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How can we recover Baire class one functions?

Dominique LECOMTE
Mathematikeb0 (2003), 171-198

Abstract. Let X andY be separable metrizable spaces, #gndX — Y be a function. We want to recoverfrom its
values on a small set via a simple algorithm. We show thatishpossible if f is Baire class one, and in fact we get a
characterization. This leads us to the study of sets of R#®s one functions and to a characterization of the seiiarab
of the dual space of an arbitrary Banach space.

1 Introduction.

This paper is the continuation of a study by U. B. Darji and MEvans in [DE]. We specify the
term “simple algorithm” used in the abstract. We work in sapke metrizable space$ andY’, and
fis afunction fromX into Y. Recall thatf is Baire class one if the inverse image of each open set is
F,. Assume that we only know the values fobn a countable dense setC X. We want to recover,
in a simple way, all the values ¢gf For each point of X, we extract a subsequenceldfwvhich tends
to z. Let (s, [z, D]),, be this sequence. We will say thAis recoverable with respect to D if, for
eachz in X, the sequencef (s, [z, D))),, tends tof (x). The functionf is recoverable if there exists
D such thatf is recoverable with respect 0. Therefore, continuous functions are recoverable with
respect to any countable dense sequenck.inVe will show that results concerning recoverability
depend on the way of extracting the subsequence. e let (z,).

Definition 1 Let X be a topological space. We say that a badig,,,) for the topology ofX is a
good basis if for each open subsdf of X and each point: of U, there exists an integen, such
that, for eachn > mqg, W,,, C U if x € W,,.

We show that every separable metrizable space has a goa] bsisig the embedding into the
compact spac, 1]“. In the sequel(WW,,) will be a good basis oK, except where indicated.

Definition 2 Letz € X. Thepath to x based on D is the sequences, [z, D))
defined by induction as follows:

denotedR (z, D),

new’

solx, D] =z,

splz, D] if x = s,[z, D],

Sn+1(w, D] ==

T otherwise.
mln{p / Imew {x,xp}QWmQX\{so[m,D],...,sn[x,D}}}

Now the definition of a-ecoverable function is complete.



In Section 2, we show the
Theorem 4A functionf is recoverable if and only if is Baire class one.

In Section 3, we study the limits of U. B. Darji and M. J. Evangasult, using their way of
extracting the subsequence. We give some possible extsnsind we show that we cannot extend it
to any Polish space.

In Section 4, we study the question of the uniformity of sewegx,) for a set of Baire class
one functions. We considet C B;(X,Y"), equipped with the pointwise convergence topology. We
study the existence of a dense sequengg of X such that each function of is recoverable with
respect tqx,,) (if this happens, we say that is uni formly recoverable).

In the first part, we give some necessary conditions for umifiiecoverability. We deduce among
other things from this an example of a metrizable compactesgaC (2, 2) which is not uni-
formly recoverable.

In the second part, we study the link between the uniformve@bility of A and the fact that J.
Bourgain’s ordinal rank is bounded ot J. Bourgain wondered whether his rank was bounded on
a separable compact spadevhen X is a metrizable compact space. We show among other things
that, if X and A are Polish spaces, then this rank is bounded (this is a panssver to J. Bourgain’s
question).

In the third part, we give some sufficient conditions for onif recoverability. We study among
other things the link between uniform recoverability afidsubsets with open vertical sections of a
product of two spaces.

In the fourth part, we give a characterization of the seplinabf the dual space of an arbitrary
Banach space:

Theorem 30Let E be a Banach spaceX := [Bg+,w*], A :== {G[X/G € Bg++},andY :=R. The
following statements are equivalent:

(a) E* is separable.

(b) A is metrizable.

(c) Every singleton ofl is Gj.
(d) A is uniformly recoverable.

In the fifth part, we introduce a notion similar to that of expritinuity, the notion of arqui-
Baire class one set of functions. We give several characterizations ofrij e use it to study
similar versions of Ascoli's theorems for Baire class onections. Finally, the study of the link
between the notion of an equi-Baire class one set of furs@o uniform recoverability is made.

2 A characterization of Baire class one functions.
As mentionned in Section 1, we show the

Proposition 3 Every separable metrizable space has a good basis.



Proof. Let X be a separable metrizable space. Theembeds into the compact metric spéed |,
by ¢. So let, forr integer,n, be an integer andU}")jgnr be a covering 0f0, 1] made of open
subsets 0f0, 1]“ whose diameter is at mo3t”. To get(W,,), itis enough to enumerate the sequence

(@ (UN)rew, j<n,- D
Theorem 4 A functionf is recoverable if and only if is Baire class one.

In order to prove this, we first give a lemma. It is essentialigntical to U. B. Darji and M. J.
Evans’s proof of the “only if” direction. But we will use itlar. So we give the details. Notice that it
does not really depend of the way of extracting the subseaxguen

Lemma5 Assume that, foy € w, {z € X / 3n s,[z, D] = z,} is an open subset oX. If f is
recoverable with respect tb, thenf is Baire class one.

Proof. Let F' be a closed subset af. We let, fork integer,Oy := {y € Y / d(y, F) < 27*}. This
defines an open subset Bf containing F. Let us fix an integek. Let (z,,); be the subsequence
of D made of the elements gf 1(O;.) (we may assume that it is infinite and enumerated in a 1-1
way). We let, forj integer,U; := {z € X / 3n s,[z, D] = x,,}. This set is an open subset &f by
hypothesis. Lety := (;c,, [(U;5: Uj) U {@pqs s ¥p,_, }]. This setis a; subset ofX.

Letz € f~1(Oy) andi be an integer. Thes, [z, D] € f~1(Oy) if n is bigger tham, and there
exists;j(n) such tha, [z, D] = z;, ,; thusz € Uj,. Either there exista > ng such thatj(n) > i
andz € U;»,; Uj, orzy, ., is xp, if nis big enough, withy < i, andz = ), . In both casesy € Hj.

If x € Hy, either there exists an integgsuch thatr = Tp, andf(z) € Oy, or for each integet,
there existg > 4 such thatr € U;, and3n s, [z, D] = z,,, and thusf (z) € O,.

Thereforef =1 (F) € Nyew /1 (0k) € Nicw Hi € Niew F1(Ok) € f~1(F). We deduce that

FHE) = () Hi

kew

is alGs subset ofX. O

Proof of Theorem 4.In order to show the “only if” direction, let us show that Lerars applies. Set

0 if x=sulz, D],

O(xz,D,n) :=
w .
mln{m / {&,8n41[2, D]} Wi CX\{s0[2,D],...,sn[z,D] }

} otherwise.

Note thatO(x, D,n) # 0 if and only if x # s, [z, D]. In this caseD(z, D, n) is an open neighbor-
hood ofz. If n < n’ andO(z, D,n), O(x,D,n’) # 0, sp+1]z, D] € O(x,D,n) \ O(z, D,n’), so
O(z, D,n) is distinct fromO(x, D, n’). As (W,,) is a good basis, for each open neighborh®odf
x there exists an integer, such thatO(x, D,n) C V if n > ng, and therefores,, [z, D] € V. So
path tox based orD tends tox.



To show that{z € X / z, € R(z, D)} is an open subset of, we may assume that> 0 and
thatz, # z, if r < ¢. So letty € X andn be a minimal integer such thaf[to, D] = z,. Letm
be a minimal integer such thét, z,} € W,,, C X \ {so[to, D], ..., sn[to, D]}. By definition of the
path, ¢ is minimal such that:, € W,,. Let us show that ift € W,,, thenz, € R(z, D); this will
be enough since, € W,,,. We notice that if we lep,,(z) := min{p € w / =, = s, [z, D]}, then the
sequencep,(x)),, increases, strictly until it may be eventually constant. hafeex < 1,,,, which is
a subset ofX \ {xo,...,z4—1}. Thus, as the path te based onD tends tox, there exists a minimal
integern’ such thap,, 1 (z) > ¢. Then we have:, = s,/11[x, D] € R(z, D).

Let us show the “if” direction. The proof looks like C. Freiti and R. W. Vallin's ones in [FV].
The main difference is the choice of the dense sequence hwtss to be valid in any separable
metrizable space.

We say thatD approzximates F C X ifforall z € F'\ D, R(z, D) \ F is finite. Let us show
that if (F;) is a sequence of closed subsetsXofthen there i9) C X which approximates eadh.

Consider a countable dense sequenc& pfind also a countable dense sequence of each finite
intersection of theé";’s. Put this together, to get a countable dense sequencef X. This countable
dense set is the sé we are looking for. But we've got to describe how to order tlereents of this
sequence.

We will constructD in stages, called;, for each integet. If F'is a finite intersection of thé&;'s
anddG is a finite subset oD, we set

AR(G@) = U {amingi/q.ewnnry -
mew,z€G\F,aeW,, Z X\ F

Put on2’ = {oy,...,04: } the lexicographic ordering, and & :=
o of w. We set

jeo I for each finite subset

Go :={q;}, Gryr := GL U ATH(GY)  (for k < 29,
D= (|J @\ Do

k<21 I<i
We order the elements db; as follows. Leto’(z) := {k < i/x € F}}. Putthe elements ab;
whoseo’ is o first (in any order). Then put the elements/of whoseo’ is o,: ;. And so on, until
elements ofD; whoses’ is o;.

Now let us suppose thdf; is not approximated by, with x as a withess andminimal. Let
y € R(z, D) \ F; such thaty is put into D at some stagg¢ > i and satisfyinge € Fj, < y € Fj, for
eachk < i. Letm € w such thatz,y € W,,. We havey ¢ F°’(*), andW,, ¢ X \ F” ) because

z € F7'®), So we can define := Imingi/q,ew,,nrei@y- Thena? (z) > o7 (y) in the lexicographic

order. We have ¢ AF”j(w)({y}). We conclude that is put beforey and thaty ¢ R(x, D). This is
the contradiction we were looking for.

