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Abstract. We consider the multidimensional (nonrelativistic) Newton equation in a static electromagnetic field

ẍ = F (x, ẋ), F (x, ẋ) = -∇V (x) + B(x) ẋ, ẋ = dx dt , x ∈ C 2 (R, R n ), ( * ) 
where V ∈ C 2 (R n , R), B(x) is the n × n real antisymmetric matrix with elements B i,k (x), B i,k ∈ C 1 (R n , R) (and B satisfies the closure condition), and

|∂ j 1 x V (x)| + |∂ j 2 x B i,k (x)| ≤ β |j 1 | (1 + |x|) -(α+|j 1 |) for x ∈ R n , 1 ≤ |j 1 | ≤ 2, 0 ≤ |j 2 | ≤ 1, |j 2 | = |j 1 | -1, i, k = 1 .
. . n and some α > 1. We give estimates and asymptotics for scattering solutions and scattering data for the equation ( * ) for the case of small angle scattering. We show that at high energies the velocity valued component of the scattering operator uniquely determines the X-ray transforms P ∇V and P B i,k (on sufficiently rich sets of straight lines). Applying results on inversion of the X-ray transform P we obtain that for n ≥ 2 the velocity valued component of the scattering operator at high energies uniquely determines (∇V, B). We also consider the problem of recovering (∇V, B) from our high energies asymptotics found for the configuration valued component of the scattering operator. Results of the present work were obtained by developing the inverse scattering approach of [R. Novikov, 1999] for ( * ) with B ≡ 0 and of [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF] for the relativistic version of ( * ). We emphasize that there is an interesting difference in asymptotics for scattering solutions and scattering data for ( * ) on the one hand and for its relativistic version on the other.

Introduction

1.1 The nonrelativistic Newton equation 1 Consider the multidimensional Newton equation in an external static electromagnetic field: ẍ(t) = F (x(t), ẋ(t)) = -∇V (x(t)) + B(x(t)) ẋ(t),

(1.1) where x(t) ∈ R n , ẋ(t) = dx dt (t), and V ∈ C 2 (R n , R) and for any x ∈ R n , B(x) is a n × n antisymmetric matrix with elements B i,k (x), B i,k ∈ C 1 (R n , R), which satisfy ∂B i,k ∂x l (x) + ∂B l,i ∂x k (x) + ∂B k,l ∂x i (x) = 0, (1.2) for x = (x 1 , . . . , x n ) ∈ R n and for l, i, k = 1 . . . n. We also assume throughout this paper that (V, B) satisfies the following conditions (1.4) for |j 1 | ≤ 2, |j 2 | ≤ 1, i, k = 1 . . . n and some α > 1 (here j l is the multiindex j l = (j l,1 , . . . , j l,n ) ∈ (N ∪ {0}) n , |j l | = n k=1 j l,k and β |j l | are positive real constants).

|∂ j 1 x V (x)| ≤ β |j 1 | (1 + |x|) -α-|j 1 | , x ∈ R n , (1.3) |∂ j 2 x B i,k (x)| ≤ β |j 2 |+1 (1 + |x|) -α-1-|j 2 | , x ∈ R n ,
For equation (1.1) the energy

E = 1 2 | ẋ(t)| 2 + V (x(t)) (1.5)
is an integral of motion. Note that the energy E does not depend on B because the magnetic force B(x) ẋ is orthogonal to the velocity ẋ of the particle.

For n = 3, the equation (1.1) is the equation in R n of motion of a nonrelativistic particle of mass m = 1 and charge e = 1 in an external and static electromagnetic field described by (V, B) (see, for example, Section 17 of [START_REF] Landau | The Classical Theory of Fields[END_REF]). In this equation (1.1), x denotes the position of the particle, ẋ denotes its velocity, ẍ denotes its acceleration and t denotes the time.

Scattering data

Under conditions (1.3)-(1.4), the following is valid (see, for example, [S] where classical scattering of particles in a short-range electric field is studied, and see [LT] where classical scattering of particles in a long-range magnetic field is studied): for any (v -, x -) ∈ R n × R n , v -= 0, the equation (1.1) has a unique solution x ∈ C 2 (R, R n ) such that

x(t) = v -t + x -+ y -(t), (1.6)
where ẏ-(t) → 0, y -(t) → 0, as t → -∞; in addition for almost any (v -, x -) ