^0_1) \subseteq \Delta^0_\lambda \), by Proposition 6. By Proposition 5 we have \(\mathcal{F} \notin \Pi^0_2 \). It is enough to see that \(F_\omega := F_\omega(G_{p+1} \setminus G_p) = 0 \). We argue as in the proof of Corollary 10. This time, \(f(s_1, \ldots, s_q) := 2\sum_{i \leq 1 \leq q} |s_i| \) for \(s_1, \ldots, s_q \in n^{<\omega} \). The fact to notice is that \(A \notin F_\omega(G_{p+1} \setminus G_p) \) if \(A \notin G_p \) satisfies \(A^\infty = \{s_1, \ldots, s_{p+1}\} \) and \(M \) is the minimal odd integer greater than or equal to \(f(s_1, \ldots, s_{p+1}) \). So if \(A \in F_{2k+2} \cap \mathcal{F} \setminus G_p \), then Conjecture 1 gives a finite subset \(F = \{s_1, \ldots, s_q\} \) of \(A \). The set \(A \) is the limit of \((A_{k,r})_r \subseteq F_{2k+1} \cap G_{p+1} \setminus G_p \) for each integer \(k \), and we may assume that \(F \subseteq A_{k,r} \). Conjecture 2 implies that \(f(s_1, \ldots, s_{p+1}) \leq \inf f(s_1, \ldots, s_q) \) and \(2k + 1 < \inf f(s_1, \ldots, s_q) \). Thus \(\bigcap_m F_m \subseteq \mathcal{F} \cup G_p \). So \(F_\omega \subseteq (\mathcal{F} \cup G_p) \cap G_{p+1} \setminus G_p = 0 \).

3 Is \(A^\infty \) Borel?

Now we will see that the maximal complexity is possible. We essentially give O. Finkel’s example, in a slightly simpler version.

Proposition 11 Let \(\Gamma := \Sigma^1_1 \) or a Baire class. The existence of \(n \in \omega \setminus 2 \) and \(A \subseteq n^{<\omega} \) such that \(A^\infty = \Gamma \)-complete is equivalent to the existence of \(B \subseteq 2^{<\omega} \) such that \(B^\infty = \Gamma \)-complete.

Proof. Let \(p_n := \min \{p \in \omega/n \leq 2^p \} \geq 1 \). We define \(\phi : n \rightarrow 2^{p_n} := \{\sigma_0, \ldots, \sigma_{2^{p_n}-1}\} \) by the formula \(\phi(m) := \sigma_m \), \(\Phi : n^{<\omega} \rightarrow 2^{<\omega} \) by the formula \(\Phi(t) := \phi(t(0)) \cdots \phi(t(|t| - 1)) \) and \(f : n^{<\omega} \rightarrow 2^{<\omega} \) by the formula \(f(\gamma) := \phi(\gamma(0)) \phi(\gamma(1)) \cdots \). Then \(f \) is an homeomorphism from \(n^{<\omega} \) onto its range and reduces \(A^\infty \) to \(B^\infty \), where \(B := \Phi[A] \). The inverse function of \(f \) reduces \(B^\infty \) to \(A^\infty \). So we are done if \(\Gamma \) is stable under intersection with closed sets. Otherwise, \(\Gamma = \Delta^0_1 \) or \(\Sigma^0_1 \). If \(A = \{s \in 2^{<\omega}/0 \prec s \text{ or } 1^2 \prec s\} \), then \(A^\infty = N_0 \cup N_2 \), which is \(\Delta^0_1 \)-complete. If \(A = \{s \in 2^{<\omega}/0 \prec s \} \cup \{10^k1^{l+1}/k, l \in \omega\} \), then \(A^\infty = 2^\omega \setminus \{10^\omega\} \), which is \(\Sigma^0_1 \)-complete. \(\square \)

Theorem 12 The set \(I := \{(\alpha, A) \in n^{<\omega} \times 2^{<\omega}/\alpha \in A^\infty \} \) is \(\Sigma^1_1 \)-complete. In fact,
(a) (O. Finkel, see [FI]) There exists \(A_0 \subseteq 2^{<\omega} \) such that \(A_0^\infty \) is \(\Sigma^1_1 \)-complete.
(b) There exists \(\alpha_0 \in 2^{<\omega} \) such that \(I_{\alpha_0} \) is \(\Sigma^1_1 \)-complete.
Proof. (a) We set \(L := \{2, 3\} \) and \(T := \{ \tau \subseteq 2^{<\omega} \times L / \forall \langle u, \nu \rangle \in 2^{<\omega} \times L \ [\langle u, \nu \rangle \notin \tau \text{ or } \gamma \text{ subset of } 2 \} \). Then \(\bullet \) The set \(T \) is the set of pruned trees over 2 with labels in \(L \). It is a closed subset of \(2^{<\omega} \times L \), thus a Polish space. Then we set \(\sigma := \{ \tau \in T / \exists (u, \nu) \in 2^{<\omega} \times L \ [\forall m \geq p \ (u[m, \nu(m)] \in \tau) \} \).

\[\exists \sigma \in \Sigma^1_1(T) \text{ Let us show that it is complete. We set } T := \{ T \in 2^{<\omega} / T \text{ is a tree} \} \text{ and } I F := \{ T \in T / T \text{ is ill-founded}\} \text{. It is a well-known fact that } T \text{ is a Polish space (it is a closed subset of } 2^{<\omega} \text{), and that } I F \text{ is } \Sigma^1_1 \text{-complete (see [K1])}. \text{ It is enough to find a Borel reduction of } I F \text{ to } \sigma \text{ (see [K2])} . \]

We define \(\psi : \omega^{<\omega} \rightarrow 2^{<\omega} \) by the formula \(\psi(t) := 0|t(0)|0|t(1)|1 \ldots |t(|t|−1)|1 \), and \(\Psi : T \rightarrow T \) by \(\Psi(T) := \{ (u, \nu) \in 2^{<\omega} \times L / \exists t \in T \ u \prec \psi(t) \text{ and } \nu = 3 \text{ if } u = 0, \ 2 + u(|u| − 1) \text{ otherwise} \} \)

The map \(\Psi \) is Baire class one. Let us show that it is a reduction. If \(T \in I F \), then let \(\gamma \in \omega^{\omega} \text{ be such that } \gamma[m] \in T \text{ for each integer } m \). We have \((\psi(\gamma[m]), 3) \in \Psi(T) \). Let \(w \) be the limit of \(\psi(\gamma[m]) \) and \(\nu(m) := 2 + w(m − 1) \text{ (resp., 3) if } m > 0 \text{ (resp., } m = 0) \). These objects show that \(\Psi(T) \in \sigma \). Conversely, \(T \in I F \) if \(\Psi(T) \in \sigma \).

\(\bullet \) If \(\tau \in T \) and \(m \in \omega \), then we enumerate \(\tau \cap (2^m \times L) := \{ (u_1, v_1), \ldots, (u_{q_m, \tau}, v_{q_m, \tau}) \} \) in the lexicographic ordering. We define \(\varphi : T \rightarrow \omega^{<\omega} \) by the formula

\[\varphi(\tau) := (u_1^{0,\tau} v_1^{0,\tau} \ldots u_{q_0,\tau}^{0,\tau} v_{q_0,\tau}^{0,\tau})(u_1^{1,\tau} v_1^{1,\tau} \ldots u_{q_1,\tau}^{1,\tau} v_{q_1,\tau}^{1,\tau})4 \ldots \]

The set \(A_0 \) will be made of finite subsequences of sentences in \(\varphi[T] \). We set \(A_0 := \{ u_{q+1}^{m,\tau} v_{q+1}^{m,\tau} \ldots u_{q}^{p,\tau} v_{q}^{p,\tau} / \tau \in T, \ m + 1 < p, \ 0 \leq q \leq q_{m,\tau}, \ 1 \leq r \leq q_{p,\tau}, \ [\text{or } q > 0 \text{ and } \nu_{q,\tau}^{m,\tau} = 3 \text{ and } u_{q,\tau}^{m,\tau} \prec v_{q,\tau}^{p,\tau}) \} \)

(we cut \(u_{q,\tau}^{m,\tau} \prec v_{q,\tau}^{p,\tau}) \text{ and } v_{q,\tau}^{p,\tau} \text{ with the convention } u_{q,\tau}^{m,\tau} v_{q,\tau}^{p,\tau} \text{ and } v_{q,\tau}^{p,\tau} \text{ at } m > 4 \}. \text{ It is clear that } \varphi \text{ is continuous, and it is enough to see that it reduces } \sigma \text{ to } A_0^\infty . \)

So let us assume that \(\tau \in \sigma \). This means the existence of an infinite branch in the tree with infinitely many 3 labels. We cut \(\varphi(\tau) \) after the first 3 label of the branch corresponding to a sequence of length \(m > 1 \). Then we cut after the first 3 label corresponding to a sequence of length at least \(m + 2 \) of the branch. And so on. This clearly gives a decomposition of \(\varphi(\tau) \) into words in \(A_0 \).

If such a decomposition exists, then the first word is \(u_1^{0,\tau} v_1^{0,\tau} \ldots u_{q_0,\tau}^{0,\tau} v_{q_0,\tau}^{0,\tau} \), and the second is \(u_{q_0,\tau}^{p_0,\tau} v_{q_0,\tau}^{p_0,\tau} \ldots u_{q_1,\tau}^{p_1,\tau} v_{q_1,\tau}^{p_1,\tau} \). So we have \(u_{q_0,\tau}^{p_0,\tau} \prec u_{q_1,\tau}^{p_1,\tau} \). And so on. This gives an infinite branch with infinitely many 3 labels.
• By Proposition 11, we can also have $A_0 \subseteq 2^{<\omega}$.

