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On inverse scattering at high energies for the
multidimensional Newton equation in
electromagnetic field

Alexandre Jollivet

Abstract. We consider the multidimensional (nonrelativistic) Newton equa-
tion in a static electromagnetic field

where V' € C?(R™,R), B(x) is the n x n real antisymmetric matrix with el-
ements B; x(x), B € C*(R",R) (and B satisfies the closure condition), and
8V ()] + 02 Bg(2)] < Byy(1+ Jof) @D for @ € ™, 1 < [ji] < 2,
0<ljo| <1, |jo| = |71]| = 1,4,k =1...n and some a > 1. We give estimates
and asymptotics for scattering solutions and scattering data for the equation
(x) for the case of small angle scattering. We show that at high energies the
velocity valued component of the scattering operator uniquely determines the
X-ray transforms PVV and PB;, (on sufficiently rich sets of straight lines).
Applying results on inversion of the X-ray transform P we obtain that for
n > 2 the velocity valued component of the scattering operator at high ener-
gies uniquely determines (VV, B). We also consider the problem of recovering
(VV, B) from our high energies asymptotics found for the configuration val-
ued component of the scattering operator. Results of the present work were
obtained by developing the inverse scattering approach of [R. Novikov, 1999]
for (%) with B = 0 and of [Jollivet, 2005] for the relativistic version of (x). We
emphasize that there is an interesting difference in asymptotics for scattering
solutions and scattering data for (*) on the one hand and for its relativistic
version on the other.

1 Introduction

1.1 The nonrelativistic Newton equation



Consider the multidimensional Newton equation in an external static elec-
tromagnetic field:

B(t) = F(a(t),2(1) = =VV(2(1)) + B(x(t))z(?), (1.1)
where z(t) € R", &(t) = %(¢), and V € C?*(R",R) and for any z € R", B(x) is

a n X n antisymmetric matrix with elements B, (), B € C*(R™,R), which
satisfy

0B, i, 0By, 0B
7 7 L) = 1.2
k() + 92 0) + S 0) =, (12)
for x = (x1,...,2,) € R" and for l,i,k = 1...n. We also assume throughout

this paper that (V, B) satisfies the following conditions

D2V (@) < Byl +la) ] 2 e RY,
02Bia(@)l < B (L+[a)) 2,z e RY, (14)

for |j1] < 2,]ja| < 1,4,k =1...n and some « > 1 (here j; is the multiindex
Jo= Uty dim) € (NULOP)™ ] = Xo5-; jur and By are positive real
constants).

For equation ([.1)) the energy

B =l + V(a(t) (1.5)

is an integral of motion. Note that the energy F does not depend on B because
the magnetic force B(x)z is orthogonal to the velocity & of the particle.

For n = 3, the equation ([[.I) is the equation in R™ of motion of a nonrela-
tivistic particle of mass m = 1 and charge e = 1 in an external and static elec-
tromagnetic field described by (V, B) (see, for example, Section 17 of [LL2]).
In this equation ([L.T), » denotes the position of the particle, # denotes its
velocity, & denotes its acceleration and ¢ denotes the time.

1.2 Scattering data
Under conditions ([L.3)—([.4), the following is valid (see, for example, [S]
where classical scattering of particles in a short-range electric field is studied,

and see [LT] where classical scattering of particles in a long-range magnetic
field is studied): for any (v_,z_) € R" x R", v_ # 0, the equation ([.1]) has a
unique solution x € C%(R,R") such that

z(t) =v_t+x_ +y_(1), (1.6)

where y_(t) — 0, y_(t) — 0, ast — —oo; in addition for almost any (v_,z_) €
R"™ x R™, v_ # 0,
o(t) = vpt + 2y +y4 (1), (1.7)
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where U4+ 7& 07 Uy = G(U_,$_), Ty = b(U_,l‘_), y+(t) - Oa y-l—(t) - 07 ast —
+00.
The map S : (R"\{0}) x R* — (R™\{0}) x R™ given by the formulas

vy =a(v_,x_), zy =blv_,x_), (1.8)

is called the scattering map for the equation ([[ZI)). In addition, a(v_,z_),
b(v_,z_) are called the scattering data for the equation ([.1]).

By D(S) we denote the set of definition of S ; by R(S) we denote the
range of S (by definition, if (v_,z_) € D(S), then v_ # 0 and a(v_,x_) # 0).

Under the conditions ([.3)—([.4), the map S has the following simple prop-
erties: D(S) is an open set of R” x R™ and Mes((R"™ x R")\D(S)) = 0 for the
Lebesgue measure on R x R"™ ; the map S : D(S) — R(S) is continuous and
preserves the element of volume ; a(v_,x_)? = v?.

IfV(z) =0and B(x) =0, thena(v_,z_) =v_, b(v_,z_)=x_, (v_,x_) €
R™ x R", v_ # 0. Therefore for a(v_,z_), b(v_,z_) we will use the following
representation

a(v_,x_) =v_ + as(v_,x_),

boz ) —a +bu(vz), (o) €DE) (1.9)

We will use the fact that, under the conditions ([.3)—(L.4), the map S is
uniquely determined by its restriction to M(S) = D(S) N M, where

M={(v_,z_) eR" xR"|v_ #0,v_x_ = 0}.

1.3 X-ray transform
Consider

TS™ = {(0,2)0 € S"', 2 € R", 0z = 0},

where S"~! is the unit sphere in R™.
Consider the X-ray transform P which maps each function f with the
properties

feC@®R",R™), |f(z)| = O(z|?), as |z| — oo, for some § > 1,

into a function Pf € C(TS"!,R™) where Pf is defined by

Pfo,z) = m F(t0 + z)dt, (0,2) € TS™ .

—00

Concerning the theory of the X-ray transform, the reader is referred to [R],
[GGG], [Na] and [No].



1.4 Main results of the work

The main results of the present work consist in the small angle scattering
estimates and asymptotics for the scattering data a,. and by (and scattering
solutions) for the equation ([[.T) and in application of these asymptotics and
estimates to inverse scattering for the equation ([L.1) at high energies. Our
main results include, in particular, Theorem 1.1, Proposition 1.1 formulated
below and Theorem 3.1 given in Section 3.

Theorem 1.1. Under conditions ([.3)~([.4), we have

hT asc(s0,x) = Wi1(B,0,x) (1.10)
+o0o
= / B(10 + x)0dr,

and

lim s (asc(s6,x) —Wi1(B,0,x)) = Wis(V, B, 6, x) (1.11)

=—P(VV)(0,x) + /B(T@ + x)(/B(a@ + x)0do)dr

+ Z O (Ql,l,k<‘97 SL’)a cee Ql,n,k(‘gu 1’))
k=1

for (0,x) € TS™t, 0 = (04,...,0,), where

+00 T O
Qi = /VBi,k(fL' +70) 0 / /B(n@ +x)0dndo | dr

for i,k =1...n (o denotes the usual scalar product on R"); in addition, we
have

lim sbs.(s0,z) = Waq1(B, 6, x) (1.12)

§——+00

0 T +o00 400
= / / B(o0 + x)0dodr — / / B(o0 + x)0dodr,
—00 J —00 0 T



lim s (sbs.(s0,x) —

s§—-400

T

W2,1(37 07 l’)) - WQ,Z(‘/) Ba 0, "L‘)

—+00+4-00

// VV (06 + z))dodr — // VV (o8 + z))dodr

—00—00

+ / /B(00+x)

—00—00

—+00+400

_ //B(JGJr:c)

+ Z O (210, 2), ...,

k=1

for (0,z) € TS™', 6 = (6, ..

—00—00

+o00+400

lea

/B(nﬁ + x)0dn | dodr

[e.e]

[ea

/B(n9 + 2)0dn | dodr

[e.9]

QZ,n,k(ea IL‘))

., 0,), where

Qo 1(0,2) //Vszo—Gjo

— OO0 —00

o m

— OO0 —0O0

fori,k=1...n (o denotes the usual scalar product on R").

(1.13)

/ / 29 + x)@dngdm dodt

/ / 7729 + x)@dngdm dodt

Theorem 1.1 gives the first two leading terms of the high energies asymp-
totics of the scattering data. Theorem 1.1 follows from Theorem 3.1 (see (B.10)
and (B.1§)) formulated in Section 3.

