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ω-powers and descriptive set theory

We study the sets of the infinite sentences constructible with a dictionary over a finite alphabet, from the viewpoint of descriptive set theory. Among other things, this gives some true co-analytic sets. The case where the dictionary is finite is studied and gives a natural example of a set at the level ω of the Wadge hierarchy.

Introduction.

We consider the finite alphabet n = {0, . . . , n -1}, where n ≥ 2 is an integer, and a dictionary over this alphabet, i.e., a subset A of the set n <ω of finite words with letters in n.

Definition 1

The ω-power associated to A is the set A ∞ of the infinite sentences constructible with A by concatenation. So we have A ∞ := {a 0 a 1 . . . ∈ n ω /∀i ∈ ω a i ∈ A}.

The ω-powers play a crucial role in the characterization of subsets of n ω accepted by finite automata (see Theorem 2.2 in [START_REF] Staiger | ω-languages[END_REF]). We will study these objects from the viewpoint of descriptive set theory. The reader should see [K1] for the classical results of this theory; we will also use the notation of this book. The questions we study are the following:

(1) What are the possible levels of topological complexity for the ω-powers? This question was asked by P. Simonnet in [S], and studied in [START_REF] Staiger | On ω-power languages[END_REF]. O. Finkel (in [F1]) and A. Louveau proved independently that Σ 1 1 -complete ω-powers exist. O. Finkel proved in [F2] the existence of a Π 0 m -complete ω-power for each integer m ≥ 1.

(2) What is the topological complexity of the set of dictionaries whose associated ω-power is of a given level of complexity? This question arises naturally when we look at the characterizations of Π 0 1 , Π 0 2 and Σ 0 1 ω-powers obtained in [START_REF] Staiger | On ω-power languages[END_REF] (see Corollary 14 and Lemmas 25, 26).

(3) We will recall that an ω-power is an analytic subset of n ω . What is the topological complexity of the set of codes for analytic sets which are ω-powers? This question was asked by A. Louveau. This question also makes sense for the set of codes for Σ 0 ξ (resp., Π 0 ξ ) sets which are ω-powers. And also for the set of codes for Borel sets which are ω-powers.

As usual with descriptive set theory, the point is not only the computation of topological complexities, but also the hope that these computations will lead to a better understanding of the studied objects. Many sets in this paper won't be clopen, in particular won't be recursive. This gives undecidability results.

• We give the answer to Question (2) for the very first levels ({∅}, its dual class and ∆ 0 1 ). This contains a study of the case where the dictionary is finite. In particular, we show that the set of dictionaries whose associated ω-power is generated by a dictionary with two words is a Ďω (Σ 0 1 )-complete set. This is a surprising result because this complexity is not clear at all on the definition of the set.

• We give two proofs of the fact that the relation "α ∈ A ∞ " is Σ 1 1 -complete. One of these proofs is used later to give a partial answer to Question (2). To understand this answer, the reader should see [M] for the basic notions of effective descriptive set theory. Roughly speaking, a set is effectively Borel (resp., effectively Borel in A) if its construction based on basic clopen sets can be coded with a recursive (resp., recursive in A) sequence of integers. This answer is the Theorem. The following sets are true co-analytic sets:

-{A ∈ 2 n <ω /A ∞ ∈ ∆ 1 1 (A)}. -{A ∈ 2 n <ω /A ∞ ∈ Σ 0 ξ ∩ ∆ 1 1 (A)}, for 1 ≤ ξ < ω 1 . -{A ∈ 2 n <ω /A ∞ ∈ Π 0 ξ ∩ ∆ 1 1 (A)}, for 2 ≤ ξ < ω 1 .
This result also comes from an analysis of Borel ω-powers: A ∞ is Borel if and only if we can choose in a Borel way the decomposition of any sentence of A ∞ into words of A (see Lemma 13). This analysis is also related to Question (3) and to some Borel uniformization result for G δ sets locally with Borel projections. We will specify these relations.

• A natural ordinal rank can be defined on the complement of any ω-power, and we study it; its knowledge gives an upper bound of the complexity of the ω-power.

• We study the link between Question (1) and the extension ordering on finite sequences of integers.

• Finally, we give some examples of ω-powers complete for the classes ∆ 0 1 , Σ 0 1 ⊕ Π 0 1 , D 2 (Σ 0 1 ), Ď2 (Σ 0 1 ), Ď3 (Σ 0 1 ) and Ď2 (Σ 0 2 ).

2 Finitely generated ω-powers.

Notation.

In order to answer to Question (2), we set

Σ 0 := {A ⊆ n <ω /A ∞ = ∅}, Π 0 := {A ⊆ n <ω /A ∞ = n ω }, ∆ 1 := {A ⊆ n <ω /A ∞ ∈ ∆ 0 1 }, Σ ξ := {A ⊆ n <ω /A ∞ ∈ Σ 0 ξ }, Π ξ := {A ⊆ n <ω /A ∞ ∈ Π 0 ξ } (ξ ≥ 1), ∆ := {A ⊆ n <ω /A ∞ ∈ ∆ 1 1 }. • If A ⊆ n <ω , then we set A -:= A \ {∅}.
• We define, for s ∈ n <ω and α ∈ n ω , αs := (α(|s|), α(|s| + 1), ...).

• If S ⊆ (n <ω ) <ω , then we set S * := {S * := S(0) . . . S(|s| -1)/S ∈ S}.

• We define a recursive map π : n ω × ω ω × ω → n <ω by π(α, β, q) := (α(0), . . . , α(β[0])) if q = 0, (α(1 + Σ j<q β[j]), ..., α(Σ j≤q β[j])) otherwise.

We always have the following equivalence:

α ∈ A ∞ ⇔ ∃β ∈ ω ω [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)]. Proposition 2 ([S]) A ∞ ∈ Σ 1 1 for all A ⊆ n <ω . If A is finite, then A ∞ ∈ Π 0 1 .
Proof. We define a continuous map c : (A -) ω → n ω by the formula c((a i )) := a 0 a 1 . . . We have

A ∞ = c[(A -) ω ], and (A -) ω is a Polish space (compact if A is finite). Proposition 3 If A ∞ ∈ ∆ 0 1 , then there exists a finite subset B of A such that A ∞ = B ∞ . Proof. Set E k := {α ∈ n ω /α⌈k ∈ A and α -α⌈k ∈ A ∞ }. It is an open subset of n ω since A ∞ is open, and A ∞ ⊆ k>0 E k . We can find an integer p such that A ∞ ⊆ 0<k≤p E k , by compactness of A ∞ . Let B := A ∩ n ≤p . If α ∈ A ∞ , then we can find an integer 0 < k 0 ≤ p such that α⌈k 0 ∈ A and α -α⌈k 0 ∈ A ∞ . Thus α⌈k 0 ∈ B.
Then we do it again with α -α⌈k 0 , and so on.

Thus we have α ∈ B ∞ = A ∞ .
Remark. This is not true if we only assume that A ∞ is closed. Indeed, we have the following counterexample, due to O. Finkel:

A := {s ∈ 2 <ω /∀i ≤ |s| 2.Card({j < i/s(j) = 1}) ≥ i}.
We have

A ∞ = {α ∈ 2 ω /∀i ∈ ω 2.Card({j < i/α(j) = 1}) ≥ i} and if B is finite and B ∞ = A ∞ , B ⊆ A and 101 2 0 2 . . . / ∈ B ∞ . Theorem 4 (a) Σ 0 = {∅, {∅}} is Π 0 1 -complete. (b) Π 0 is a dense Σ 0 1 subset of 2 n <ω . In particular, Π 0 is Σ 0 1 -complete. (c) ∆ 1 is a K σ \ Π 0 2 subset of 2 n <ω . In particular, ∆ 1 is Σ 0 2 -complete.
Proof. (a) Is clear.

(b) If we can find m ∈ ω with n m ⊆ A, then A ∞ = n ω . As {A ⊆ n <ω /∃m ∈ ω n m ⊆ A} is a dense open subset of 2 n <ω , the density follows. The formula

A ∈ Π 0 ⇔ ∃m ∀s ∈ n m ∃q ≤ m s⌈q ∈ A -
shows that Π 0 is Σ 0 1 , and comes from Proposition 3.

(c) If A ∞ ∈ ∆ 0 1 , then we can find p > 0 such that A ∞ = (A ∩ n ≤p ) ∞ , by Proposition 3. So let s 1 , . . . , s k , t 1 , . . . , t l ∈ 2 <ω be such that A ∞ = 1≤i≤k N s i = n ω \ ( 1≤j≤l N t j ). For each 1 ≤ j ≤ l, and for each sequence s ∈ [(A -) <ω ] * \ {∅}, t j ≺ s. So we have A ∞ ∈ ∆ 0 1 ⇔    ∃p > 0 ∃k, l ∈ ω ∃s 1 , . . . , s k , t 1 , . . . , t l ∈ 2 <ω 1≤i≤k N s i = n ω \( 1≤j≤l N t j ) and ∀1 ≤ j ≤ l ∀s ∈ [(A -) <ω ] * \{∅} t j ≺ s and ∀α ∈ n ω {α / ∈ 1≤i≤k N s i or ∃β ∈ p ω [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)]}. This shows that ∆ 1 is a K σ subset of 2 n <ω .
To show that it is not Π 0 2 , it is enough to see that its intersection with the closed set

{A ⊆ n <ω /A ∞ = n ω }
is dense and co-dense in this closed set (see (b)), by Baire's theorem. So let O be a basic clopen subset of 2 n <ω meeting this closed set. We may assume that it is of the form

{A ⊆ n <ω /∀i ≤ k s i ∈ A and ∀j ≤ l t j / ∈ A},
where s 0 , . . . , s k , t 0 , . . . , t l ∈ n <ω and |s 0 | > 0.

Let A := {s i /i ≤ k}. Then A ∈ O and A ∞ is in Π 0 1 \ {∅, n ω }.
There are two cases.