(b) Let $\alpha_0 := 1010^2 10^3 \ldots (q_i)$ be the sequence of prime numbers: $q_0 := 2$, $q_1 := 3$, $M : \omega^{<\omega} \rightarrow \omega$ defined by $M_s := q_0^{(s)(0)+1} \ldots q_{|s|-1}^{(|s|-1)+1} + 1$, $\phi : \omega^{<\omega} \rightarrow 2^{<\omega} \setminus \{\emptyset\}$ defined by the formulas

$$\phi(\emptyset) := 1010^2 = 1010^{2M_0}$$

and $\phi(sm) := 10^{2M_{\sigma+1}+1} 10^{2M_{\sigma+1}+2} \ldots 10^{2M_m}$, and $\Phi : 2^{\omega^{<\omega}} \rightarrow 2^{\varepsilon^{<\omega}}$ defined by $\Phi(T) := \phi[T]$.

• It is clear that $M_{sm} > M_s$, and that M and ϕ are well defined and one-to-one. So Φ is continuous:

$s \in \phi[T] \iff \exists t \in T$ and $\phi(t) = s$

$s \in \phi[\omega^{<\omega}]$ and $\forall t \in T \phi(t) \neq s$.

If $T \in IF$, then we can find $\beta \in \omega^{\omega}$ such that $\phi(\beta[l]) \in \Phi(T)$ for each integer l. Thus

$$\alpha_0 = (1010^{2M_{\beta(0)}} 10^{2M_{\beta(0)+1}} \ldots 10^{2M_{\beta(1)}}) \ldots \in \Phi(T)^{\infty}.$$

Conversely, if $\alpha_0 \in (\Phi(T))^{\infty}$, then there exist $t_i \in T$ such that $\alpha_0 = \phi(t_0) \phi(t_1) \ldots$ We have $t_0 = \emptyset$, and, if $i > 0$, then $M_{t_i[t_i-1]} = M_{t_i-1}$; from this we deduce that $t_i[t_i] - 1 = t_i - 1$, because M is one-to-one. So let β be the limit of the t_i’s. We have $\beta[i] = t_i$, thus $\beta \in [T]$ and $T \in IF$. Thus $\Phi|T$ reduces IF to I_{α_0}. Therefore this last set is Σ^1_1-complete. Indeed, it is clear that I is Σ^1_1:

$$\alpha \in A^{\infty} \iff \exists \beta \in \omega^{\omega} \ [(\forall m > 0 \ (\beta(m) > 0)) \mbox{ and } (\forall q \in \omega \ \pi(\alpha, \beta, q) \in A)].$$

Finally, the map from T into $n^{\omega} \times 2^{n^{<\omega}}$, which associates $(\alpha_0, \Phi(T))$ to T clearly reduces IF to I.

So I is Σ^1_1-complete.

Remark. This proof shows that if $\alpha = s_0 s_1 \ldots$ and (s_i) is an antichain for the extension ordering, then I_{α} is Σ^1_1-complete (here we have $s_1 = 10^{2i+1} 10^{2i+2}$). To see it, it is enough to notice that $\phi(\emptyset) = s_0$ and $\phi(sm) = s_{M_s} \ldots s_{M_m}$. So I_{α} is Σ^1_1-complete for a dense set of α’s.

We will deduce from this some true co-analytic sets. But we need a lemma, which has its own interest.

Lemma 13 (a) The set A^{∞} is Borel if and only if there exist a Borel function $f : n^{\omega} \rightarrow \omega^{\omega}$ such that

$$\alpha \in A^{\infty} \iff (\forall m > 0 \ f(\alpha)(m) > 0) \mbox{ and } (\forall q \in \omega \ \pi(\alpha, f(\alpha), q) \in A).$$

(b) Let $\gamma \in \omega^{\omega}$ and $A \subseteq n^{<\omega}$. Then $A^{\infty} \in \Delta^1_1(A, \gamma)$ if and only if, for $\alpha \in n^{\omega}$, we have

$$\alpha \in A^{\infty} \iff \exists \beta \in \Delta^1_1(A, \gamma, \alpha) \ [(\forall m > 0 \ (\beta(m) > 0)) \mbox{ and } (\forall q \in \omega \ \pi(\alpha, \beta, q) \in A)].$$

Proof. The “if” directions in (a) and (b) are clear. We have seen in the proof of Proposition 4 the “if” direction of the equivalences (the existence of an arbitrary β is necessary and sufficient). So let us show the “only if” directions.
We define \(f : \omega^\omega \to \omega^\omega \) by the formula \(f(\alpha) := 0^\omega \) if \(\alpha \notin A^\omega \), and, otherwise,

\[
f(\alpha)(0) := \min\{ p \in \omega / \alpha [(p + 1) \in A \} \quad \text{and} \quad \alpha - \alpha[(p + 1) \in A^\omega] \}
\]

\[
f(\alpha)(r + 1) := \min\{ k > 0 / \alpha - \alpha[(1 + \Sigma_{j \leq r} f(\alpha)(j))][k \in A \} \quad \text{and} \quad \alpha - \alpha[(k + 1 + \Sigma_{j \leq r} f(\alpha)(j)) \in A^\omega] \}.
\]

We get \(\pi(\alpha, f(\alpha), 0) = \alpha[f(\alpha)(0) + 1] \in A \) and, if \(q > 0 \),

\[
\pi(\alpha, f(\alpha), q) = (\alpha(1 + \Sigma_{j < q} f(\alpha)[j]), ..., \alpha(\Sigma_{j < q} f(\alpha)[j])) \in A.
\]

As \(f \) is clearly Borel, we are done.

(b) If \(A^\omega \in \Delta_1^1(A, \gamma) \), then so is \(f \) and \(\beta := f(\alpha) \in \Delta_1^1(A, \gamma, \alpha) \) is what we were looking for. \(\square \)

Remark. Lemma 13 is a particular case of a more general situation. Actually we have the following uniformization result. It was written after a conversation with G. Debs.

Proposition 14 Let \(X \) and \(Y \) be Polish spaces, and \(F \in \Pi_0^\infty(X \times Y) \) such that the projection \(\Pi_X[F \cap (X \times Y)] \) is Borel for each \(V \in \Sigma_1^1(Y) \). Then there exists a Borel map \(f : X \to Y \) such that \((x, f(x)) \in F \) for each \(x \in \Pi_X[F] \).

Proof. Let \((Y_n)\) be a basis for the topology of \(Y \) with \(Y_0 := Y, B_0 := \Pi_X[F \cap (X \times Y_n)] \), and \(\tau \) be a finer 0-dimensional Polish topology on \(X \) making the \(B_{n} \)'s clopen (see 13.5 in [K1]). We equip \(X \) with a complete \(\tau \)-compatible metric \(d \). Let \((O_m) \subseteq \Sigma_1^0(X \times Y) \) be decreasing satisfying \(O_0 := X \times Y \) and \(F = \bigcap_m O_m \). We construct a sequence \((Us_s)_{s \in \omega^\omega} \) of clopen subsets of \([B_0, \tau]\) with \(U_0 := B_0 \), and a sequence \((Vs_s)_{s \in \omega^\omega} \) of basic open sets of \(Y \) satisfying

\[
(a) U_s \subseteq \Pi_X[F \cap (Us \times Vs)] \\
(b) \text{diam}_d(U_s), \text{diam}(Vs) \leq \frac{1}{m} \text{ if } s \neq \emptyset \\
(c) U_s = \bigcup_m, \text{disj.} \quad U_{s-m}, \quad Vs_{s-m} \subseteq Vs \\
(d) U_s \times Vs \subseteq O_{|s|}
\]

- Assume that this construction has been achieved. If \(x \notin B_0 \), then we set \(f(x) := y_0 \in Y \) (we may assume that \(F \neq \emptyset \)). Otherwise, we can find a unique sequence \(\gamma \in \omega^\omega \) such that \(x \in V_{\gamma m} \) for each integer \(m \). Thus we can find \(y \in V_{\gamma m} \) such that \((x, y) \in F \), and \((V_{\gamma m})_m \) is a decreasing sequence of nonempty closed sets whose diameters tend to 0, which defines a continuous map \(f : [B_0, \tau] \to Y \). If \(x \in B_0 \), then \((x, f(x)) \in U_{\gamma m} \times V_{\gamma m} \subseteq O_m \), thus \(Gr(f|B_0) \subseteq F \). Notice that \(f : [X, \tau] \to Y \) is continuous, so \(f : X \to Y \) is Borel.

- Let us show that the construction is possible. We set \(U_0 := B_0 \) and \(V_0 := Y \). Assume that \((Us_s)_{s \in \omega^\omega} \leq p \) and \((Vs_s)_{s \in \omega^\omega} \leq p \) satisfying conditions (a)-(d) have been constructed, which is the case for \(p = 0 \). Let \(s \in \omega^p \). If \((x, y) \in F \cap (Us \times Vs) \), then we can find \(U_x \in \Delta_0^\infty(Us_s) \) and a basic open set \(V_y \subseteq Y \) such that \((x, y) \in U_x \times V_y \subseteq U_x \times V_y \subseteq (Us \times Vs) \cap O_{p+1} \), and whose diameters are at most \(\frac{1}{p^{1}} \). By the Lindelöf property, we can write \(F \cap (Us \times Vs) \subseteq \bigcup_n U_{x_n} \times V_{y_n} \) and \(F \cap (Us \times Vs) = \bigcup_n F \cap (Us_n \times V_{y_n}) \).
If $x \in U_s$, then let n and y be such that $(x, y) \in F \cap (U_{x_n} \times V_{y_n})$. Then

$$x \in O^n := \Pi_x [F \cap (X \times V_{y_n})] \cap U_{x_n} \in \Delta_1^0 ([B_0, \tau]).$$

Thus $U_s = \bigcup_n O^n$. We set $U_{s-n} := O^n \setminus (\bigcup_{p<n} O^p)$ and $V_{s-n} := V_{y_n}$, and we are done. \hfill \square

In our context, $F = \{(\alpha, \beta) \in n^\omega \times \omega^\omega/(\forall m > 0 \beta(m) > 0) \text{ and } (\forall q \in \omega \pi(\alpha, \beta, q) \in A)\}$, which is a closed subset of $X \times Y$. The projection $\Pi_x[F \cap (X \times N_s)]$ is Borel if A^∞ is Borel, since it is $\{S^\gamma / S \in (A \cap n^{(0)+1}) \times \Pi_{0<j<|s|} (A \cap n^{(j)})\}$ and $\gamma \in A^\infty$.