Note that Theorem 3.1 (see (B.16) and (B.1§)) also gives the asymptotics
of as., bs., when the parameters o, n, s > 0, 6, x are fixed and the norm £,
decreases to 0 (where [3,, = max(0, 1, 32)), that is Theorem 3.1 also gives
the “Born approximation” for the scattering data at fixed energy when the
electromagnetic field is sufficiently weak.

Proposition 1.1. Under conditions ([.J)—([L.4), the following statements

are valid:

(i) Wi1(B,0,z) given for all (8,z) € TS, uniquely determines B;

1 11(B,0,x), Wio(V, B,0,x) given for a ,T) € " uniquely de-
Wiai(B,0 Wio(V,B,0 f (0 TSt ly d

termine (V, B);



(iii) if n > 3 Wayi(B,0,x), Was(V,B,0,z) giwen for all (§,x) € TS" !,
uniquely determine (V, B);

(iv) if n = 2, then V and B are not uniquely determined by W51(B, 0, ),
Wao(V, B, 0, z) given for all (0,2) € TS* 1.

Proposition 1.1 is proved in Section 3. In particular, the following formula
holds
PBi,k<¢9, SL’) = GkWLl(V, B, 9, .T)Z — GZ-WM(V, B, 9, .I‘)k (114)

for (0,z) € Vi, i,k =1...n, where V; ;, is the n-dimensional smooth manifold

defined by
Vin=1{0,2) e TS" 0, =0,j=1...n,j #1i,j #k}, (1.15)

for i,k =1...n, i # k. (To obtain ([.14) we use the relation 67 + 62 = 1 for
0,2) € Vig, 0= (61,...,0,).)

Using ([.I0), (L.11)), Proposition 1.1 (i) and results on inversion of the
X-ray transform P for n > 2 (see [R], [GGG], [Na], [No]) we obtain that
as. determines uniquely VV and B at high energies. Moreover for n > 2
methods of reconstruction of f from Pf (see [R], [GGG], [Na], [No]) permit to
reconstruct VV and B from the velocity valued component a of the scattering
map at high energies. The formulas ([.12), ([.13) and Proposition 1.1 show
that the first two leading terms of the high energies asymptotics of b, do not
determine uniquely (V, B) when n = 2 but that they uniquely determine (V, B)
when n > 3. Actually, (V, B) can be reconstructed from the first two leading
terms of the high energies asymptotics of by, when n > 3 (see the proof of
Proposition 1.1 given in Section 3).

1.5 Historical remarks

Note that inverse scattering for the classical multidimensional Newton
equation at high energies was first studied by Novikov [No] for B = 0. Novikov
proved, in particular, two formulas which link scattering data at high energies
to the X-ray transform of —VV and V. These formulas are generalized by
formulas ([.10)—([.13) of the present work for the case B # 0.

Developing Novikov’s approach [No], the author also studied the inverse
scattering for the classical relativistic multidimensional Newton equation at
high energies for B = 0 [Jol] and for B # 0 [Jo2]. We emphasize that there is
an interesting difference in asymptotics for scattering solutions and scattering
data for (%) on the one hand and for its relativistic version on the other. Only
the first leading term of the high energies asymptotics for the scattering data
is given in [Jol] and [Jo2]. In [Jo2], both V' and B appear in this leading term.



Note also that for the classical multidimensional Newton equation in a
bounded open strictly convex domain an inverse boundary value problem at
high energies was first studied in [GN].

Concerning the inverse scattering problem for the classical multidimen-
sional Newton equation at fixed energy, we refer the reader to [Nol, [Jo3] and
references given in [No], [Jo3].

Concerning the inverse problem for (1)) in the one-dimensional case, we
can mention the works [Ab], [K], [AFC].

Concerning the inverse scattering problem for a particle in electromagnetic
field (with B # 0 or B = 0) in quantim mechanics, see references given in [Jo2].

1.6 Structure of the paper

Further, our paper is organized as follows. In Section 2 we transform the
differential equation ([L.1]) with initial conditions ([.6) into a system of integral
equations which takes the form (y_,y-) = A, . (y—,9-). Then we study
A, ,_on asuitable space and we give estimates for A, , and for (Avﬂwf)z,
and, in particular, contraction estimates for (A4, ., )? (Lemmas 2.1, 2.2, 2.3,
2.4). In Section 3 we give estimates and asymptotics for the deflection y_(t)
from ([[.6) and for scattering data as.(v_, x_), bs.(v—,z_) from ([.9) (Theorem
3.1). From these estimates and asymptotics the four formulas ([.10)—([.13) will
follow when the parameters 3,,, a, n, v_, x_ are fixed and |v_| increases (where
B, o, n are constants from ([L.3)-(L.4), G = max(Bo, 51, f2); - = v_/|v_|).
In these cases sup |0(t)| decreases, where 6(t) denotes the angle between the
vectors @(t) = v_+9y_(t) and v_, and we deal with small angle scattering. Note
that, under the conditions of Theorem 3.1, without additional assumptions,
there is the estimate sup|0(t)] < 37 and we deal with rather small angle
scattering (concerning the term “small angle scattering” see [No| and Section
20 of [LL1]). In Section 3 we also consider the “Born approximation” of the
scattering data at fixed energy, and we prove Proposition 1.1. In Section 4 we

prove Lemmas 2.1, 2.2, 2.3. In Section 5, we prove Lemma 2.4.

Acknowledgement. This work was fulfilled in the framework of Ph. D. thesis
research under the direction of R.G. Novikov.



2 Contraction maps

If x satisfies the differential equation ([[.1) and the initial conditions ([[.4), then
x satisfies the system of integral equations

x(t) = tv+x+/_ /_T F(xz(s),2(s))dsdr, (2.1)
(t) = v+/_ F(z(s), x(s))ds, (2.2)

for t € R, where F(z, %) = —VV(z) + B(z)%, v_ € R"\{0}.
For y_(t) of ([.g) this system takes the form

(i) = A )0, 23)

where u_() = §_(t) and
A () = (AL (FR0 A, (W0, 2
A e = [ A g 25)

Aﬁ_,x_(f, h)(t) = /t F(x_ +7v_+ f(7),v_ + h(7))dT, (2.6)

— 00

for v_ € R™\{0}.
From (E3), (L3)-(L4) and y_(¢) € C'(R,R"), [y-(t)| + [9-(t)] — 0, as

t — —o0, it follows, in particular, that
(y-(t),9-(t)) € CR,R") x C(R,R")

and [§_ ()] = O(), ly_(t)] = O([t|=*+), as t — —oo, (2.7)

where v_ # 0 and x_ are fixed.
For nonnegative real numbers R and r, consider the complete metric space

My gy = {(f,h) € C(] = 00, T],R") x C(] = 00, T],R") |
sup }If(t) —th(t)] <r sup }Ih(t)l < R}, (2.8)

te]—oo,T te]—oo, T

with the norm ||| defined by

H(f,h)Hoo,szaX( sup | f(t) = th(t)], sup |h(t)\>7 (2.9)

te]—o00,T] t€]—o00,T]



where T' €] — 00, +00] (if T' = +00, | — 00, T] must be replaced by | — o0, +00[)).
From (R.7) it follows that

(y—(t),y—(t)) € My g, for some R and r depending on y_(¢) and 7. (2.10)

Lemma 2.1. Let R> 0,0 <r <1 and let (v_,z_) € R" x R™ be such
that |v_| > V2R, v_x_ = 0. Then under conditions ([-3)~([A), the following

estimates are valid :
sup ]|A3,,x,(f, h) ()] < pra(n, B, v, |z_[, R) (2.11)

te]—oo0,T
2416, (1l 1 /lo_| + VaR)

o~ R+ B+ (]~ Ry

sup ]\Ai_,x_(f, h) () —tAL_ . ()] < pra(n, Br, o o], [o-|, R) (2.12)

te]—oo,T
L MBEL R+ VR
(o~ (5~ P+ 5 (= R

for T <0 and (f,h) € Mrpg,;

sup ]\Ai_,m_(ﬂh)(t)\ < pa(n, Br, e, o, x|, R) (2.13)

te]—oo,T
2°7261y/n(1 + v/n[v_| + VnR)
o — R)(1+ )

9

}SupT] |A11)_,:1:_ (fa h)(t) - tAQQ)_,:B_ (f7 h)(t)| < pl(na ﬁla Q, |'U—|7 |{L‘_|, R) (214)
te|—oo,
_20T26,/n(1 + /njv_| + /nR)
afa— )& — Rp(L+ Bt
for T'>0 and (f,h) € Mr g,
Remark 2.1. Note that for fixed n, 51, a, |x_|, R, we have

p1(n, Br, a, |v_|, |z—|,R) — 0, as |v_| — +o0; (2.15)
2042281

p2<n7617047‘U*|7|x*‘7R)H lz—|\a’
a(1+ W)

as [v_| — +oo (2.16)

(we used (213)-(E.1)).