If A ∞ ∈ ∆ 0 1 , then we have to find B ∈ O with B ∞ / ∈ ∆ 0 1 . Let u 0 , . . . , u m ∈ n <ω with p≤m N up = n ω \ A ∞ . Let r ∈ n \ {u 0 (|u 0 | -1)}, s := u 0 r |u 0 |+max j≤l |t j | and B := A ∪ {s}. Then B ∈ O and s ∞ ∈ B ∞ . Let us show that s ∞ is not in the interior of B ∞ .
Otherwise, we could find an integer q such that N s q ⊆ B ∞ . We would have α :

= s q u 0 u 0 (|u 0 | -1)r ∞ ∈ B ∞ . As N u 0 ∩ A ∞ = ∅,
the decomposition of α into nonempty words of B would start with q times s. If this decomposition could go on, then we would have

u 0 = (u 0 (|u 0 | -1)) |u 0 | . Let v ∈ n <ω be such that N v ⊆ A ∞ . We have v(u 0 (|u 0 | -1)) ∞ ∈ A ∞ , so (u 0 (|u 0 | -1)) ∞ ∈ N u 0 ∩ A ∞ . But this is absurd. Therefore B ∞ / ∈ ∆ 0 1 . If A ∞ / ∈ ∆ 0 1 , then we have to find B ∈ O such that B ∞ ∈ ∆ 0 1 \{n ω }. Notice that n ω = i≤k N s i . So let v ∈ n <ω be non constant such that N v ∩ i≤k N s i = ∅. We set D := A ∪ r∈n\{v(0)} {(r)}∪{v(0) |v| }, B := A ∪ {s ∈ n <ω /|s| > max j≤l |t j | and ∃t ∈ D t ≺ s}. We get B ∞ = t∈D N t ∈ ∆ 0 1 and N v ∩ B ∞ = ∅, so B ∞ = n ω .

Now we will study

F := {A ⊆ n <ω /∃B ⊆ n <ω finite A ∞ = B ∞ }.
Proposition 5 F is a co-nowhere dense Σ 0 2 -hard subset of 2 n <ω .

Proof. By Proposition 3, if A ∞ = n ω , then there exists an integer p such that A ∞ = (A ∩ n ≤p ) ∞ , so Π 0 ⊆ F and, by Theorem 4, F is co-nowhere dense. We define a continuous map φ : 2 ω → 2 n <ω by the formula φ(γ)

:= {0 k 1/γ(k) = 1}. If γ ∈ P f := {α ∈ 2 ω /∃p ∀m ≥ p α(m) = 0}, then φ(γ) ∈ F. If γ / ∈ P f , then the concatenation map is an homeomorphism from φ(γ) ω onto φ(γ) ∞ , thus φ(γ) ∞ is not K σ . So φ(γ) /
∈ F, by Proposition 2. Thus the preimage of F by φ is P f , and

F is Σ 0 2 -hard. Let G p := {A ⊆ n <ω /∃s 1 , . . . , s p ∈ n <ω A ∞ = {s 1 , . . . , s p } ∞ }, so that F = p G p . We have G 0 = Σ 0 , so G 0 is Π 0 1 \ Σ 0 1 . Proposition 6 G 1 is Π 0 1 \ Σ 0 1 . In particular, G 1 is Π 0 1 -complete. Proof. If p ∈ ω \ {0}, then {0, 1 p } / ∈ G 1 since B ∞ = {s ∞ } if B = {s}. Thus {0} is not an interior point of G 1 since the sequence ({0, 1 p }) p>0 tends to {0}. So G 1 / ∈ Σ 0 1 . • Let (A m ) ⊆ G 1 tending to A ⊆ n <ω . If A ⊆ {∅}, then A ∞ = ∅ = {∅} ∞ , so A ∈ G 1 . If A ⊆ {∅}, then let t ∈ A -and α 0 := t ∞ .
There exists an integer m 0 such that t ∈ A m for m ≥ m 0 . Thus we may assume that t ∈ A m and

A ∞ m = ∅. So let s m ∈ n <ω \ {∅} be such that A ∞ m = {s m } ∞ = {s ∞ m }. We have s ∞ m = α 0 . Let b := min{a ∈ ω \ {0}/(α 0 ⌈a) ∞ = α 0 }.
• We will show that A m ⊆ {(α 0 ⌈b) q /q ∈ ω}. Let s ∈ A m \ {∅}. As s ∞ = α 0 , we can find an integer a > 0 such that s = α 0 ⌈a, and b ≤ a. Let r < b and q be integers so that a = q.b + r. We have, if r > 0,

α 0 = (α 0 ⌈a) ∞ = (α 0 ⌈b) ∞ = (α 0 ⌈q.b)(α 0 ⌈a -α 0 ⌈q.b)α 0 = (α 0 ⌈b) q (α 0 ⌈a -α 0 ⌈q.b)α 0 = (α 0 ⌈a -α 0 ⌈q.b)α 0 = (α 0 ⌈r)α 0 = (α 0 ⌈r) ∞ .
Thus, by minimality of b, r = 0 and we are done.

• Let u ∈ A. We can find an integer m u such that u ∈ A m for m ≥ m u . So there exists an integer q u such that u = (α 0 ⌈b) qu . Therefore

A ∞ = {(α 0 ⌈b) ∞ } = {α 0 ⌈b} ∞ and A ∈ G 1 .
Remark. Notice that this shows that we can find w ∈ n <ω \ {∅} such that A ⊆ {w q /q ∈ ω} if A ∈ G 1 . Now we study G 2 . The next lemma is just Corollary 6.2.5 in [Lo].

Lemma 7 Two finite sequences which commute are powers of the same finite sequence.

Proof. Let x and y be finite sequences with xy = yx. Then the subgroup of the free group on n generators generated by x and y is abelian, hence isomorphic to Z. One generator of this subgroup must be a finite sequence u such that x and y are both powers of u.

Lemma 8 Let A ∈ G 2 . Then there exists a finite subset

F of A such that A ∞ = F ∞ .
Proof. We will show more.

Let A / ∈ G 1 satisfying A ∞ = {s 1 , s 2 } ∞ , with |s 1 | ≤ |s 2 |. Then (a)
The decomposition of α into words of {s 1 , s 2 } is unique for each α ∈ A ∞ (this is a consequence of Corollaries 6.2.5 and 6.2.6 in [Lo]).

(b) s 2 s 1 ⊥ s 1 q s 2 for each integer q > 0, and

s 2 s 1 ∧ s 1 q s 2 = s 1 s 2 ∧ s 2 s 1 . (c) A ⊆ [{s 1 , s 2 } <ω ] * .
• We prove the first two points. We split into cases.

2.1.

s 1 ⊥ s 2 .
The result is clear.

s

1 ≺ = s 2 ≺ s ∞ 1 .
Here also, the result is clear (cut α into words of length |s 1 |).

2.3. s 1 ≺ = s 2 ≺ s ∞ 1 .
We can write s 2 = s m 1 s, where m > 0 and s ≺ = s 1 . Thus s 2 s 1 = s m 1 ss 1 and s m+1

1 s ≺ s q 1 s 2 if q > 0. But s m
1 ss 1 ⊥ s m+1 1 s otherwise ss 1 = s 1 s, and s, s 1 s 2 would be powers of some sequence, which contradicts A / ∈ G 1 .

• We prove (c). Let t ∈ A, so that ts ∞ 1 , ts 2 s ∞ 1 ∈ A ∞ . These sequences split after t(s 1 s 2 ∧ s 2 s 1 ), and the decomposition of ts ∞ 1 (resp., ts 2 s ∞ 1 ) into words of {s 1 , s 2 } starts with us i (resp., us 3-i ), where u ∈ [{s 1 , s 2 } <ω ] * . So ts ∞ 1 and ts 2 s ∞ 1 split after u(s 1 s 2 ∧ s 2 s 1 ) by (b). But we must have t = u because of the position of the splitting point.

• We prove Lemma 8. If A ∈ G 0 , then F := ∅ works. If A ∈ G 1 \ G 0 , then let w ∈ n <ω \ {∅} such that A ⊆ {w q /q ∈ ω}, and q > 0 such that w q ∈ A. Then F := {w q } works. So we may assume that A / ∈ G 1 , and

A ∞ = {s 1 , s 2 } ∞ . As A ∞ ⊆ t∈A -{α ∈ N t /s 1 s 2 ∧ s 2 s 1 ≺ α -t} is compact, we get a finite subset F of A -such that A ∞ ⊆ t∈F {α ∈ N t /s 1 s 2 ∧ s 2 s 1 ≺ α -t}. We have F ∞ ⊆ A ∞ . If α ∈ A ∞ , then let t ∈ F such that t ≺ α. By (c), we have t ∈ [{s 1 , s 2 } <ω ] * .
The sequence t is the beginning of the decomposition of α into words of {s 1 , s 2 }. Thus αt ∈ A ∞ and we can go on like this. This shows that α ∈ F ∞ .

Remark. The inclusion of A

∞ = {s 1 , s 2 } ∞ into {t 1 , t 2 } ∞ does not imply {s 1 , s 2 } ⊆ [{t 1 , t 2 } <ω ] * , even if A /
∈ G 1 . Indeed, take s 1 := 01, s 2 := t 1 := 0 and t 2 := 10. But we have

|t 1 | + |t 2 | ≤ |s 1 | + |s 2 |,
which is the case in general:

Lemma 9 Let A, B / ∈ G 1 satisfying A ∞ = {s 1 , s 2 } ∞ ⊆ B ∞ = {t 1 , t 2 } ∞ . Then there is j ∈ 2 such that |t 1+i | ≤ |s 1+[i+j mod 2] | for each i ∈ 2. In particular, |t 1 | + |t 2 | ≤ |s 1 | + |s 2 |.