Theorem 15 The following sets are $\Pi_1^1 \setminus \Delta_1^1$:

(a) $\Pi := \{(A, \gamma, \theta) \in 2^{n^\omega} \times \omega^\omega \times \omega^\omega / \theta \in \text{WO and } A^\infty \in \Pi_0^0 \cap \Delta_1^1 (A, \gamma)\}$. The same thing is true with $\Sigma := \{(A, \gamma, \theta) \in 2^{n^\omega} \times \omega^\omega \times \omega^\omega / \theta \in \text{WO and } A^\infty \in \Sigma_0^0 \cap \Delta_1^1 (A, \gamma)\}$.

(b) $\Sigma_\xi := \{A \in 2^{n^\omega} / A^\infty \in \Sigma_\xi^0 \cap \Delta_1^1 (A)\}$. In fact, $\Sigma_\xi := \{A \in 2^{n^\omega} / A^\infty \in \Sigma_\xi^0 \cap \Delta_1^1 (A)\}$ is $\Pi_1^1 \setminus \Delta_1^1$ if $1 \leq \xi < \omega_1$. Similarly, $\Pi_\xi := \{A \in 2^{n^\omega} / A^\infty \in \Pi_\xi^0 \cap \Delta_1^1 (A)\}$ is $\Pi_1^1 \setminus \Delta_1^1$ if $2 \leq \xi < \omega_1$.

(c) $\Delta := \{A \in 2^{n^\omega} / A^\infty \in \Delta_1^1 (A)\}$.

Proof. Consider the way of coding the Borel sets used in [Lou]. By Lemma 13 we get

$$(A, \gamma, \theta) \in \Pi \iff \exists \alpha \in n^\omega \quad P(p, A, \gamma, \theta) \quad \text{and } \forall \alpha \in n^\omega \quad (\alpha \notin A^\infty \text{ or } (p, A, \gamma, \alpha) \notin C) \quad \text{and} \quad \exists \beta \in \Delta_1^1 (A, \gamma, \alpha) \quad \text{or} \quad \exists \beta \in \Delta_1^1 (A, \gamma, \alpha) \quad \text{or} \quad \exists \beta \in \Delta_1^1 (A, \gamma, \alpha) \quad \text{or} \quad \exists \beta \in \Delta_1^1 (A, \gamma, \alpha) \text{ and } \exists \beta (m > 0, \beta(m) > 0) \text{ and } \forall q \in \omega \pi(\alpha, \beta, q) \in A)\}.$$

This shows that Π is Π_1^1. The same argument works with Σ. From this we can deduce that Σ_ξ is Π_1^1, if we forget γ and take the section of Σ at $\theta \in \text{WO} \cap \Delta_1^1$ such that $|\theta| = 1$. Similarly, Σ_ξ and Π_ξ are co-analytic if $\xi \geq 1$. Forgetting θ, we see that the relation “$A^\infty \in \Delta_1^1 (A, \gamma)$” is Π_1^1.

- Let us look at the proof of Theorem 12. We will show that if $\xi \geq 1$ (resp., $\xi \geq 2$), then $\Sigma_\xi \setminus I_{a_0}$ (resp., $\Pi_\xi \setminus I_{a_0}$) is a true co-analytic set. To do this, we will reduce WF to $\Sigma_\xi \setminus I_{a_0}$ (resp., $\Pi_\xi \setminus I_{a_0}$) in a Borel way. We change the definition of Φ. We set

$$t \leq a_0 \iff \exists k \quad t < a_0 - a_0[k],$$

$$E := \{(a_0[p] / r \in \omega \setminus \{2\}, r \in n \setminus \{a_0[p]\}\}, \quad F := \{U^* \not\subseteq a_0 / U \in \phi[T]^{<\omega}\},$$

$$\Phi'(T) := \phi[T] \cup \{s \in n^{<\omega} / \exists t \in E \cup F \quad t < s\}.$$

This time, Φ' is Baire class one, since

$$s \in \Phi'(T) \iff s \in \phi[T] \quad \text{or} \quad \exists t \in E \quad t < s \quad \text{or} \quad \exists U \in (2^{<\omega})^{<\omega} \quad (\forall j < |u| \ U(j) \in \phi[T] \) and \quad U^* \not\subseteq a_0 \text{ and } U^* < s.$$

The proof of Theorem 12 remains valid, since if $a_0 \in (\Phi'(T))^{<\omega}$, then the decompositions of a_0 into words of $\Phi'(T)$ are actually decompositions into words of $\phi[T]$.

13
Let us show that \((\Phi'(T))^\infty \in \Sigma^0_1 \cap \Delta^1_1(\Phi'(T))\) if \(T \in WF\). The set \((\Phi'(T))^\infty\) is

\[
\bigcup_{S \in \phi(T)^{<\omega}, J \in n \setminus \{1\}, m \in n \setminus \{0\}} \left[\bigcup_{s/\exists t \in F \ t \prec s} N_{S^* \cup N_{S^*+1 \cup (N_{S^*+101} \setminus \{S^* a_0\})}} \right].
\]

If \(\alpha \in n^\omega\), then \(\alpha\) contains infinitely many \(l \in n \setminus \{1\}\) or finishes with \(1^\infty\). As \(1^2\) and the sequences beginning with \(l\) are in \(\Phi'(T)\), the clopen sets are subsets of \((\Phi'(T))^\infty\) since \(\phi[T]\) and the sequences beginning with \(t \in F\), \(l\) or \(lm\) are in \(\Phi'(T)\). If \(\alpha \in (N_{S^*+1} \setminus \{S^* a_0\})\), then \(p \geq 3\) be maximal such that \(\alpha'[\{S^*\} + p] = S^* (a_0 [p])\). We have \(\alpha \in (\Phi'(T))^\infty\) since the sequences beginning with \((a_0 [p])\) are in \(\Phi'(T)\). Thus we get the inclusion into \((\Phi'(T))^\infty\).

If \(\alpha \in (\Phi'(T))^\infty\), then \(\alpha = a_0 a_1 \ldots\), where \(a_i \in \Phi'(T)\). Either for all \(i\) we have \(a_i \in \phi[T]\). In this case, there is \(i\) such that \(a_0 \ldots a_{i-1} \not\subseteq a_0\), otherwise we could find \(k\) with \(a_k = a_0 - a_0[k] \in \Phi'(T))^\infty\). But this contradicts the fact that \(T \in WF\), as in the proof of Theorem 12. So we have \(\alpha \in \bigcup_{\exists t \in F \ t \prec s} N_s\). Or there exists \(i\) minimal such that \(a_i \not\in \phi[T]\). In this case,

- Either \(\exists t \in E t \prec a_i\) and \(\alpha \in \bigcup_{S \in \phi[T]^{<\omega}, J \in n \setminus \{1\}, m \in n \setminus \{0\}} [N_{S^*+1} \cup N_{S^*+1 \cup (N_{S^*+101} \setminus \{S^* a_0\})}],\)
- Or \(\exists t \in F t \prec a_i\) and \(\alpha \in \bigcup_{S \in \phi[T]^{<\omega} \cup \cup_{s/\exists t \in F \ t \prec s} N_s \cup \bigcup_{S \in \phi[T]^{<\omega}} \bigcup_{s/\exists t \in F \ t \prec s} N_s^* s\).

From this we deduce that \((\Phi'(T))^\infty\) is \(\Sigma^0_1\).

Finally, we have

\[
\alpha \in (\Phi'(T))^\infty \iff \left\{ \begin{array}{l}
\exists t \in n^{<\omega} \exists b \in \omega^{<\omega} [(|t| = 1 + \Sigma_{j < |b|} b(j)) \land (\forall 0 < m < |b| b(m) > 0) \\
\land (\forall q < |b| \exists \alpha \in \Phi'(T)) [\exists 3l \in n \setminus \{1\} tl \prec \alpha \lor tl^2 \prec \alpha].
\end{array} \right.
\]

This shows that \((\Phi'(T))^\infty\) is \(\Delta^1_1(\Phi'(T))\).

Therefore, \(\Phi'(T)\) reduces \(WF\) to \(\Sigma^0_1 \setminus \Pi^0_0\) if \(\xi \geq 1\), and to \(\Pi^0_1 \setminus \Pi^0_0\) if \(\xi \geq 2\). So these sets are true co-analytic sets. But \(\Sigma^0_1 \setminus \Pi^0_0 = \Pi^0_1\), by Lemma 13. As \(\Sigma^0_1 \setminus \Pi^0_0 = \Sigma^1_1 \setminus \Pi^0_0\), \(\Sigma^1_1\) is not Borel. Thus \(\Sigma^0_1\) is not Borel, as before. The argument is similar for \(\Sigma^1_1\), \(\Pi^0_1\) (\(\xi \geq 2\)) and \(\Pi^0_2\). And for \(\Delta^0_2\) sure.

Question. Does \(A^\infty \in \Delta^1_1\) imply \(A^\infty \in \Delta^1_1(A)\)? Probably not. If the answer is positive, \(\Delta^0_1\) and more generally \(\Sigma^0_1\) (for \(\xi \geq 1\)) and \(\Pi^0_1\) (for \(\xi \geq 2\)) are true co-analytic sets.