Lemma 2.2. Let R > 0,0 <r <1 and let (v_,z_) € R" x R" be such
that |v_| > V2R, v_x_ = 0. Then under conditions ([.3)~(C4), for (f1,h),
(f2, ha) € Mr g, the following contraction estimates are valid :

sup [As o (1 ha)(8) = AT, (f2,h2) ()] < A sup [ha(t) — ha(1))]

te]—oo, t€]—o00,T]

+Asr  sup }Ifl(t)—fz(t)—t(hl(t)—hz(t)ﬂ (2.17)

te]—oo,T

sup | (A, (fi,h1) — Ay, (f2,ha)) (t)

te]—o0,T]
(A () = A ) 0 < D s i) = o)
A swp [f1(8) = fat) = t(ha () — ha(t))], (2.18)

for T' <0, where Ay 7, Ao, A3 and Ay are given below by formulas (-27))-

E2);
sup_ A2, (fuh)(t) = A2, (o h2)(D) < s sup[a(t) — ha(t)

te]—o0,T] te]—o00,T]

+A3 sup  |fi(t) = fo(t) — t(ha(t) — ha(t))], (2.19)

te]—o0,T]

sup | (A, (fi.h) — AL, (f2,h2)) (1)

te]—o00,T]
—t (Ao (fr.ln) = AL o (2. h2)) ()] < X e |7 (£) = ha(t)]
+A1 P /1) = fo(t) — t(ha(t) — ha(1))], (2.20)

for T >0, where A1, Ay, A3 and Ay are given below by formulas (R.25).
Lemmas 2.1, 2.2 are proved in Section 4.

Let R>0,0<r <1landlet (v_,z_) € R*xR" be such that [v_| > v2R.
For T' < 0, real constants \; r for i = 1...4, which appear in estimates (Z:17)-
(-18) given in Lemma 2.2, are defined by the following formulas:

2220 (1 + vnjv_| + vnR)

o = R0+ B 4 (I — Ry

>‘17T(n7 B, |U_|, |$—|’ R) = (221)

Bi(5 = R) +28,(1 + V/nlo_| + v/nR)

)\2,T(n7 517 ﬁ27 o, |,U*‘7 ‘SU,|, R) = 2a+1n

(2.22)

10
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22203y (1 + vnlv_| + vnR)

@+ D - RO+ 5+ & - m)

)\3,T(n7 627 «, |'U—|a |ZL‘_|, R) =

(2.23)

Bl — RY 4+ 283,(1 + |+ V/nR

Aar(n, B, Bas |U7‘7‘5€7‘73):2a+1” 1<;/§| ) 25 \/fhlj el )’
a(Z5 — R2(1+ 55 + (25 — R)|T|)°

(2.24)

Real constants A; for i = 1...4, which appear in estimates (2.19)-(R.20) given
in Lemma 2.2, are defined by the following formulas:

a2

a1 P

We define real number Ap(n, 81, B2, «, |v_|,|z_]|, R) by

)\2 5 )\3 - 2)\370, )\4 - 2)\470. (225)

Ar = max(A rAsr + Ao rAsr + As A + )\igm (2.26)
)‘iT + Ardor + Ao dar + Ao AsT),

for T < 0 ; we define positive real number A(n, 81, 52, o, [v_|, |z_|, R) by

A= max()\l)\g + )\2)\3 + )\3)\4 + )\Z, (227)
AT Mz + A d + Ao As).

Remark 2.2. Note that for fixed n, 51, (o, o, |z_|, R, T, we have

Ar(n, B, B, o Jo— |, Ja—|, R) = O(|v—| ™), as [v_| — +o00;

A(n, Bu, B, a, |u_], o], R) = O([v_|~Y), as |v_| — +oo. (2.28)

Taking into account Lemma 2.1, Lemma 2.2, we obtain the following
Corollary 2.1.

Corollary 2.1. Let R>0,0<r <1 and let (v_,z_) € R" x R"™ be such
that |[v_| > V2R, v_x_ = 0. Then under conditions ([.3)-(T:A), the following
statements are valid :

(i) for T < 0, if max(Z2, 222) < 1 then (A,_,_)* is a map from Mr g,
into My g, and (A,_._)* satisfies the following inequality

H(Avf,xf)Q(fla hl) - (Avﬂarf)z(f% h2)||OO,T < )‘TH(fl - f27 hl - hZ)HOO,Ta
(2.29)

for (fi,h1), (f2,h2) € Myg, ;

11



(i) if max(£, £2) < 1 then for T = 400, (A,__)? is a map from Mg g,
into My r, and (A, . )?* satisfies the following inequality

H(Avﬂarf)Q(fla hl) - (Avf,xf)z(f% h2)||OO,T < )‘H(fl - f27 hl - hZ)HOO,Ta
(2.30)

for (fi,h1), (f2, he) € My g,

(Constants pr.1, pra, p1, p2, Ar and A are respectively defined by (R.12), (B.11)),
(£.19). R.13), (22G) and (2.27).)

Taking into account (R.10) and using Lemmas 2.1, 2.2, Corollary 2.1 (see
also (B.2)-(B.4)) and the lemma about the contraction maps we will study the
solution (y_(t),u_(t)) of the equation (2.3) in Mz g,

We will use also the following results (Lemmas 2.3, 2.4).

Lemma 2.3. Let conditions ([.3)—(L.4) be valid. Let R > 0, 0 <r <1
and let (v_,z_) € R® x R™ be such that |v_| > V2R, v_z_ = 0. Assume
max (52, 2t) < 1 where p1, py are respectively defined by ([2.14), (B.13)). Then

the following statements are valid :

Ay o V(R () = koo (fsB)E+ Ly o (fsB) + Hy o (f,R)(E),8 >0,

(2.31)
where (Avﬂg[;f)2 = ([(AU,,J;,)Q]M [(Avf,xf)zb) and
400
() = [P (ot b AL ()0 b A (L)) ds
- (2.32)

s

0
_(f,h) :/ F x +7‘v_+A11}_7m_(f,h)(7'),v_+A3_,x_(f,h)(7'))d7'ds

—00
“+o004-00

_ / /F (vt 7o+ AL (FR) (o + A2, (fR)(r)drds  (2.33)

—+o00+400

Ho oo (fi1)(0) = / /F (r— +ro_ + AL, (FR)(r)u_ + A2 (f.h)(r)) drds,

(2.34)

12



fort >0, (f,h) € Mpg,, T = +00. In addition, the following estimates are
valid :

|kvf,x7(f’h)| S pQ(n,ﬁl,a,|v_|,|x_|,R), (235)
. |lv7,w7(f’h)| S pl(n,ﬁl,a,|v_|,|x_|,R), (236)
[Ho_o_ (f, R)(E)] < C(n, Bry o], |z, B, £) (2.37)
2R VAl |+ VAR)
o5 — R)(1+ 5l + (2 — Ryt
[ Ho_o_ (f; D)) < &(n, Br, o o], [2_|, R, 1) (2.38)

215, /(1 + Vilo_| + ViiR)
oo — D) — R2(1+ 4 (I — Rypjo—s

fort >0, (f,h) € Mpg,, T = +o00; in addition, for (f,h) € My g,, T = 400,
such that (f,h) = A, . (f,h), we have

)

ko_w_(frh) = ko_2_(0,0)] < 611(n, Br, B2, a, |v_], |z_|, R) (2.39)
= (M3 +AD)p2 + (Mds + As\)pr,

oz (fih) =1y 2 (0,0)] < d91(n, By, B2, -], |x_|, R) (2.40)
= (M2 + M) pe + (AT + Aad3)pr,

where Ay, Ao, A3, Ay are defined by (E27).

Lemma 2.3 is proved in Section 4.

Remark 2.3. Note that for fixed n, 51, (2, «, |z_|, R, we have

51,1(”7&17527057 ‘U*|7 |.’IZ‘,‘,R> = O(‘U*‘72)7 as |IU*| - _'_007
52,1(”7&17527057 ‘U*|7 |.’IZ‘,‘,R> = O(‘U*‘_g)u as |IU*| - _'_007

where §;1, i = 1,2, are defined by (£.39)-(2.40) (we used (R.29) and [R.13)-
(£.14))-

Lemma 2.4. Let conditions ([-3)—([4) be valid. Let R > 0, 0 <r <1
and let (v_,z_) € R® x R™ be such that [v_| > V2R, v_x_ = 0. Assume
max(%,2) < 1 where py, py are respectively defined by (.14), (B13). Then
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the following statements are valid:

oo (0,0) = w1 | < Sia(n B, B ol o, B)  (241)
_ 2MVani (L + Vo |)(20° + @ = 2)81(B + 26, + 81 5s)
(- Dae+ DI - B2 B
oo (0,0) =W | < Gaa(n, By, oy oL o | R)  (242)
_ 200503 (2a + 4)B1(282 + Br + Bi1Ba) (1 + /nfv_|)

(o — Da?(a+1) ‘ff|(|f/_§| — R)3(1 + ‘5’3_\/—§|)2a—1

I

where wy,_ . and wa, . are defined below by (B-43) and (B-45).
Lemma 2.4 is proved in Section 5.

Let (v_,z_) € R" x R", v_ # 0. Let 0_ = ﬁ = (01,...,90"). Then
vectors wy, , and wa, . , which appear in (2.41) an (-) are defined by

400
1
Wiy o = /B(T@—i—x YO dT—mP(VV)( x_)dr (2.43)
1 +o0 T
+ﬁ B(to_ +z_) /B(crv +x_)o_do | dr
v_
1 .
+ﬁ 0 Qv z), o, Qv 20)),
U=l
where
+o0 1 T 0o
Qganv_,z //VBM To_ 4o+ E|//B(m§+x)@dndo—
—o0 0 N —00 —00
//B(fr;@—l—x)@dnda dedr, (2.44)
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for i,k =1...n (o denotes the usual scalar product on R"), and

+oo+00
Wy | // ov_ +x_)0_ dO’dT—// oU_ +x_)0_dodT
v_
1 . f . .
+|v E //B(crv_+x_) /B(nv_+:p_)v_dn dodr (2.45)
“+o004-00 o
// oU_ + x_ /B(m}+x)@dn dodr
+|v |QZ FQuap(vo,mo), o, Qv 20))
T +oo+o00
‘U E // VV(eo- +x_ dO’dT—// VV)(ov- + xz_)dodr | ,
where
Q4,i,k(v—7x—) = (246)
0o 71 o m
///VBM ov_ +x_ + ﬁ / /B(ngﬁ + x_)0_dnedmn
—oo—000 a —00—00

o m

o //B(n2@+x)®dn2dn1 dedodr

+oo+o0l o m
€ . .
///VBHg ov_ +x_ + |//B(n2v+x)vdn2dm
g m

o //B(n2@+x)®dn2dn1 dedodr

for i,k =1...n (o denotes the usual scalar product on R™).

3 Small angle scattering and inverse scatter-
ing
3.1 Small angle scattering
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Let the constants from ([23)-([4) (), o and n) and r €]0,1] be fixed,

and let r, be a nonnegative real number and let R be a positive number such

that
20%2\/208n
a(l+ %)a
(see (B.16)). Consider the real numbers z; = z1(n, 51, @, R, 1), 22 = 22(n, By,

R,r,ry) and z3 = z3(n, (1, B, o, R, 1) defined as the roots of the following
equations

R > (3.1)

pl(”a 617 21, Ty, R)

; = 1, 2 > V2R, (3.2)
p2<n7517(2227rm7R) _ 1’ 2y > \/éR, (33)
A<n7617ﬁ27a7z37T17R) = 17 z3 > \/§R7 (34)

where p1, p2 and A are respectively defined by (2.14), (B.13) and (B.27).
Note that from (2.14), (R.13) and (R.27) it follows that

pl(naﬁlaaa SlarxaR) > pl(n7 ﬁl)aa 52, Ty, R)7 for \/éR < 81 < 89,
p2<n7517a7 Slarsz) > p2(n7 ﬁhau 52, Ty, R>7 fOI' \/§R < S1 < S92,
)\(TL, /81,/82,01,81,T$,R) > )\(TL, ﬁlaﬁ?aaa 527T$7R)a for \/§R < 81 < 89;

in addition

p?(na ﬁl,O[,S,Tx,Rl) pz(”) ﬁlaaa 57T$7R2) S
> ,for0< Ry < Ry < —. (3.8
Ry Ry ! ? \/5 ( )

As it was already mentioned in Introduction, under the conditions ([[.3)—
(L4), for any (v_,z_) € R® x R", v_ # 0, the equation ([.I) has a unique
solution z € C*(R,R") with the initial conditions (). Consider the func-
tion y_(¢) from ([.G). This function describes deflection from free motion. Us-
ing Corollary 2.1, the lemma about contraction maps and estimate (2.11) of
Lemma 2.1, and using Lemmas 2.3, 2.4 and the definition of 2, 2o, 23 given

by (B-2)-(B.4), we obtain the following result.

Theorem 3.1. Let conditions ([L.J)—([L.4) be valid. Let x_ € R™ and let 0 <
r<1. Let R >0 and v_ € R" be such that R satisfies (B.1]) (with “r,”= |z_|)
and |v_| > max(zy, z2), |v_| > 23, v_x_ = 0, where z; = z(n, b1, o, R, |x_|),
2o = z9(n, P10, Ryry|x_|) and z3 = 23(n, (1, Po, 0, R, |x_|) are respectively
defined by (B.2), (B:3) and (B.4). Then the deflection y_(t) has the following

properties:
(y,, y*) S MT,R,T fOT T = +00; (39)
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o) < 2Ot viajo | £ vk (3.10)
S B R0 B - Rl

221 B1v/n(1 + Vnju| + vnR)

ly-(8) < . I (3.11)
ala—1)(5 — R+ B

fort <0, in addition,

y_(t) = tasc(v_,x_) + bse(v_, x_) + hy_ o (1), (3.12)
where

|ho_ o ()] < &(n, Br, s Ju-], |z-|, R, t), (3.13)
|hU7,$7(t)| S g(naﬁlaaa|v—|7|x—|’R7t)’ (314)
|a’30<v*7x*>| S p2<n7617a7‘1}*|7|x*‘7R>7 (315>
|ase(v—,2-) —wip o | < 11+ 01, (3.16)
|b80(v—7x—)| S pl(n,ﬁl,a,|v_|,|x_|,R), (317)
‘bsc(’077 .’IZ‘,) - w2,v_,:v_| S 52,1 + 52,27 (318)

fO’I"t Z 0; where 57 g) P2, P1, 51,1, 51,27 52,17 52,27 Wiw_ oz and W y_ . ATE TE-
spectively defined by ([.39), 37), .13), (2.19), (2:39), (2.41), (2.40), (B.42),
(ET3) and (E29).

Theorem 3.1 gives, in particular, estimates for the scattering process and
asymptotics for the velocity valued component of the scattering map when g,

V-

B, m, U_, x_ are fixed (where 0_ = ‘U_‘) and |v_| increases or , e.g. (1, fa, M, V_,

z_ are fixed and |z_| increases. In these cases sup,cp |0(t)| decreases, where 6(t)
denotes the angle between the vectors @(t) = v_ + y_(¢) and v_, and we deal
with small angle scattering. Note that already under the conditions of Theorem
3.1, without additional assumptions, there is the estimate sup,cg |0(¢)] < i7
and we deal with a rather small angle scattering.

Using Theorem 3.1 we can obtain asymptotics and estimates for small an-
gle scattering for functions which are expressed through a(v_, z_) and b(v_, x_)
(e.g. see [No] for the time delay for the case B = 0).

Theorem 3.1 proves Theorem 1.1.

3.2 The “Born approximation” for the scattering data at fized energy

The estimates (B.16) and (B.13) also give the asymptotics of a., bs., when
the parameters R, r, a, n, [v_| > V2R, z_ are fixed and the norm £, de-
creases to 0 (where (3,, = max(0o, 41, 32)). Therefore Theorem 3.1 gives also
the “Born approximation” for the scattering data at fixed energy when the
electromagnetic field is sufficiently weak.
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Let the parameters R, r, a, n, s > V2R, be fixed. Note that for fixed
(0,x) € TS" 1, from (:43), (B:47), it follows that

Wi s — Wisho = O(ﬁé), as By, — 0, fori=1,2. (3.19)

where vectors Wy s o, W2 50,2, are defined by

—+o00
1
W1 50,0 = / B(10 + x)fdr — EP(VV)(Q, x), (3.20)
0 +oo+00
Wason = / /B (00 + z)0dodT — // (00 + z)0dodr (3.21)
0 7 400400
+— /ﬁ VV (o0 + x))dodr — // VV) (o0 + z)dodr

From (B-I9) and (B-10), it follows that the leading term of the “Born approxi-

mation” for as.(s0,z), (0,z) € TS"!, at fixed energy, is given by w1 4.,
From (B.19) and (B.1§), it follows that the leading term of the “Born

approximation” for bs.(s0, z), (0, x) € TS"!, at fixed energy is given by s s .-

Note that
S, . ~
P(VV)(Q,.I’) = _i(wl,se,x + wl,s(fG),m); (322)
+oo 1
[ B0+ 26 = (@10~ 1) (3.23)
0o 7 400400
/ B(o + x) QdadT—// 00+x)0d0d7’-§(w259x+w25( 0)2), (3.24)
0 7 +oo+00 2
// VV)(00+x)dodr — // VV)(00+x)dodr = 5 —(Wa,50,5 — Wa,s(—),2)
) (3.25)

for s > 0, (0,z) € TS" .
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Using (B:22), (B-23), (B:20), (L.I4) and results on inversion of the X-ray
transform (see [R], [GGG], [Na], [No]), we obtain that for n > 2 the electro-

magnetic field (V, B) can be reconstructed from the leading term @, 4, of the
“Born approximation” for a. at fixed energy. We can also prove that V for
n > 2 can be reconstructed from the leading term s 4, of the “Born approxi-
mation” for b, at fixed energy (see (B.25), (B.21), (B.2d)). For n > 3, B can be
reconstructed from the leading term s 49, of the “Born approximation” for
bs. at fixed energy (see (B.24), (B.21)) and [Jo2]). For n = 2 the leading term
Wa 50, Of the “Born approximation” for b,. at fixed energy does not determine
uniquely B (see (B.24)) and, for example, [Jo2]).

3.3 Proof of Proposition 1.1

Now we prove Proposition 1.1 that deals with the reconstruction of the
force field from the high energies asymptotics we found for the scattering data.
The first item of Proposition 1.1 follows from formula ([.14)) and from inversion
formulas for the X-ray transform (see [R], [GGG], [Na], [No]). The second item
follows from the first one and from inversion formulas for the X-ray transform.

We prove the third item. We assume that n > 3. The magnetic field B can
be reconstructed from the vector Wy 1(B, 0, z) given for all (6, x) € TS"! (see
[Jo2]). As B is now known and W o(V, B, 6, z) is given for all (6,z) € TS"!,
from ([.T3) it follows that

—PV(0,z) = /0 /T(—VV(UH + 2))dodr — +/007(>O—VV(00 +2))dodr | 06

(3.26)
is known for all (0, z) € TS" !, where o denotes the usual scalar product on
R™. Hence using also methods of reconstruction of a function from its X-ray
transform (see [R], [GGG], [Na], [No]), we obtain that for n > 3, (V, B) can be
reconstructed from Wy 1(B, 0, z), Wao(V, B,6,x) given for all (6, z) € TS .

We prove the fourth item. Assume that n = 2. We shall prove the existence
of spherical symmetric magnetic fields B; and B, satisfying ([.4) and the
existence of a spherical symmetric potential V' satisfying ([33) such that B; #
By, V #0 and

Wao(V, B1,0,x) = Wa5(0, By, 6, x), (3.27)

for all (f,z) € TS"'. Note that if B is a spherical symmetric magnetic field
satisfying ([[.4), then from ([.13) it follows that W5 1(B,60,2) = 0 for (0, x) €
TS 1.

We denote by C§°(R!,R) the space of infinitely smooth and compactly
supported function from R! to R, where [ > 1. Let x € C5°(R, R) be such that
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X Z 0, suppx CJ0,1[, x(x) >0 for all z € R. (3.28)

Consider the even functions f; € CP(R,R), i = 1,2, given by the following
formulas

fila) = x(q) + x(—q) + €x(q — 4) + eix(—4 — q), for ¢ € R, (3.29)

where €, = 1 and e = —1. Note that using (B.28)-(B.29) we obtain

=f. (3.30)

Using the Gelfand—-Graev-Helgason range characterization of the X-ray
transform on the Schwartz space S(R?) (see [GG], [H]), we obtain that there
exists an unique function Bj, € S(R?) such that

PBiQ(G,q@l) = f}(q), for all # € St, ¢ € R. (3.31)

Note that Bj, € C3°(R? R) since its X-ray transform is compactly supported
on T'S? (see support results going back to [C], [H] for the classical 2-dimensional
X-ray transform).

From (B:31)), it follows that for 7 = 1,2, the Fourier transform FBj, of
the function By, is given by

+o0 +oo -
FBi,(p) = / e PapBl,(p*, qp)dg = / e~IPla f,(q)dq,

[e.e] [e.e]

forpeR2, p#0,p= ﬁ and where 0+ = (0, —0,) for = (61, 0,) € S'. Hence
for i = 1,2, the Fourier transform F BiQ is spherical symmetric. Therefore for
1=1,2, 8{72 is spherical symmetric and we put

By 5(z) = fi(|z]) (3.32)

for any x € R2. We consider the infinitely smooth and compactly supported
magnetic fields B;, ©+ = 1, 2, defined by

i) = £P) | ) g (3.3

From (B:32), (B:31), (B:28)-(B:29), it follows that B; # B,. We also consider
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the potential V € C5°(R?,R) defined by

PV (0,¢0") = (/ / fi(e® 4+ ¢*) (/ i +¢°) dn)dadT
/+oo +oof1(a +¢°%) </ filn —|—q)dn) dO’dT) (3.34)
/ / fo(0® + ¢7) </ fo(n* + ¢ dn)dadT

- /O+OO T+OO fa(o® + ¢%) (/_OO fo(n? + q2)dn) dodr,

for all 0 € S, ¢ € R.
We shall prove (B.37) and (B:37). From (I.13), (B-29) and (B.33)-(B-34), it

follows that

W2,2<‘/7 By, 0, QQL) of) = W2,2(0, By, 0, (JGL) o0 (3-35>

for qc R, 0 e Sl (0 = (91,02) Ql (92, —01))
From (B:39) it follows that V' is spherical symmetric. Hence using also

(L13) and (B-33) we obtain

Wa9(V, B, 0, qgi)oei =2 // ‘S 024 g2 (/ /f1 772 +q )dngdm) dodTt

—00—00

+oo+00 L
d
20 [ L) ( I /fl(wwm)
0 7

o0—00

for 0 € S', g € R. Let € S! and ¢ € R. Integrating by parts (we remind that
f1 is compactly supported), we obtain

0 T M
d
W2,2<V7 Blv 97 qej_) © GJ_ = _2q /T£<S)S=T2+q2 / /fl (775 + q2)d772d771 dr

“+oo T m
d
—2q /Tﬁ(s)sw%q? //fl(ﬁ§+q2)dﬁ2d7ll dr
0 — 00— 00
0 T +o0o T
zq/f1(72+q2) /f1(?72+q2)d77 dr+q /f1(72+q2) /fl(n2+q2)dn dr
e oo 0 o0
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and (B.3d), we obtain
W2,2(V, By, 0, qel) 0ft = W2,2<07 By, 0, qel) 0 f*. (3-37>