Now let (Y,,) be a basis for the topology &f. Consider the inverse images of thg's by f.
Express each of these sets as a countable union of closedBistgivesD which approximates each
of these closed sets. It is now clear that thel3é$ what we were looking for. O



3 About the limits of U. B. Darji and M. J. Evans’s method.
Let us recall the original way of extracting the subsequef®©ea compatible distancéon X.

Definition 6 Letz € X. Theroute to x based on D is the sequencés),|x, D]) denoted

R/(x, D), defined by induction as follows:

new’

solx, D] = mo,

shlx, D] if x = s, [z, D],
sy qlx, D] = _
Tingp / d(esep)<d(a.s, o))} OETWISE.
If fisrecoverable in the sense of Definition 6, we say yhat first return recoverable. U. B.
Darji and M. J. Evans showed the following:

Theoremlf f is first return recoverable, thefiis Baire class one. Conversely,fifis Baire class one
and X is a compact space, thehis first return recoverable.

Definition 7 We will say that an ultrametric spadeX, d) is discrete if the following condition is
satisfied:V (dn)new Cd[X X X] [(Vn €w dpy1 < dp) = (lim,oo dn = 0)].

We can show the following extensions:

Theorem 8 Assume thaf is Baire one. Therf is first return recoverable in the following cases:
(a) X is a metric space countable union of totally bounded subspac
(b) X is a discrete ultrametric space.

Corollary 9 Let X be a metrizable separable space. Then there exists a cdmtgdistanced on
X such that for eaclf : X — Y, f is Baire class one if and only if is first return recoverable
relatively tod.

This corollary comes from the fact that we can find a compatilistance ok’ making X totally
bounded. Now we will show that the notion of a first return rggable function is a metric notion and
not a topological one. More precisely, we will show that tlypdthesis X is discrete” in Theorem
8 is useful. In fact, we will give an example of an ultramesmgace homeomorphic t3* in which
there exists a closed subset whose characteristic funiginat first return recoverable (notice that
w*, equipped with its usual metric, is a discrete ultrametpace). So the equivalence betwegns
Baire class one " andj*is first return recoverable” depends on the choice of thewdégt. And the
equivalence in Theorem 4 does not depend on the choice ofotb lgasis, and is true without any
restriction onX. The algorithm given in Definition 2 is given in topologicakins only, as the notion
of a Baire class one function. Furthermore, Definition 2 usdg countably many open subsets of
X, namely théV/,,,’s.



Lemma 10 Let X be an ultrametric spacé,c X, z,y € X \ {t}. Then the open ballB(z, d(z,t)]
and B(y, d(y, t)[ are equal or disjoint.

Proof. Let us show thail(x, ) = d(y, t) or B(z, d(x,t)[ N B(y, d(y,t)[ = 0. Let
z € Blx,d(z,t)[ N B(y, d(y, )].

If for exampled(z, t) < d(y, t), letr be in]d(z, ), d(y,t)[. Asz € B(, ],
B(z,r[ = B(z,r[ C B(zd(y,t)].

As z € B(y,d(y,t)[, we can writeB(z,d(y,t)[ = B(y,d(y,t)[ € X \ {t}. But this contradicts the
fact thatt € B(x,r|.

If B(z,d(x,t)[N B(y,d(y,t)[ # 0, let z be in the intersection. Then we have the sequence of
equalitiesB(z, d(z,t)] = B( d(w, ) = B(zd(y,t)] = Bly, d(y, )] O

Now we introduce the counterexample. We set

Z = {Q = (Qn)nEw € @i /VTL €W qn < (n+1 and Ilrnn—>oan = +OO}

This space is equipped with

Zx Z — Ry
d : 27mln(qmin{n€w/qn¢Q4L}’q;ﬂnin{"e‘*’/q”#q%}) If Q 7& Q/’
(Q.Q) —
0 otherwise.

Proposition 11 The spacéZ, d) is an ultrametric space homeomorphicit and is not discrete.

Proof. We setlV := {f € 2R+ /3 Q € Z f = 10, e [g2p.a2p1] 5 this space is equipped with the

ultrametric ore®+ defined byd(f, g) := 2-INfle€R+/f (@29} if ¢ £ ¢. Then the function fronZ
into W which associates,, to Q is a bijective isometry. Thus, it is enough to show the
desired properties fdi’.

[q2p,q2p+1]

We set

D:={fe 2R+ /IQR€Z Jkew f= IUp<k’[Q2pyq2p+1] or f= IUp<k[Q2p,q2p+1}U[q2k,+OO[}’

V. =WUD.

ThenW andV are ultrametric, viewed as subspace®'df. SetD is countable and dense A, so
V andWW are separable.



Let (f,)pew be a Cauchy sequence iy andm in w. There exists a minimal integé¥ () such
that, forp, ¢ > N(m), we haved(f,, f,) < 27™; that is to sayf,(t) = f,(t) for eacht < m. We let,
if E(t) is the biggest integer less than or equat,to

f . {R+ — 2
t = fnEo+n ()
If p> N(m)andt < m, N(E(t) + 1) < N(m) and we have
f@#) = fvEn+)@) = fnvm) @) = @)
Thus the sequence,),c. tends tof in 2%+, We will check thatf € V; this will show thatV is
complete, thus Polish. A4/ is aGs subset ofi”, W will also be Polish.

CaseldreRy Vt>r f(t)=0.

If p > N(E(r)+1) andt < E(r)+1, f,(t) = f(t); thus, the restriction of to |
restriction ofI, _, 4,.q2,+,] 1O this interval, and we may assume that | < E(r
we havef = 1y _, (gop.qep1) @NDSf € D C V.

0, E(r)+1[isthe
) + 1. Therefore,

Case23reRy Vt>r f(t)=1.

If p> N(E(r)+1)andt < E(r)+1, thenf,(t) = f(t); thus, the restriction of to [0, E(r)+1]
is the restriction ol _, (4,4, tO this interval, and we may assume that < £(r)+1. Therefore,
we havef - randf e DCV.

= IUp<Ic [qu7Q2p+1]U[QQk , oo

Case3Vre R, Jt,u>r f(t)=0andf(u) =1.

Let (r,)new C Ry be a strictly increasing sequence such that, ., r,, = +oo and f(r,) =0
for each integen. If t < E(r,) + 1, then we havef (t) = fn(g(r,)+1)(t)- Thus, the restriction of
to [0,7,] is the restriction ofl, _, (4,,.42,,] 1O this interval, and we may assume that, 1 < r,.
The sequencék,, ),c. is increasing, andim,, ., k, = +oo becausef is not ultimately constant.
For the same reason, lim ooy, = +00. Thusf = 1, ¢, [g2p.q2p+1] €W S V.

Let f € V andm inw. There exists € Q N]0, 1[andg € Q +N]m + 1, +oo[ such that, for each
t €]lq —¢e,q + <[, we havef(t) = 0, or, for eacht > ¢ — ¢, we havef(¢) = 1. In the first case we set

R+ — 2
. f@t) if t¢lg—¢e/2,q+¢/2],
g: PN
1 otherwise.
In the second case, we set
R+ — 2
, f@t) if t <gq,
g N t —
0 otherwise.



In both cases we havg# ¢, d(f,g) < 27" andg € V; this shows thal” is perfect. Moreover,
as D is countable and dense In, I is locally not compact. Finallyi¥" is a0-dimensional Polish
space, and each of its compact subsets have empty intehnigs; it is homeomorphic ta* (see
Theorem 7.7 page 37 of chapter 1 in [Ke]).

To finish the proof, we sef,, := I[O’l_Q—n—l}UUp>0[2p72p+1}. We havef,, € W andd(f,, fn+1) IS
2-1+27"7" 'which strictly decreases tg/2. Thus, spacéV’ is not a discrete ultrametric space. [J

Theorem 12 There exists 19 (Z) whose characteristic function is not first return recoveeab

Proof. Let F:={Q € Z /Vnew n<gq, <n+1}, D :=(z,) be adense sequencesf Then
F is closed since fixing a finite number of coordinates is a clogmndition. We will show that there
existsz € Z such that the sequen¢ér (s,[z, D])), ., does not tend td(z). Let us assume that
this is not the case.

new

e We setngy := 0, By := Z. We haveZ \ {z¢} = U?GI‘ZJ B(y;, d(yj,xo)[. Let
n; :=min{n € w / z, € B(y;,d(y;,zo)[}.

For eachr in B(y;,d(y;, z0)[ we haveB(y;, d(y;, o)[ = B(wn,, d(zn;, z0)| = B(z,d(x,z9)[ and
s1lx, D] = x,;. Then we do this construction again. Foe w<“ \ {0}, we set

By i= B(n,, d(Tn,, Tnp )]
We haveB, \ {z,,} = U?EI‘ZJ B(ys—j,d(ys—j,xn,)|- Let
ns—~; =min{n € w / x, € B(ys—;, d(ys—j, Tn,)[}-
For eachr in B(ys—;,d(ys—j, zn,)[, we have
B(Ys—j: d(Ys—j: Tn,)[= B(Tn o~ d(Tn— T, ) [= Bz, d(z, 20, )[ C Bs,

and alsos s 1z, D] = vy~

e Foreachr in Z\ {z,, / n € w}, there iswin w* with @ € (,,c, Barm andsp, [z, D] =z, for
eachm in w. Moreover, ifx € F, then there existsyg in w such thannarm € F for eachm > my.

CaselVsecw<” BNF=0or3t>,s B,NF #0andz,, ¢ F.

