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Hurewicz-like tests for Borel subsets of the plane.

Dominique LECOMTE

Electron. Res. Announc. Amer. Math. Sbt.(2005), 95-102

Abstract. Let¢ > 1 be a countable ordinal. We study the Borel subsets of theefitzat can be madﬂg by refining the
Polish topology on the real line. These sets are called p'atbnl'lg. We give a Hurewicz-like test to recognize potentially
ITY sets.

1 Preliminaries in dimension one.

Let us recall some results in dimension one before studyorglBubsets of the plane. In descrip-
tive set theory, a standard way to see that a set is compligat® note that it is more complicated
than a well-known example. For instance, we have the foligwesult (see [SR]):

Theorem 1 (Hurewicz) LetP;:={a€2Y/IneN Vm>n a(m)=0}, X be a Polish space, and
a Borel subset o. Then exactly one of the following holds:

(@) The setd is TI9(X).

(b) There isu:2Y — X continuous and one-to-one wiffy =u~1(A).

This result has been generalized to the other Baire classeql(0-SR]). We state this general-
ization in two parts:

Theorem 2 (Louveau-Saint Raymond) L&t Ry, A1, € 37, (2"), X be a Polish space, and, B

disjoint analytic subsets of. One of the following holds:

(a) The setd is separable fronB by aH?H(X) set.

(b) There isu:2N — X continuous with4; ;¢ Cu~!(A4) and2M\ 4; ¢ Cu=(B).
If we moreover assume that; ¢ ¢ H‘f+£, then this is a dichotomy (in this case, and ¥ 2, then
we can have; one-to-one).

Theorem 3 There is a concrete example 4f ,c € 20, . (2")\TI7, . (2), for £ <.

If we replagePf (resp.,II9) with the setA; ¢ givgn by Theprem 3 (respl',[‘l)+£), then we get.
the generalization of Theorem 1 f6¢> 2. We state this generalization in two parts for the following
reasons:

e Theorem 2 is valid for anyl; ¢ € 2?+£(2N), and Theorem 1 is of the form “There is a typical
example such that.”.

¢ We will meet again a statement in two parts, in dimension two.



2 Results with the usual notions of reduction.

Let us consider the case of dimension two. The usual noti@omwiparison for Borel equivalence
relations is the Borel reducibility quasi-order (recalatta quasi-order is a reflexive and transitive
relation). This means that X (resp.,Y) is a Polish space, anH (resp.,F’) a Borel equivalence
relation onX (resp.,Y), then

E<pF & Ju:X —Y Borel with E=(uxu)~(F).

Note that this makes sense eveRifF" are not equivalence relations. We will study a natural iiawar
for <g. Recall the following (see [K]):

Theorem 4 (Kuratowski) LetX be a Polish space, and3,,) a sequence of Borel subsetsXf Then
there is a finer Polish topology on X (and thus having the same Borel sets) makinghts clopen.

In particular, ifu: X — Y is Borel, then there i& such that : [X, o] — Y is continuous. If
moreoverE = (uxu)~'(F) and F is in some Baire clask, thenE € I'([X, ¢]?). This leads to
Definition 5, that can be found in [Lo]:

Definition 5 (Louveau) LetX, Y be Polish spaces4 a Borel subset oX x Y andI" a Baire (or
Wadge) class. We say thét is potentially in T' (denotedA € pot(T")) iff there is a finer Polish
topologyo (resp.,7) on X (resp.,Y’) such thatA is in T'([X, o] X [Y, T]).

The previous result shows that this notion makes sense éalupt topologies. This notion is a
natural invariant fox z: if F'is pot(I") andE <p F', thenE is potI"). Using this notion, A. Louveau
showed that the collection (Eg equivalence relations is not cofinal farg, and deduces from this
the non existence of a maximum Borel equivalence relatiorfg (this non existence result is due
to H. Friedman and L. Stanley). A. Louveau has also more tceaticed that one can associate a
quasi-order relatio® 4 C (X x 2)2to A C X? as follows:

(z,i) Ra (y,7) < (2,1) = (y,j) or[(z,y) € Aand(i,j) = (0,1)].