Formulas (B:35) and (B:37) prove that Wy o(V, By,6,x) = Wa5(0, By, 6, x) for
all (0,z) € TS'.
Now it remains to prove that V' # 0. Using first polar coordinates and

then using (B.31))-(B-32), we obtain that

—+00

+00 too
fi(s)ds = 2 / () = - ) faPydr =~ [ Ja)da, i = 1.2

) ) ) (3.38)
Note that fj;o f2(q)dqg = 0 and fj;o fi(q)dg = 4]:20 x(q)dg > 0 (we used
B-29), (B:29)). Therefore from (B.3§) it follows that

( O+OO fl(S)ds)2 7 ( O+OO fz(s)ds)Q. (3.39)

Note that for any ¢ € R, 1 = 1,2,
0 T o
/ / fi(e* +¢%) (/ fi(n* + qz)dn) dodt
- —|—c>_oC>O —+o0 - o
—/ filo® +¢%) (/ fin* + qz)dn) dodr
0 T —00
+oo  pH4oo g
— _/ fl-(cr2 + qz) (/ fi(772 + qz)dn) dodr. (3.40)
0 T —0

Assume that V =0, i.e.

0

+o0o0+00 o +o0o+00 a
| [ { fnor+rn | doar = [ [ro+) | [rat + )iy | dodr
0o —O 0o T —O

(3.41)
for all ¢ € R (we used (B-34), (B-40)).
For i = 1,2, we consider the bounded function F; € C*([0, +-00[, R) defined
by

“+00

Fi(s) =— fi(t)dt, for s € R. (3.42)
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Let ¢ € R. Note that by integrating by parts, we obtain

+00+400 +oo
//fza+q /fzn + ¢*)dn dadT—/szT+q /fln +q¢*)dn | dr
0
400
= — / F(m*+ @) fi(7? + ¢*)dr (3.43)

0
for i = 1,2 (we used the equality L F;(72 + ¢%) = 27 f;(% + ¢%)).
From (B-43) and (B-41]) and inversion of the X-ray transform (put g;(z) =
Fi(|z)?) fi(|z[?), = € R?, then Pg,(0,x) = [7° Fi(r* + 2?) fi(r? + a?)dr for
(0,x) € TS'), it follows that

Fi(s)f1(s) = F(s) fa(s), for s € [0, +o0. (3.44)

Using also (B.42) (Fi(s) — 0 as s — +00) and using the equality 2F(s) f1(s) =
%(s), s € R, we obtain that F? = F7. We obtain, in particular, F}(0)* =
F»(0)?, which with (B:42) contradicts (B-39).

Proposition 1.1 is proved. U

Remark 3.1. Note that there do not exist nontrivial spherical symmetric
magnetic fields satisfying ([.4)) (and ([[.)) in dimension n > 3.
Note also that using ([[.13) we obtain

WQ,Z(‘/’ B) 07 l’) - WQ,Z(‘/) _Ba 07 l’)
for (§,z) € TS"! and for (V, B) satisfying ([.3)—(T4).

4 Proof of Lemmas 2.1, 2.2, 2.3

Throughout this Section, we omit index _ for v_ and z_.

4.1 Preliminary estimates
First we prove the following Lemma.

Lemma 4.1.Let (v,x) € R" x R" such that vz = 0 and |v| > V2R. Let
T €] — 00, 400| and let r be a positive real number such that r < 1. Then

fO) < Rlt[+r, (4.1)

()] < R, (4.2)

L+ |z+to+ f(B)] > 1(1+M+(M—R)|t\) (4.3)
Z 3 NoRANG, ;

lv+h@)] < |u|+R (4.4)



for any (f,h) € Mr g, andt <T. Under the conditions ([.3)-(L.4), we have

|F(z,0)] < Biv/n(1 + Valo|)(1 + [z]) 7, (4.5)
[Fa,0) = B0 S nfh s (1 Jo e =)o —2f] (46)
e€l0,1
+nfalr — 2’| sup (1+ |z +e(a’ —2))) (1 + Vnlv +e(v' = v)]),
€€[0,1]

for z, 2/, v,v" € R™.

Proof of Lemma 4.1. Estimates (1)) and (.2) follow immediatly from (2.§).
Estimate (f.4) follows from (f.2). Let (f,h) € My g, andt <T. Asvoz =0,

we obtain 2]

|z + tv >—+\t|

7

o]
4.7
Nk (4.7)
From (7)), (1), it follows that
20+ |z +tv+ fO) =2+ (L + [z +to+ f(1)])
L el [v]

+ |t — R). 4.8
7 (=5 NG ) (48)
Then estimate (f.J) follows from (f.§) and the estimate r < 1.

Estimates ({.5)-({.6) follow from conditions ([.3)-([L.4). O

4.2 Proof of Lemma 2.1
Let (v,2) € R® x R" be fixed such that v oz = 0 and |v| > v2R. Let r
be a positive number such that » < 1.

Let (f,h) € Mrg,. From (R.6), (£.3), (£.3) and (£.4), it follows that

>2+|z+tv|—R|t|—r>2—r

A3 (f ()] < Biv/n /(1 +vnlv+ k(D)) + |z + 710+ f(7)]) " dr

< 2°7181v/n(1 + Vv + VnR) ﬁl + % + (|\f| R)|r])~* " dr, (4.9)

for t < T'. Hence we obtain the following estimates

[v] |z| [v] ’ '
Mﬁ—mu+f+w-wa

—00

A (fh)(1)] <

fort <0,t<T,

2426, a1+ ilo] + ViIR) )

Ay (R )] < oS R+ e
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fort > 0, ¢t <T. Estimates ([L.I0)-({.I1]) prove (B.I1]) and (E.I3).
From (R.5) and ([.10), it follows that
2071 81v/n(1 + v/nfv| + VnR) (4.12)
(B — RR(L+ B+ (B = Rt
215, (14 ol + Vi)
oo~ D — RP(+ E 4 (5L By

for t <0, t <T. Hence from (.19) and ([.13), it follows that

2071 B1v/n(1 + v/nfv| + VnR)

N TR

[t AL (f @) <

Ay (f ()] < (4.13)

AL (f ) (1) =LA L(f, h) (1)) <

fort <0,t<T.
Let t > 0 and t <T. Then from (B.3) and (B.G), it follows that

AL ROt (L 0)O = AL ()0 [ [Flatovt (o). vhio)dodr

(4.15)
Using (I.5), (£.3) and ({.4), we obtain

<

/ot /Tt Fz+71o+ f(7),v+ h(7))dodr

sivin [ [ Vil M)+ o+ o+ fo)) " dodr
< 227 01n(L 4 Vool + VnR)

< . (4.16)
afa— 1) - R)2(1+ et
From (f.13), it follows that
AL (f,h)(0)] < 2l £ Vil £ Vi) (4.17)

oo — 1)(% _R2(1+ %)a_l.
From (I15)-(T7), it follows that

27261v/n(1 + Vnfo| + VnR) (4.18)
oo — 1)(% — R)2(1+ %)aﬂ

Estimates ([14), (EI8) prove (Z12), (Z14). Lemma 2.1 is proved. 0
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4.3 Proof of Lemma 2.2
Let (f1,h1), (f2, h2) € Mr g, From (R.6) and (f.G), it follows that

A2 (f1 ) (1) — AT L (fa, ha) (8)] < (4.19)

t

b /fup (L+ o+ vt +efi(r) + (1 —e) o))" hal7) — ha(7)|dT

€[0,1]

nb, ﬁfl(T) — b)) sup (1+ |2+ vt + 2 fi(7) + (1 — &) fol(r)]) 22

e €€[0,1]
(1 +v/n|v| + vnlhi(7) + e(ha(1) — ha(7))])dr,

for t < T. Note that

|ha(T) = ha(7)] < G]S_upT}IhQ(U) —hi(o)], (4.20)
[f2(T) = A7) < S |f2(0) = fi(0) = o(hi(0) = ha(0))]
+7| E]Sflpﬂm(a) — hi(o)]; (4.21)

for 7 €] — 00, T).
From ([.19)-(E.21)), (E.3) and (B.4), it follows that

|AZ L (f1, h)(t) — A2 ,(fo, ho)(1)]

t

< 20ty !ﬁl /<1 w2 L Ryt s ag1 4 Vil + vaR)