As By = Z meetsF which is not empty, there exists 3 € w* such thad < 5(n) < G(n + 1),
Bargmy N F # 0 and Tna(5(m) ¢ F for eachn in w. Itis enough to show the existence ofin
(MNinew Bafm- Indeed, if we have this, we will have, [z, D] = z,, for eachm € w. But the
diameter of B, will be at most2d(s,[z, D], s;,—1[z, D]), thus will tend to0. As B,g(,) meets
F', we will deduce that: € F'. Thus, the sequendd (s, |z, D])), ., Will not tend toIx(z) since

Sﬁ(n) [1‘, D] §é F.

ASTp (.1 € Bafms1 © Bafm, the sequence(
[ be its inferior bound.

new

Trgfmerr Tna (m))mew is strictly decreasing; let



Case 1.1/ = 0.

In this case, sequence,, , (m)mew is a Cauchy sequence. Létbe the bijective isometry that we
used at the beginning of the proof of Proposition 12. Wefset= @(xna(m). Then the sequence
(fm)mew is @ Cauchy sequence W C V, thus tends tgf € V' which is complete.

Case1.1.1dr e Ry Vit >1r f(t) =

We havef = 1y, _, (¢2.2041] @Nd, ifm is big enough, then the restriction §f, to [0, E(r) + 1]
is the restriction off to this same interval, and we hayg, | < E(r) + 1. Thus,:::narm starts with
< 40,41, ---» 92k—1, g5y, > and, ifm is greater thapy > my, thengl; > 2k 4 1. Letng in w be such
that 3(ng) > po. ThenB,a(,,) is disjoint from ' because, if is in ', theny ¢ B, Since
A(Y, Ty rpng)) = 27920 > 2700 > d @y 0 Ty 0,0 )- THUS, this case is not possible.

Casel.1.23re Ry Vi>r f(t)=
This case is similar to case 1.1.1.
Case 1.1.3Vrec Ry Jt,u>r f(t)=0andf(u) =

In this case,f € W, thus there exists € Z such that the sequencﬁenam)mew tends toz.
We haver € (,,c., Bam, Since otherwise we can find an integef such that: ¢ B, for each
m > my; but, asty,,, € Bafm, T isin Ba[mé which is closed.

Case 1.2] > 0.
Letr’ € R be such that = 2.
Case 1.2.1E(r") < r'.

We will show that there exists €
d(xp,

mew Barm- This will be enough. Ifm is big enough,

Tngrmoy) < 2750, As By, meetsF, lety be in the intersectiony is of the form

alm’
(TL +1-— 5n)n€w1

wheree,, €]0, 1[. If m is big enough, them,, = starts with< 1 — o, ..., E(r') — eg(y—1 >. Then

r’)

the term numbef(r’) + 1 of sequence,,, is caIIedxfCE(m.

Casel.2.1l.ldmew mn(r)—x ()

oz]'m+1

In this case, a®,,,, 1 meetsrF, mE(” is of the formE(r’) 4+ 1 — e,y for eachp > m. This

E(r') +1 E(r')+1
Nafp ?é Tnarpt1 -

shows that ifp is big enough, then Thus we are reduced to the following case.



Case 1.2.1.2¢ m € w 22 £ 2E

afm na (m+1

E(r')

The sequencecfgg)mew is strictly increasing. Indeed, assume ﬂnﬁgg > T, Thenwe
haved(z,,,,,, ,xna( ) S d(@ng s Trg ) sinceacf(g’;z+1 # xﬁﬁ’g;{H; but this is absurd. Thus

the sequencetcna(m)mew is strictly increasing, and lifp_..o mni}") r’. But if the pointx starts

with sequence< 1 — g, ..., E(r') — eg(ry-1,q >, whereq € Q N]r’, +oo], thenz € M,,.c, Barm

since
_ L E6D _ B0
d(mjxna[m) =92 "rafm d(xna(m7 ) — 9 Pnafm-1

Case 1.2.2E(r") =

xnoz [m—1

This case is similar to case 1.2:1;— 1 plays the role thaE/(r’) played in the preceding case.
Case2.3scw< Bi,NF#PandVt >, s BBNF #0 = x,, € F.

Note that, for each in Z and eacly in Q ., there exists) in Z such that/((Q, z) = 279. Indeed,
there exists a minimal integersuch thayy < z,,, and we take) beginning with< zg, ..., z,_1,q >
if x,_1 # ¢; otherwise, we také) beginning with< xg, ..., 2,2, x, >.

We may assume, by shiftingif necessary, that,,, € F' ands # (). Thus we have

T, = <1—¢0,2—¢% ... >,

s

where0 < ) < 1. Let j, be a minimal integer such thatio 901 < d(xn,, Tn ), and

s[|s|—1
S0:= <1-— 68, ey Jo — 6?0_1 >
If ¢ - s, thenz,,, begins withs.

There arep, in w and Qns ,, In F such thatd(Qy,,—, , n,) = 950 —J0—1 ThenQ,, -, is of
the formsy™ < 1+ jo — &', 2+ jo — 6]0+1’ .>,where0 < ¢! < e?o. There exists an unigue integer
no such that

9 _jo—1
Qnsﬂpo € Bs’“no = B(Qnsﬂp072€]0 70 [

AS Bs~y, meetsF, z, ., € F. Thus the point: is of the form

Ns™ng
s < 14Jjo— €2+ o — Ejgr1s - >
where0 < s < e . More generally, there exists; in w and Qnsﬁnoﬁ ~ in F' such that

N1 PR
d(Qn,~, py) = 2° Jo o1 . ThenQp, ., ~ is of the form

Loy~ —
ylngong ... Np_1~Pk

6\~“A"k71’\pk

k+1

sgo <Ll+jo—eh24jo—ek >,

where( < gkl < 8?0'

10



There exists an unique integey, such thathSAnOAmA iS IN Bs~p~ . ~n,, Which is
B(Qns’\na\“"\nkilﬂpk’

Ty~ 19 OF the formsg™ < 1+ jo — et 2+ jo—e¢

Ng—1"Pk
ko . .
2550 01 As Bs~ng...~n, MeetsF, z, . . isin F. Thus the point

..

;?Otrll, ... >, where0 < gf(fl <ek.

We sety :=< ng,ny,... >andz := s5 (jo + 1 + k + 7k kew, Wheren, € Q 4 are chosen so
thatno := 0 andz ¢ {z, / n € w}. Thend(z,z, -, ) = 2%~ decreases to > 0, and the
sequencéz,, ., )Jmew does nottend te. Butz € (., Bs~rym; thuss,, g [z, D] = zn

and the sequendg,, [z, D]),,,c., does not tend ta. But this is absurd.

4 Study of the uniformity of the dense sequence.
(A) Necessary conditions for uniform recoverability.

It is natural to wonder whether there exists a dense sequyeptcef X such that every Baire class
one function fromX into Y is first return recoverable with respect(tg,). The answer is no wheik
is uncountable. Indeed, if we chooses X \ {z, / p € w}, thenIy,, is not first return recoverable
with respect tqz,). We can wonder whethétr,,) exists for a set of Baire class one functions.

Notation 5;(X,Y) is the set of Baire class one functions frathinto Y, and is equipped with the
pointwise convergence topology.

If Ais asubsetoB;(X,Y), then the map

(X xA-Y
¢ {<x,f> - f(@)

has its partial functiong(z, .) (respectivelys(., f)) continuous (respectively Baire class one). There-
fore ¢ is Baire class two ifd is a metrizable separable space (see p 378 in [Ku]).

Definition 13 We will say thatA C B1(X,Y) is uniformly recoverable if there exists a dense
sequencéz,) of X such that every function of is recoverable with respect {@)).

Proposition 14 If A is uniformly recoverable and compact, thdris metrizable.

Proof. Let D := (x,,) be a dense sequence &fsuch that every function ofl is recoverable with
respect taD. Let] : A — Y defined byI(f) := (f(zp)),. This map is continuous by definition of
the pointwise convergence topology. It is one-to-one beeaifif # g are inA, then there i € w
such thatf(z,) # g(zp). Indeed, if this were not the case, then we would have, fdn edao X,

f(x) =1lim,_ f(splz,D]) =M, g(sn|x, D]) = g(x)

(becausef andg are recoverable with respect(te,)). As A is compact] is a homeomorphism from
A onto a subset of “. Therefore A is metrizable. O

11



Example. There are some separable compact spaces which are notahktriand whose points
areGs. For example, “split interval’d := {f : [0,1] — 2 / f isincreasing, viewed as a subset of
B1([0,1],2), is one of them (see [T])4 is compact because it is a closed subsebf!:

feAevVe<y f(z)=0o0rf(y) = 1.

A'is separable becausé, ;) / ¢ € [0,1]NQ } U{Tj,1; / ¢ € [0,1] N Q } is a countable dense sub-
set of A. The family of continuous functions, : f — f(x) separates points, and for every se-
quence(z,) C[0,1], (¢s,), does not separates points. Thdsis not analytic and not metriz-
able (see Corollary 1 page 77 in Chapter 9 of [Bo2]). Finadlery point ofA is Gy; for exam-

ple, {1, i} = Npewpso-n{f €A/ fle=2"") #1}N{f € A/ f(z) # 0}. By Proposition 14,
“split interval” is not uniformly recoverable.

Proposition 15 If A is uniformly recoverable and is a 0-dimensional space, thenis Baire class
one.