Proof. We may assume that |s

1 | ≤ |s 2 |. Let, for i = 1, 2, (w i m ) m ⊆ {t 1 , t 2 } be sequences such that s ∞ 1 = w 1 0 w 1 1 . . . (resp., s 2 s ∞ 1 = w 2 0 w 2 1 . . .)
. By the proof of Lemma 8, there is a minimal integer

m 0 satisfying w 1 m 0 = w 2 m 0 . We let u := w 1 0 . . . w 1 m 0 -1 . The sequences s ∞ 1 and s 2 s ∞ 1 split after s 1 s 2 ∧ s 2 s 1 = u(t 1 t 2 ∧ t 2 t 1 ). Similarly, s ∞ 1 and s 1 s 2 s ∞ 1 split after s 1 (s 1 s 2 ∧ s 2 s 1 ) = v(t 1 t 2 ∧ t 2 t 1 ), where v ∈ [{t 1 , t 2 } <ω ] * \ {∅}. So we get s 1 u = v. Similarly, with the sequences s 2 s ∞ 1 and s 2 2 s ∞ 1 , we see that s 2 u ∈ [{t 1 , t 2 } <ω ] * \ {∅}. So we may assume that u = ∅ since {s 1 , s 2 } / ∈ G 1 . If t 1 ⊥ t 2 , then we may assume that ∅ = t 1 ≺ = t 2 . So we may assume that we are not in the case t 2 ≺ t ∞ 1 . Indeed, otherwise t 2 = t m 1 t, where ∅ ≺ = t ≺ = t 1 (see the proof of Lemma 8). Moreover, t 1 doesn't finish t 2 , otherwise we would have t 1 = t(t 1 -t) = (t 1 -t)t and t, t 1 -t, t 1 , t 2 would be powers of the same sequence, which contradicts {t 1 , t 2 } / ∈ G 1 . As s i u ∈ [{t 1 , t 2 } <ω ] * , this shows that s i ∈ [{t 1 , t 2 } <ω ] * . So we are done since {s 1 , s 2 } / ∈ G 1 as before.
Assume for example that

t 2 = w 1 m 0 . Let m ′ be maximal with t m ′ 1 ≺ t 2 . Notice that ut m ′ 1 ≺ s 1 s 2 ≺ s 1 s 2 s ∞ 1 .
We have

ut 2 ≺ s 1 s 2 s ∞ 1 , otherwise we would obtain ut m ′ +1 1 ≺ s 1 s 2 s ∞ 1 ∧ s 2 s ∞ 1 = s 1 s 2 ∧ s 2 s 1 ≺ s ∞ 1 , which is absurd. So we get |t 2 | ≤ |s 1 | since |u|+|t 2 |+|t 1 t 2 ∧ t 2 t 1 | ≤ |s 1 |+|s 1 s 2 ∧ s 2 s 1 |. Similarly, |t 1 | ≤ |s 2 | since ut m ′ +1 1 ≺ s 2 2 s ∞ 1 . The argument is similar if t 2 = w 2 m 0 (we get |t i | ≤ |s i | in this case for i = 1, 2). Corollary 10 G 2 is a Ďω (Σ 0 1 ) \ D ω (Σ 0 1 ) set. In particular, G 2 is Ďω (Σ 0 1 )-complete.
Proof. We will apply the Hausdorff derivation to G ⊆ 2 n <ω . This means that we define a decreasing sequence (F ξ ) ξ<ω 1 of closed subsets of 2 n <ω as follows:

F ξ :=   η<ξ F η   ∩ G if ξ is even,   η<ξ F η   \ G if ξ is odd. Recall that if ξ is even, then F ξ = ∅ is equivalent to G ∈ D ξ (Σ 0 1 ). Indeed, we set U ξ := Fξ . We have U ξ+1 \ U ξ = F ξ \ F ξ+1 ⊆ G if ξ is even and U ξ+1 \ U ξ ⊆ Ǧ if ξ is odd. Similarly, U ξ \ ( η<ξ U η ) ⊆ Ǧ if ξ is limit. If F ξ = ∅, then let η be minimal such that F η = ∅. We have G = θ≤η, θ odd U θ \ ( ρ<θ U ρ ). If η is odd, then Ǧ = θ<η, θ even U θ \ ( ρ<θ U ρ ) ∈ D η (Σ 0 1 ), thus G ∈ Ďη (Σ 0 1 ) ⊆ D ξ (Σ 0 1 ). If η is even, then G = θ<η, θ odd U θ \ ( ρ<θ U ρ ) ∈ D η (Σ 0 1 ) and the same conclusion is true. Conversely, if G ∈ D ξ (Σ 0 1 ), then let (V η ) η<ξ be an increasing sequence of open sets with G = η<ξ, η odd V η \ ( θ<η V θ ). By induction, we check that F η ⊆ Vη if η < ξ.
This clearly implies that F ξ = ∅ because ξ is even.

• We will show that if A / ∈ G 1 satisfies A ∞ = {s 1 , s 2 } ∞ , then A / ∈ F M := F M (G 2 )
, where M is the smallest odd integer greater than or equal to

f (s 1 , s 2 ) := 2Σ l≤|s 1 |+|s 2 |-2 n 2(|s 1 |+|s 2 |-l) .
We argue by contradiction: A is the limit of (A q ), where A q ∈ F M -1 \ G 2 . Lemma 8 gives a finite subset F of A, and we may assume that F ⊆ A q for each q. Thus we have A ∞ ⊆ A ∞ q , and the inclusion is strict. Thus we can find s q ∈ [A <ω q ] * such that N s q ∩ A ∞ = ∅. Let s q 0 , . . ., s q mq ∈ A q be such that s q = s q 0 . . . s q mq . Now A q is the limit of (A q,r ) r , where A q,r ∈ F M -2 ∩ G 2 , and we may assume that {s q 0 , . . . , s q mq } ∪ F ⊆ A q,r for each r, and that

A q,r / ∈ G 1 because A q / ∈ G 1 ⊆ G 2 . Let s q,r 1 , s q,r 2 such that A ∞ q,r = {s q,r 1 , s q,r 2 } ∞ . By Lemma 9 we have |s q,r 1 | + |s q,r 2 | ≤ |s 1 | + |s 2 |. Now we let B 0 := A 0,0 and s 0 i := s 0,0 i for i = 1, 2. We have B 0 ∈ F M -2 ∩ G 2 \ G 1 , A ∞ ⊆ = B ∞ 0 = {s 0 1 , s 0 2 } ∞ , and
|s 0 1 | + |s 0 2 | ≤ |s 1 | + |s 2 |. Now we iterate this: for each 0 < k < n 2(|s 1 |+|s 2 |) , we get B k ∈ F M -2(k+1) ∩ G 2 \ G 1 such that B ∞ k-1 ⊆ = B ∞ k = {s k 1 , s k 2 } ∞ and |s k 1 | + |s k 2 | ≤ |s k-1 1 | + |s k-1 2 |. We can find k 0 < n 2(|s 1 |+|s 2 |) such that |s k 0 1 | + |s k 0 2 | < |s k 0 -1 1 | + |s k 0 -1 2 | (with the convention s -1 i := s i ). We set C 0 := B k 0 , t 0 i := s k 0 i . So we have C 0 ∈ F M -2(k 0 +1) ∩ G 2 \ G 1 , C ∞ 0 = {t 0 1 , t 0 2 } ∞ and |t 0 1 | + |t 0 2 | < |s 1 | + |s 2 |. Now we iterate this: for each l ≤ |s 1 | + |s 2 | -2, we get t l 1 , t l 2 , k l < n 2(|t l-1 1 |+|t l-1 2 |) and C l ∈ F M -2Σ m≤l (km+1) ∩ G 2 \ G 1 satisfying C ∞ l = {t l 1 , t l 2 } ∞ and |t l 1 | + |t l 2 | < |t l-1 1 | + |t l-1 2 | (with the convention t -1 i := s i ). We have |t l 1 | + |t l 2 | ≤ |s 1 | + |s 2 | -1 -l, thus 2Σ l≤|s 1 |+|s 2 |-2 (k l + 1) ≤ 2Σ l≤|s 1 |+|s 2 |-2 n 2(|t l-1 1 |+|t l-1 2 |) ≤ f (s 1 , s 2 )
and this construction is possible. But we have |t

|s 1 |+|s 2 |-2 1 |+|t |s 1 |+|s 2 |-2 2 | ≤ 1, thus C |s 1 |+|s 2 |-2 ∈ G 1 , which is absurd. Let A / ∈ G 2 . As A /
∈ G 1 , we can find s, t ∈ A which are not powers of the same sequence. Indeed, let s ∈ A -and u with minimal length such that s is a power of u. Then any t ∈ A \ {u q /q ∈ ω} works, because if s and t are powers of w, then w has to be a power of u. Indeed, as u ≺ w, w = u k v with v ≺ u, and v has to be a power of u by minimality of |u| and Lemma 7. Assume that moreover A ∈ F 2k+2 . Now A is the limit of (A k,r ) r ⊆ F 2k+1 ∩ G 2 for each integer k, and we may assume that s, t

∈ A k,r / ∈ G 1 . Let s k,r 1 , s k,r 2 be such that A k,r ∞ = {s k,r 1 , s k,r 2 } ∞ . By Lemma 9 we have |s k,r 1 | + |s k,r 2 | ≤ |s| + |t| and f (s k,r 1 , s k,r 2 ) ≤ f (s, t)
. By the preceding point, we must have

2k + 1 < f (s, t). Thus m F m ⊆ G 2 . Notice that F m+1 ( Ǧ2 ) ⊆ F m , so that F ω ( Ǧ2 ) = ∅ and G 2 ∈ Ďω (Σ 0 1 ). • Now let us show that {0} ∈ F ω (G 2 ) (this will imply G 2 / ∈ D ω (Σ 0 1 )). It is enough to see that {0} ∈ m F m .
Let E(x) be the biggest integer less than or equal to x, p k,s := 2 k+1-E(|s|/2) and k ∈ ω. We define A ∅ := {0} and, for s ∈ (ω \ {0, 1}) ≤2k+1 and m > 1,

A sm := A s ∪{(01 p k,s ) m ; (0 2 1 p k,s ) m } if |s| is even, A s ∪{s ∈ [{0, 1 p k,s } <ω ] * /m ≤ |s| ≤ m+p k,s } if |s| is odd. Let us show that A s ∈ G 2 (resp., Ǧ2 ) if |s| is even (resp.,

odd). First by induction we get

A sm ⊆ {0, 1 p k,s } <ω . Therefore A ∞ sm = {0, 1 p k,s } ∞ if |s| is odd, because if α is in {0, 1 p k,s } ∞ and t ∈ [{0, 1 p k,s } <ω ] * with minimal length ≥ m begins α, then t ∈ A sm . Now if |s| is even and A ∞ sm = {s 1 , s 2 } ∞ , then 0 ∞ ∈ {s 1 , s 2 } ∞ , thus for example s 1 = 0 k+1 . (01 p k,s ) ∞ ∈ {s 1 , s 2 } ∞ , thus s 2 ≺ (01 p k,s ) ∞ and |s 2 | ≥ |(01 p k,s ) m | since s 2 0 ∞ ∈ {s 1 , s 2 } ∞ . But then (0 2 1 p k,s ) ∞ / ∈ {s 1 , s 2 } ∞ since m > 1. Thus A sm / ∈ G 2 . As (A sm ) m tends to A s and (A s ) |s|=2k+2 ⊆ G 2 , we deduce from this that A s is in F 2k+1-|s| \ G 2 if |s| ≤ 2k + 1 is odd, and that A s ∈ F 2k+1-|s| ∩ G 2 if |s| ≤ 2k + 1 is even. Therefore {0} is in k F 2k+1 = m F m .