Using this, one can see that, from the point of view of Borduaibility, the study of Borel quasi-
orders is essentially the study of arbitrary Borel subsktseplane. This strengthens the motivation
for studying arbitrary Borel subsets of the plane, from thipof view of potential complexity. We
have a result concerning equivalence relations (see [HbR:L

Theorem 6 (Harrington-Kechris-Louveau) LeX be a Polish spacely a Borel equivalence relation
onX,andEy:={(a, 3) €2¥x2Y/3IneN ¥m>n a(m)=03(m)}. Then exactly one of the following
holds:

(@) The relationE is pot(T1Y).
(b) Ey <p E (with u continuous and one-to-one).

We will study other structures than equivalence relatidos éxample quasi-orders), and even
arbitrary Borel subsets of the plane. We need some othesnstf comparison. LekX, Y, X', Y’
be Polish spaces, antl(resp.,A’) a Borel subset ok x Y (resp.,X’ xY’). We set

A<p A & Ju:X—X' Fv:Y Y’ Borelwith A= (uxv)~1(4).
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We want to extend the previous result to arbitrary Borel stgef the plane. This works partially
(see [L1)):

Theorem 7 Let A(2Y) := {(a, 3) € 2" x 2%/ a = B}, Lo:={(c, B) €2V x2V/a <oy 3}, X, Y be
Polish spaces, and a pot D, (3?)) subset of{ x Y. Then exactly one of the following holds:

(@) The setA is pot(TTY).
(b) ~A(2N) <% Aor Ly <’ A (with u, v continuous and one-to-one).

Things become more complicated at the leil(=?) (differences of two open seté)y(9) is
the dual Wadge class of unions of a closed set and of an open set

Theorem 8 (a) There is a perfect’;-antichain (A, ) ,eon € D2(£9) (2N x 2N) such thatA,, is <7,-
minimal amongA1\ pot(T1Y) sets, for anyve 2.

(b) There is a perfect g-antichain (R, ) ,con Such thatR,, is < z-minimal amongA H\pot(T1?) sets,
for any € 2. Moreover,(R,),con Can be taken to be a subclass of any of the following classes:

- Graphs (i.e., irreflexive and symmetric relations).

- Oriented graphs (i.e., irreflexive and antisymmetric tielas).

- Quasi-orders.

- Partial orders (i.e., reflexive, antisymmetric and traiva relations).

In other words, the case of equivalence relations, for whielhave a unique (up to bi-reducibili-
ty) minimal non potentially closed element with Theorem $yéry specific. Theorem 8.(b) says,
among other things, that the mixture between symmetry amsitivity is very strong.

Example. Let us specify the construction of the antichain in (a). Wefse C C 2<V,
AY :={(50~, s17)/scC,ye2"}.

If 0€ S CNiis infinite, then seCs:={tc2<N/Cardt) € S} (where Cardt) is the number of ones in
t). Such anS is of the formSz:={X;<; (1+3(j))/j €N}, whereg e NV,

Theorem 9 The setA®s is minimal for[Al\pot(I1Y), <7%,] if
VpeN JkeN VgeN 3eceNnlq, q+k] c+(SN[0,p])=S5N (c+[0,p]).

It remains to defing, € 28 C NN, for o € 2. We inductively define a sequente, ), € 2<N
as follows: s, 0:=0, 54.1:=1, Sq.ni2:= sg§3>+1sg§gjj>“. Note thats, ,, < Sa.n+2, SO that we can

definef, :=1im, . sqa,2n € N tis suitable:(ACSﬁa )acon is a perfect antichain made of minimal
sets forfA}\ pot(I19), <%.].

3 Reduction by homomorphism.

Theorem 8.(a) shows that the classical notions of redu¢tiorthe whole product) don’t work, at
least at the first level. So we must find another notion of caiapa.
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We have a positive result with another notion, which is in e@anse “half of the Borel reducibil-
ity ordering”. LetA (resp.,A’) be an analytic subset o&f x X (resp., X’ x X’). We set

(X,A) <p (X', A") & Fu:X — X’ Borel with AC (uxu)~(4).