Proof. Let F be a closed subset &f. We havep(x, f) € F < z € f~1(F). Remember the proof
of Lemma 5. We replace th@,'s by a sequence of clopen subsetsrofvhose intersection i§’ (it
exists becaus¥ is a 0-dimensional space). The sequefige); is finite or infinite and enumerates in
a one-to-one way the elements(af,) N f~'(O). We haveU; := {t € X / x,, € R(t,D)} if x,,
exists U; := 0 otherwise), and}, := ;. [(U;5; Uj) U{zpy, ., 7p,_, }] (in fact, between braces
we have ther,, that exist, forj < ). So thatf~'(F) = (), Hk. The sequencér,,); can be
defined as follows, by induction on integgr

g=po & flzg) €Orandvi<gq f(x;) ¢ Oy

g=pj1 VIl <qz#zgand3r<q (r=p;andf(z,) €Oy andV l€]r, q[Nw f(x;) ¢ Ok)
We notice that the relationy*= p;” is clopen inf. Then we notice that
S (U Uj) U {xpo’ ""xpiﬂ}
Jj=i
ifand only if (35 >4 Jgcw g=p; andz, € R(x, D)] or Ir <isuch thaf(Vm <r Jgcw g=pp,)
and(Vm e [r,i[N\w Vgew q#pn) and(Im <r Vgew q#p, Or z=1,)]. We can deduce from

this that the relation € (U;>; U;) U{zp,, ..., zp,_, }"is Gs in (z, f); thus the relation® € Hy" is
too. - O

Corollary 16 (a) There exists a continuous injectioh : 2* — B;(2“,2) such that/[2¥] is not
uniformly recoverabléand in fact such thap ¢ B; (2% x 1[2¥],2)).

(b) There existsA C B4(2¥,2), A ~ w*, which is not uniformly recoverable and such thats in
Bl (2“’ X A, 2).

Proof. (a) LetS := {s € 2<¥/s = or [s # 0 ands(|s| — 1) = 1]} and

2% — 2
I{a) = g 1if 3s€ S [s <aandf = s—0v],
0 otherwise.

If a[n = ao/[nanda(n) =1—d'(n) =0, thenI(a)(a[n™10¥) =0=1—1(¢/)(a[n"10¥). Thus
I is one-to-one.

12



It is continuous because

aelif € Py :={ae€2/Vnim>n a(m)=1},

I(a)(B) =1 & {
ae€ Ng if =570 ands e S.

Moreover, {5 € 2¢ / I(a)(8) = 1} = {0} UU, jqm)=1 {al(n +1)70%} € Dy (X9)(2%), thus
I[2¥] C B1(2¥,2). Let us argue by contradiction. We have

o7 {0}) = (P x 29) U (| {570} x Ny) = Fn € 35(2% x 2).
seS n

The diagonal ofP,, is a subset of~1({0}), so there exists an integersuch thatA(Py,) N F, is
not meager iM\(P.,). Therefore there exists a sequenda S \ {0} such thatA (N, N Py,) C F,.
ThusA(Ns) C F, and(s™0%,s70%) € ¢~1({0}), which is absurd.

(b) Let A := I[P]. AsI is a homeomorphism frord* onto its range and,, ~ w“, we have
A~ w¥. We haveF = ¢~ 1({1}) N (2¥ x A) = Uses {870%} x (Ns N Px). Let us show that
F P ¢ FUA(Py). ThenF = F~ 7\ A(Py) will be Do (X9)(2¢ x A) € AY(2% x A). As
o~ LH{OHN(2¥ x A) = (2@ x A)\ ¢~ L({1}), we will haveg € B1(2¥ x A,2). If (5,0%, s v,) € F
tends to(3, a) € (2 x Px) \ F, we may assume that, | increases strictly. So for each integer
and forn big enough we havé(p) = s, (p) = a(p). Thusa = g.

If A were uniformly recoverable, we could find a dense sequénce (x,,) of 2 such that every
function of A is recoverable with respect {@,). Lets € S. ThenI(s™1¥) isin A, and it is the
characteristic function of the following set:

{s[n"0% /n=0o0r (0<n<|s| and s(n—1)=1)}U{s"1P"0¥ / p c w}.

For n big enough,s,[s—0%, D] is in this set, thus— 0 € D andPy := 2* \ P, C D. So the
functions of7[2] are all recoverable with respect f2. But this contradicts the previous point. [J

(B) Study of the link between recoverability and ranks on Baie class one functions.

So there exists a metrizable compact set of characteristictibns of Do (%) sets which is not
uniformly recoverable. So the boundedness of the complextifunctions of A does not insure that
A is uniformly recoverable. Notice that the example of thelitdpterval” is another proof of this,
in the case where the compact space is not metrizable. Inflestions of the “split interval” are
characteristic functions of open or closed subse{8,df (of the form]a, 1] or [a, 1], with a € [0, 1]).

In [B2], the author introduces a rank which measures the ¢exitp of numeric Baire class one
functions defined on a metrizable compact space. Let ud tacadefinition, which makes sense for
functions defined on a Polish spa&ewhich is not necessarily compact.
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e Let A and B be two disjointGs subsets ofX, and R(.A, B) be the set of increasing sequences
(Ga)a<p Of open subsets ok, with 5 < wy, which satisfy

1. Gay1 \ G, is disjoint from A or from B if a < 3.
2. Gy = Ugey Gy if 0 <y < Bis alimit ordinal.
3.Gp =0 andGp = X.

ThenR(A, B) is not empty, becausd and can be separated by set, which is of the form

De((Ua)a<e) = U Ua \ (Us<a Up),
a<¢ With parity opposite to that of

where(U,)q<¢ is an increasing sequence of open subsefs ahdl < ¢ < w; (see [Ke]). Then we
check thaf{ Gy )a<et1 € R(A, B), whereGo41 := U, if a < &.

o We setL(A,B) :== min{f < wi /3 (Ga)a<p € R(A,B)}. If f € Bi(X,R)anda < b are real
numbers, we leL(f,a,b) :== L({f < a},{f > b}). Finally,

L(f) :==sup(L(f,q1,92) / @1 < q2 € Q }.
In [B2], the author shows that, i C C(X, R) is relatively compact i5; (X, R), then
Sup(L(f,a,b) / f € A7%} <y

if X is a compact space anddf< b are real numbers. He wonders whether his result remains true
for a separable compact subspatef 5; (X, R).

We can ask the question of the link between uniform recowsabf A and the fact that

Sup{L(f)/f € A} <wy.

If De(E9)(X) :={De((Up)y<e)/(Up)y<e € EY(X) increasing and A € D(£9)(X), one has

A € D1 (E9)(X) and L(A, A) < ¢ + 2 by the previous facts. So the rank of the characteris-
tic function of A is at most{ + 2. In the case of the example in Corollary 16 and of the “split
interval”, one has suf.(f) / f € A} < 4 < w;. Therefore, the fact that is bounded oA does
not imply uniform recoverability ofd, does not imply thap is Baire class one, and does not imply
that A is metrizable. But we have the following result. It is a paEréinswer to J. Bourgain’s question.

Proposition 17 If X is a Polish spacey C R and A C B;(X,Y) is a Polish space, then we have
Sup{L(f) / f € A} < wy.

Proof. Leta < b be real numbersd := {(z, f) € X x A/ f(z) < a} and
B:={(x,f) e X x A/ f(z) > b}.

As ¢ is Baire class twoA andB areII3(X x A) with horizontal sections iliI9(X).
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So there exists a finer Polish topology on A such that4d € TI3(X x [A4,74]) (see [L1]). The
same thing is true foB. Let 7 be a Polish topology od, finer thanr4 andrz (see Lemma 13.3 in
[Ke]). As A andB are disjoint, there existd,, € AJ(X x [4,7]) which separates! from B. Let
£ap < wy be such that\,, € Dga’b(Z?)(X x [A,7]). For each functiory of A, the setAgb is a
De, ,(29)(X) which separate§f < a} from {f > b}. ThusL({f < a},{f > b}) < & + 1.
Therefore supL(f) / f € A} <sup{L(f,a,b) /a<beQ} < wy. O

Corollary 18 If X is a Polish spacey C R and if A C B;(X,Y) is uniformly recoverable and
compact, then sUd.(f) / f € A} < ws.

We can wonder whether this result is true for the set of remaile functions with respect to a
dense sequence &f. We will see that it is not the case.

Proposition 19 Let (z,,) be a dense sequence of a nonempty perfect Polish spaeadY” := 2.
Then supL(f) / f is recoverable with respect (@)} = w;.

Proof. SetD of the elements of the dense sequence is countable, médrizetmempty and perfect.
Indeed, ifz, is an isolated point oD, then it is also isolated iX’, which is absurd. Thu® is
homeomorphic t@ (see 7.12 in [Ke]). Fot < £ < wq, there exists a countable metrizable compact
spaceK and Ag € De(29)(Ke) \ De(9)(Ke) (see [LSR]). So we may assume tiég C D (see
7.12in [Ke]). Thus we havele ¢ D¢(29)(X). We will deduce from this the fact that(1a,,) > &.

To see this, let us show that, if(14) = L(A, A) < & thenA € D¢ 1(£9)(X). Let (Ga)a<er
be inR(A, A), where¢’ € {¢,¢ + 1} is odd. We let, forx < ¢,

{U9<a U@ U Ueéa/AﬁGeH\Ge:@ G9+1 if avis even,
U, =

U9<a U9 U UQSW/AQGG-H\G@:@ G9+1 if o is odd.

Then Dg (Uy)a<er) Separatesd from A. Indeed, ifz ¢ A, leta/ < ¢ be minimal such that

x € Go. Thend is the successor af < ¢/, andz € AN Gay1 \ Ga. SOAN Goy1 \ Gy = 0,

by condition 1. Ifa is even, therr € U, \ (Up<Uy) becausd/y C Gyq if 6 < &', If ais odd,
thenz € Uyq1 \ Uy. Inboth casesy € De/((Un)a<er). If x € Uy \ (UgeaUp) With o < ¢’ even,
there exist® < « such thatr € Gy and AN Gyyq \ Gy = 0. Letn’ < ¢ be minimal such that

x € G,y. As before,’ is the successor of < ¢. Let us argue by contradiction: we assume that
z € A. Thenz € ANGyy1 \ Gy # 0, S0AN Gy \ G,y = 0. If nis odd, thenz € Uy, thusy = a.
This contradicts the parity ef. If 7 is even, therr € U, ;1 andn = o = 0. Sox € Gy41 \ Gy C A.
This is the contradiction we were looking for.