Remarks. (1) The end of this proof also shows that

G p / ∈ D ω (Σ 0 1 ) if p ≥ 2. Indeed, {0} ∈ F ω (G p ).
The only thing to change is the definition of A sm if |s| is even: we set 

A sm := A s ∪ {(0 j+1 1 p k,s ) m /j < p}. (2) If {s 1 , s 2 } / ∈ G 1 and {s 1 , s 2 } ∞ = {t 1 , t 2 } ∞ , then {s 1 , s 2 } = {t 1 , t 2 }. Indeed, {t 1 , t 2 } / ∈ G 1 ,
s i = t a i ε i , where a i > 0, ε i , i ∈ {1, 2}. As {s 1 , s 2 } / ∈ G 1 , ε 1 = ε 2 . Thus a i = 1.
Conjecture 1. Let A ∈ F. Then there exists a finite subset

F of A such that A ∞ = F ∞ . Conjecture 2. Let p ≥ 1, A, B / ∈ G p with A ∞ = {s 1 , . . . , s q } ∞ ⊆ B ∞ = {t 1 , . . . , t p+1 } ∞ . Then Σ 1≤i≤p+1 |t i | ≤ Σ 1≤i≤q |s i |. Conjecture 3. We have G p+1 \ G p ∈ D ω (Σ 0 1 ) for each p ≥ 1. In particular, F ∈ K σ \ Π 0 2 .
Notice that Conjectures 1 and 2 imply Conjecture 3. Indeed,

F = G 1 ∪ p≥1 G p+1 \ G p , so F ∈ K σ if G p+1 \ G p ∈ D ω (Σ 0 1 ) ⊆ ∆ 0 2
, by Proposition 6. By Proposition 5 we have

F / ∈ Π 0 2 . It is enough to see that F ω := F ω (G p+1 \ G p ) = ∅.
We argue as in the proof of Corollary 10. This time, f (s 1 , . . . , s q ) := 2Σ l≤Σ 1≤i≤q |s i |-2 n q(Σ 1≤i≤q |s i |-l) for s 1 , . . . , s q ∈ n <ω . The fact to notice is that

A / ∈ F M (G p+1 \ G p ) if A / ∈ G p satisfies A ∞ = {s 1 , . . . , s p+1
} ∞ and M is the minimal odd integer greater than or equal to f (s 1 , . . . , s p+1 ). So if A ∈ F 2k+2 ∩ F \ G p , then Conjecture 1 gives a finite subset F := {s 1 , . . . , s q } of A. The set A is the limit of (A k,r ) r ⊆ F 2k+1 ∩ G p+1 \ G p for each integer k, and we may assume that

F ⊆ A k,r . Conjecture 2 implies that f (s k,r 1 , . . . , s k,r p+1 ) ≤ f (s 1 , . . . , s q ) and 2k + 1 < f (s 1 , . . . , s q ). Thus m F m ⊆ F ∪ G p . So F ω ⊆ ( F ∪ G p ) ∩ G p+1 \ G p = ∅.
3 Is A ∞ Borel?

Now we will see that the maximal complexity is possible. We essentially give O. Finkel's example, in a lightly simpler version.

Proposition 11 Let

Γ := Σ 1 1 or a Baire class. The existence of n ∈ ω \ 2 and A ⊆ n <ω such that A ∞ is Γ-complete is equivalent to the existence of B ⊆ 2 <ω such that B ∞ is Γ-complete.
Proof. Let p n := min{p ∈ ω/n ≤ 2 p } ≥ 1. We define φ : n ֒→ 2 pn := {σ 0 , . . . , σ 2 pn -1 } by the formula φ(m) := σ m , Φ : n <ω ֒→ 2 <ω by the formula Φ(t) := φ(t(0)) . . . φ(t(|t| -1)) and f : n ω ֒→ 2 ω by the formula f (γ) := φ(γ(0))φ(γ(1)) . . . Then f is an homeomorphism from n ω onto its range and reduces A ∞ to B ∞ , where

B := Φ[A]. The inverse function of f reduces B ∞ to A ∞ . So we are done if Γ is stable under intersection with closed sets. Otherwise, Γ = ∆ 0 1 or Σ 0 1 . If A = {s ∈ 2 <ω /0 ≺ s or 1 2 ≺ s}, then A ∞ = N 0 ∪ N 1 2 , which is ∆ 0 1 -complete. If A = {s ∈ 2 <ω /0 ≺ s} ∪ {10 k 1 l+1 /k, l ∈ ω}, then A ∞ = 2 ω \ {10 ∞ }, which is Σ 0 1 -complete.
Theorem 12 The set

I := {(α, A) ∈ n ω × 2 n <ω /α ∈ A ∞ } is Σ 1 1 -complete. In fact, (a) (O. Finkel, see [F1]) There exists A 0 ⊆ 2 <ω such that A ∞ 0 is Σ 1 1 -complete. (b) There exists α 0 ∈ 2 ω such that I α 0 is Σ 1 1 -complete.
Proof. (a) We set L := {2, 3} and

T := { τ ⊆ 2 <ω × L/∀(u, ν) ∈ 2 <ω × L [(u, ν) / ∈ τ ] or [(∀v ≺ u ∃µ ∈ L (v, µ) ∈ τ ) and ((u, 5 -ν) / ∈ τ ) and (∃(ε, π) ∈ 2 × L (uε, π) ∈ τ )] }.
The set T is the set of pruned trees over 2 with labels in L. It is a closed subset of 2 2 <ω ×L , thus a Polish space. Then we set

σ := {τ ∈ T /∃(u, ν) ∈ 2 ω × L ω [∀m (u⌈m, ν(m)) ∈ τ ] and [∀p ∃m ≥ p ν(m) = 3]}.
• Then σ ∈ Σ1 1 (T ). Let us show that it is complete. We set T := {T ∈ 2 ω <ω /T is a tree} and IF := {T ∈ T /T is ill-founded}. It is a well-known fact that T is a Polish space (it is a closed subset of 2 ω <ω ), and that IF is Σ 1 1 -complete (see [K1]). It is enough to find a Borel reduction of IF to σ (see [K2]).

We define ψ : ω <ω ֒→ 2 <ω by the formula ψ(t) := 0 t(0) 10 t(1) 1 . . . 0 t(|t|-1) 1, and Ψ : T → T by

Ψ(T ) := {(u, ν) ∈ 2 <ω × L/∃t ∈ T u ≺ ψ(t) and ν = 3 if u = ∅, 2 + u(|u| -1) otherwise} ∪ {(ψ(t)0 k+1 , 2)/t ∈ T and ∀q ∈ ω tq / ∈ T, k ∈ ω}.
The map Ψ is Baire class one. Let us show that it is a reduction. If T ∈ IF , then let γ ∈ ω ω be such that γ⌈m ∈ T for each integer m. We have (ψ(γ⌈m), 3) ∈ Ψ(T ). Let u be the limit of ψ(γ⌈m) and ν(m) := 2 + u(m -1) (resp., 3) if m > 0 (resp., m = 0). These objects show that Ψ(T ) ∈ σ.

Conversely, we have T ∈ IF if Ψ(T ) ∈ σ.

• If τ ∈ T and m ∈ ω, then we enumerate τ ∩ (2 m × L) := {(u m,τ 1 , ν m,τ 1 ), . . . , (u m,τ qm,τ , ν m,τ qm,τ )} in the lexicographic ordering. We define ϕ : T ֒→ 5 ω by the formula ϕ(τ ) := (u 0,τ 1 ν 0,τ 1 . . . u 0,τ q 0,τ ν 0,τ q 0,τ 4)(u 1,τ 1 ν 1,τ 1 . . . u 1,τ q 1,τ ν 1,τ q 1,τ 4) . . .

The set A 0 will be made of finite subsequences of sentences in ϕ[T ]. We set A 0 := { u m,τ q+1 ν m,τ q+1 . . . u p,τ r ν p,τ r /τ ∈ T , m + 1 < p, 0 ≤ q ≤ q m,τ , 1 ≤ r ≤ q p,τ , [(m = 0 and q = 0) or (q > 0 and ν m,τ q = 3 and u m,τ q ≺ u p,τ r )], ν p,τ r = 3 } (with the convention u m,τ qm,τ +1 ν m,τ qm,τ +1 = 4). It is clear that ϕ is continuous, and it is enough to see that it reduces σ to A ∞ 0 .

So let us assume that τ ∈ σ. This means the existence of an infinite branch in the tree with infinitely many 3 labels. We cut ϕ(τ ) after the first 3 label of the branch corresponding to a sequence of length m > 1. Then we cut after the first 3 label corresponding to a sequence of length at least m + 2 of the branch. And so on. This clearly gives a decomposition of ϕ(τ ) into words in A 0 .

If such a decomposition exists, then the first word is u 0,τ

• By Proposition 11, we can also have A 0 ⊆ 2 <ω . (b) Let α 0 := 1010 2 10 3 . . ., (q l ) be the sequence of prime numbers: q 0 := 2, q 1 := 3, M : ω <ω → ω defined by M s := q s(0)+1 0 . . . q s(|s|-1)+1 |s|-1 + 1, φ : ω <ω → 2 <ω \ {∅} defined by the formulas φ(∅) := 1010 2 = 1010 2M ∅ and φ(sm) := 10 2Ms+1 10 2Ms+2 . . . 10 2Msm , and Φ : 2 ω <ω → 2 n <ω defined by Φ(T ) := φ[T ].

• It is clear that M sm > M s , and that M and φ are well defined and one-to-one. So Φ is continuous:

s ∈ φ[T ] ⇔ ∃t (t ∈ T and φ(t) = s) ⇔ s ∈ φ[ω <ω ] and ∀t (t ∈ T or φ(t) = s).
If T ∈ IF , then we can find β ∈ ω ω such that φ(β⌈l) ∈ Φ(T ) for each integer l. Thus

α 0 = (1010 2M β⌈0 )(10 2M β⌈0 +1 . . . 10 2M β⌈1 ) . . . ∈ (Φ(T )) ∞ .
Conversely, if α 0 ∈ (Φ(T )) ∞ , then there exist t i ∈ T such that α 0 = φ(t 0 )φ(t 1 ) . . . We have t 0 = ∅, and, if i > 0, then M t i ⌈|t i |-1 = M t i-1 ; from this we deduce that t i ⌈|t i | -1 = t i-1 , because M is one-to-one. So let β be the limit of the t i 's. We have β⌈i = t i , thus β ∈ [T ] and

T ∈ IF . Thus Φ ⌈T reduces IF to I α 0 . Therefore this last set is Σ 1 1 -complete. Indeed, it is clear that I is Σ 1 1 : α ∈ A ∞ ⇔ ∃β ∈ ω ω [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)].
Finally, the map from T into n ω × 2 n <ω , which associates (α 0 , Φ(T )) to T clearly reduces IF to I.

