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Hurewicz-like tests for Borel subsets of the plane.

Dominique LECOMTE

Electron. Res. Announc. Amer. Math. Soc.11 (2005), 95-102

Abstract. Let ξ ≥ 1 be a countable ordinal. We study the Borel subsets of the plane that can be madeΠ0
ξ by refining the

Polish topology on the real line. These sets are called potentially Π
0
ξ. We give a Hurewicz-like test to recognize potentially

Π
0
ξ sets.

1 Preliminaries in dimension one.

Let us recall some results in dimension one before studying Borel subsets of the plane. In descrip-
tive set theory, a standard way to see that a set is complicated is to note that it is more complicated
than a well-known example. For instance, we have the following result (see [SR]):

Theorem 1 (Hurewicz) LetPf :={α∈2N/∃n∈N ∀m≥n α(m)=0}, X be a Polish space, andA
a Borel subset ofX. Then exactly one of the following holds:

(a) The setA is Π
0
2(X).

(b) There isu :2N→X continuous and one-to-one withPf =u−1(A).

This result has been generalized to the other Baire classes (see [Lo-SR]). We state this general-
ization in two parts:

Theorem 2 (Louveau-Saint Raymond) Letξ<ℵ1,A1+ξ∈Σ
0
1+ξ(2

N),X be a Polish space, andA,B
disjoint analytic subsets ofX. One of the following holds:

(a) The setA is separable fromB by aΠ
0
1+ξ(X) set.

(b) There isu :2N→X continuous withA1+ξ⊆u
−1(A) and2N\A1+ξ⊆u

−1(B).

If we moreover assume thatA1+ξ /∈Π
0
1+ξ, then this is a dichotomy (in this case, and ifξ≥2, then

we can haveu one-to-one).

Theorem 3 There is a concrete example ofA1+ξ∈Σ
0
1+ξ(2

N)\Π0
1+ξ(2

N), for ξ<ℵ1.

If we replacePf (resp.,Π0
2) with the setA1+ξ given by Theorem 3 (resp.,Π0

1+ξ), then we get
the generalization of Theorem 1 forξ≥2. We state this generalization in two parts for the following
reasons:

• Theorem 2 is valid for anyA1+ξ ∈ Σ
0
1+ξ(2

N), and Theorem 1 is of the form “There is a typical
example such that. . .”.

• We will meet again a statement in two parts, in dimension two.
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2 Results with the usual notions of reduction.

Let us consider the case of dimension two. The usual notion ofcomparison for Borel equivalence
relations is the Borel reducibility quasi-order (recall that a quasi-order is a reflexive and transitive
relation). This means that ifX (resp.,Y ) is a Polish space, andE (resp.,F ) a Borel equivalence
relation onX (resp.,Y ), then

E ≤B F ⇔ ∃u :X→Y Borel withE=(u×u)−1(F ).

Note that this makes sense even ifE,F are not equivalence relations. We will study a natural invariant
for ≤B . Recall the following (see [K]):

Theorem 4 (Kuratowski) LetX be a Polish space, and(Bn) a sequence of Borel subsets ofX. Then
there is a finer Polish topologyσ onX (and thus having the same Borel sets) making theBn’s clopen.

In particular, ifu : X → Y is Borel, then there isσ such thatu : [X,σ] → Y is continuous. If
moreoverE = (u×u)−1(F ) andF is in some Baire classΓ, thenE ∈ Γ([X,σ]2). This leads to
Definition 5, that can be found in [Lo]:

Definition 5 (Louveau) LetX, Y be Polish spaces,A a Borel subset ofX × Y and Γ a Baire (or
Wadge) class. We say thatA is potentially in Γ (denotedA∈pot(Γ)) iff there is a finer Polish
topologyσ (resp.,τ ) onX (resp.,Y ) such thatA is in Γ([X,σ]×[Y, τ ]).

The previous result shows that this notion makes sense for product topologies. This notion is a
natural invariant for≤B : if F is pot(Γ) andE ≤B F , thenE is pot(Γ). Using this notion, A. Louveau
showed that the collection ofΣ0

ξ equivalence relations is not cofinal for≤B, and deduces from this
the non existence of a maximum Borel equivalence relation for ≤B (this non existence result is due
to H. Friedman and L. Stanley). A. Louveau has also more recently noticed that one can associate a
quasi-order relationRA ⊆ (X × 2)2 toA ⊆ X2 as follows:

(x, i) RA (y, j) ⇔ (x, i) = (y, j) or [(x, y) ∈ A and(i, j) = (0, 1)].