It remains to check thal 4, , is recoverable. If: € D, thens, [z, D] = = for almost all integer
n. ThusIa,,, (sn[z, D]) tends tol 4, (). If zis notinD, thenz ¢ Ay C Keq1 € D. So, from
some point ons, [z, D] ¢ K1, andla,, (sn[z, D]) is ultimately constant and tendstq, , , (x).0

Remark. We can find in [KL] the study of some other ranks on Baire class functions. The
rank L is essentially the separation rank defined in this paperhdrcase wher& is a metrizable
compact space and where the Baire class one functions evedidre bounded, Propositions 17, 19
and Corollary 18 remain valid for these other ranks.
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(C) Sufficient conditions for uniform recoverability.

Theorem 20 Assume thal” is a metric space, and that, equipped with the compact open topology,
is a separable subset & (X, Y). ThenA is uniformly recoverable.

Proof. Let (I,) be a dense sequence 4ffor the compact open topology. By the lemma showed in
[Ku], page 388, for each integerthere exists a sequen¢ky,),, C B1(X,Y) which uniformly tends

to /,, functionshs, having a discrete range. Enumerating the sequéhitg, ,, we get(h,,),. Every
function of A is in the closure of this sequence for the compact open tggolé-or each integer
n, one can get a countable partitigfs;) ), of X into A sets on whichh,, is constant. Express
each of these sets as a countable union of closed sets. dPalitithese closed sets together gives
a countable sequence of closed subsetX ofAs in the proof of Theorem 4, this gived which
approximates each of these closed sets. Now let A, x € X ande > 0. Consider the compact
subsetX := R(x, D) U {z} of X. By uniform convergence oA, there existsV € w such that, for
eacht in K, we havedy (f(t), hn(t)) < ¢/2. Letp be an integer such thate B)'. Now K \ BYY

is finite and we haveé y (s, [z, D]) = hy(x) for eachn € w, except maybe a finite number of them.
So we have the following inequality, for all but finitely many

dy (f (@), f (snlz, D])) <
dY(f( ) hN(w)) + dY(hN(w)7hN(3n[va])) + dY(hN(Sn[waD])vf(sn[waD])) <e

(this last argument is essentially in [DE]). O

The following corollary has been showed in [FV] wh&n= R and with another way of extracting
the subsequence.

Corollary 21 Let A C B;(X,Y) be countable. Thed is uniformly recoverable.
Proof. Put a compatible distance ah d

Proposition 22 Let(Y}) be a basis for the topology af, and

(1) For each integep, ¢~ 1(Y,) € (IIY(X) x P(A)),.
(2) There exists a finer metrizable separable topologyXgmade of$9(X), and making functions
of A continuous.

(3) A is uniformly recoverable.
Then (1)< (2) = (3).

Proof. (1) = (2) We havey~1(Y,,) = U,.eo % x Br, whereFy is a closed subset of andBf, C A.

If f € A, thenf~'(Y,) = ¢ (Y,)! = U, epr Fr- Therefore, itis enough to find a finer metrizable
separable topology oX, made ofx)(X), and making theé",'s open. Let(X,,) be a basis for the
topology of X, closed under finite intersections, af@,) be the sequence of finite intersections of
FP’s. Then setr of unions of sets of the fornX,, or X,, N G, is a topology, with a countable basis,
made ofxy(X), finer than the initial topology oX (thus Hausdorff), and makes tt#&"s open. It
remains to check that it is regular.
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Soletz € X andF € I{(X,7), withz ¢ F. We haveX \ F = |J, Xy, U Uy Xm, N Gy,.
Either there existg such thatr € X, ; in this case, by regularity of initial topology off we can
find two disjoint open set¥; andV; with » € V; and X \ X, C V5. But these two open sets
arer-open andf’ C X \ Xn, € V. Or there exists such thatr € X,,, N G, ; in this case, by
regularity of initial topology onX, we can find two disjoint open sekg; andW, with z € W, and
X\ X, € Wy. ButthenW; NGy, andWr U (X \ G, ) areT-open and disjointy € Wi N Gy,
andF C (X \ X, ) U (X \ Gg,) € Wa U (X \ Gy,).

(2) = (3) Let 7 be the finer topology. Then identity map frak, equipped with its initial topology;,
into X, equipped withr, is Baire class one. Therefore, it is recoverable. Sddg} be a dense
sequence oX such that, for each € X, s, [z, (z,)] tends toz, in the sense of. Let f € A. As f
is continuous itX is equipped withr, f(sy[z, (x,)]) tends tof (z) for eachz € X. Thereforef is
recoverable with respect ta,).

(2) = (1) Let(X,,) be a basis for finer topology (therefore, we have(,, € 29(X)). Let
Ch={feA/X,Co (V) }.
Theng=1(Y,) = U, X, x Ch € (IIV(X) x P(A)),. O

Remark. If X is a standard Borel space adds a Polish space, conditions (1) and (2) of Proposition
22 are equivalent to “For each integerg—1(Y,) € (II{(X) x Al(A)),". Indeed, letP be a Polish
space such thaX is a Borel subset of?, andf € A. As f is continuous ifX is equipped withr,

S (Yy) = Uy X, s for eachintegep. LetCl := {f € A/ X,, € ¢~1(Y,)/}. ThenCY isTI1(A),
because is Bairekclass two:

feCl o VeeP x¢ X, or ¢(z, f) €Y.

Moreover,¢~1(Y,) = U,, X» x Ch. By Al-selection (see 4B5 in [M]), there exists a Borel function
Np: P xA—wsuchthalz, f) € Xy % Cﬁ,p(w) if f(z) €Y,. Let

SP:={feA/IxeX Ny(z,f)=n and ¢(z, f) € Y.}

ThenSh € $1(A) and is a subset af, ; by the separation therem, there exists a Borel sub§etf
Asuch thatSh C BS C CF. Thenwe have~1(Y,) = U, X» x Bh € (IIY(X) x Al(A)),.

Proposition 23 If A has a countable basis, then there exists a finer metrizaplagrable topology on
X making the functions ol continuous. Moreover, X is Polish, we can have this topology Polish.

Proof. Let (A,,) be a basis for the topology of, and X}, := {x€ X/A,, C ¢~ (Y,).}. As
¢ (YV)e = {f € A/ f(z) € Y,} € Z9(4),

we haves ™ (Y,) = U,c, Xh x Ay and f71(Yy) = ¢~ 1(Y,)! = U, sea, X4 for eachf e A.
Thus it is enough to find a finer metrizable separable topotogX making X%'s open.
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We use the same method as the one used to prove implicatiee (2) of Proposition 22. We
notice that the algebra generated by ¥¥s is countable (we letG,) be the elements of this algebra).

As ¢ is Baire class twop—1(Y,) is a X9 set with vertical sections ix{(A). If X and A are
Polish, we deduce from [L1] the existence of a finer Polistotogy 7, on X such that
¢~ (Yp) € (BY(X, 1) x Z](4)),.
Let (Bh),, be a basis for,,. Then there exists a finer Polish topologyn X making the Borel sets
Bl's open (see Exercises 15.4 and 13.5 in [Ke]). Then we are, d@wause is finer than the,'s.C]

Therefore, the problem is to find the finer topology 3(X). We have seen that it is not
the case in general. If we look at Propositions 15 and 22, wewsander whether conditions of
Proposition 22 and the fact thatis Baire class one are equivalent, especially in the caseewhe
Y is O-dimensional. This question leads to the study of Boubisets of2¥ x 2«. The answer
is no in general. First, because of Corollary 16. It shows tha fact that¢ is Baire class one
does not imply uniform recoverability (witd Polish, in fact homeomorphic t©“). Secondly, let
A= {f € Bi(2¥,2) / f isrecoverable with respect {@),)}, where(z,) := Py is dense ir2~.
Then A is uniformly recoverable, but we cannot find a finer metrieadparable topology on 2%,
made of¥9(2¢) and making the functions of continuous. Otherwise, the characteristic functions
of the compact set&’, := {z} U {s,[z, (xp)] / n € w} would be continuous for, and this would
contradict the Lindelof property, with), ., K.. But A has no countable basis. Otherwise, the set
of charateristic functions of the sek§, (for x € P,,) would also have one; this would contradict the
Lindelof property too (this last set is a subset 9f . p_{f € B1(2¥,2) / f(x) = 1}). This leads us
to assume thafl is a K, and metrizable space, to hope for such an equivalence.

If ¢ is Baire class one, thep1(Y,) is aX} subset ofX x A with vertical sections ir£?(A).
Thus it is natural to ask the

Question. Does everyX) subset ofX x A with vertical sections inS?(A) belong to the class
(IT(X) x P(A)),?

If the answer is yes, then the fact thiais Baire class one implies condition (1) in Proposition 22,
and the conditions of this proposition are equivalent toftioe thate is Baire class one. The answer
is negative, even if we assume thatand A are metrizable compact spaces:

Proposition 24 There exists @, (3?) subset 0B x 2% with vertical sections imA{(2+) which is
not (TT19(2) x P(2+)), .

Proof. Let E := (Ps x 2¥) U J,eg {s70%} x (N U Ny~¢) (we use again notations of the proof
of Corollary 16). Clearly, vertical sections &f are A?(2¥). We set

G:={ae€2’/Ynim>n a(m)=a(m+1)=1}.