This notion essentially makes sense for irreflexive refetifwe can take to be constant ifd’ is not
irreflexive).

Notation. Let ¢ : N — 2<N be the natural bijection (i.e;(0) =0, ¢(1) =0, ¥(2) =1, ¥(3) = 07,
¥(4)=01, ¥(5) =10, ¥(6) =12, ...). Note thatjs)(n)| <n, so that we can define

s = b(n) 0]

The crucial properties dfs,,) are that it is dense (thereissuch that < s,,, for eacht € 2<¢), and
that|s, | =n. We put

Ag:= Alsn/mEN} = {(5n07, sn17)/neN,ye 2V},

The symmetric sei(Ay) generated byl is considered in [K-S-T], where the following is essentiall
proved:

Theorem 10 (Kechris, Solecki, Tod@evE) Let X be a Polish space, and an analytic subset of
X x X. Then exactly one of the following holds:

(@) (X,A) = (N, #).
(b) (2N, Ag) <p (X, A) (with u continuous).

In [K-S-T], it is conjectured that we can haveone-to-one in Theorem 10.(b). This is not the
case.

4 Reduction on a closed set.
As a consequence of Theorem 10, we have the following:

Theorem 11 Let X, Y be Polish spaces, and a Borel subset oX x Y. Then exactly one of the
following holds:

(@) The setA is pot(T1Y).
(b) There areu:2Y — X andv: 2N — Y continuous withdg = (uxv) 1 (A4) N Ay.
Moreover, we can neither ensure thaandv are one-to-one, nor remowvé,.

So we get a minimum non-potentially closed set if we do notfasla reduction on the whole
product. To generalize Theorem 11, the right way to4geeems to be the following. L&} be the
tree associated witdg = Ay U A(2V):

To={(s,t) €2 x2N/s=t or IneN 3w € 2N (5,#) = (s,0w, s, 1w)}.



The mapA : 2V x 2N — 2V is the symmetric differenceA (a, 8)(i) := (aAB) (i) =1 exactly when
a(i)#B(i), forieN. Let Sy :={y€ 2" /3i €N ~(i) =1} be the typical one-dimension&l?\ I1! set.
We have

Ag={(a, B) €2 x 2V /(av, B) € [Ty] anda A€ S, }.
This scheme can be generalized. Theorem 11 shows that wetcaawve only one minimal non
potentially closed set, for the reduction on the whole pobdiThe reduction is possible on a closed
set (the closure ofiy). This closure does not explain why we cannot have a reductiothe whole
product. This comes from Theorem 8. The orthogonality betwihe examples appearing in the
antichains of its statement comes from different types ofas; This will give a better explanation
than the closure. We will replace the closure with a closédlsat will be seen as the set of branches
of some tree o2 x 2. This tree will have the acyclicity properties that we nedthis leads to the
following definition:

Definition 12 Let R be a relation on a sekF.

e An R-path is a finite sequencé:; )<, C E such that(e;, e;+1) € R, for i <n.

e An R-cycle is an R-path (e; )<, such that: >3 and
0<i#j<nande;=e;] < {i,j}={0,n}.

e We say thaRR is acyclic if there is noR-cycle.

e We say that a tre@’ on 2 x 2 is uni formly acyclic if, for eachp >0,

(a) The relationT’ N (2P x 2P) is irreflexive and antisymmetric.
(b) The symmetric relation(T N (27 x 2P)) generated by’ N (2P x 2P) is acyclic.

The main new results in this paper are the following:

Theorem 13 (Debs-Lecomte) L€l be a uniformly acyclic tree§ <Ry, A; ¢ in 2(1]+§([T]), XY
Polish spaces, and, B disjoint analytic subsets of x Y. Then one of the following holds:

(a) The setd is separable fronB by a po(H(l]Jrg) set.
(b) There areu: 2% — X andv:2¥ — Y continuous such that the inclusions ¢ C (uxv)~1(A)
and [T\ A14¢ C (u x v)~1(B) hold.