So I is Σ 1 1 -complete.
Remark. This proof shows that if α = s 0 s 1 . . . and (s i ) is an antichain for the extension ordering, then I α is Σ 1 1 -complete (here we have s i = 10 2i+1 10 2i+2 ). To see it, it is enough to notice that φ(∅) = s 0 and φ(sm) = s Ms . . . s Msm-1 . So I α is Σ 1 1 -complete for a dense set of α's.

We will deduce from this some true co-analytic sets. But we need a lemma, which has its own interest.

Lemma 13 (a) The set A ∞ is Borel if and only if there exist a Borel function f :

n ω → ω ω such that α ∈ A ∞ ⇔ (∀m > 0 f (α)(m) > 0) and (∀q ∈ ω π(α, f (α), q) ∈ A). (b) Let γ ∈ ω ω and A ⊆ n <ω . Then A ∞ ∈ ∆ 1 1 (A, γ) if and only if, for α ∈ n ω , we have α ∈ A ∞ ⇔ ∃β ∈ ∆ 1 1 (A, γ, α) [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)].
Proof. The "if" directions in (a) and (b) are clear. We have seen in the proof of Proposition 4 the "if" direction of the equivalences (the existence of an arbitrary β is necessary and sufficient). So let us show the "only if" directions.

(a) We define f : n ω → ω ω by the formula f (α) := 0 ∞ if α / ∈ A ∞ , and, otherwise,

f (α)(0) := min{p ∈ ω/α⌈(p + 1) ∈ A and α -α⌈(p + 1) ∈ A ∞ }, f (α)(r + 1) := min{k > 0/[α -α⌈(1 + Σ j≤r f (α)(j))]⌈k ∈ A and α -α⌈(k + 1 + Σ j≤r f (α)(j)) ∈ A ∞ }.
We get π(α, f (α), 0) = α⌈f (α)(0) + 1 ∈ A and, if q > 0,

π(α, f (α), q) = (α(1 + Σ j<q f (α)[j]), ..., α(Σ j≤q f (α)[j])) ∈ A.
As f is clearly Borel, we are done.

(b) If A ∞ ∈ ∆ 1 1 (A, γ), then so is f and β := f (α) ∈ ∆ 1 1 (A, γ, α
) is what we were looking for.

Remark. Lemma 13 is a particular case of a more general situation. Actually we have the following uniformization result. It was written after a conversation with G. Debs.

Proposition 14 Let X and Y be Polish spaces, and

F ∈ Π 0 2 (X × Y ) such that the projection Π X [F ∩ (X × V )] is Borel for each V ∈ Σ 0 1 (Y ).
Then there exists a Borel map f :

X → Y such that (x, f (x)) ∈ F for each x ∈ Π X [F ]. Proof. Let (Y n ) be a basis for the topology of Y with Y 0 := Y , B n := Π X [F ∩ (X × Y n )],
and τ be a finer 0-dimensional Polish topology on X making the B n 's clopen (see 13.5 in [K1]). We equip X with a complete τ -compatible metric d.

Let (O m ) ⊆ Σ 0 1 (X × Y ) be decreasing satisfying O 0 := X × Y and F = m O m . We construct a sequence (U s ) s∈ω <ω of clopen subsets of [B 0 , τ ] with U ∅ := B 0 , and a sequence (V s ) s∈ω <ω of basic open sets of Y satisfying (a) U s ⊆ Π X [F ∩ (U s × V s )] (b) diam d (U s ), diam(V s ) ≤ 1 |s| if s = ∅ (c) U s = m,disj. U s ⌢ m , V s ⌢ n ⊆ V s (d) U s × V s ⊆ O |s|
• Assume that this construction has been achieved. If x / ∈ B 0 , then we set f (x) := y 0 ∈ Y (we may assume that F = ∅). Otherwise, we can find a unique sequence γ ∈ ω ω such that x ∈ U γ⌈m for each integer m. Thus we can find y ∈ V γ⌈m such that (x, y) ∈ F , and (V γ⌈m ) m is a decreasing sequence of nonempty closed sets whose diameters tend to 0, which defines a continuous map f :

[B 0 , τ ] → Y . If x ∈ B 0 , then (x, f (x)) ∈ U γ⌈m × V γ⌈m ⊆ O m , thus Gr(f |B 0 ) ⊆ F . Notice that f : [X, τ ] → Y is continuous, so f : X → Y is Borel.
• Let us show that the construction is possible. We set U ∅ := B 0 and V ∅ := Y . Assume that (U s ) s∈ω ≤p and (V s ) s∈ω ≤p satisfying conditions (a)-(d) have been constructed, which is the case for

p = 0. Let s ∈ ω p . If (x, y) ∈ F ∩ (U s × V s ), then we can find U x ∈ ∆ 0 1 (U s ) and a basic open set V y ⊆ Y such that (x, y) ∈ U x × V y ⊆ U x × V y ⊆ (U s × V s ) ∩ O p+1
, and whose diameters are at most 1 p+1 . By the Lindelöf property, we can write

F ∩ (U s × V s ) ⊆ n U xn × V yn and F ∩ (U s × V s ) = n F ∩ (U xn × V yn ).
If x ∈ U s , then let n and y be such that (x, y)

∈ F ∩ (U xn × V yn ). Then x ∈ O n := Π X [F ∩ (X × V yn )] ∩ U xn ∈ ∆ 0 1 ([B 0 , τ ]).
Thus U s = n O n . We set U s ⌢ n := O n \ ( p<n O p ) and V s ⌢ n := V yn , and we are done.

In our context,

F = {(α, β) ∈ n ω ×ω ω /(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)}, which is a closed subset of X × Y . The projection Π X [F ∩ (X × N s )] is Borel if A ∞ is Borel, since it is {S * γ/S ∈ (A ∩ n s(0)+1 ) × Π 0<j<|s| (A ∩ n s(j) ) and γ ∈ A ∞ }.

Theorem 15

The following sets are

Π 1 1 \ ∆ 1 1 : (a) Π := {(A, γ, θ) ∈ 2 n <ω × ω ω × ω ω /θ ∈ WO and A ∞ ∈ Π 0 |θ| ∩ ∆ 1 1 (A, γ)}. The same thing is true with Σ := {(A, γ, θ) ∈ 2 n <ω × ω ω × ω ω /θ ∈ WO and A ∞ ∈ Σ 0 |θ| ∩ ∆ 1 1 (A, γ)}. (b) Σ 1 := {A ∈ 2 n <ω /A ∞ ∈ Σ 0 1 ∩ ∆ 1 1 (A)}. In fact, Σ ξ := {A ∈ 2 n <ω /A ∞ ∈ Σ 0 ξ ∩ ∆ 1 1 (A)} is Π 1 1 \∆ 1 1 if 1 ≤ ξ < ω 1 . Similarly, Π ξ := {A ∈ 2 n <ω /A ∞ ∈ Π 0 ξ ∩ ∆ 1 1 (A)} is Π 1 1 \∆ 1 1 if 2 ≤ ξ < ω 1 . (c) ∆ := {A ∈ 2 n <ω /A ∞ ∈ ∆ 1 1 (A)}.
Proof. Consider the way of coding the Borel sets used in [Lou]. By Lemma 13 we get

(A, γ, θ) ∈ Π ⇔    ∃p ∈ ω P (p, A, γ, θ) and ∀α ∈ n ω (α / ∈ A ∞ or (p, A, γ, α) ∈ C) and ([(p, A, γ) ∈ W and (p, A, γ, α) / ∈ C] or ∃β ∈ ∆ 1 1 (A, γ, α) [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)]).
This shows that Π is Π 1 1 . The same argument works with Σ . From this we can deduce that Σ 1 is Π 1 1 , if we forget γ and take the section of Σ at θ ∈ WO ∩ ∆ 1 1 such that |θ| = 1. Similarly, Σ ξ and Π ξ are co-analytic if ξ ≥ 1. Forgetting θ, we see that the relation "

A ∞ ∈ ∆ 1 1 (A, γ)" is Π 1 1 .
• Let us look at the proof of Theorem 12. We will show that if ξ ≥ 1 (resp., ξ ≥ 2), then Σ ξ \ I α 0 (resp., Π ξ \ I α 0 ) is a true co-analytic set. To do this, we will reduce W F to Σ ξ \ I α 0 (resp., Π ξ \ I α 0 ) in a Borel way. We change the definition of Φ. We set

t ⊆ α 0 ⇔ ∃k t ≺ α 0 -α 0 ⌈k, E := {(α 0 ⌈p)r/p ∈ ω\{2}, r ∈ n\{α 0 (p)}}, F := {U * ⊆ α 0 /U ∈ φ[T ] <ω }, Φ ′ (T ) := φ[T ] ∪ {s ∈ n <ω /∃t ∈ E ∪F t ≺ s}.
This time, Φ ′ is Baire class one, since

s ∈ Φ ′ (T ) ⇔ s ∈ φ[T ] or ∃t ∈ E t ≺ s or ∃U ∈ (2 <ω ) <ω (∀j < |u| U (j) ∈ φ[T ]) and U * ⊆ α 0 and U * ≺ s.
The proof of Theorem 12 remains valid, since if α 0 ∈ (Φ ′ (T )) ∞ , then the decompositions of α 0 into words of Φ ′ (T ) are actually decompositions into words of φ[T ].

• Let us show that (Φ ′ (T )) ∞ ∈ Σ 0 1 ∩ ∆ 1 1 (Φ ′ (T )) if T ∈ W F . The set (Φ ′ (T )) ∞ is S∈φ[T ] <ω ,l∈n\{1},m∈n\{0} [( s/∃t∈F t≺s N S * s ) ∪ N S * l ∪ N S * 1m ∪ (N S * 101 \ {S * α 0 })].
If α ∈ n ω , then α contains infinitely many l ∈ n \ {1} or finishes with 1 ∞ . As 1 2 and the sequences beginning with l are in Φ ′ (T ), the clopen sets are subsets of (Φ ′ (T )) ∞ since φ[T ] and the sequences beginning with t ∈ F , l or 1m are in Φ ′ (T ). If α ∈ N S * 101 \ {S * α 0 }, then let p ≥ 3 be maximal such that α⌈(|S * | + p) = S * (α 0 ⌈p). We have α ∈ (Φ ′ (T )) ∞ since the sequences beginning with (α 0 ⌈p)r are in Φ ′ (T ). Thus we get the inclusion into

(Φ ′ (T )) ∞ . If α ∈ (Φ ′ (T )) ∞ , then α = a 0 a 1 . . ., where a i ∈ Φ ′ (T ).
Either for all i we have a i ∈ φ[T ]. In this case, there is i such that a 0 . . . a i ⊆ α 0 , otherwise we could find k with α 0α 0 ⌈k ∈ (Φ(T )) ∞ . But this contradicts the fact that T ∈ W F , as in the proof of Theorem 12. So we have α ∈ ∃t∈F t≺s N s . Or there exists i minimal such that

a i / ∈ φ[T ]. In this case, -Either ∃t ∈ E t ≺ a i and α ∈ S∈φ[T ] <ω ,l∈n\{1},m∈n\{0} [N S * l ∪ N S * 1m ∪ (N S * 101 \ {S * α 0 })],
-Or ∃t ∈ F t ≺ a i and α ∈ S∈φ[T ] <ω s/∃t∈F t≺s N S * s .