Remark. In any case, \(\Delta^0_1\) is \(\Sigma^0_1\) because "\(A^\infty \in \Delta^0_1\)" is equivalent to "\(\exists \gamma \in \omega^\omega A^\infty \in \Delta^0_1(A, \gamma)\)". This argument shows that \(\Sigma^0_1\) and \(\Pi^0_1\) are \(\Delta^0_1\) (\(\theta\)), where \(\theta \in WO\) satisfies \(|\theta| = \xi\). We can say more about \(\Pi_1\): it is \(\Delta^0_1\). Indeed, in [St2] we have the following characterization:

\[
A^\infty \in \Pi^0_1 \iff \forall \alpha \in n^\omega \exists \gamma \in n^{<\omega} (s \prec \alpha \Rightarrow \exists S \in A^{<\omega} S \prec S^\gamma) \Rightarrow \alpha \in A^\infty.
\]

This gives a \(\Pi^0_1\) definition of \(\Pi_1\). The same fact is true for \(\Sigma^0_1\).

Proposition 16 \(\Sigma^0_1\) and \(\Pi^0_1\) are co-nowhere dense \(\Delta^0_2 \setminus D_2(\Sigma^0_1)\) subsets of \(2^{n^{<\omega}}\). If \(\xi \geq 2\), then \(\Sigma^0_1\) and \(\Pi^0_1\) are co-nowhere dense \(\Sigma^0_2 \setminus D_2(\Sigma^0_1)\) subsets of \(2^{n^{<\omega}}\). \(\Delta^0_2\) is a co-nowhere dense \(\Sigma^0_2 \setminus D_2(\Sigma^0_1)\) subset of \(2^{n^{<\omega}}\).
Proof. We have seen that Σ_1 is Σ^0_2; it is also Π^1_2 because

$$A^\infty \in \Sigma^0_1 \iff \forall \alpha \in n^\omega \alpha \notin A^\infty \text{ or } \exists s \in n^{<\omega} [s \prec \alpha \text{ and } \forall \beta \in n^\omega \ (s \neq \beta \text{ or } \beta \in A^\infty)].$$

By Proposition 4, Π_0 is co-nowhere dense, and it is a subset of $\Sigma_\xi \cap \Pi_\xi \cap \Delta$. So Σ_ξ, Π_ξ and Δ are co-nowhere dense, and it remains to see that they are not open. It is enough to notice that \emptyset is not in their interior. Look at the proof of Theorem 12; it shows that for each integer m, there is a subset A_m of $\{s \in 5^{<\omega} \mid |s| \geq m\}$ such that $A_m^\infty \notin \Delta^1_1$. But the argument in the proof of Proposition 11 shows that we can have the same thing in $n^{<\omega}$ for each $n \geq 2$. This gives the result because the sequence (A_m) tends to \emptyset. \hfill \Box

We can say a bit more about Π_1 and Σ_2:

Proposition 17 Π_1, Π_2 and Σ_2 are Σ^0_2-hard (so they are not Π^0_2).

Proof. Consider the map ϕ defined in the proof of Proposition 5. By Proposition 2, if $\gamma \in P_f$, then $\phi(\gamma)^\infty$ is Π^1_1. Moreover, as $\phi(\gamma)$ is an antichain for the extension ordering, the decomposition into words of $\phi(\gamma)$ is unique. This shows that $\phi(\gamma)^\infty$ is Δ^1_1, because

$$\alpha \in \phi(\gamma)^\infty \iff \exists \beta \in \Delta^1_1(\alpha) \left[\forall m > 0 \ (\beta(m) > 0) \text{ and } (\forall q \in \omega \ (\pi(\alpha, \beta, q) \in \phi(\gamma)))\right].$$

So $\phi(\gamma) \in \Pi_1$ if $\gamma \in P_f$. So the preimage of any of the sets in the statement by ϕ is P_f, and the result follows. \hfill \Box

4 Which sets are ω-powers?

Now we come to Question (3). Let us specify what we mean by “codes for Γ-sets”, where Γ is a given class, and fix some notation.

For the Borel classes, we will essentially consider the 2^ω-universal sets used in [K1] (see Theorem 22.3). For $\xi \geq 1$, $U^{\xi, A}$ (resp. $U^{\xi, M}$) is 2^ω-universal for $\Sigma^\xi_\chi(n^\omega)$ (resp. $\Pi^\xi_\chi(n^\omega)$). So we have

- $U^{1, A} = \{(\gamma, \alpha) \in 2^\omega \times n^\omega \mid \exists p \in \omega \ (\gamma(p) = 0) \text{ and } s^n_p \prec \alpha\}$, where $(s^n_p)_p$ enumerates $n^{<\omega}$.
- $U^{\xi, A} = \sim U^{\xi, A}$, for each $\xi \geq 1$.
- $U^{\xi, A} = \{(\gamma, \alpha) \in 2^\omega \times n^\omega \mid \exists p \in \omega \ (\gamma(p) \in U^{\eta, M})\}$ if $\xi = \eta + 1$.
- $U^{\xi, A} = \{(\gamma, \alpha) \in 2^\omega \times n^\omega \mid \exists p \in \omega \ (\gamma(p) \in U^{\eta, M})\}$ if ξ is the limit of the strictly increasing sequence of odd ordinals (η_p).

For the class Σ^1_1, we fix some bijection $p \mapsto ((p)_0, (p)_1)$ between ω and ω^2. We set

$$(\gamma, \alpha) \in U \iff \exists \beta \in 2^\omega \ (\forall m \exists p \geq m \ (\beta(p) = 1) \text{ and } (\forall p \ [\gamma(p) = 1 \text{ or } s^2_{(p)_0} \neq \beta \text{ or } s^n_{(p)_1} \neq \alpha])\).$$

It is not hard to see that U is 2^ω-universal for $\Sigma^1_1(n^\omega)$, and we use it here because of the compactness of $2^\omega \times n^\omega$, rather than the ω^ω-universal set for $\Sigma^1_1(n^\omega)$ given in [K1] (see Theorem 14.2).
• The sets we are interested in are the following:

\[\mathcal{A}_\xi := \{ \gamma \in 2^\omega / \mathcal{U}_\gamma^{\xi, \mathbb{A}} \text{ is an } \omega \text{-power} \}, \quad \mathcal{M}_\xi := \{ \gamma \in 2^\omega / \mathcal{U}_\gamma^{\xi, \mathbb{M}} \text{ is an } \omega \text{-power} \} \]

\[B := \{ d \in D / D_d \text{ is an } \omega \text{-power} \}, \]

\[A := \{ \gamma \in 2^\omega / \mathcal{U}_\gamma \text{ is an } \omega \text{-power} \}. \]

As mentioned in the introduction, Lemma 13 is also related to Question (3). A rough answer to this question is \(\Sigma^1_1 \). Indeed, we have, for \(\gamma \in 2^\omega \),

\[\gamma \in A \iff \exists A \in 2^{n_\omega} \forall \alpha \in n^\omega \left(\left((\gamma, \alpha) \notin U \text{ or } \alpha \in A^\infty \right) \text{ and } [\alpha \notin A^\infty \text{ or } (\gamma, \alpha) \in U] \right). \]

With Lemma 13, we have a better estimation of the complexity of \(B \): it is \(\mathcal{S}^1_2 \). Indeed, for \(d \in D \),

\[D_d \text{ is an } \omega \text{-power } \iff \exists A \in 2^{n_\omega} \forall \alpha \in n^\omega \left([(d, \alpha) \notin S \text{ or } \exists \beta \in \Delta^1_1(A, d, \alpha) \nonumber \right) \]

\[\nonumber \left(\forall m > 0 \beta(m) > 0 \right) \text{ and } (\forall q \in \omega \pi(\alpha, \beta, q) \in A)) \right) \) \text{ and } [\alpha \notin A^\infty \text{ or } (d, \alpha) \in P]. \]

This argument also shows that \(\mathcal{A}_\xi \) and \(\mathcal{M}_\xi \) are \(\Sigma^1_2 \). We can say more about these two sets.

Proposition 18 If \(1 \leq \xi < \omega_1 \), then \(\mathcal{A}_\xi \) and \(\mathcal{M}_\xi \) are \(\Sigma^1_2 \setminus D_2(\Sigma^0_1) \) co-meager subsets of \(2^\omega \). If moreover \(\xi = 1 \), then they are co-nowhere dense.

Proof. We set \(E_1 := \{ \gamma \in 2^\omega / \mathcal{U}^1_\gamma = n^\omega \} \), \(E_{\eta+1} := \{ \gamma \in 2^\omega / \forall p (\gamma)_p \in E_\eta \} \) if \(\eta \geq 1 \), and \(E_\xi := \{ \gamma \in 2^\omega / \forall p (\gamma)_p \in E_\eta \} \) (where \((\eta_p) \) is a strictly increasing sequence of odd ordinals cofinal in the limit ordinal \(\xi \)). If \(s \in 2^{<\omega} \), then we set \(\gamma(p) = s(p) \) if \(p < |s|, 0 \) otherwise. Then \(s \prec \gamma \) and \(\mathcal{U}^1_\gamma = n^\omega \), so \(E_1 \) is dense. If \(\gamma_0 \in E_1 \), then for all \(\alpha \in n^\omega \) we can find an integer \(p \) such that \(\gamma_0(p) = 0 \) and \(s_\alpha^p < \alpha \). By compactness of \(n^\omega \) we can find a finite subset \(F \) of \(\{ p \in \omega / \gamma_0(p) = 0 \} \) such that for each \(\alpha \in n^\omega, s_\alpha^p < \alpha \) for some \(p \in F \). Now \(\{ \gamma \in 2^\omega / \forall p \in F (\gamma(p) = 0) \} \) is an open neighborhood of \(\gamma_0 \) and a subset of \(E_1 \). So \(E_1 \) is an open subset of \(2^\omega \). Now the map \(\gamma \mapsto (\gamma)_p \) is continuous and open, so \(E_{\eta+1} \) and \(E_\xi \) are dense \(G_\delta \) subsets of \(2^\omega \). Then we notice that \(E_\xi \) is a subset of \(\{ \gamma \in 2^\omega / \mathcal{U}^{\xi, \mathbb{A}} = n^\omega \} \) (resp., \(\{ \gamma \in 2^\omega / \mathcal{U}^{\xi, \mathbb{M}} = \emptyset \} \)) if \(\xi \) is odd (resp., even). Indeed, this is clear for \(\xi = 1 \). Then we use the formulas \(\mathcal{U}^{\xi+1, \mathbb{A}} = \bigcup_p \mathcal{U}^{\xi, \mathbb{A}} - \mathcal{U}^{\xi, \mathbb{A}} \) and \(\mathcal{U}^{\xi, \mathbb{M}} = \bigcup_p \mathcal{U}^{\xi, \mathbb{M}} - \mathcal{U}^{\xi, \mathbb{M}} \), and by induction we are done. As \(\emptyset \) and \(n^\omega \) are \(\omega \)-powers, we get the results about Baire category. Now it remains to see that \(\mathcal{A}_\xi \) and \(\mathcal{M}_\xi \) are not open. But by induction again \(1^\omega \in \mathcal{A}_\xi \cap \mathcal{M}_\xi \), so it is enough to see that \(1^\omega \) is not in the interior of these sets.