Using this, one can see that, from the point of view of Borel reducibility, the study of Borel quasi-
orders is essentially the study of arbitrary Borel subsets of the plane. This strengthens the motivation
for studying arbitrary Borel subsets of the plane, from the point of view of potential complexity. We
have a result concerning equivalence relations (see [H-K-Lo]):

Theorem 6 (Harrington-Kechris-Louveau) LetX be a Polish space,E a Borel equivalence relation
onX, andE0 :={(α, β)∈2N×2N/∃n∈N ∀m≥n α(m)=β(m)}. Then exactly one of the following
holds:

(a) The relationE is pot(Π0
1).

(b)E0 ≤B E (with u continuous and one-to-one).

We will study other structures than equivalence relations (for example quasi-orders), and even
arbitrary Borel subsets of the plane. We need some other notions of comparison. LetX, Y , X ′, Y ′

be Polish spaces, andA (resp.,A′) a Borel subset ofX×Y (resp.,X ′×Y ′). We set

A ≤r
B A′ ⇔ ∃u :X→X ′ ∃v :Y →Y ′ Borel withA=(u×v)−1(A′).

2



We want to extend the previous result to arbitrary Borel subsets of the plane. This works partially
(see [L1]):

Theorem 7 Let ∆(2N) := {(α, β) ∈ 2N×2N/α = β}, L0 :={(α, β)∈2N×2N/α<lexβ}, X, Y be
Polish spaces, andA a pot(Ď2(Σ

0
1)) subset ofX×Y . Then exactly one of the following holds:

(a) The setA is pot(Π0
1).

(b) ¬∆(2N) ≤r
B A or L0 ≤r

B A (with u, v continuous and one-to-one).

Things become more complicated at the levelD2(Σ
0
1) (differences of two open sets;̌D2(Σ

0
1) is

the dual Wadge class of unions of a closed set and of an open set).

Theorem 8 (a) There is a perfect≤r
B-antichain(Aα)α∈2N ⊆D2(Σ

0
1)(2

N×2N) such thatAα is ≤r
B-

minimal among∆1
1\pot(Π0

1) sets, for anyα∈2N.

(b) There is a perfect≤B-antichain(Rα)α∈2N such thatRα is≤B-minimal among∆1
1\pot(Π0

1) sets,
for anyα∈2N. Moreover,(Rα)α∈2N can be taken to be a subclass of any of the following classes:

- Graphs (i.e., irreflexive and symmetric relations).

- Oriented graphs (i.e., irreflexive and antisymmetric relations).

- Quasi-orders.

- Partial orders (i.e., reflexive, antisymmetric and transitive relations).

In other words, the case of equivalence relations, for whichwe have a unique (up to bi-reducibili-
ty) minimal non potentially closed element with Theorem 6, is very specific. Theorem 8.(b) says,
among other things, that the mixture between symmetry and transitivity is very strong.

Example.Let us specify the construction of the antichain in (a). We set, for C⊆2<N,

AC :={(s0γ, s1γ)/s∈C, γ∈2N}.

If 0∈S⊆N is infinite, then setCS :={t∈2<N/Card(t)∈S} (where Card(t) is the number of ones in
t). Such anS is of the formSβ :={Σi<j (1+β(j))/j∈N}, whereβ∈N

N.

Theorem 9 The setACS is minimal for[∆1
1\pot(Π0

1),≤
r
B ] if

∀p∈N ∃k∈N ∀q∈N ∃c∈N∩[q, q+k] c+(S ∩ [0, p])=S ∩ (c+[0, p]).

It remains to defineβα ∈ 2N ⊆N
N, for α∈ 2N. We inductively define a sequence(sα,n)n⊆ 2<N

as follows:sα,0 :=0, sα,1 :=1, sα,n+2 :=s
α(n)+1
α,n s

α(n+1)+1
α,n+1 . Note thatsα,n≺ 6= sα,n+2, so that we can

defineβα := limn→∞ sα,2n∈2N. It is suitable:(ACSβα )α∈2N is a perfect antichain made of minimal
sets for[∆1

1\pot(Π0
1),≤

r
B ].

3 Reduction by homomorphism.

Theorem 8.(a) shows that the classical notions of reduction(on the whole product) don’t work, at
least at the first level. So we must find another notion of comparison.
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We have a positive result with another notion, which is in some sense “half of the Borel reducibil-
ity ordering”. LetA (resp.,A′) be an analytic subset ofX×X (resp.,X ′×X ′). We set

(X,A) �B (X ′, A′) ⇔ ∃u :X→X ′ Borel withA⊆(u×u)−1(A′).

This notion essentially makes sense for irreflexive relations (we can takeu to be constant ifA′ is not
irreflexive).