From this we deduce that

(Φ ′ (T )) ∞ is Σ 0 1 .
Finally, we have

α ∈ (Φ ′ (T )) ∞ ⇔ ∃t ∈ n <ω ∃b ∈ ω <ω [(|t| = 1+Σ j<|b| b(j)) and (∀0 < m < |b| b(m) > 0) and (∀q < |b| π(t0 ∞ , b0 ∞ , q) ∈ Φ ′ (T ))] and [∃l ∈ n\{1} tl ≺ α or t1 2 ≺ α].
This shows that

(Φ ′ (T )) ∞ is ∆ 1 1 (Φ ′ (T )).
Therefore, Φ ′ ⌈T reduces W F to Σ ξ \ I α 0 if ξ ≥ 1, and to Π ξ \ I α 0 if ξ ≥ 2. So these sets are true co-analytic sets. But Σ 1 ∩ I α 0 is Π 1 1 , by Lemma 13. As Σ 1 \ I α 0 = Σ 1 \ (Σ 1 ∩ I α 0 ), Σ 1 is not Borel. Thus Σ is not Borel, as before. The argument is similar for Σ ξ , Π ξ (ξ ≥ 2) and Π . And for ∆ too.

Question. Does

A ∞ ∈ ∆ 1 1 imply A ∞ ∈ ∆ 1 1 (A)? Probably not
. If the answer is positive, ∆, and more generally Σ ξ (for ξ ≥ 1) and Π ξ (for ξ ≥ 2) are true co-analytic sets.

Remark. In any case

, ∆ is Σ 1 2 because "A ∞ ∈ ∆ 1 1 " is equivalent to "∃γ ∈ ω ω A ∞ ∈ ∆ 1 1 (A, γ)".
This argument shows that Σ ξ and Π ξ are Σ 1 2 (θ), where θ ∈ W O satisfies |θ| = ξ. We can say more about Π 1 : it is ∆ 1 2 . Indeed, in [START_REF] Staiger | On ω-power languages[END_REF] we have the following characterization:

A ∞ ∈ Π 0 1 ⇔ ∀α ∈ n ω [∀s ∈ n <ω (s ≺ α ⇒ ∃S ∈ A <ω s ≺ S * )] ⇒ α ∈ A ∞ .
This gives a Π 1 2 definition of Π 1 . The same fact is true for Σ 1 :

Proposition 16 Σ 1 and Π 1 are co-nowhere dense ∆ 1 2 \ D 2 (Σ 0 1 ) subsets of 2 n <ω . If ξ ≥ 2, then Σ ξ and Π ξ are co-nowhere dense Σ 1 2 \ D 2 (Σ 0 1 ) subsets of 2 n <ω . ∆ is a co-nowhere dense Σ 1 2 \ D 2 (Σ 0 1 ) subset of 2 n <ω . Proof. We have seen that Σ 1 is Σ 1 2 ; it is also Π 1 2 because A ∞ ∈ Σ 0 1 ⇔ ∀α ∈ n ω α / ∈ A ∞ or ∃s ∈ n <ω [s ≺ α and ∀β ∈ n ω (s ≺ β or β ∈ A ∞ )].
By Proposition 4, Π 0 is co-nowhere dense, and it is a subset of Σ ξ ∩ Π ξ ∩ ∆. So Σ ξ , Π ξ and ∆ are co-nowhere dense, and it remains to see that they are not open. It is enough to notice that ∅ is not in their interior. Look at the proof of Theorem 12; it shows that for each integer m, there is a subset A m of {s ∈ 5 <ω /|s| ≥ m} such that A ∞ m / ∈ ∆ 1 1 . But the argument in the proof of Proposition 11 shows that we can have the same thing in n <ω for each n ≥ 2. This gives the result because the sequence (A m ) tends to ∅.

We can say a bit more about Π 1 and Σ 2 :

Proposition 17 Π 1 , Π 1 and Σ 2 are Σ 0 2 -hard (so they are not Π 0 2 ).
Proof. Consider the map φ defined in the proof of Proposition 5. By Proposition 2, if γ ∈ P f , then φ(γ) ∞ is Π 0 1 . Moreover, as φ(γ) is an antichain for the extension ordering, the decomposition into words of φ(γ) is unique. This shows that φ(γ

) ∞ is ∆ 1 1 , because α ∈ φ(γ) ∞ ⇔ ∃β ∈ ∆ 1 1 (α) [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ φ(γ))].
So φ(γ) ∈ Π 1 if γ ∈ P f . So the preimage of any of the sets in the statement by φ is P f , and the result follows.

4 Which sets are ω-powers?

Now we come to Question (3). Let us specify what we mean by "codes for Γ-sets", where Γ is a given class, and fix some notation.

• For the Borel classes, we will essentially consider the 2 ω -universal sets used in [K1] (see Theorem 22.3). For ξ ≥ 1, U ξ,A (resp. U ξ,M ) is 2 ω -universal for Σ 0 ξ (n ω ) (resp. Π 0 ξ (n ω )). So we have -U 1,A = {(γ, α) ∈ 2 ω ×n ω /∃p ∈ ω γ(p) = 0 and s n p ≺ α}, where (s n p ) p enumerates n <ω . -U ξ,M = ¬ U ξ,A , for each ξ ≥ 1.

-U ξ,A = {(γ, α) ∈ 2 ω ×n ω /∃p ∈ ω ((γ) p , α) ∈ U η,M } if ξ = η + 1.
-U ξ,A = {(γ, α) ∈ 2 ω ×n ω /∃p ∈ ω ((γ) p , α) ∈ U ηp,M } if ξ is the limit of the strictly increasing sequence of odd ordinals (η p ).

• For the class Σ 1 1 , we fix some bijection p → ((p) 0 , (p) 1 ) between ω and ω 2 . We set

(γ, α) ∈ U ⇔ ∃β ∈ 2 ω (∀m ∃p ≥ m β(p) = 1) and (∀p [γ(p) = 1 or s 2 (p) 0 ≺ β or s n (p) 1 ≺ α]).
It is not hard to see that U is 2 ω -universal for Σ 1 1 (n ω ), and we use it here because of the compactness of 2 ω ×n ω , rather than the ω ω -universal set for Σ 1 1 (n ω ) given in [K1] (see Theorem 14.2).

• For the class ∆ 1 1 , it is different because there is no universal set. But we can use the Π 1 1 set of codes D ⊆ 2 ω for the Borel sets in [K1] (see Theorem 35.5). We may assume that D, S and P are effective, by [M].

• The sets we are interested in are the following:

A ξ := {γ ∈ 2 ω /U ξ,A γ is an ω-power}, M ξ := {γ ∈ 2 ω /U ξ,M γ is an ω-power} B := {d ∈ D/D d is an ω-power}, A := {γ ∈ 2 ω /U γ is an ω-power}.
As we mentionned in the introduction, Lemma 13 is also related to Question (3). A rough answer to this question is Σ 1 3 . Indeed, we have, for γ ∈ 2 ω ,

γ ∈ A ⇔ ∃A ∈ 2 n <ω ∀α ∈ n ω ([(γ, α) / ∈ U or α ∈ A ∞ ] and [α / ∈ A ∞ or (γ, α) ∈ U]).
With Lemma 13, we have a better estimation of the complexity of B:

it is Σ 1 2 . Indeed, for d ∈ D, D d is an ω-power ⇔ ∃A ∈ 2 n <ω ∀α ∈ n ω ([(d, α) / ∈ S or ∃β ∈ ∆ 1 1 (A, d, α) [(∀m > 0 β(m) > 0) and (∀q ∈ ω π(α, β, q) ∈ A)]] and [α / ∈ A ∞ or (d, α) ∈ P ]).
This argument also shows that A ξ and M ξ are Σ 1 2 . We can say more about these two sets.

Proposition 18 If 1 ≤ ξ < ω 1 , then A ξ and M ξ are Σ 1 2 \ D 2 (Σ 0 1 ) co-meager subsets of 2 ω . If moreover ξ = 1, then they are co-nowhere dense.

Proof. We set E

1 := {γ ∈ 2 ω /U 1,A γ = n ω }, E η+1 := {γ ∈ 2 ω /∀p (γ) p ∈ E η } if η ≥ 1
, and E ξ := {γ ∈ 2 ω /∀p (γ) p ∈ E ηp } (where (η p ) is a strictly increasing sequence of odd ordinals cofinal in the limit ordinal ξ). If s ∈ 2 <ω , then we set γ(p) = s(p) if p < |s|, 0 otherwise. Then s ≺ γ and U 1,A γ = n ω , so E 1 is dense. If γ 0 ∈ E 1 , then for all α ∈ n ω we can find an integer p such that γ 0 (p) = 0 and s n p ≺ α. By compactness of n ω we can find a finite subset F of {p ∈ ω/γ 0 (p) = 0} such that for each α ∈ n ω , s n p ≺ α for some p ∈ F . Now {γ ∈ 2 ω /∀p ∈ F γ(p) = 0} is an open neighborhood of γ 0 and a subset of E 1 . So E 1 is an open subset of 2 ω . Now the map γ → (γ) p is continuous and open, so E η+1 and E ξ are dense G δ subsets of 2 ω . Then we notice that E ξ is a subset of {γ ∈ 2 ω /U ξ,A γ = n ω } (resp., {γ ∈ 2 ω /U 1,A γ = ∅}) if ξ is odd (resp., even). Indeed, this is clear for ξ = 1. Then we use the formulas

U η+1,A γ = p ¬ U η,A (γ)p and U ξ,A γ = p ¬ U ηp,A (γ) 
p , and by induction we are done. As ∅ and n ω are ω-powers, we get the results about Baire category. Now it remains to see that A ξ and M ξ are not open. But by induction again 1 ∞ ∈ A ξ ∩ M ξ , so it is enough to see that 1 ∞ is not in the interior of these sets.