• Let us show that, for \(O \in \Delta^1_1(n^\omega) \setminus \{ 0, n^\omega \} \) and for each integer \(m \), we can find \(\gamma, \gamma' \in 2^\omega \) such that \(\gamma(j) = \gamma'(j) = 1 \) for \(j < m, \mathcal{U}^{\xi, \mathbb{A}} = O \) and \(\mathcal{U}^{\xi, \mathbb{M}} = O \).

For \(\xi = 1 \), write \(O = \bigcup_p N_{q_p} \), where \(q_p \geq m \). Let \(\gamma(q) := 0 \) if there exists \(k \) such that \(q = q_k \), \(\gamma(q) := 1 \) otherwise. The same argument applied to \(O \) gives the complete result for \(\xi = 1 \).
Now we argue by induction. Let $\gamma_p \in 2^\omega$ be such that $\gamma_p(q) = 1$ for $<p,q><m$ and $\mathcal{U}_p^{n,A} = O$. Then define γ by $\gamma(<p,q>) := \gamma_p(q)$; we have $\gamma(j) = 1$ if $j < m$ and $\mathcal{U}_l^{n+1,A} = \bigcup_p \mathcal{U}_p^{n,A} = O$. The argument with \hat{O} still works. The argument is similar for limit ordinals.

- Now we apply this fact to $O := N_0$. This gives $\gamma_p, \gamma'_p \in N_1$ such that $\mathcal{U}_{\gamma_p}^{A} = N_0$ and $\mathcal{U}_{\gamma'_p}^{A} = N_0$. But $(\gamma_p), (\gamma'_p)$ tend to 1^ω, $\gamma_p \notin A_\xi$ and $\gamma'_p \notin A_\xi$. \hfill \Box

Corollary 19 A_1 is $\bar{D}_2(\Sigma_0^1) \setminus D_2(\Sigma_1^0)$. In particular, A_1 is $\bar{D}_2(\Sigma_0^1)$-complete.

Proof. By the preceding proof, it is enough to see that $A_1 \setminus \{1^\omega\}$ is open. So let $\gamma_0 \in A_1 \setminus \{1^\omega\}$, p_0 in ω with $\gamma_0(p_0) = 0$, and $A_0 \subseteq n^\omega$ with $\mathcal{U}_0 = 0$. If $\alpha \in n^\omega$, then $\gamma_0(\alpha) = 0$ and $s_p^n < \alpha - \alpha[n \in A_0]$. Thus there exists an integer p such that $\gamma_0(p) = 0$ and $s_p^n \prec \alpha$. By compactness of n^ω, there are finite sets $F \subseteq \omega \setminus \{0\}$ and $G \subseteq \{p \in \omega / \gamma_0(p) = 0\}$ such that $n^\omega = \bigcup_{m \in F, p \in G} \{\alpha \in n^\omega / s_p^n \prec \alpha \}$. We set $A_0 := \{s \in n^\omega / \exists \gamma(p) = 0 \text{ and } s_p^n \prec s\}$ for $\gamma \in 2^\omega$, so that $A_0 \subseteq \gamma_0^{\omega,1}$. Assume that $\gamma(p) = 0$ for each $p \in G$ and let $\alpha \in \gamma_0^{\omega,1}$. Let $p^0 \in \omega$ be such that $\gamma(p^0) = 0$ and $s_{p^0}^n < \alpha$. We can find $m_0 > 0$ and $p^1 \in G$ such that $s_{p^0}^n < \alpha - \alpha[|s_{p^0}^n + m_0|]$, and $\gamma([|s_{p^0}^n + m_0|] + r) = 0$, and $G \subseteq \{p \in \omega / \gamma(p) = 0\}$ such that $s_p^n \prec \alpha - \alpha[|s_p^n + m_0| + |s_p^n| + m_1]$, and $\gamma([|s_p^n + m_0| + |s_p^n| + m_1]) = 0$. And so on. Thus $\alpha \in A_0^{\omega,1}$ and $\{\gamma \in 2^\omega / \exists p \in G \gamma(p) = 0\}$ is a clopen neighborhood of γ_0 and a subset of A_1. \hfill \Box

Proposition 20 A is $\Sigma_3^1 \setminus D_2(\Sigma_1^0)$ and is co-nowhere dense.

Proof. Let $U := \{\gamma \in 2^\omega / \exists \beta \in 2^\omega \forall \alpha \in n^\omega \exists p[\gamma(p) = 0 \text{ and } s_{p^0}^2 \prec \beta \text{ and } s_{p^1}^n \prec \alpha]\}$. By compactness of $2^\omega \times n^\omega$, U is a dense open subset of 2^ω. Moreover, if $\gamma \in U$, then $\mathcal{U}_\gamma = \emptyset$, so $U \subseteq A$ and A is co-nowhere dense. It remains to see that A is not open, as in the proof of Proposition 18. As $\mathcal{U}_\omega = n^\omega$, $1^\omega \in A$. Let p be an integer satisfying $s_{p^0}^2 = 0$ and $s_{p^1}^n = 0$. We set $\gamma_p(m) := 0$ if and only if $m = p$, and also $P_\alpha := \{\alpha \in 2^\omega / \exists m \geq r \alpha(m) = 1\}$. Then (γ_p) tends to 1^ω and we have $\mathcal{U}_p = \{\alpha \in n^\omega / \exists \beta \in P_\alpha \forall m \neq p \text{ or } s_{(p)^m_0}^2 \neq \beta \text{ or } s_{(p)^m_1}^n \neq \alpha\} = \{\alpha \in n^\omega / \exists \beta \in P_\alpha \beta \in 2^\omega \times n0\}$ = $\neg N_{0\gamma}$. So $\gamma_p \notin A$. \hfill \Box

5 Ordinal ranks and ω-powers.

Notation. The fact that the ω-powers are Σ_3^1 implies the existence of a co-analytic rank on the complement of A^ω (see 34.4 in [K1]). We will consider a natural one, defined as follows. We set, for $\alpha \in n^\omega$, $T_\alpha(\alpha) := \{S \in (A^-)^{<\omega} / S^\alpha < \alpha\}$. This is a tree on A^-, which is well founded if and only if $\alpha \notin A^\omega$.

17
The rank of this tree is the announced rank $R_A : A^\omega \to \omega_1$ (see page 10 in [K1]): we have $R_A(\alpha) := \rho(T_A(\alpha))$. Let $\phi : A^- \to \omega$ be one-to-one, and $\hat{\phi}(S) := (\phi(S[0]), \ldots, \phi(S[|S| - 1]))$ for $S \in (A^-)^{<\omega}$. This allows us to define the map Φ from the set of trees on A^- into the set of trees on ω, which associates $\{\hat{\phi}(S)/S \in T\}$ to T. As ϕ is one-to-one, Φ is continuous:

$$t \in \Phi(T) \iff t \in \hat{\phi}((A^-)^{<\omega}) \text{ and } \hat{\phi}^{-1}(t) \in T.$$

Moreover, T is well-founded if and only if $\Phi(T)$ is well-founded. Thus, if $\alpha \notin A^\omega$, then we have $\rho(T_A(\alpha)) = \rho(\Phi(T_A(\alpha)))$ because ϕ is strictly monotone (see page 10 in [K1]). Thus R_A is a co-analytic rank because the function from n^ω into the set of trees on $\omega^{<\omega}$ which associates $\Phi(T_A(\alpha))$ to α is continuous, and because the rank of the well-founded trees on ω defines a co-analytic rank (see 34.6 in [K1]). We set

$$R(\alpha) := \sup \{R_A(\alpha)/\alpha \notin A^\omega\}.$$

By the boundedness theorem, A^ω is Borel if and only if $R(A) < \omega_1$ (see 34.5 and 35.23 in [K1]). We can ask the question of the link between the complexity of A^ω and the ordinal $R(A)$ when A^ω is Borel.

Proposition 21 If $\xi < \omega_1$, $r \in \omega$ and $R(A) = \omega.\xi + r$, then $A^\omega \in \Sigma^r_{2,\xi+1}$.

Proof. The reader should see [L] for operations on ordinals.