This is a densé& s subset oR%, included inP,,. If a ¢ G, then the horizontal sectioR? is finite.
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Otherwise, it is infinite and countable (it is a subsety}, and it is a sequence which tends to
a. If (5770 s7°9,)n C E tends to(3, o), then there are essentially two cases. Either the length of
sy, is strictly increasing and. = (5. Or we may assume that,,) is constant andgs,«) ¢ E. As
diagonalA(2¥) C E, we can deduce from this that = £\ A(2¥) € Dy(29)(2¢ x 2¥). Assume
that E € (II9(2¥) x P(2*)),. We haveE = (J, F,, x E,, whereF,, € II{(2¥) andE,, C 2“.
LetC, == {a € 2¥ / F, C E®}. ThenC,, € II}(2*) andE = |, F,, x C,,. AsA(2¥) C E,
2¥ C |, Fn N C,. So there exists an integersuch thatF, N C,, is not meager, and a sequence
s € 2<% such thatN, N F,, N C, is a comeager subset &f,. In particular, Ny, C F,,. AsG is
comeager, there exists € G N N, N C,. Let (B,) € E* converging too. From some point
mg on, we have3,, € N,. S0(Bn,a) € F, x C,, C E if m > mg. But this is absurd because

(Bm,a) ¢ E. O
We can specify this result:

Proposition 25 There exists a metrizable compact space B, (2“,2) which is uniformly recover-
able, but for which we cannot find any finer metrizable separatipology or2~, made of£)(2+),
making the functions ol continuous.

Proof. We use again the notation of the proof of Proposition 24.«.etv — S be a bijective map
such that fors,t € S, s < t impliesy~1(s) < ¢ ~1(¢). Such a bijection exists. Indeed, we take
Y :=(0 o qs[s)*l, wheref : $[S] — w is an increasing bijection, and where

2% > w

0if s=10,

s(0)+1  s(|s|-1)+1

90 - ly(ls|-1) otherwise.

(where(qy,) is sequence of prime numbers). We det, := ¥ (n)" 1%, z9,+1 = (n)" 0%, and

. i <w
Ts = Tmingpew/s<ay} if s € 2<v,

e Let us show that, it € 2<¢ \ {0}, thenz,; € Py is equivalenttos € S. If s € S andz, € Py,
then there exists in S such thatr; = s~ u™0%. Thenzy,-1(,) comes strictly before,,—1(5)41,
which comes beforey,,—1(s~y)41 = 5. Buts < s71¥ = xy,,-1(,), Which is absurd.

If s ¢ S andz, € P, there exists, in S such thatr, = s~ (1% — u)"1¢. Lets’ € S andm
be an integer such that= s'~0™"!. Thenzy,-1 (5,1 cOmes str.ictly beforer;,, -1 (s~ (1 1ul _uy—1)s
which comes before,. Buts < s0% = (0% = Toy-1(s)+1, Which is absurd.

o \We set
2 By (29,2)

29 — 2
0if 3s €S f=s"0“ and a € Ng—1,

8] —

0 —

1 otherwise.
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ThenI is defined becausg3 € 2 / B ¢ I(a)}is{B € 2% /B ¢ I(a)}\ {a} € Dy(X9)(2v) if
o € G, and is finite otherwisel is continuous because

ae2¥ if g€ Py,

I(a)(B) =1
NyUNg~ if =570 ands e S.

Therefore,A := []2¥] is an analytic compact space and is metrizable.

As E = (Ido x I)7H(¢71({1})), o1 ({1}) ¢ (I19(2¥) x P(A)),, by Proposition 24. So there
is no finer metrizable separable topology &1y made ofX9(2%) and making the functions of
continuous, by Proposition 22. Butis uniformly recoverable with respect (@,,).

Indeed, asP; C (x)), it is enough to see thatif € G, thenI(«) is recoverable with respect to
D := (z,). The only thing to see is that from some integgron, s, [a, D] € E*. We may assume
thata ¢ D becauses C P,,.

We take(W,,,) := (Ns)se2<~ as a good basis for the topology 2. So that, ifa ¢ D,
3n+1[a7 D] = xmin{pew/ﬂs€2<” a,:vPENSQZU\{so[a,D},...,sn[a,D]}}

= Tmin{pew/a[(MaX,<,|ansy[e,D]|+1)<zp }

But as the sequendéx A s, [, D]|),, is strictly increasing, max, |« A sqlo, D]| = |a A sy [a, D]|.
Thuss,t1]a, D] = Za[(jansa[a,D]|+1)- BY the previous facts, it is enough to get

Lal(|ansn[a,D]|4+1) € B~
Let My, :=|a Aspla, D]|. If a(M,) = 1, thens,, 4 [o, D] is in P, C E®. Otherwise,
sl D] = a(My +1)7u70%,

whereu € S. If u # 0, thens, ;1 [a, D] is minimal in Nor(az, +1)~u € Na[(Mn+1)s SOSny1[, D] is
in P, which is absurd. Thug = () ands,,;1[«, D] € E*. O

Now we will see some positive results for the very first classeBorel sets. We know (see [L1])
that if X and A are Polish spaces, then every Borel subseY of A with vertical sections irE?(A)
is (A}(X) x £9(4)),.

Proposition 26 If A has a countable basis, then evdilf (X x A) with vertical sections irE{(A)

is (ITY(X) x X9(A)),. If moreoverA is O-dimensional, then evety,(X9)(X x A) with vertical
sections in2Y(A) is (II9(X) x AY(A)),.
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Proof. Let F' be a closed subset of x A with vertical sections ir={(A4). As in the proof of
Proposition 23F = |J,, X, x Ay, where(A,,) is a basis for the topology of. But asF is closed,
we also have = | J, X, x A,, € (TIY(X) x 29(A4)),.

If A is a O-dimensional space, |t (respectivelyF’) be an open (respectively closed) subset of
X x A such thal/ N F has vertical sections i&{(A); thenU = | J,, U,,, where

U, € ITY(X) x AY(A).
For eachr € X, we have

UNF)y=U;NFp =] (Un)e N Fe =] (U F)s.

n

Moreover,(U, N F), = (U,).N(UNF), is XY (A), soU, N FisI{(X x A) with vertical sections
in 39(A). By the previous factd/, N F € (II9(X) x AY(A)), andUNF =J,U, N Ftoo. O

Proposition 27 There exists @ (X9) subset o2~ x 2¢ with sections inA{(2+) which is not in
(T}(2°) x 27(2)),-

Proof. This result is a consequence of Proposition 24. But we cantard a simpler counter-
example. We will use it later. Let : w — Py be a bijective map, and

E:= 2 x {0*Hul]J @\ {¥(p)} x Non).

Then E is the union of a closed set and of an open set, so D4629)(2% x 2¢). If a ¢ Py
(respectivelya = ¥(p)), then we haver, = 2 (respectively2¥ \ Nyr1); S0 E has vertical sections
in AY(2). If E =, F, x Uy, then we havel”” = 2 = J,, gy, Fn- By Baire’s theorem, there
existss € 2<“ and an integen, such that* € U,,, and N; C F},,. From some integep, on, we
haveNgr1 C Uy, . As Py is dense, there exists> py such that)(p) € N,. We have

((p),0P10%) € (Ng X Nop1) \ E C (Fpy X Upy) \EC E\ E.
This finishes the proof. d

Now we will show that the example in Corollary 16 is in some veptimal. Recall that the
Wadge hierarchy (the inclusion of classes obtained by eoatis pre-images of a Borel subset.of,
see [LSRY]) is finer than that of Baire. The beginning of thisraichy is the following:

{0} Dy} Dy(39) b}
+

) Atl) g(f ) ..

{0} 1T Dy(%9) 1T}

The class9™ is defined as followsE0™" := {(UNO)U (F\O) /U e 9, F e 19, O € A%}.
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Proposition 28 Let A be a metrizable compact spadg,C X x A with vertical (resp., horizontal)
sections inA9(A) (resp., 207 (X)). ThenB e (ITY(X) x P(A)),. In particular, if Y = 2 and 4 is
made of characteristic functions ETT(X ), then conditions of Proposition 22 are satisfied ani$
Baire class one.

Proof. For f € A, we haveB/ = (U/ nO/)u (F/\ O7). We set
Bi={(z,f)eXxA/zecU/' N0, By:={(z,f)e X xA/zeF \ 0O}
Therefore we hav#® = B; U Bs. Let (X,,) be a basis for the topology df. We have

B =JX,x{feA/X,CcO'nU'}.

Thus B; € (ITI9(X) x P(A)),. Inthe same way{(z,f) € X x A/ z ¢ O} =, Xy X En,
whereE, := {f € A/ X, N O/ = 0}. Let us enumerat)(A) := {0,, / m € &}, where
£ €w+1. We haveB; = Umm {re X, /OnNE,CB,}x(0,NE,). Itis enough to see that
{z € X,,/On N E, C B,}eII}(X,,). Let(f}'), be adense sequencelsf. If = € X,,, then

OmNE, CBy & Vpew fI'¢ OpNE, of € B
eVpew fré¢0,NE, or z € Flv\ Ok,

Therefore,B, € (IT{(X) x P(A)), and B too. O

Proposition 29 Assume thak and A are Polish spaces, that = 2, and thatA is made of charac-
teristic functions oD (X9)(X). Theny~1({1}) € (ITY(X) x P(A)),.

Proof. As ¢ is Baire class twog~1({1}) is AJ(X x A) with horizontal sections iD,(X9)(X).

So there exists a finer Polish topologyn A and some open subséfg andU; of X x [A, 7] such
that¢—1({1}) = U; \ Up. The reader should see [L1] and [L2] to check this point (&hewed for
Borel sets with sections iEg in [L1]; we do the same thing here, using the fact, showed #],[that
two disjoint £} which can be separated byl (3?) set can be separated byla (39 N Al) set).
Let (A,) (resp.,(X,,)) be a basis for the topology of (resp.,X). LetE,, :={f € A/ X, C Ulf}.