• Let us show that, for O ∈ ∆ 0 1 (n ω ) \ {∅, n ω } and for each integer m, we can find γ, γ ′ ∈ 2 ω such that γ

(j) = γ ′ (j) = 1 for j < m, U ξ,A γ = O and U ξ,M γ ′ = O. For ξ = 1, write O = p N s n q k
, where q k ≥ m. Let γ(q) := 0 if there exists k such that q = q k , γ(q) := 1 otherwise. The same argument applied to Ǒ gives the complete result for ξ = 1. Now we argue by induction. Let γ p ∈ 2 ω be such that γ p (q) = 1 for < p, q >< m and U η,M (γ)p = O. Then define γ by γ(< p, q >) := γ p (q); we have γ(j) = 1 if j < m and U η+1,A γ = p U η,M (γ)p = O. The argument with Ǒ still works. The argument is similar for limit ordinals.

• Now we apply this fact to O := N (0) . This gives γ p , γ

′ p ∈ N 1 p such that U ξ,A γp = N (0) and U ξ,M γ ′ p = N (0) . But (γ p ), (γ ′ p ) tend to 1 ∞ , γ p / ∈ A ξ and γ ′ p / ∈ M ξ . Corollary 19 A 1 is Ď2 (Σ 0 1 ) \ D 2 (Σ 0 1 ). In particular, A 1 is Ď2 (Σ 0 1 )-complete.
Proof. By the preceding proof, it is enough to see that

A 1 \ {1 ∞ } is open. So let γ 0 ∈ A 1 \ {1 ∞ }, p 0 in ω with γ 0 (p 0 ) = 0, and A 0 ⊆ n <ω with U 1,A γ 0 = A ∞ 0 . If α ∈ n ω , then s n p 0 α ∈ U 1,A
γ 0 , so we can find m > 0 such that α -α⌈m ∈ A ∞ 0 ; thus there exists an integer p such that γ 0 (p) = 0 and s n p ≺ α -α⌈m. By compactness of n ω , there are finite sets F ⊆ ω \ {0} and G ⊆ {p ∈ ω/γ 0 (p) = 0} such that n ω = m∈F,p∈G {α ∈ n ω /s n p ≺ α-α⌈m}. We set A γ := {s ∈ n <ω /∃p γ(p) = 0 and s n p ≺ s} for γ ∈ 2 ω , so that A ∞ γ ⊆ U 1,A γ . Assume that γ(p) = 0 for each p ∈ G and let α ∈ U 1,A γ . Let p 0 ∈ ω be such that γ(p 0 ) = 0 and s n p 0 ≺ α. We can find m 0 > 0 and p 1 ∈ G such that s n p 1 ≺ α -α⌈(|s n p 0 | + m 0 ), and α⌈(|s

n p 0 | + m 0 ) ∈ A γ . Then we can find m 1 > 0 and p 2 ∈ G such that s n p 2 ≺ α -α⌈(|s n p 0 | + m 0 + |s n p 1 | + m 1 ), and 
α⌈(|s n p 0 | + m 0 + |s n p 1 | + m 1 ) -α⌈(|s n p 0 | + m 0 ) ∈ A γ .

And so on. Thus

α ∈ A ∞ γ and {γ ∈ 2 ω /∀p ∈ G γ(p) = 0} is a clopen neighborhood of γ 0 and a subset of A 1 . Proposition 20 A is Σ 1 3 \ D 2 (Σ 0 1
) and is co-nowhere dense.

Proof. Let U := {γ ∈ 2 ω /∀β ∈ 2 ω ∀α ∈ n ω ∃p [γ(p) = 0 and s 2 (p) 0 ≺ β and s n (p) 1 ≺ α]}. By compactness of 2 ω × n ω , U is a dense open subset of 2 ω . Moreover, if γ ∈ U , then U γ = ∅, so U ⊆ A and A is co-nowhere dense. It remains to see that A is not open, as in the proof of Proposition 18. As U 1 ∞ = n ω , 1 ∞ ∈ A. Let p be an integer satisfying s 2 (p) 0 = ∅ and s n (p) 1 = 0 q . We set γ p (m) := 0 if and only if m = p, and also P ∞ := {α ∈ 2 ω /∀r ∃m ≥ r α(m) = 1}. Then (γ p ) tends to 1 ∞ and we have

U γp = {α ∈ n ω /∃β ∈ P ∞ ∀m m = p or s 2 (m) 0 ≺ β or s n (m) 1 ≺ α} = {α ∈ n ω /∃β ∈ P ∞ (β, α) / ∈ 2 ω ×N 0 q } = ¬ N 0 q . So γ p / ∈ A.
5 Ordinal ranks and ω-powers.

Notation. The fact that the ω-powers are Σ 1 1 implies the existence of a co-analytic rank on the complement of A ∞ (see 34.4 in [K1]). We will consider a natural one, defined as follows. We set, for α ∈ n ω , T A (α) := {S ∈ (A -) <ω /S * ≺ α}. This is a tree on A -, which is well founded if and only if α / ∈ A ∞ .

The rank of this tree is the announced rank R A : ¬ A ∞ → ω 1 (see page 10 in [K1]): we have R A (α) := ρ(T A (α)). Let φ : A -→ ω be one-to-one, and φ(S) := (φ[S(0)], . . . , φ[S(|s| -1)]) for S ∈ (A -) <ω . This allows us to define the map Φ from the set of trees on A -into the set of trees on ω, which associates { φ(S)/S ∈ T } to T . As φ is one-to-one, Φ is continuous:

t ∈ Φ(T ) ⇔ t ∈ φ[(A -) <ω ] and φ-1 (t) ∈ T.
Moreover, T is well-founded if and only if Φ(T ) is well-founded. Thus, if α / ∈ A ∞ , then we have ρ(T A (α)) = ρ(Φ[T A (α)]) because φ is strictly monotone (see page 10 in [K1]). Thus R A is a coanalytic rank because the function from n ω into the set of trees on ω <ω which associates Φ[T A (α)] to α is continuous, and because the rank of the well-founded trees on ω defines a co-analytic rank (see 34.6 in [K1]). We set

R(A) := sup{R A (α)/α / ∈ A ∞ }.
By the boundedness theorem, A ∞ is Borel if and only if R(A) < ω 1 (see 34.5 and 35.23 in [K1]).

We can ask the question of the link between the complexity of A ∞ and the ordinal R(A) when A ∞ is Borel.

Proposition 21 If ξ < ω 1 , r ∈ ω and R(A) = ω.ξ + r, then A ∞ ∈ Σ 0 2.ξ+1 .

Proof. The reader should see [L] for operations on ordinals.

• If 0 < λ < ω 1 is a limit ordinal, then let (λ q ) be a strictly increasing co-final sequence in λ, with λ q = ω.θ + q if λ = ω.(θ + 1), and λ q = ω.ξ q if λ = ω.ξ, where (ξ q ) is a strictly increasing co-final sequence in the limit ordinal ξ otherwise. By induction, we define E 0 := {α ∈ n ω /∀s ∈ A -s ≺ α}, E θ+1 := {α ∈ n ω /∀s ∈ A -s ≺ α or α-s ∈ E θ }, E λ := {α ∈ n ω /∀s ∈ A -s ≺ α or ∃q ∈ ω α-s ∈ E λq }.

• Let us show that E ω.ξ+r ∈ Π 0 2.ξ+1 . We may assume that ξ = 0 and that r = 0. If ξ = θ + 1, then E λq ∈ Π 0 2.θ+1 by induction hypothesis, thus E ω.ξ+r ∈ Π 0 2.θ+3 = Π 0 2.ξ+1 . Otherwise, E λq ∈ Π 0 2.ξq+1 by induction hypothesis, thus E ω.ξ+r ∈ Π 0 ξ+1 = Π 0 2.ξ+1 .

• Let us show that if α ∈ A ∞ , then α / ∈ E ω.ξ+r . If ξ = r = 0, it is clear. If r = m + 1 and s ∈ A -satisfies s ≺ α and αs ∈ A ∞ , then we have αs / ∈ E ω.ξ+m by induction hypothesis, thus α / ∈ E ω.ξ+r . If r = 0 and s ∈ A -satisfies s ≺ α and αs ∈ A ∞ , then we have αs / ∈ E λq for each integer q, by induction hypothesis, thus α / ∈ E ω.ξ+r .

• Let s ∈ A -such that s ≺ α / ∈ A ∞ . We have ρ(T A (αs)) = sup{ρ T A (α-s) (t) + 1 / t ∈ T A (αs)} ≤ sup{ρ T A (α) ((s)t) + 1 / (s)t ∈ T A (α)} ≤ ρ T A (α) ((s)) + 1 ≤ ρ T A (α) (∅) < ρ(T A (α)). Remark. Notice that it is not true that if the Wadge class < A ∞ >, having A ∞ as a complete set, is a subclass of < B ∞ >, then R(A) ≤ R(B). Indeed, for A we take the example A 2 in (c), and for B we take the example for Σ 0 1 that we met in the proof of Proposition 11. If we exchange the roles of A and B, then we see that the converse is also false. This example A for Σ 0 1 shows that Proposition 21 is optimal for ξ = 0 since R(A) = 1 and A ∞ ∈ Σ 0 1 \ Π 0 1 . We can say more: it is not true that if A ∞ = B ∞ , then R(A) ≤ R(B). We use again (c): we take A := A 2 and B := A \ {0 2 }. We have

A ∞ = B ∞ = A ∞ 2 , R(A) = 2 and R(B) = 1.
Proposition 23 For each ξ < ω 1 , there exists A ξ ⊆ 2 <ω with A ∞ ξ ∈ Σ 0 1 and R(A ξ ) ≥ ξ.

Proof. We use the notation in the proof of Theorem 15. Let T ∈ T , and ϕ : T → T Φ ′ (T ) (α 0 ) defined by the formula ϕ(s) := (φ(s⌈0), . . . , φ(s⌈|s| -1)). Then ϕ is strictly monotone. If T ∈ W F , then α 0 / ∈ (Φ ′ (T )) ∞ and T Φ ′ (T ) (α 0 ) ∈ W F . In this case, ρ(T ) ≤ ρ(T Φ ′ (T ) (α 0 )) = R Φ ′ (T ) (α 0 ) (see page 10 in [K1]). Let T ξ ∈ W F be a tree with rank at least ξ (see 34.5 and 34.6 in [K1]). We set A ξ := Φ ′ (T ξ ). It is clear that A ξ is what we were looking for.

Remark. Let ψ : 2 n <ω → {Trees on n <ω } defined by ψ(A) := T A (α 0 ), and r : ¬ I α 0 → ω 1 defined by r(A) := ρ(T A (α 0 )). Then ψ is continuous, thus r is a Π 1 1 -rank on ψ -1 ({Well-founded trees on n <ω }) = ¬ I α 0 .