- If $0 < \lambda < \omega_1$ is a limit ordinal, then let (λ_q) be a strictly increasing co-final sequence in λ, with $\lambda_0 = \omega.\theta + q$ if $\lambda = \omega.(\theta + 1)$, and $\lambda_q = \omega.\xi q$ if $\lambda = \omega.\xi$, where (ξ_q) is a strictly increasing co-final sequence in the limit ordinal ξ otherwise. By induction, we define

$$E_0 := \{\alpha \in n^\omega/\forall s \in A^- s \not\prec \alpha\},$$

$$E_{\theta+1} := \{\alpha \in n^\omega/\forall s \in A^- s \not\prec \alpha \text{ or } \alpha - s \in E_\theta\},$$

$$E_\lambda := \{\alpha \in n^\omega/\forall s \in A^- s \not\prec \alpha \text{ or } \exists q \in \omega \alpha - s \in E_{\lambda_q}\}.$$

- Let us show that $E_{\omega.\xi+r} \in \Pi^0_{2,\xi+1}$: We may assume that $\xi \neq 0$ and that $r = 0$. If $\xi = \theta + 1$, then $E_{\lambda_q} \in \Pi^0_{2,\theta+1}$ by induction hypothesis, thus $E_{\omega.\xi+r} \in \Pi^0_{2,\theta+3} = \Pi^0_{2,\xi+1}$. Otherwise, $E_{\lambda_q} \in \Pi^0_{2,\xi_q+1}$ by induction hypothesis, thus $E_{\omega.\xi+r} \in \Pi^0_{2,\xi+1}$.

- Let us show that if $\alpha \in A^\omega$, then $\alpha \notin E_{\omega.\xi+r}$. If $\xi = r = 0$, it is clear. If $r = m + 1$ and $s \in A^-$ satisfies $s \prec \alpha$ and $\alpha - s \in A^\omega$, then we have $\alpha - s \notin E_{\omega.\xi+n}$ by induction hypothesis, thus $\alpha \notin E_{\omega.\xi+r}$. If $r = 0$ and $s \in A^-$ satisfies $s \prec \alpha$ and $\alpha - s \in A^\omega$, then we have $\alpha - s \notin E_{\lambda_q}$ for each integer q, by induction hypothesis, thus $\alpha \notin E_{\omega.\xi+r}$.

- Let $s \in A^-$ such that $s \prec \alpha \notin A^\omega$. We have

$$\rho(T_A(\alpha - s)) = \sup \{\rho_{T_A(\alpha - s)}(t) \mid t \in T_A(\alpha - s)\}$$

$$\leq \sup \{\rho_{T_A(s)}(s) \mid (s) t \in T_A(\alpha)\}$$

$$\leq \rho_{T_A(\alpha)}(s) + 1$$

$$\leq \rho_{T_A(\alpha)}(0) < \rho(T_A(\alpha)).$$
The first inequality comes from the fact that the map from \(T_A(\alpha - s) \) into \(T_A(\alpha) \), which associates \((s)t \) to \(t \) is strictly monotone (see page 10 in [K1]). We have

\[\rho(T_A(\alpha)) \geq \left[\sup\{ \rho(T_A(\alpha - s)) \mid s \in A^- \}, \ s \prec \alpha \right] + 1. \]

Let us show that we actually have equality. We have

\[\rho(T_A(\alpha)) = \rho_{T_A(\alpha)}(\emptyset) + 1 = \sup\{ \rho_{T_A(\alpha)}(\{s\}) + 1 \mid s \in A^-, s \prec \alpha \} + 1. \]

Therefore, it is enough to notice that if \(s \in A^- \) and \(s \prec \alpha \), then \(\rho_{T_A(\alpha)}(\{s\}) \leq \rho_{T_A(\alpha-s)}(\emptyset) \). But this comes from the fact that the map from \(\{S \in T_A(\alpha) \mid S(0) = s \} \) into \(T_A(\alpha - s) \), which associates \(S - (s) \) to \(S \), preserves the extension ordering (see page 352 in [K1]).

- Let us show that, if \(\alpha \notin A^\infty \), then \(\rho(T_A(\alpha)) \leq \omega, \xi + r + 1 \) is equivalent to \(\alpha \in E_{\omega, \xi + r} \). We do it by induction on \(\omega, \xi \). If \(\xi = r = 0 \), it is clear. If \(r = m + 1 \), then \(\rho(T_A(\alpha)) \leq \omega, \xi + r + 1 \) is equivalent to \(\forall s \in A^-, s \notin \alpha \) or \(\rho(T_A(\alpha-s)) \leq \omega, \xi + m + 1 \), by the preceding point. This is equivalent to \(\forall s \in A^-, s \notin \alpha \) or \(\alpha - s \in E_{\omega, \xi + m} \), which is equivalent to \(\alpha \in E_{\omega, \xi + r} \). If \(r = 0 \), then \(\rho(T_A(\alpha)) \leq \omega, \xi + r + 1 \) is equivalent to \(\forall s \in A^-, s \notin \alpha \) or there exists an integer \(q \) such that \(\rho(T_A(\alpha-s)) \leq \lambda_q + 1 \). This is equivalent to \(\forall s \in A^-, s \notin \alpha \) or there exists an integer \(q \) such that \(\alpha - s \in E_{\lambda_q} \), which is equivalent to \(\alpha \in E_{\omega, \xi + r} \).

- If \(\alpha \notin A^\infty \), then \(\rho(T_A(\alpha)) \leq \omega, \xi + r + 1 \). By the preceding point, \(\alpha \in E_{\omega, \xi + r} \). Thus we have \(A^\infty = \neg E_{\omega, \xi + r} \in \Sigma_2^{\omega, \xi+1}. \)

We can find an upper bound for the rank \(R \), for some Borel classes:

Proposition 22 (a) \(A^\infty = n^\omega \) if and only if \(R(A) = 0 \).

(b) If \(A^\infty = \emptyset \), then \(R(A) = 1 \).

(c) If \(A^\infty \in \Delta_1^0 \), then \(R(A) < \omega \), and there exists \(A_p \subseteq 2^{\omega} \) such that \(A^\infty_p \in \Delta_1^0 \) and \(R(A_p) = p \) for each integer \(p \).

(d) If \(A^\infty \in \Pi_1^1 \), then \(R(A) \leq \omega \), and \(A^\infty \notin \Sigma_1^0 \) or \(R(A) = \omega \).

Proof. (a) If \(\alpha \notin A^\infty \), then \(\emptyset \in T_A(\alpha) \) and \(\rho(T_A(\alpha)) \geq \rho_{T_A(\alpha)}(\emptyset) + 1 \geq 1 \).

(b) We have \(T_A(\alpha) = \{\emptyset\} \) for each \(\alpha \), and \(\rho(T_A(\alpha)) = \rho_{T_A(\alpha)}(\emptyset) + 1 = 1 \).

(c) By compactness, there exists \(s_1, \ldots, s_p \in n^{\omega} \) such that \(A^\infty = \bigcup_{1 \leq m \leq p} N_{s_m} \in \Delta_1^0 \). If \(\alpha \notin A^\infty \), then we have \(N_{\alpha} \max_{1 \leq m \leq p, |s_m|} \subseteq \neg A^\infty \), thus \(\rho(T_A(\alpha)) \leq \max_{1 \leq m \leq p, |s_m|} + 1 < \omega \). So we get the first point. To see the second one, we set \(A_0 := 2^{\omega} \). If \(p > 0 \), then we set

\[A_p := \{0^2\} \cup \bigcup_{q \leq p} \{s \in 2^{\omega} / 0^{2q+1} < s\} \cup \{s \in 2^{\omega} / 0^{2p+1} < s\}. \]

Then \(A^\infty_p = \bigcup_{q \leq p} N_{0^2q+1} \cup N_{0^2q+1} \in \Delta_1^0 \). If \(\alpha_p := 0^{2p+1} \infty \), then \(\rho(T_A(\alpha_p)) = p \). If \(\alpha \notin A^\infty_p \), then \(\rho(T_A(\alpha)) \leq p \).
(d) If $A^\omega \in \Pi_1^0$ and $\alpha \not\in A^\omega$, then let $s \in n^{<\omega}$ with $\alpha \in N_s \subseteq \neg A^\omega$. Then $\rho(T_\alpha(\alpha)) \leq |s| + 1$. Thus $R(A) \leq \omega$. If $A^\omega \notin \Sigma_1^0$, then we have $R(A) \geq \omega$, by Proposition 21. Thus $R(A) = \omega$. Conversely, we apply (c). □

Remark. Notice that it is not true that if the Wadge class $< A^\omega >$, having A^ω as a complete set, is a subclass of $< B^\omega >$, then $R(A) \leq R(B)$. Indeed, for A we take the example A_2 in (c), and for B we take the example for Σ_0^1 that we met in the proof of Proposition 11. If we exchange the roles of A and B, then we see that the converse is also false. This example A for Σ_0^1 shows that Proposition 21 is optimal for $\xi = 0$ since $R(A) = 1$ and $A^\omega \in \Sigma_0^1 \setminus \Pi_1^0$. We can say more: it is not true that if $A^\omega = B^\omega$, then $R(A) \leq R(B)$. We use again (c): we take $A := A_2$ and $B := A \setminus \{0^2\}$. We have $A^\omega = B^\omega = A_2^\omega$, $R(A) = 2$ and $R(B) = 1$.

Proposition 23 For each $\xi < \omega_1$, there exists $A_\xi \subseteq 2^{<\omega}$ with $A_\xi^\omega \in \Sigma_0^1$ and $R(A_\xi) \geq \xi$.