If we moreover assume that ¢ ¢ pot(H(1]+§), then this is a dichotomy.

This result has initially been shown by D. Lecomte whe# is a successor ordinal. Then G. Debs
proved it whenl +¢ is a limit ordinal. The proof of Theorem 13 uses the repres@n Theorem for
Borel sets in [D-SR]. Notice that we can deduce Theorem 2 ftwrproof of Theorem 13. Theorem
13 is the analog of Theorem 2 in dimension two (see [Lo-SRp dheorem 111-2.1 in [D-SR]). The
treeT has to be small enough, since there is no possibility to hareelizction on the whole product.
But as the same tim4, has to be big enough to ensure the existence of complicatethsele[T]:

Theorem 14 There are concrete examples of:
(a) A uniformly acyclic tred".
(b) Asetd; € X9, ([T])\pot(T1], ), for £ <.

This result is the complement of Theorem 13 (which is truéhWit:= ()!). Again, the couple
Theorems 13-14 is the analog of the couple Theorems 2-3.



5 The examples.

Let us specify the examples of Theorem 14. et (o, 1) : N — N? be the natural bijection.
More precisely, we set, fare N,

M(q) :=max{meN/3;<,, k< ¢}.

Then we defings(q) = (v0(), ¢1(9)) == (M (q) —a+(Ep<nrr(q) k), a— (Ex<r(g) k)). One can check
that< i, j >:=p1(4,5) = (Sk<it; k)+j. More concretely, we get

@[N]={(0,0); (1,0); (0,1); (2,0); (1,1); (0,2);...}.
Definition 15 We say thaIEgUqu
(@) VgeN Fl(sq,ty) € EN(29%29).
(b) Vm,qeN Vue2<N Jve2<N (s,0uv,t,luv)€ E and eo(|t luv|—1)=m.
(©)Vn>0 Jg<n Fwe2<N s,=s5,0wandt, =t,1w.
We will call T" the tree generated by a teBt={(s,,t,)/q¢€N}:

29 x 24 is atest if

T:={(s,t) €2 x2<N/s=t=0 or IgeN Jwe2<" s=5,0w and t=t,1w}.

One can show the existence of a test, and That uniformly acyclic. The uniqueness condition
in (@) and condition (c) ensure thAtis small enough, and also the acyclicity. The existence itiond
in (&) and condition (b) ensure thatis big enough. More specifically, iX is a Polish space and
o a finer Polish topology otX, then there is a dengs&; subset ofX on which the two topologies
coincide. The first part of condition (b) ensures the poBgiltio get inside the square of a dense
Gs subset o2¥. The examples of Theorem 14.(b) are constructed using tamgbes in [Lo-SR].
Conditions on the verticals appear, and the second partnafitton (b) gives a control on the choice
of verticals.

Notation. In [Lo-SR], Lemma 3.3, the ma,pb:2N—>2N defined as follows is introduced:

~._ | life(<i,j>)=0, foreachjcN,
po(e)(@) '_{ 0 otherwise.

In this paperpg 2N 9N is also defined fo€ < &, as follows, by induction or (see the proof of
Theorem 3.2). We pyt] :=Id, ,og“ :=pg o pg. If A>0is limit, then fix (¢3) €A\ {0} such that

YrEp =
Forz €2V andk €N, we define(z) € 2V by ()% (i) :=¢(i+k). We also defing{ ) : 2N _, ol py
- , (i) if i<k,
@@= o
pof ((e)F)(i—k) if i>k.
We setpF ) = pR L) =R o - 500 and pd(e) (k) i= pCF T (2) (k).

The setH == (pf) ' ({0°}) is also introduced, and the authors show tHat ¢ is o9, \=0
(see Theorem 3.2).



e The maps : 2V — 2N is the shift map:S(«a)(i) :=a(i+1).
e Let T be the tree generated by a test. We putéfam,
Arei={(a,B)e2¥x2V/(a, B) € [T] andS(aAB) ¢ Hy1¢}.