PARRVCRRN
AR
“ Zfl + 05 (5= Rl Tdf} S |hafo) (o)
Lol
+2 n52(1+\/ﬁ\v|+\/ﬁR)/(1+ﬁ+(ﬁ—R\T|)) dr
X sup |fal0) — filo) — o(ha(o) — ha(o) (4.22)

o€]—00,T

(we also use the convexity of Mr g, in order to estimate, for example, |h(7)+
e(ho(1) —hy(7))| for 7 €] —00,T] and ¢ € [0, 1]). Hence we obtain the following
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estimates

AL 2 (fr h)(8) = AL L (fo, ha) (8)] <

51 |v] +2ﬁ2 1+ V| + R
ga+l,, (\|{| R) (x \/:| |+ V) sup |ha(0) — hi(o)]

a(ls = RP(A+ 75+ (5 — Bt od-co)
222y (1 + Vnfv| + VnR)

(a+ 1) - m“+?+¢l Rl

x sup |fa(0) = fi(o) —a(hi(o) — ha(0))],

o€]—00,T)

(4.23)
fort <0,t<T,

| A2 L (f1, ha)(t) — A2, (fo, ho) ()] <

Bi(5 — R) +26,(1 + Vo] + VniR)
o~ RR(+ e Py 12(0) = Fule)

2 o€]—00,T)
L 2Pnfh(1+ y/ajel + ViR)
(a+ 1) — R)(1 + El)ons

xS 1fa(0) = fi(0) = olhu(0) — b)),

m77-']

for t > 0, t <T. Estimates ([.23), (E:24) prove (2.17), (B-1I9).
From ([£.23), it follows that

| Ay (fr ha)(t) — Ay (f2, ha) (1) <

yort, B (L5 )+2ﬁ2(1+f|v|+fR)

2a+2

(4.24)

su hg o) — hl 2
oo~ DL Rp(1 1 B 1 (B Rt aerng " M)
20703, (1 + v/njv| + v/nR)
Do~ 5 5 O
XUE]S}OI:T}\J%( o) = filo) — o(hi(o) — ha(0))], (4.25)
[t A2 L (f1, ha)(t) — A2 (fo, ho) ()| <
(L 21 v R
gatly, <|;|/_ R)+ x( _._\i_‘ [+ Vnh) sup |ha(o) — hy(0)]
ol —RP(L+ B+ (B = Blt) oermom
207205y (1 + v/n|v| + V/nR)
D~ mu+§+¢i R
ngf}£T1|f2( o) = fi(o) = o(hi(o) — ha(0))], (4.26)
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for t <0, ¢t <T. Using (£23)-(£.24), we obtain

|A} L (f1. h)(t) — AL o (fo, ho)(t) — t(AZ L (f1, ha)(t) — A2 (f2, ha)(1))] <

B1 (L —R)+28> (L-y/lo|+/R)
e~ Rp e BByt S Peel—eom) [ha(0) = hulo)] - (4.27)

292085 (1++/nlv|+y/nR) — - —
oz(‘—jQ‘-—RP(l—i—%-l—(%—R)\tDa Supae]—oo,T} ‘fQ(U) fl <0> a(hl (U) h’2(0-))‘7

for t <0, ¢t <T. Estimate (R.18) follows from ([.27).
From ([I7), it follows that

| AL L (fr, b)) () — Ay (f2, he) () — €(AZ (fr, ha) () — A2 L (f2, ha)(1))]
<Ay (f1,71)(0) — A} (f2, h2)(0)] (4.28)

2a+1n

+O/T/|F(x+7'v+f1(7'),v+hl(T)) — F(x 4+ 1v+ fo(7),v + ho(7))|dodT

for t >0, t <T. Using ([.25), we obtain

AL h)(0) = AL (o) O] € 22 sup_[ha(o) — (o))

o€]—00,T

A 12(0) = (o) = 0(h(0) = ha(o)], (4.29)

o€]—00,T
where Ay = A\a(n, f1, B, @, v, |z|, R) and Ay = Ai(n, Ba, a, |v], |z|, R) are de-
fined by (B.2§). From (£.4), (£.3), (£4) and [{.20)-(E.21), it follows that

/0 / |F(x 4 sv+ fi(s),v+ hi(s)) — F(x + sv+ fa(s),v + ha(s))|dsdT

<2 Gup [ha(0) = @)+ 5 s [fu(0) — (o) = oln(0) — ha(o))].
o€]—00,T] o€]—00,T]
(4.30)

fort >0,t<T.
From (f:2§)(E.30), we obtain

Az (fi h)(8) = Ay o (fo, ha)(8) — H(AT L (fi, h) () — AT L (fo, o) (1))

<\ ]S}p . |ha(o) — hi(o)| + M ]SPP . |fo(0) = fi(o) — a(hi(o) — ha(0))],
’ ’ (4.31)
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for t > 0, t <T. Estimate (.20) follows from ({L.31)).

Lemma 2.2 is proved. O

4.4 Proof of Lemma 2.3
Note that using (.15) and (R.4) we obtain

AL (F () = / /F(:c + o0 + (o), 0+ h(o))dodr (4.32)

“+o004-00

_ / /F(x +ov+ f(0), v+ h(o))dodr

+t /F(;U+Tv+f(7),v+h(7))d7+//F(a:+av+f(a),v+h(a))dad7

fort € R and (f,h) € Mrpg,, T = +oo.
Let T' = 4o00. As max(%, %) < 1, using Corollary 2.1 we obtain

Av,m(f/7 h,I) I~ MT,R,T’a fOI' any (fl, h/) € MT,R,T- (433)
Let (f,h) € Mrg,. Using (£.33) and replacing (f, h) by A, .(f, k) in (£32), we
obtain (R.31). Estimates (P.39)-(R.38) follow from (P.32)-(R.34), (£.33), (E.3),

({3) and (E4) (where we replace (f,h) by A,.(f,h)). Note that from (£.32)
and (2.33) (and ([.3)—(L.4)) it follows that

Boal £ ) = Tim A2, (Aua(1', 1) (0), (434)
ool £ 1) = T AL (A 10)(1) = 042 (A (£ H))(0), (435)

for any (f',h') € Mr g,

We prove (B.39). The proof of (B.40) is similar to the proof of (R.39).
Using (I2), () and applying (ETD) (“(fu, ) = Ava(f, h)" and “(fo, hy) =
A, (0,0)”), we obtain

koa(f ) = ko (0,0) < Xy sup AT, (f,R)(8) — A7 ,_(0,0)(t)]

t€]—o00,+o00|
a0 (A () = AL, (0.0) ()
AL (F) -2 (0,0) (). (4.30)

Using (349), (B-19)-(R-20), we obtain
|kvf,m, (fa h) - kv,,m, (0, O)| S ()\2)\3 + )‘421) te}—suer [ |h(t)|

S+ Ash) sup | f(E) — th(t)]. (4.37)

t€]—o0,+00|
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Assume that (f,h) = A, ,(f, h). Then from (B.13)-(B.14), it follows that
|h(t)] < po and |f(t) — th(t)| < py for t € R.

These two latter estimates with (.37) prove (E.39). O

5 Proof of Lemma 2.4

Throughout this Section, we omit index _ for v_ and x_.

We shall prove (.41]). Note that using changes of variables and the equality
B p(x+ov+w) = Bi7k(x+av)+f01 VB, i(r+ov+ew)owde for o € R, w € R”
(where o denotes the usual scalar product on R™), we obtain

+oo +o0 S
Wips = — /VV(SU + x)ds + /B(sv + ) / B(tv + z)vdr | ds
+o00 s T
+ /B sv 4z + / B(ov + z)vdodr | vds.