By the boundedness theorem, the rank r and R are not bounded on ¬ I α 0 . Proposition 23 specifies this result. It shows that R is not bounded on Σ 1 \ I α 0 .

6 The extension ordering.

Proposition 24 We equip A with the extension ordering.

(a) If A ⊆ n <ω is an antichain, then

A ∞ is in {∅} ∪ {n ω } ∪ [Π 0 1 \ Σ 0 1 ] ∪ [Π 0 2 (A) \ Σ 0 2 ]
, and any of these cases is possible.

(b) If A ⊆ n <ω has finite antichains, then A ∞ ∈ Π 0 2 (and is not Σ 0 2 in general).

Proof. Let G := {α ∈ n ω / ∀r ∃m ∃p ≥ r α⌈m ∈ [(A -) p ] * }. Then G ∈ Π 0 2 (A) and contains A ∞ . Conversely, if α ∈ G, then we have T A (α) ∩ (A -) p = ∅ for each integer p, thus T A (α) is infinite.

(a) If A is an antichain, then each sequence in T A (α) has at most one extension in this tree adding one to the length. Thus T A (α) is finite splitting. This implies that T A (α) has an infinite branch if α ∈ G, by König's lemma. Therefore A ∞ = G ∈ Π 0 2 (A).

  thus by Lemma 9 we get |s 1 | + |s 2 | = |t 1 | + |t 2 |. By (c) in the proof of Lemma 8 and the previous fact,

  (d) If A ∞ ∈ Π 0 1 and α / ∈ A ∞ , then let s ∈ n <ω with α ∈ N s ⊆ ¬ A ∞ . Then ρ(T A (α)) ≤ |s| + 1. Thus R(A) ≤ ω. If A ∞ / ∈ Σ 0 1 , then we have R(A)≥ ω, by Proposition 21. Thus R(A) = ω. Conversely, we apply (c).

ν 0,τ 1 . . . u p 0 ,τ r 0 ν p 0 ,τ r 0 , and the second is u p 0 ,τ r 0 +1 ν p 0 ,τ r 0 +1 . . . u p 1 ,τ r 1 ν p 1 ,τ r 1 . So we have u p 0 ,τ r 0 ≺ = u p 1 ,τ r 1 . And so on. This gives an infinite branch with infinitely many 3 labels.

The first inequality comes from the fact that the map from T A (α-s) into T A (α), which associates (s)t to t is strictly monotone (see page 10 in [K1]). We have ρ(T A (α)) ≥ [sup{ρ(T A (αs)) / s ∈ A -, s ≺ α}] + 1.

Let us show that we actually have equality. We have

Therefore, it is enough to notice that if s ∈ A -and s ≺ α, then ρ T A (α) ((s)) ≤ ρ T A (α-s) (∅). But this comes from the fact that the map from {S ∈ T A (α) / S(0) = s} into T A (αs), which associates S -(s) to S, preserves the extension ordering (see page 352 in [K1]).

• Let us show that, if α / ∈ A ∞ , then "ρ(T A (α)) ≤ ω.ξ + r + 1" is equivalent to "α ∈ E ω.ξ+r ". We do it by induction on ω.ξ + r. If ξ = r = 0, then it is clear. If r = m + 1, then "ρ(T A (α)) ≤ ω.ξ + r + 1" is equivalent to "∀s ∈ A -, s ≺ α or ρ(T A (αs)) ≤ ω.ξ + m + 1", by the preceding point. This is equivalent to "∀s ∈ A -, s ≺ α or αs ∈ E ω.ξ+m ", which is equivalent to "α ∈ E ω.ξ+r ". If r = 0, then "ρ(T A (α)) ≤ ω.ξ + r + 1" is equivalent to "∀s ∈ A -, s ≺ α or there exists an integer q such that ρ(T A (αs)) ≤ λ q + 1". This is equivalent to "∀s ∈ A -, s ≺ α or there exists an integer q such that αs ∈ E λq ", which is equivalent to "α ∈ E ω.ξ+r ".

We can find an upper bound for the rank R, for some Borel classes:

< ω, and there exists A p ⊆ 2 <ω such that A ∞ p ∈ ∆ 0 1 and R(A p ) = p for each integer p.

(c) By compactness, there exists s 1 , . . . , s p ∈ n <ω such that

So we get the first point. To see the second one, we set A 0 := 2 <ω . If p > 0, then we set

-If we take A := ∅, then A is an antichain and A ∞ = ∅.

-If we take A := {(0), . . . , (n -1)}, then A is an antichain and

The intersection of P ∞ with N 1 can be made with the chain {10 k /k ∈ ω}. So let us assume that A has finite antichains.

• Let us show that A is the union of a finite set and of a finite union of infinite subsets of sets of the form A αm := {s ∈ n <ω /s ≺ α m }. Let us enumerate A := {s r /r ∈ ω}. We construct a sequence (A m ), finite or not, of subsets of A. We do it by induction on r, to decide in which set A m the sequence s r is. First, s 0 ∈ A 0 . Assume that s 0 , . . . , s r have been put into A 0 , . . . , A pr , with p r ≤ r and A m ∩ {s 0 , . . . , s r } = ∅ if m ≤ p r . We choose m ≤ p r minimal such that s r+1 is compatible with all the sequences in A m ∩ {s 0 , . . . , s r }, we put s r+1 into A m and we set p r+1 := p r if possible. Otherwise, we put s r+1 into A pr+1 and we set p r+1 := p r + 1.

Let us show that there are only finitely many infinite A m 's. If A m is infinite, then there exists a unique sequence α m ∈ n ω such that A m ⊆ A αm . Let us argue by contradiction: there exists an infinite sequence (m q ) q such that A mq is infinite. Let t 0 be the common beginning of the α mq 's. There exists ε 0 ∈ n such that N t 0 ε 0 ∩ {α mq /q ∈ ω} is infinite. We choose a sequence u 0 in A extending t 0 µ 0 , where µ 0 = ε 0 . Then we do it again: let t 0 ε 0 t 1 be the common beginning of the elements of N t 0 ε 0 ∩ {α mq /q ∈ ω}. There exists ε 1 ∈ n such that N t 0 ε 0 t 1 ε 1 ∩ {α mq /q ∈ ω} is infinite. We choose a sequence u 1 in A extending t 0 ε 0 t 1 µ 1 , where µ 1 = ε 1 . The sequence (u l ) is an infinite antichain in A. But this is absurd. Now let us choose the longest sequence in each nonempty finite A m ; this gives an antichain in A and the result.

• Now let α ∈ G. There are two cases. Either for each m and for each integer k, α⌈k /

7 Examples.

• We have seen examples of subsets A of 2 <ω such that A ∞ is complete for the classes {∅}, {n ω }, ∆ 0 1 , Σ 0 1 , Π 0 1 , Π 0 2 and Σ 1 1 . We will give some more examples, for some classes of Borel sets. Notice that to show that a set in such a non self-dual class is complete, it is enough to show that it is true (see 21.E, 22.10 and 22.26 in [K1]).

• For the class Σ 0

• For the class Ď2 (Σ 0 1 ) := {U ∪ F / U ∈ Σ 0 1 , F ∈ Π 0 1 }, we can take Example 9 in [START_REF] Staiger | On ω-power languages[END_REF]: A := {s ∈ 2 <ω / 0 ≺ s or ∃ q ∈ ω (101) q 1 3 ≺ s or s = 10 2 }. We have

where the U 's are open and the F 's are closed. Let O be a clopen set separating

∈ O, then we would have N (10 2 ) q 0 ⊆ ¬ O for some integer q 0 . But the sequence ((10 2 ) q 0 (101) q 1 ∞ ) q≥q 0 ⊆ F \ O and tends to (10 2 ) q 0 (101) ∞ , which is absurd.

• For the class D 2 (Σ 0 1 ), we can take

We have

, then there are two cases. Either there are infinitely many indexes i (say i 0 , i 1 , . . .) such that a i / ∈ A 0 . In this case, the words a 0 . . . a i 0 , a i 0 +1 . . . a i 1 , . . ., are in A and α ∈ A ∞ . Or there exists a maximal index i such that a i / ∈ A 0 . In this case, a 0 . . . a i 0, 10 2 ,

1 is nowhere dense (every sequence in A 1 contains 0, thus the sequences in A ∞ 1 have infinitely many 0's). Thus A ∞ would be closed. But this contradicts the fact that ((01

• For the class Ď3 (Σ 0 1 ), we can take

, then the argument above still works. We have to check that s := a 0 . . . a i 0 / ∈ [A <ω 1 ] * . It is clear if a i 0 = 10. Otherwise, a i 0 = 10 2 and we argue by contradiction. The length of s is even and the decomposition of s into words of A 1 is unique. It finishes with 0 2 , and the even coordinates of the sequence s are 0. Therefore, a i 0 -1 = 0 2 or 10; we have the same thing with a i 0 -2 , a i 0 -3 , . . . Because of the parity, some 0 remains at the beginning. But this is absurd. Now we have to check that a 0 . . . a i 0 / ∈ [A <ω 1 ] * . It is clear if a i = 10 2 . Otherwise, a i = 10 and the argument above works.

Finally, we have to check that if

There is a sequence p 0 , p 1 , . . ., finite or not, such that γ = (0 2p 0 )(01)(0 2p 1 )(01). . .0 ∞ . Therefore

converging to x n . Then x n,m ∈ U 1 , which is absurd. Thus A ∞ / ∈ D 3 (Σ 0 1 ).

• For the class Ď2 (Σ 0 2 ), we can take A := {s ∈ 2 <ω / 1 2 ≺ s or s = (0)}. We can write

2 ) and would be a comeager subset of N 1 2 . We could find s ∈ 2 <ω with even length such that A ∞ ∩ N 1 2 s ∈ Π 0 2 . We define a continuous function f : 2 ω → 2 ω by formulas f (α)(2n) := α(n) if n > |s|+1 2 , (1 2 s)(2n) otherwise, and f (α)(2n + 1) := 0 if n > |s| 2 , (1 2 s)(2n + 1) otherwise. It reduces P f to A ∞ ∩ N 1 2 s , which is absurd.

Summary of the complexity results in this paper:

Baire category complexity | ξ = 1 ξ = 2 ξ ≥ 3 Σ 0 nowhere dense Π 0 1 \ Σ 0 1 Π 0 co-nowhere dense Σ 0 1 \ Π 0 1 ∆ 1 co-nowhere dense K σ \ Π 0