ThenA; ¢ is 2?+§([T])\pot(1'l‘1)+£). We introduce a notation to state the crucial Lemma used to
show it:

Notation. We defingp:N<N\ {()} —N. We actually defing(s) by induction on|s|:
s(0)if |s|=1,
p(a) = { (0) if ||

< p(s[(|s|—1)),s(]s|-1) > otherwise.
Notice thatp|y» : N” — N is a bijection for each > 1.

Lemma 16 LetG be a dens&; subset o2". Then there arey, € G and f: 2 — G continuous such
that, for eachn € 2N,

@) (0, f(a)) €[T].

(b) For eacht e N<N, and eachn €N,
(i) a(p(tm))=1 = Im'eN (apAf(a))(p(tm')+1)=1.
(i) (awAf(a))(p(tm)+1)=1 = Im'eN a(p(tm’))=1.

6 Complements of the main results.

Now we come to consequences of Theorems 13 and 14. To state the need some more
notation. We use some tools from effective descriptivetsstnty (the reader should see [M] for basic
notions about it).

Notation. Let X be a recursively presented Polish space. We denotd pythe topology onX
generated by\i (X). This topology is Polish (see the proof of Theorem 3.4 in JLuYe set

T1:=Ax X Ay
if Y is also a recursively presented Polish space.
olet2 §§<wFK. The topologyr, is generated by (X xY) NI, (1). Note that
) () ST (1),
so thatlT}(r¢) CTIY(71).
e Recall the existence df! setsiWX CN, CX CNx X with A} (X)={CX /ne WX},
{(n,z)eNxX/neWXandz ¢ CX} e II} (Nx X)

(see [H-K-Lo], Theorem 3.3.1).



e Set pofIIY):= Al(X)x Al(Y) and, for¢ < wCK,
WY = {pe WY /O e pot(TTY) }.
We also setV 2" :=J, ., WY

Theorem 17 (Debs-Lecomte-Louveau) LEtgiven by Theorem 14, < wFK, Ai4¢ given by Theo-
rem 14, andX, Y be recursively presented Polish spaces.

(1) LetA, B be disjoint X} subsets of{ x Y. The following are equivalent:

(a) The setd cannot be separated frofi by a po{II? L) Set.

(b) The setA cannot be separated frofi by aA; N pot(I1Y ) set.

(c) The setA cannot be separated frodd by aII! +e(m1) set.

(d) A™ ¢ N B#0.

(e) There ares: 2N — X andv:2Y — Y continuous such that the inclusiors ¢ C (uxv)~!(A) and
[T)\ A1+¢ C (uxv)~1(B) hold.

(2) The set$V;} ¥ and W2 ¢ are IT}.

The equivalence between (a), (b) and (c), and also (2), aneegdrin [Lo]. We can assume this
equivalence and (2), then prove Theorems 13, 14, and thes gitweorem 17. We can also prove
directly Theorem 17 by induction ah An immediate consequence of this is the following, proved
in [Lo]:

Corollary 18 (Louveau) Let < wPK, X, Y be recursively presented Polish spaces, ahd Al
subset ofX x Y. The following are equivalent:

(a) The setd is pot(T1{, . ).
(b) The setd is 1Y, (71).

We also have the following consequence of Theorems 13 and 14:

Corollary 19 (Debs-Lecomte) Let<X;. There is a Borel subset; ¢ of 2N 5 2N such that for any
Polish spacesX, Y, and for any disjoint analytic subsets B of X xY, exactly one of the following
holds:

(a) The setd is separable fronB by a po(H(l]Jrg) set.
(b) There areu: 2% — X andv:2¥ — Y continuous such that the inclusions ¢ C (uxv)~!(A)
and A1+§\A1+§ - (u X U)_l(B) hold.

Moreover we can neither ensure thaiand v are one-to-one if <1, nor replaceA; ¢\ A ¢
with (28 x2M)\ A; .

The one-to-one complement is due to D. Lecomte (see Theotewh&né = 0, and Theorem
15 in [L2] when& = 1). The latter complement has initially been shown by D. Lemwhent < 1
(see for example Theorem 11). Then G. Debs found a simpl&f,prdiich moreover works in the
general case.
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