Proof. We use the notation in the proof of Theorem 15. Let $T \in \tau$, and $\varphi : T \rightarrow T_{\varphi(T)}(\alpha_0)$ defined by the formula $\varphi(s) := (\varphi(s[0]), \ldots, \varphi(s[|s| - 1]))$. Then φ is strictly monotone. If $T \in WF$, then $\alpha_0 \not\in (\Phi'(T))^\omega$ and $T_{\Phi'(T)}(\alpha_0) \in WF$. In this case, $\rho(T) \leq \rho(T_{\Phi'(T)}(\alpha_0)) = R_{\Phi'(T)}(\alpha_0)$ (see page 10 in [K1]). Let $T_\xi \in WF$ be a tree with rank at least ξ (see 34.5 and 34.6 in [K1]). We set $A_\xi := \Phi'(T_\xi)$. It is clear that A_ξ is what we were looking for. □

Remark. Let $\psi : 2^{n^{<\omega}} \rightarrow \{\text{Trees on } n^{<\omega}\}$ defined by $\psi(A) := T_\alpha(\alpha_0)$, and $r : \neg I_{\alpha_0} \rightarrow \omega_1$ defined by $r(A) := \rho(T_\alpha(\alpha_0))$. Then ψ is continuous, thus r is a Π_1^1-rank on $\psi^{-1}(\{\text{Well-founded trees on } n^{<\omega}\}) = \neg I_{\alpha_0}$.

By the boundedness theorem, the rank r and R are not bounded on $\neg I_{\alpha_0}$. Proposition 23 specifies this result. It shows that R is not bounded on $\Sigma_1 \setminus I_{\alpha_0}$.

6 The extension ordering.

Proposition 24 We equip A with the extension ordering.

(a) If $A \subseteq n^{<\omega}$ is an antichain, then A^ω is in $\{\emptyset\} \cup \{n^\omega\} \cup [\Pi_1^0 \setminus \Sigma_1^0] \cup [\Pi_2^0(A) \setminus \Sigma_2^0]$, and any of these cases is possible.

(b) If $A \subseteq n^{<\omega}$ has finite antichains, then $A^\omega \in \Pi_2^0$ (and is not Σ_2^0 in general).

Proof. Let $G := \{\alpha \in n^\omega / \forall r \exists m \geq r \; \alpha[m \in [(A)^p]^+\}$. Then $G \in \Pi_2^0(A)$ and contains A^ω. Conversely, if $\alpha \in G$, then we have $T_\alpha(\alpha) \cap (A)^p \neq \emptyset$ for each integer p, thus $T_\alpha(\alpha)$ is infinite.

(a) If A is an antichain, then each sequence in $T_\alpha(\alpha)$ has at most one extension in this tree adding one to the length. Thus $T_\alpha(\alpha)$ is finite splitting. This implies that $T_\alpha(\alpha)$ has an infinite branch if $\alpha \in G$, by König’s lemma. Therefore $A^\omega = G \in \Pi_2^0(A)$.

20
- If we take \(A := \emptyset \), then \(A \) is an antichain and \(A^\infty = \emptyset \).
- If we take \(A := \{(0), \ldots, (n - 1)\} \), then \(A \) is an antichain and \(A^\infty = n^\omega \).
- If \(A^\infty \notin \{0, n^\omega\} \), then \(A^\infty \notin \Sigma_1^1 \). Indeed, let \(\alpha_0 \notin A^\infty \) and \(s_0 \in A \). By uniqueness of the decomposition into words of \(A^- \), the sequence \((s_0^{\alpha_0})_n \subseteq n^\omega \setminus A^\infty \) tends to \(s^\infty_0 \in A^\infty \).
- If we take \(A := \{(0)\} \), then \(A \) is an antichain and \(A^\infty = \{0^\infty\} \in \Pi_0^0 \setminus \Sigma_1^0 \).
- If \(A \) is finite, then \(A^\infty \) is \(\Pi_1^0 \setminus \Sigma_0^0 \) or is in \(\{0, n^\omega\} \), by the facts above and Proposition 2.
- If \(A \) is infinite, then \(A^\infty \notin \Sigma_2^0 \) because the map \(c \) in the proof of Proposition 2 is a homeomorphism and \((A^-)^\omega \) is not \(K_\sigma \).
- If \(A := \{0^k 1/k \in \omega\} \), then \(A \) is an antichain and \(A^\infty = P_\infty \), which is \(\Pi_2^0 \setminus \Sigma_0^0 \).

(b) The intersection of \(P_\infty \) with \(N_1 \) can be made with the chain \(\{10^k/k \in \omega\} \). So let us assume that \(A \) has finite antichains.

Let us show that \(A \) is the union of a finite set and of a finite union of infinite subsets of the form \(A_{\alpha_m} := \{ s \in n^{<\omega} / s < \alpha_m \} \). Let us enumerate \(A := \{s_r/r \in \omega\} \). We construct a sequence \((A_m) \), finite or not, of subsets of \(A \). We do it by induction on \(r \), to decide in which set \(A_m \) the sequence \(s_r \) is. First, \(s_0 \in A_0 \). Assume that \(s_0, \ldots, s_r \) have been put into \(A_0, \ldots, A_{p_r} \), with \(p_r \leq r \) and \(A_m \cap \{s_0, \ldots, s_r\} \neq \emptyset \) if \(m \leq p_r \). We choose \(m \leq p_r \) minimal such that \(s_{r+1} \) is compatible with all the sequences in \(A_m \cap \{s_0, \ldots, s_r\} \), we put \(s_{r+1} \) into \(A_m \) and we set \(p_{r+1} := p_r \) if possible. Otherwise, we put \(s_{r+1} \) into \(A_{p_r+1} \) and we set \(p_{r+1} := p_r + 1 \).

Let us show that there are only finitely many infinite \(A_m \)'s. If \(A_m \) is infinite, then there exists a unique sequence \(\alpha_m \in n^\omega \) such that \(A_m \subseteq A_{\alpha_m} \). Let us argue by contradiction: there exists an infinite sequence \((m_q) \) such that \(A_{m_q} \) is infinite. Let \(t_0 \) be the common beginning of the \(\alpha_{m_q} \)'s. There exists \(\varepsilon_0 \in n \) such that \(N_{t_0 \varepsilon_0} \cap \{\alpha_{m_q} / q \in \omega\} \) is infinite. We choose a sequence \(u_0 \) in \(A \) extending \(t_0 \varepsilon_0 \), where \(\mu_0 \neq \varepsilon_0 \). Then we do it again: let \(t_0 \varepsilon_0 \mu_1 \) be the common beginning of the elements of \(N_{t_0 \varepsilon_0 \mu_1} \cap \{\alpha_{m_q} / q \in \omega\} \). There exists \(\varepsilon_1 \in n \) such that \(N_{t_0 \varepsilon_0 \mu_1 \varepsilon_1} \cap \{\alpha_{m_q} / q \in \omega\} \) is infinite. We choose a sequence \(u_1 \) in \(A \) extending \(t_0 \varepsilon_0 \mu_1 \varepsilon_1 \), where \(\mu_1 \neq \varepsilon_1 \). The sequence \(\langle u_i \rangle \) is an infinite antichain in \(A \). But this is absurd. Now let us choose the longest sequence in each nonempty finite \(A_m \); this gives an antichain in \(A \) and the result.

Now let \(\alpha \in G \). There are two cases. Either for each \(m \) and for each integer \(k \), \(\alpha[k] \notin [A^{<\omega}]^k \) or \(\alpha - \alpha[k] \neq \alpha_m \). In this case, \(T_A(\alpha) \) is finite splitting. As \(T_A(\alpha) \) is infinite, \(T_A(\alpha) \) has an infinite branch witnessing that \(\alpha \in A^\infty \), by König’s lemma. Otherwise, \(\alpha \in \bigcup_{s \in [A^{<\omega}]^*, m} \{s \alpha_m\} \), which is countable. Thus \(G \setminus A^\infty \in \Sigma_2^0 \) and \(A^\infty = G \setminus (G \setminus A^\infty) \in \Pi_2^0 \).

7 Examples.

- We have seen examples of subsets \(A \) of \(2^{<\omega} \) such that \(A^\infty \) is complete for the classes \(\{0\} \), \(\{n^\omega\} \), \(\Delta_1^0 \), \(\Sigma_1^1 \), \(\Pi_1^0 \), \(\Pi_0^1 \) and \(\Sigma_1^1 \). We will give some more examples, for some classes of Borel sets. Notice that to show that a set is such a non self-dual class is complete, it is enough to show that it is true (see 21.E, 22.10 and 22.26 in [K1]).
• For the class $\Sigma_1^0 \oplus \Pi_1^0 := \{(U \cap O) \cup (F \setminus O) / U \in \Sigma_1^0, O \in \Delta_1^0, F \in \Pi_1^0\}$, we can take $A := \{s \in 2^{<\omega}/0^1 \prec s \text{ or } s = 0^2 \text{ or } \exists p \in \omega \ 10^1 \prec s\}$, since $A^\infty = \{0^{\infty}\} \cup \bigcup_{\eta} N_{(0^2)+\eta} \setminus \{10^\infty\}$.

• For the class $\hat{D}_2(\Sigma_1^0) := \{U \cup F / U \in \Sigma_1^0, F \in \Pi_1^0\}$, we can take Example 9 in [St2]: $A := \{s \in 2^{<\omega}/0 < s \text{ or } \exists q \in \omega \ (101)^q 1^3 \prec s \text{ or } s = 10^2\}$. We have

$$A^\infty = \bigcup_{p \in \omega} [N_{(10^2)p} \cup \bigcup_{\eta \in \omega} N_{(10^2)p(101)^\eta}] \cup \{(10^2)^\infty\},$$

which is a $\neg D_2(\Sigma_1^0)$ set. Towards a contradiction, assume that A^∞ is $D_2(\Sigma_1^0)$:

$$A^\infty = U_1 \cap F = U \cup F_2,$$

where the U’s are open and the F’s are closed. Let O be a clopen set separating $\neg U_1$ from F_2 (see 22.C in [K1]). Then $A^\infty = (U \cap O) \cup (F \setminus O)$ would be in $\Sigma_1^0 \oplus \Pi_1^0$. If $(10^2)^\infty \in O$, then we would have $N_{(10^2)p_0} \subseteq O$ for some integer p_0. But the sequence $((10^2)^p(1^2)^{p_0}) p \geq p_0 \subseteq O \setminus U$ and tends to $(10^2)^\infty$, which is absurd. If $(10^2)^\infty \notin O$, then we would have $N_{(10^2)p_0} \subseteq \neg O$ for some integer q_0. But the sequence $((10^2)^p(101)^{q_0}) q \geq q_0 \subseteq F \setminus O$ and tends to $(10^2)^{q_0}(101)^\infty$, which is absurd.