There existd}* € I19(X) such that/; = U,, X, x E, =U,,; F" x E,. We set

Prli= (B x By 067 (1) = [F7 % B, \ U
—U, {@ € B/ Ay N Bu C 6 ({112} x (Ag 1 By).

This is a closed subset df* x [E,,7[E,], and union of thef™"s is ¢~1({1}). So we have
o (1) =Unyq {2 € I/ AgN By C o7 ({1})e} x (A4g N Ey) € (I(X) x P(4)),. O

These last two propositions show that the example in Cayollé is optimal. In this example,
one hasp~1({0}) ¢ E9(X x 4) U (IIY(X) x P(4)),.
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(D) The case of Banach spaces.

The reader should see [DS] for basic facts about Banach spdogt £ be a Banach space,
X = [Bg-,w*],Y :=RandA :={G]X / G € Bg«}. If Eis separable, theX is a metrizable
compact space. If moreovdt contains no copy of;, Odell and Rosenthal’'s theorem gives, for
everyG € E**, a sequencge,) of E such thatf(e,) — G(f) for eachf € E* (see [OR]). Let
i : E — E** be the canonical map, aréd, := i(e,). Then(G,) pointwise tends t@-. By definition
of the weak* topology, we havée)[ X € C(X,Y) for eache € E, thusG[X is the pointwise limit
of a sequence of continuous functions. Theref6eX € B;(X,Y) (see page 386 in [Ku]). We set

. [Bee,w'] = [Bi(X,Y),p.c]
¢ {G — G[X

By definition of weak* topology® is continuous, and its rangeis SoA is a compact space because
®’s domain is a compact space.

If £* is separable, thel' is separable and’ contains no copy of;. Indeed, if¢p was an em-
bedding ofl; into £, then the adjoint map* : E* — [} of ¢ would be onto, by the Hahn-Banach
theorem. Bul,, ~ [7 would be separable, which is absurd. The domaith &f a metrizable compact
space, thus it is a Polish space. Therefotas an analytic compact space. So it is metrizable (see
Corollary 2 page 77 of Chapter 9 in [Bo2]). In particular, gvpoint of A is G5. Conversely, ifE*
is not separable, thef0g--} is not aGs subset ofBg+. Indeed, if(x,) C E*, closed subspace
spanned byz, / p € w} is notE* (see page 5 in [B1]), and we use the Hahn-Banach theorem. Thus
{0g++[ X} is not aGs subset of4, becauseb is continuous. So the following are equivale: is
separabled is metrizable, and every point ¢f is G;.

Assume thatF** is separable. The&™ is separable, and is uniformly recoverable. Indeed,

A C C([Bg, |-}, Y), and the following map is continuous:
o - JIEET LT = [C(BE [ YY), (- loo]
G — G|[Bg~

Therefore [®'[E**], ||.||] iS @ separable metrizable space and contdinfhen we can apply Theo-
rem 20. But we have a better result:

Theorem 30 Let £ be a Banach spaceX := [Bg+,w*], A :={G[X/G € Bg+}, andY := R.
The following statements are equivalent:

(a) E* is separable.

(b) A is metrizable.

(c) Every singleton ofl is Gj.
(d) A is uniformly recoverable.

Proof. We have seen that conditions (a), (b) and (c) are equivaimltet us show that (a) (d). We
have seen thak and A are metrizable compact spaces, and that 5;(X,Y’). Thus we can apply
Proposition 22, and it is enough to check that condition $2Zgitisfied.
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The finer topology is the norm topology. Let us check that itade of 23(X). We have
If = foll <e & In Vx € Bg |f(x) — folzx)| <e—27".

(d) = (c) LetG € A. Then{G} = An, {9 € R / |g(x,) — G(z,)| < 279}. Thus{G} is
IT5(A). 0

So we get a characterization of the separability of the dpats of an arbitrary Banach space.
Notice that the equivalence between metrizability of tree¢bmpact space and the fact that each of
its point isG; is not true for an arbitrary compact set of Baire class onetfans (because of the
“split interval”).

This example of Banach spaces also shows that the converBeeofem 20 is false. Indeed,
we setX := [By,,0(l, )], A:={G[X/G € B,__}, andY := R. By Theorem 30A is uniformly
recoverable, sinck is separable. But sinck is compact, compact open topology Aris the uniform
convergence topology. i was separable for compact open topoldgywould be separable, which
is absurd. Indeed, ifG,,) C B;_ is such that{G,,[X / n € w} is a dense subset of for the
uniform convergence topology, we can easily check fhat’,, / ¢ € Q4 and n € w} is dense in
l~. Notice that this gives an example of a metrizable compaatesfior the pointwise convergence
topology which is not separable for the compact open togolog

Finally, notice that the map is Baire class one iZ* is separable. Indeed, it is the composition
of the identity map fromX x A into [ X, ||.||] x A (which is Baire class one), and of the map which
associate&:(f) to (f,G) € [X, ||.|]] x A (which is continuous).

(E) The notion of an equi-Baire class one set of functions.

We will give a characterization of Baire class one functiartsch lightly improves, in the sense
(a) = (b) of Corollary 33 below, the one we can find in [LTZ].

Definition 31 Let X andY be metric spaces, and C YX. ThenA is equi-Baire class one
(EBC1) if, for eache > 0, there exist$(e¢) € B1(X,R? ) such that

dx(z,2') < min(§(e)(z),0(e)(2")) = Vf € A dy(f(z), f(2))) <e.

Proposition 32 Let X and Y be metric spaces. Assume thétis separable, that all the closed
subsets o are Baire spaces, and that C YX. The following conditions are equivalent:
(1) Ais EBCL1.

(2) For eache > 0, there exists a sequen¢€s,),, C I1Y(X), whose union isY, such that for each
f € A and for each integem, diam(f[G%,]) < .

(3) There exists a finer metrizable separable topologykgmade ofS9(.X), makingA equicontin-
uous.

(4) Every nonempty closed subgebf X contains a pointr such that{ f| / f € A} is equicontinu-
ous atz.
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Proof. (1) = (2) We set, fom integer,H,, := {x € X / d(¢)(x) > 27"}. Asd(e) is Baire class
one, there existéF'), C ITY(X) such thatf,, = U, Fy'- We construct, fog < w1, open subsets

of X, and integers andqg satisfyingU, . Uy # X = 0 # Ug \ (U< Un) € Fgt. Itis clearly
possible sinceX = (J, , Fy' and X \ Un<£ Up,) is a Baire space. AX has a countable basis,
there existsy < w; such thatlJ,_,,, Use = U<, Ug In particular we havé/,; C U§<7 Ug, thus
X = Ue<y Ue = Ugc, disj. Ue \ (U, Up)- Let (z5), C X satisfyingUs C U, B(a5,27m¢ 1], Let
G o= B(x5, 27 1[N0 \ (Uyy<e Up)- ThenG: . € Z9(X) gndX is the union of the sequence
(G5 )ae<n- If 22" € G, then we havelx (z,2") < 27" < min(d(e)(z),d(c)(z")). Thus

dy (f(2), f(a')) <e

for each functionf € A. It remains to write thé¢G; )4 ¢<+'s as countable unions of closed sets. So
that we get the sequen¢és, ).

(2) = (3) Let us take a look at the proof of the implication &) (2) in Proposition 22. There
exists a finer metrizable separable topologyXpymade of$9(X), and making=2, "'s open. This is
enough (notice that we do not use the fact that every clodeseswfX is a Baire space to show this
implication).

(3) = (4) Let(X,,) be a basis for the finer topology. A8, € X9(X), F}, := (FNX,)\Int(FNX,,)
is a meagek) subset ofF. ThusF \ (U, F.,) is a comeage, subset ofF'. As F is a Baire space,
this G5 subset is nonempty. This gives the paintve were looking for. Indeed, let us fix > 0.
Let n be an integer such that € X,, and sup. 4 diam(f[Xy,]) < . Thenz € Int(F' N X,,) and

SUpre 4 diam(fip[INt(F' N X,)]) < e

(4) = (2) Let us fixe > 0. We construct a sequengé& )., of open subsets oK such that

supre 4 diam(fix\, _, v, Ue \ (Uye Un)l) < andUe \ (U, Uy) # 0if U, Uy # X. Asin
the proof of the implication (1)= (2), there existsy < wy such thatX' = (J,, Ue. It remains to
write the (Us \ (U, <¢ Uy))¢<,'s as countable unions of closed sets to get the SequENGe, .

(2) = (1) Forz € X, we setm®(z) :== min{m € w / z € G%,}, and

. X — R*_’_
(e) {x — dX(x7Ur<mE(l") G7)

Theno(e) is Baire classe one sincef, B > 0, then we have

A<b(e)(z) <B & 3Im [z €G;, andVr <m z ¢ Gi and A <dx(z, | ] G5) < BJ.

r<m

If dx(z,2") < min((S(e)(:n),é(s)(x’)), then we have’ ¢ U, .- () G7, and conversely. Therefore,

m®(x) = m°(z') andz, 2’ € G . c(z)- Thusdy (f(z), f(z ")) < diam(f[G® ()]) <é, for each func-
tion f € A (notice that we do not use the fact that every closed subsﬁtlefa Baire space to show
these last two implications). d
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Corollary 33 Let X andY be metric spaces. Consider the following statements:

(a) f is Baire class one.

(b)Ve > 036(¢e) € Bi(X,RY) dx(z,2") <min(d(e)(x),d(e)(x")) = dy(f(x), f(z')) <e.
(1) If Y is separable, then (a) implies (b).

(2) If X is separable and if every closed subseXofs a Baire space, then (b) implies (a).