Notation. Let ψ : N → 2<N be the natural bijection (i.e.,ψ(0) = ∅, ψ(1) = 0, ψ(2) = 1, ψ(3) = 02,
ψ(4)=01, ψ(5)=10, ψ(6)=12, . . .). Note that|ψ(n)|≤n, so that we can define

sn :=ψ(n)0n−|ψ(n)|.

The crucial properties of(sn) are that it is dense (there isn such thatt≺ sn, for eacht∈ 2<ω), and
that |sn|=n. We put

A0 :=A{sn/n∈N}={(sn0γ, sn1γ)/n∈N, γ∈2N}.

The symmetric sets(A0) generated byA0 is considered in [K-S-T], where the following is essentially
proved:

Theorem 10 (Kechris, Solecki, Todorčevíc) LetX be a Polish space, andA an analytic subset of
X×X. Then exactly one of the following holds:

(a) (X,A) �B (N, 6=).

(b) (2N, A0) �B (X,A) (with u continuous).

In [K-S-T], it is conjectured that we can haveu one-to-one in Theorem 10.(b). This is not the
case.

4 Reduction on a closed set.

As a consequence of Theorem 10, we have the following:

Theorem 11 LetX, Y be Polish spaces, andA a Borel subset ofX×Y . Then exactly one of the
following holds:

(a) The setA is pot(Π0
1).

(b) There areu :2N→X andv :2N→Y continuous withA0 =(u×v)−1(A) ∩A0.

Moreover, we can neither ensure thatu andv are one-to-one, nor removeA0.

So we get a minimum non-potentially closed set if we do not askfor a reduction on the whole
product. To generalize Theorem 11, the right way to seeA0 seems to be the following. LetT0 be the
tree associated withA0 =A0 ∪ ∆(2N):

T0 ={(s, t)∈2<N×2<N/s= t or ∃n∈N ∃w ∈ 2<N (s, t)=(sn0w, sn1w)}.
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The map∆:2N×2N→2N is the symmetric difference:∆(α, β)(i) :=(α∆β)(i)=1 exactly when
α(i) 6=β(i), for i∈N. LetS1 :={γ∈2N/∃i∈N γ(i)=1} be the typical one-dimensionalΣ

0
1\Π

0
1 set.

We have
A0 ={(α, β)∈2N×2N/(α, β)∈ [T0] andα∆β∈S1}.

This scheme can be generalized. Theorem 11 shows that we cannot have only one minimal non
potentially closed set, for the reduction on the whole product. The reduction is possible on a closed
set (the closure ofA0). This closure does not explain why we cannot have a reduction on the whole
product. This comes from Theorem 8. The orthogonality between the examples appearing in the
antichains of its statement comes from different types of cycles. This will give a better explanation
than the closure. We will replace the closure with a closed set, that will be seen as the set of branches
of some tree on2×2. This tree will have the acyclicity properties that we need.This leads to the
following definition:

Definition 12 LetR be a relation on a setE.

• AnR-path is a finite sequence(ei)i≤n⊆E such that(ei, ei+1)∈R, for i<n.

• AnR-cycle is anR-path(ei)i≤n such thatn≥3 and

[0≤ i 6=j≤n andei=ej ] ⇔ {i, j}={0, n}.

• We say thatR is acyclic if there is noR-cycle.

• We say that a treeT on2×2 is uniformly acyclic if, for eachp>0,

(a) The relationT ∩ (2p×2p) is irreflexive and antisymmetric.

(b) The symmetric relations(T ∩ (2p×2p)) generated byT ∩ (2p×2p) is acyclic.

The main new results in this paper are the following:

Theorem 13 (Debs-Lecomte) LetT be a uniformly acyclic tree,ξ < ℵ1, A1+ξ in Σ
0
1+ξ([T ]), X, Y

Polish spaces, andA, B disjoint analytic subsets ofX×Y . Then one of the following holds:

(a) The setA is separable fromB by a pot(Π0
1+ξ) set.

(b) There areu : 2N →X andv : 2N → Y continuous such that the inclusionsA1+ξ ⊆ (u×v)−1(A)
and [T ]\A1+ξ ⊆ (u× v)−1(B) hold.

If we moreover assume thatA1+ξ /∈pot(Π0
1+ξ), then this is a dichotomy.

This result has initially been shown by D. Lecomte when1+ξ is a successor ordinal. Then G. Debs
proved it when1+ξ is a limit ordinal. The proof of Theorem 13 uses the representation Theorem for
Borel sets in [D-SR]. Notice that we can deduce Theorem 2 fromthe proof of Theorem 13. Theorem
13 is the analog of Theorem 2 in dimension two (see [Lo-SR], also Theorem III-2.1 in [D-SR]). The
treeT has to be small enough, since there is no possibility to have areduction on the whole product.
But as the same time,T has to be big enough to ensure the existence of complicated sets inside[T ]:

Theorem 14 There are concrete examples of:

(a) A uniformly acyclic treeT .