Therefore, from (2.:33) and (R.§) (we remind that F(z,v) = =VV (z) + B(z)v)
it follows that

4
‘kv,m<07 O) - wl,v,m| S Z Al,i; (51)
i=1
where
+o0
Ay = /}VV(SU + x4 A, ,(0,0)(s)) — VV(sv+ :1:)‘ ds, (5.2)
00 s
Ay — / Blsv+ o + AL, (0,0)(s)) /VV(TU va)dr |ds,  (5.3)
+o0o S
Az = / (B(sv+z+ Azlj,x(O, 0)(s)) — B(sv + 1)) /B(TU + x)vdr || ds,
i (5.4)
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—+00

Ary = / B(sv +x + AL (0,0)(s)) (5.5)

—00

—B|sv+az+ / /B(crv + x)vdodT v|ds.

—0o0—00

We shall estimate each A;;, ¢ = 1...4. First note that using Corollary
2.1 and the inequality max(%,2+) < 1 we obtain, in particular,

Av,x(O, O) c MT7R,T‘7 T = +4o00. (56)

Note also that using ([3)~(T[4) and the estimate |z 4 ov| > 4 7 Tlol g Jo -, 0€R
(we remind that x o v = 0), we obtain

vl
NG

[0l
7

IVV(ov + )| < 51\/_(1+u + |o|—=

V2

&l
NG

) (5.7)

|B(ov + z)v| < Gin|v|(1 + ) (5.8)

+lol—5

for o € R.
We remind that

A1 / / —VV)(ov + s)dodr

/ / (ov + x)vdodr, (5.9)
for s € R.

We shall use the following estimate (5.10): from (5.1)-(5.9), it follows that

|4;.(0,0)(s)] < Biv/n(1 +\/_|U‘)//<1+%+|0\%)aldad7-
(

< v+ vl | [ 1+% ol )

oo—

+|s|/ +—+| \' ‘) a1y

2L+ valel) |2f51f< = VilD 5 )
afa — DL+ et aol(1+ 3
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for s € R.

Using (.3), (6.4) and (E.3), we obtain
IVV(ov+ 2+ A}, (0,0)(0)) — VV (v + z)|

2| Jo] o
<2 (14 Tt (= R)lo) AL O0)(0)] (511

for all o € R.

From (B.2), (6.10), (b.11), it follows that

T R Cam2) g1
M€ n2 s [ (= )AL 0.0)(9)lds
2073032 (20 + o — 2) 81 Ba(1 + /n|v])
(o — Da2(a+ 1) 2 — R2(1+ By
Similarly, by using (5.4) (and by using ([.4) instead of ([[.3)) and (B.§) we

obtain

<

(5.12)

Ay < 2a+2wn%/+w< 1 (2 Ry 2lymemzan0,0)(s))
B3 = \/Q \/— v,z \Us

) ol el e Y
(/< My 1) |\d)d
2074220 + a — 2)n BB (1 + /njv|)

(o= D+ D575 — B2+ )

Using (B3), (L3)-(L4), (E6) and ({.3), we obtain

(5.13)

2. 3/26a+1 e |z| [v]
ALQ S ﬁln 2 B (1+\/§+(\/_ )| |)
PP L. IR O
X</_oo<”f woil d)d

n3/290+3 32
a2 (1 — R)(L+ )

Using (B-3), (p-9), growth property of the elements of B ([.4), and using
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alq € assumption max{(=—, 7 ) > an s , We OoDbtaln
d th ti 222y < 1 and ([C3 btai

—+o00
&ASMWW%/‘l%%H%—ND

(/ / IVV (z + ov)] dadT) ds

+o0o
< |U‘”2a+2ﬁ1ﬁ2/ (1+ % + (|—\/|§ — R)|s|)="*

(/ / 1+ |:v\ v ‘|a|) O‘_ldadT) ds

22‘”3[(204 +a-— 2)ﬁ1ﬁz
0o+ e~ DI — RR(1+ B
Estimate (E-4]]) follows from (p-]]) and (p-12)-(p-14).

We shall prove (£.49). Note that using changes of variables and the equality
Bip(z+ov+w) = Bi,k(a:+av)+f01 VB;i(x+ov+ew)owde foro € R, w € R”
(where o denotes the usual scalar product on R™), we obtain

0 s o m
Wope = //B Ov+$+//B(7)2U+:E)vd772dn1 vdods

(5.14)

+oo+o00 o m
/ /B ov+ 1w+ / / nov + x)vdnedrn, | vdods
/ / ov + ) /B(nv + x)vdn | dodr
+o0+o00 o
— / /B(av + x) /B(nv + z)vdn | dodr
0 — 00
0 s 400400
—l—/ﬁ VV(ov +z)) dads—// VV)(ov + z)dods,

Therefore, from (2.33) and (B.6) (we remind that F(x,v) = —=VV (z) + B(x)v)
it follows that

6
|lv,x(07 0) - w2,v,x| S Z AZ,@‘, (515)
i=1
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where

A9y = //}VV (ov+z+ A, .(0,0)(0)) —VV(ov+x)}dods, (5.16)

—00—00

—+00+400

AQQ—//}VV (ov+az+ AL ,(0,0)(0)) — VV(ou+ )| dods,  (5.17)

g

Npy — U/ Blov+ o + AL (0,0)()) (/VV(nv+:c)dn) dodr (5.18)

[e.e]

7070 ov+ 2+ 4,,(0,0)(0)) (CTVV(nv+x)dn) dodr| .
U/ B(ov+x + A, ,(0,0)(0)) = B(ov + 1)) (/UB(anrx)vdn) dodr

(5.19)
“+o00+400

// B(ov+x + A} ,(0,0)(0)) — B(ov + z)) (]B(nv+x)vd77) dodr|,

— OO

Ny = L/ ( crv+x+A1 ,0)(0)) (5.20)
—B (av +x+ / / B(nav + x)vdngdnl)) vdodr|

—0o0—00

“+o00+409

//( B(ov+ z + A, ,(0,0)(0)) (5.21)
-B <0v+x+ / / B(n2v+a;)vdn2dm)) vdodr| .

—00—00
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We shall estimate each A,; for ¢ = 1...6. From (5.18), (b.I7), (5.10) and
(B-11)) it follows that

B Bon®22°72(20 + 3)(1 + V/nlv])

(o = Da2(a+ DEL(E = Ryp(1 4 Bhor

Using ([.3), (L4), (b.6), (E3) and (B.7) we obtain that

maX(AQ,l, A272) S (522)

(o}

’B(av +x + Ai7m(0, 0)(0)) / (=VV)(nv+ z)dn

—00

<t 2y (1

R)|o])™®

’ [ ol e
X 1+—+—= 7 d 5.23
| S S (5.29
for all o € R. From (b.23) and (B.1§) it follows that
3n3/2 320041

(0 = Da?Bf (B - R+ et

Agz < (5.24)

Using growth properties of B (L[.4), (5.9), (E-3)), and (5.§) we obtain

‘(B(av + a2+ A, ,(0,0)(0)) — Blov + ) (/U B(nv + x)vdn) ‘
< 02515527 (1 + |—\[‘ + (|—\[‘ — R)|o|)™"?|A,,(0,0)(0)]
<[ B By,

for all o € R.
Using also (5.10), we obtain

3n%(2a + 3)37 622 T2V/2(1 + v/n|v))
(a — D (a+ 1)‘\/”‘2_(‘\/”% — R)3(1 + \_521)3%1'

Aoy <

From growth property of B ([L4), and from the inequality max(2, ) < 1,

F9), (L4), (E3) and (p-7), it follows that

(B(ov +x+ A})J(O, 0)(0)) — B(ov+x + / /B(ngv + x)vdngdm)) v

—00—00
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o m
< n3/2ﬁ22a+2|v|(1+% (l/|_ R)|o|)~ //VV(nzv+x)d772d771

o0—00

24 4 g0t l=l \|

<[ S e, (5.26)

for all o € R. Therefore by using (5:20)-(p-2]]) we obtain

A 2 2 G2
25 = (a — 1o (a+ 1)‘\/”‘2_(‘\/”‘2_ — R):2(1+ %)2%1’ '
and +2\/_ 2( )
2975/ 2n° (200 + 3) 5152
Agg < BRIV D~ @31 5 st (5.28)
(0 - Da2(a+ (L — RyP(1+ )

Estimate (R.42) follows from (5.13), (5.22), (5-24), (5.29), (-21) and (5.23). O
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