• For the class $D_2(\Sigma_1^0)$, we can take $A := [A_1^{<\omega}]^* \setminus [A_0^{<\omega}]^*$, where $A_0 := \{010, 01^2\}$ and $A_1 := \{010, 01^2, 0^2, 0^3, 1^2 0^3, 1^2 0^2\}$. We have $A^\infty = A_1^\infty \setminus A_0^\infty$. Indeed, as $A \subseteq [A_1^{<\omega}]^*$, we have $A^\infty \subseteq A_1^\infty$. If $\alpha \in A_0^\infty$, then its decomposition into words of A_1 is unique and made of words in A_0. Thus $\alpha \notin A^\infty$ and $A^\infty \subseteq A_1^\infty \setminus A_0^\infty$.

Conversely, if $\alpha = a_0 a_1 \ldots \in A_1^\infty \setminus A_0^\infty$, with $a_i \in A_1^\infty$, then there are two cases. Either there are infinitely many indexes i (say i_0, i_1, \ldots) such that $a_i \notin A_0$. In this case, the words $a_0 \ldots a_{i_0}, a_{i_0+1} \ldots a_{i_1}, \ldots$ are in α and $\alpha \in A^\infty$. Or there exists a maximal index i such that $a_i \notin A_0$. In this case, $a_0 \ldots a_{i_0}, 1^2 0 \in A$, thus $\alpha \in A^\infty = A_1^\infty \setminus A_0^\infty$. We have $A^\infty = U \cup F$, with $U \in \Sigma_1^0$ and $F \in \Pi_1^0$, then we have $U = \emptyset$ because A^∞ is nowhere dense (every sequence in A_1 contains 0, thus the sequences in A_1^∞ have infinitely many 0’s). Thus A^∞ would be closed. But this contradicts the fact that $(10^2)^\infty \notin A^\infty$ and tends to $(10^2)^\infty \notin A^\infty$. Thus A^∞ is a true $D_2(\Sigma_1^0)$ set.

• For the class $\hat{D}_3(\Sigma_1^0)$, we can take $A := ([A_2^{<\omega}]^* \setminus [A_1^{<\omega}]^*) \cup [A_0^{<\omega}]^*$, where $A_0 := \{0^2\}$, $A_1 := \{0^2, 0^1\}$, and $A_2 := \{0^2, 0^1, 1^2, 10, 1^2 0^2\}$. We have $A^\infty = (A_2^\infty \setminus A_1^\infty) \cup A_0^\infty$. Indeed, as $A \subseteq [A_2^{<\omega}]^*$, we have $A^\infty \subseteq A_2^\infty$. If $\alpha \in A_2^\infty$, then its decomposition into words of A_2^∞ is unique and made of words in A_1. If moreover $\alpha \notin A_0^\infty$, then it is clear that $\alpha \notin A^\infty$ and $A^\infty \subseteq (A_2^\infty \setminus A_1^\infty) \cup A_0^\infty$.

Conversely, it is clear that $A_1^\infty \subseteq A^\infty$. If $\alpha = a_0 a_1 \ldots \in A_2^\infty \setminus A_1^\infty$, then the argument above still works. We have to check that $s := a_0 \ldots a_{i_0} \notin [A_1^{<\omega}]^*$. It is clear if $a_{i_0} = 10$. Otherwise, $a_{i_0} = 10^2$ and we argue by contradiction.
The length of \(s \) is even and the decomposition of \(s \) into words of \(A_1 \) is unique. It finishes with \(0^2 \), and the even coordinates of the sequence \(s \) are 0. Therefore, \(a_{i_0 - 2}, a_{i_0 - 3}, \ldots \) Because of the parity, some 0 remains at the beginning. But this is absurd. Now we have to check that \(a_0 \ldots a_i 0 \notin \left[A_1^{<\omega} \right]^* \). It is clear if \(a_i = 10^2 \). Otherwise, \(a_i = 10 \) and the argument above works.

Finally, we have to check that if \(\gamma \in A_1^{<\omega} \), then \(\gamma - (0) \in A^{<\omega} \). There is a sequence \(p_0, p_1, \ldots \), finite or not, such that \(\gamma = (0^{2p_0})(01)(0^{2p_1})(01)\ldots 0^{<\omega} \). Therefore

\[
\gamma - (0) = (0^{2p_0}10)(0^{2p_1}10)\ldots (0^2)^{<\omega} \in A^{<\omega}.
\]

If we set \(U_i := \neg A_2^{<\omega} \), then we see that \(A^{<\omega} \in D_3(\Sigma_1^0) \). If \(\alpha \) finishes with \(1^{<\omega} \), then \(\alpha \notin A_2^{<\omega} \); thus \(A_2^{<\omega} \) is nowhere dense, just like \(A^{<\omega} \). Thus if \(A^{<\omega} = (U_2 \setminus U_1) \cup U_0 \) with \(U_1 \) open, then \(U_0 = \emptyset \). By uniqueness of the decomposition of a sentence in \(A_1^{<\omega} \) into words of \(A_{i+1} \), we see that \(A_1^{<\omega} \) is nowhere dense in \(A_1^{<\omega} \). So let \(x_0 \in A_1^{<\omega} \), \((x_n) \subseteq A_1^{<\omega} \setminus A_0^{<\omega} \) converging to \(x_0 \), and \((x_{n,m}) \subseteq A_2^{<\omega} \setminus A_1^{<\omega} \) converging to \(x_n \). Then \(x_{n,m} \in U_1 \), which is absurd. Thus \(A^{<\omega} \notin D_3(\Sigma_1^0) \).

- For the class \(D_2(\Sigma_0^0) \), we can take \(A := \{ s \in 2^{<\omega} / 1^2 < s \) or \(s = (0) \} \). We can write

\[
A^{<\omega} = (\{0^\omega\} \cup \bigcup_{P_f} N_{\{p_{12}\}}) \cap (P_f \cup \{ \alpha \in 2^{<\omega} / \forall n \exists m \alpha(m) = \alpha(m+1) = 1 \}).
\]

Then \(A^{<\omega} \notin D_2(\Sigma_0^0) \), otherwise \(A^{<\omega} \cap N_{12} \in D_2(\Sigma_0^0) \) and would be a comeager subset of \(N_{12} \). We could find \(s \in 2^{<\omega} \) with even length such that \(A^{<\omega} \cap N_{12,s} \in \Pi_3^0 \). We define a continuous function \(f : 2^{<\omega} \to 2^{<\omega} \) by formulas \(f(\alpha)(2n) := \alpha(n) \) if \(n > \frac{|\alpha|+1}{2} \), \((2^s)(2n) \) otherwise, and \(f(\alpha)(2n+1) := 0 \) if \(n > \frac{|\alpha|}{2} \), \((2^s)(2n+1) \) otherwise. It reduces \(P_f \) to \(A^{<\omega} \cap N_{12,s} \), which is absurd.
Summary of the complexity results in this paper:

<table>
<thead>
<tr>
<th></th>
<th>Baire category</th>
<th>complexity</th>
<th>(\xi = 1)</th>
<th>(\xi = 2)</th>
<th>(\xi \geq 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma_0)</td>
<td>nowhere dense</td>
<td>(\Pi_1^0 \setminus \Sigma_1^0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_0)</td>
<td>co-nowhere dense</td>
<td>(\Sigma_1^0 \setminus \Pi_1^0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta_1)</td>
<td>co-nowhere dense</td>
<td></td>
<td>(K_\sigma \setminus \Pi_2^0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma_\xi)</td>
<td>co-nowhere dense</td>
<td>(\Pi_1^1 \setminus \Delta_1)</td>
<td></td>
<td>(\Pi_1^1 \setminus \Delta_1)</td>
<td></td>
</tr>
<tr>
<td>(\Pi_\xi)</td>
<td>co-nowhere dense</td>
<td>(\Pi_1^1 \setminus \Pi_2^0)</td>
<td>(\Pi_1^2 \setminus \Delta_1)</td>
<td>(\Pi_1^2 \setminus \Delta_1)</td>
<td></td>
</tr>
<tr>
<td>(\Delta)</td>
<td>co-nowhere dense</td>
<td>(\Pi_1^1 \setminus \Delta_1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma_\xi)</td>
<td>co-nowhere dense</td>
<td>(\Delta_2^1 \setminus D_2(\Sigma_1^0))</td>
<td>(\Sigma_2^1 \setminus \Pi_2^0)</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
</tr>
<tr>
<td>(\Pi_\xi)</td>
<td>co-nowhere dense</td>
<td>(\Delta_2^1 \setminus \Pi_2^0)</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
</tr>
<tr>
<td>(\Delta)</td>
<td>co-nowhere dense</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G_\xi (\xi \in \omega))</td>
<td>nowhere dense</td>
<td>(D_\omega(\Sigma_1^0) \setminus D_\omega(\Sigma_1^1))</td>
<td>(\Pi_1^1 \setminus D_\omega(\Sigma_1^0))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{A}_\xi)</td>
<td>co-meager</td>
<td>(D_2(\Sigma_1^0) \setminus D_2(\Sigma_1^1))</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td>(\Sigma_1^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{M}_\xi)</td>
<td>co-meager</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td>(\Sigma_2^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
</tr>
<tr>
<td>(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mathcal{A})</td>
<td>co-nowhere dense</td>
<td>(\Sigma_1^1 \setminus D_2(\Sigma_1^0))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 References.

24