(b) A setA1+ξ∈Σ
0
1+ξ([T ])\pot(Π0

1+ξ), for ξ<ℵ1.

This result is the complement of Theorem 13 (which is true with T := ∅!). Again, the couple
Theorems 13-14 is the analog of the couple Theorems 2-3.
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5 The examples.

Let us specify the examples of Theorem 14. Letϕ= (ϕ0, ϕ1) : N→N
2 be the natural bijection.

More precisely, we set, forq∈N,

M(q) :=max{m∈N/Σk≤m k≤ q}.

Then we defineϕ(q)=(ϕ0(q), ϕ1(q)) :=(M(q)−q+(Σk≤M(q) k), q−(Σk≤M(q) k)). One can check
that< i, j >:=ϕ−1(i, j)=(Σk≤i+j k)+j. More concretely, we get

ϕ[N]={(0, 0); (1, 0); (0, 1); (2, 0); (1, 1); (0, 2); . . .}.

Definition 15 We say thatE⊆
⋃

q∈N
2q×2q is a test if

(a) ∀q∈N ∃!(sq, tq)∈E ∩ (2q×2q).

(b) ∀m, q∈N ∀u∈2<N ∃v∈2<N (sq0uv, tq1uv)∈E andϕ0(|tq1uv|−1)=m.

(c) ∀n>0 ∃q<n ∃w∈2<N sn=sq0w andtn= tq1w.

We will callT the tree generated by a testE={(sq, tq)/q∈N}:

T :={(s, t)∈2<N×2<N/s= t=∅ or ∃q∈N ∃w∈2<N s=sq0w and t= tq1w}.

One can show the existence of a test, and thatT is uniformly acyclic. The uniqueness condition
in (a) and condition (c) ensure thatT is small enough, and also the acyclicity. The existence condition
in (a) and condition (b) ensure thatT is big enough. More specifically, ifX is a Polish space and
σ a finer Polish topology onX, then there is a denseGδ subset ofX on which the two topologies
coincide. The first part of condition (b) ensures the possibility to get inside the square of a dense
Gδ subset of2ω. The examples of Theorem 14.(b) are constructed using the examples in [Lo-SR].
Conditions on the verticals appear, and the second part of condition (b) gives a control on the choice
of verticals.

Notation. In [Lo-SR], Lemma 3.3, the mapρ0 :2N→2N defined as follows is introduced:

ρ0(ε)(i) :=

{

1 if ε(< i, j >)=0, for eachj∈N,
0 otherwise.

In this paper,ρξ0 : 2N → 2N is also defined forξ < ℵ1 as follows, by induction onξ (see the proof of
Theorem 3.2). We putρ0

0 := Id2N , ρη+1
0 :=ρ0 ◦ ρ

η
0. If λ>0 is limit, then fix(ξλk )⊆λ\{0} such that

Σk ξ
λ
k =λ.

Forε∈2N andk∈N, we define(ε)k∈2N by (ε)k(i) :=ε(i+k). We also defineρ(k,k+1)
0 :2N→2N by

ρ
(k,k+1)
0 (ε)(i) :=

{

ε(i) if i<k,

ρ
ξλ
k

0 ((ε)k)(i−k) if i≥k.

We setρ(0,k+1)
0 :=ρ

(k,k+1)
0 ◦ ρ

(k−1,k)
0 ◦ . . . ◦ ρ

(0,1)
0 andρλ0(ε)(k) :=ρ

(0,k+1)
0 (ε)(k).

The setH1+ξ :=(ρξ0)
−1({0∞}) is also introduced, and the authors show thatH1+ξ isΠ

0
1+ξ\Σ

0
1+ξ

(see Theorem 3.2).
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• The mapS : 2N → 2N is the shift map:S(α)(i) :=α(i+1).

• Let T be the tree generated by a test. We put, forξ<ℵ1,

A1+ξ :={(α, β)∈2N×2N/(α, β)∈ [T ] andS(α∆β) /∈H1+ξ}.

ThenA1+ξ is Σ
0
1+ξ([T ])\pot(Π0

1+ξ). We introduce a notation to state the crucial Lemma used to
show it:

Notation. We definep :N<N\{∅}→N. We actually definep(s) by induction on|s|:

p(s) :=

{

s(0) if |s|=1,
< p(s⌈(|s|−1)), s(|s|−1) > otherwise.