Proof. To show condition (1), the only thing to notice is the follagi Let(y,) C Y satisfying
Y =, B(ya,¢/2[- By condition (a), let(F;"), C II}(X) satisfying f~*(B(yn,/2[) = U, Fy-
We enumerate the sequende’), 4, so that we getG:, ),,. We haveG:, € II)(X), X =J,, G5,
and diant f[G:,]) < ¢ for each integern. Then we use the proof of implication (2} (1) in Proposi-
tion 32. O

Remark. Let X be a Polish spac&/ C R, andA C Y¥ be a Polish space. We assume that every
nonempty closed subsét of X contains a point of equicontinuity dff|» / f € A}. Then, by
Proposition 324 C B;(X,Y) and by Proposition 17, J. Bourgain’s ordinal rank is bounded!.
This result is true in a more general context :

Corollary 34 Let X be a metrizable separable spadé,C R, A C YX anda < b be reals. We
assume that every nonempty closed subsgtX contains a point of equicontinuity ¢f|» / f € A}.
Then supL(f,a,b) / f € A} < w;. In particular, sSudL(f) / f € A} < wy.

Proof. Using equicontinuity, we construct a sequer{€g)..,, of open subsets ok satisfying
SUPre 4 diamf‘X\(Un<§ o) [Ue \ (Un<5 Uy)] <b—aandUg \ (Un<£ Uy) # 0 if Un<£ U, # X. As
X has a countable basis, there exists w suchthat = (J.., Ue. LetGo := 0, Gat1 := Ug<a U

if & <v,Gy = UacrGq if 0 < A < visalimit ordinal, andG,» := X. Let us check that, if
[ € A then(Ga)a<yt+2 € R({f < a},{f > b}) (this will be enough). By the proof of Propo-
sition 32, f is Baire class one. Spf < a} and{f > b} are disjointGs subsets ofX. We have
Go C UgcqUe if o < v+ 1, so the sequenc@ry )a<~+2 IS increasing. lic < + is the successor
of p, thenGai1 \ Ga = (Ug<aUs) \ (Ug<pUs) = Un \ (Ue<aUe). SOGaq1 \ G, is disjoint from
{f <a}orfrom{f >b}. If « <~isalimitordinal, then

Gat1\ Ga = (Ue<aUe) \ (UecaGe) € (Ue<aUe) \ (Ue<aUs)
becausd/; C G¢,q if £ < a. Thus we have the same conclusion. Finally,
G\ Goygr = X\ (Ugr Ue) = 0,
and we are done. O

Now, we will study similar versions of Ascoli's theoremsy Baire class one functions. A similar
version of the first of these three theorems is true:

Proposition 35 If A is EBC1, therd” ®"is EBCL.
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Proof. It is very similar to the classical one. We §%Ip_c_(£) = 04(g/3). Assume that
dx (w,2) < min(8_p.c.(¢)(x), &_p.ce)(@")),
and letg € APC The following set is an open neighborhoodgof
0= {heYX /dy(h(x),g(x)) < /3 and dy (h(z'), g(z")) < £/3}
(for the pointwise convergence topology). $emeetsA in f. Then we check that
dy (9(z),g(2')) <e/3+¢/3+¢/3 =¢.
This finishes the proof. 0
A similar version of the third of Ascoli’s theorem is true in@sense:

Proposition 36 Assume thaX andY are separable metric spaces, and thdtis locally compact.
If A C Bi(X,Y), equipped with the compact open topology, is relativelygachinY X, then A is
EBC1 andA(z) is relatively compact for each € X.

Proof. As X is metrizable,X is paracompact (see Theorem 4, page 51 of Chapter 9 in [BB¥]).
Corollary page 71 of Chapter 1 in [Bol], there exists a lgcéitiite open coveringV;);e., of X
made of relatively compact sets (we use the fact kaé separable). For € X, we set

Jy={jew/zeV;}
It is a finite subset ofv. Lete(xz) € w be minimal such thaB(xz,27¢*)[C M., V;. Notice that
e € B1(X,w). Indeed, Iel(xé)q be a dense sequence®f\ V;. We have

W {Vj>k = ¢ V;}andzeVy andVj <k {Vq )¢ B(z,2 P[orz ¢ V;}
e(r)=p &

and Vi < p3j < k {3¢ =} € B(z,27'[andz € V;}.

e Let us show thatt"®" C Bi(X,Y). Forz € X, we letU, be a relatively compact open neigh-
borhood ofz. As X is a Lindelof spaceX = U, Us,; let Ky, == U,<, U,,. Then(K,) is an
increasing sequence of compact subset’ @ind every compact subset &fis a subset of one of the
K,’s. By Corollary page 20 of Chapter 10 in [Bo2],X, equipped with the compact open topology,
is metrizable.

Soletf € a0 By the previous facts there exists a sequefitg C A which tends tof,
uniformly on each compact subset &t So we have

Vm ew Ipy)n €W Vo € Ky Vn € w dy(f(x), fym(z)) <277
Therefore, ifF € TI(X), then

FUF) = B\ (| Kp)n{z € Kin / ¥n € w dy(F, fyp(z)) <27},

p<m

We deduce from this that=! (F) is G, because it is union of countably ma6y’s, partitionned by
someAY(X). Sof is Baire class one and”% C By(X, Y).
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eletf e ZC'O', ¢ > 0 and K be a compact subset af. We set

U(f,e,K):={ge A°% /va e K dy(f(z),g(z)) < £/3}.

ThenU(f,e, K) is an open neighborhood ¢f for the compact open topology, so there exists an
integerp:, k and(ff’K)z‘ng,K c A%% such thatd®® = Ui<p. « Ut e, K), becauséd""®"is
compact. -

e By Corollary 33, if f c A% then there exists(f,e) € Bi(X,R%) such thatdy(f(z), f(z')) <e
if dx(z,2") <min(é(f,e)(x),d(f,e)(x")). We set

X —R:
+
3(e) : in(2-<@®)_mi I
x — min(2 ,mmjer,iSPg/s,V [5(;

,e/3)(x)])

If dx (z,2') < min(6(e)(z),d(c)(2")) and f € A, thendx (z,2') < 27°*) anda’ € (;; V;. Let
j € Jy(soj € Jp)andi < Pe/3 v be such thatf € U(fe/?’v €/3,V;). Asz,z’ € V; and
dx(z,2') < min(@(F7>Y /3) (@), 8(£>" 2/3)(a")), we havedy (f(z), f(z')) < 3.2/3 = <.

7

Let us check thad(c) is Balre classone. Iff, B > 0, A < i(¢)(x) < B is equivalent to

Jk{Vji>k x¢ V;}andx €V}
e/3,V;

and{e(z) > —In(B)/In(2)or3j <k z € V;and3 i < Pey3y; S(f; ,e/3)(x) < B}

and{e(z) < —In(4)/In(2) andv j < k = ¢ V; orVi < p_j5p- (/7" 2/3)(x) > A}.
e The last point comes from the continuity ¢fz, .), for eachz € X; this implies thatZC'O'(x) is
compact and containgd(z). O

Counter-example.A similar version of the second of Ascoli's theorem is faisghe sense that there
are some metric spacésandY’, X being compact, and a metrizable compact space

AC[Bi(X,Y),p.c]

which is EBC1 and such that, o, the compact open topology (i.e., the uniform convergeapelt
ogy) and the pointwise convergence topology are differdntleed, we seX := [B;,,o(l1,co)],
A:={G[X/G € B,__}, andY := R. We have seen that is not separable for the uniform conver-
gence topology. So this topology is different drfrom that of pointwise convergence. Nevertheless,
Ais EBCL1. Indeed, the norm topology maké&siniformly equicontinuous, and we just have to apply
Proposition 32. Moreoverd(z) is compact for eachk € X and A is a closed subset oR[X, c.0.]
(we check it in a standard way). A&is metrizable and not separable in this space, it is notivelgt
compact. Therefore, the converse of Proposition 36 is falgeneral.

Corollary 37 Assume thaf{ andY are separable metric spaces and thtis locally compact. If
moreoverA C B;(X,Y), equipped with the compact open topology, is relatively machin Y X,
then A is uniformly recoverable.

Proof. By Proposition 13 page 66 of Chapter 1 in [Bol] and Theoremdef@b of Chapter 9 in
[Bo2], we can apply Propositions 32 and 36, and use Propos22. O
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Remarks. There is another proof of this corollary. Indeed, as in theopof Proposition 36y ¥,
equipped with the compact open topology, is metrizable and- C Bi(X,Y). Thus 4% % is a
metrizable compact space for the compact open topologys ifligiseparable for this topology. Then
we apply Theorem 20.

Let X andY be separable metric spaces. Assume that every closed safbieis a Baire
space, and thatt C YX. If Ais EBC1, thenA C B;(X,Y) and the conditions of Proposition
22 are satisfied, by Proposition 32. The converse of thidsge falo see this, we use the example of
Proposition 27 X := 2, Y :=2etA :={J, {Io\(y(@)}}- By the proof of (1)= (2) in Proposition
22, there exists a finer metrizable separable topologyn 2¢, made ofx9(2«), and making the
{1 (p)}'s open, forp € w. ThusT makes the functions od continuous. But assume thaltis a finer
metrizable separable topology 21, made of£)(2+), and makes! equicontinuous. We would have
Py, ¢ 39([2¥,7']). So we could findv € P, in the closure of’s for 7. If V is a neighborhood of
a for 7/, we could choos@ (p) € V N Py. We would have Tyu, 43 (@) — To )y (¥(p))] = 1.
But this contradicts the equicontinuity of. Then we apply Proposition 32. This also shows the
utility of the assumption of relative compactness in Prams 36 (A is an infinite countable discrete
closed set; so it is not compact, i (2¢, 2) equipped with the compact open topology).
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