Notice thatp|Nn :Nn→N is a bijection for eachn≥1.

Lemma 16 LetG be a denseGδ subset of2N. Then there areα0∈G andf :2N→G continuous such
that, for eachα∈2N,

(a) (α0, f(α))∈ [T ].

(b) For eacht∈N
<N, and eachm∈N,

(i) α(p(tm))=1 ⇒ ∃m′∈N (α0∆f(α))(p(tm′)+1)=1.

(ii) (α0∆f(α))(p(tm)+1)=1 ⇒ ∃m′∈N α(p(tm′))=1.

6 Complements of the main results.

Now we come to consequences of Theorems 13 and 14. To state them, we need some more
notation. We use some tools from effective descriptive set theory (the reader should see [M] for basic
notions about it).

Notation. Let X be a recursively presented Polish space. We denote by∆X the topology onX
generated by∆1

1(X). This topology is Polish (see the proof of Theorem 3.4 in [Lo]). We set

τ1 :=∆X×∆Y

if Y is also a recursively presented Polish space.

• Let 2≤ξ<ωCK
1 . The topologyτξ is generated byΣ 1

1 (X×Y ) ∩ Π
0
<ξ(τ1). Note that

Σ
0
1(τξ)⊆Σ

0
ξ(τ1),

so thatΠ0
1(τξ)⊆Π

0
ξ(τ1).

• Recall the existence ofΠ 1
1 setsWX⊆N, CX⊆N×X with ∆

1
1(X)={CXn /n∈W

X},

{(n, x)∈N×X/n∈WXandx /∈CXn }∈Π
1
1 (N×X)

(see [H-K-Lo], Theorem 3.3.1).
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• Set pot(Π0
0) :=∆

1
1(X)×∆

1
1(Y ) and, forξ<ωCK

1 ,

WX×Y
ξ := {p∈WX×Y /CX×Y

p ∈pot(Π0
ξ)}.

We also setWX×Y
<ξ :=

⋃

η<ξ W
X×Y
η .

Theorem 17 (Debs-Lecomte-Louveau) LetT given by Theorem 14,ξ <ωCK
1 , A1+ξ given by Theo-

rem 14, andX, Y be recursively presented Polish spaces.

(1) LetA, B be disjointΣ 1
1 subsets ofX×Y . The following are equivalent:

(a) The setA cannot be separated fromB by a pot(Π0
1+ξ) set.

(b) The setA cannot be separated fromB by a∆
1
1 ∩ pot(Π0

1+ξ) set.

(c) The setA cannot be separated fromB by aΠ
0
1+ξ(τ1) set.

(d)A
τ1+ξ ∩B 6=∅.

(e) There areu :2N→X andv :2N→Y continuous such that the inclusionsA1+ξ⊆(u×v)−1(A) and
[T ]\A1+ξ⊆(u×v)−1(B) hold.

(2) The setsWX×Y
1+ξ andWX×Y

<1+ξ areΠ
1
1 .

The equivalence between (a), (b) and (c), and also (2), are proved in [Lo]. We can assume this
equivalence and (2), then prove Theorems 13, 14, and then prove Theorem 17. We can also prove
directly Theorem 17 by induction onξ. An immediate consequence of this is the following, proved
in [Lo]:

Corollary 18 (Louveau) Letξ < ωCK
1 , X, Y be recursively presented Polish spaces, andA a ∆

1
1

subset ofX×Y . The following are equivalent:

(a) The setA is pot(Π0
1+ξ).

(b) The setA is Π
0
1+ξ(τ1).

We also have the following consequence of Theorems 13 and 14:

Corollary 19 (Debs-Lecomte) Letξ<ℵ1. There is a Borel subsetA1+ξ of 2N×2N such that for any
Polish spacesX, Y , and for any disjoint analytic subsetsA,B ofX×Y , exactly one of the following
holds:

(a) The setA is separable fromB by a pot(Π0
1+ξ) set.

(b) There areu : 2N →X andv : 2N → Y continuous such that the inclusionsA1+ξ ⊆ (u×v)−1(A)
andA1+ξ\A1+ξ⊆(u×v)−1(B) hold.

Moreover we can neither ensure thatu and v are one-to-one ifξ ≤ 1, nor replaceA1+ξ \A1+ξ

with (2N×2N)\A1+ξ .

The one-to-one complement is due to D. Lecomte (see Theorem 11 whenξ = 0, and Theorem
15 in [L2] whenξ = 1). The latter complement has initially been shown by D. Lecomte whenξ ≤ 1
(see for example Theorem 11). Then G. Debs found a simpler proof, which moreover works in the
general case.
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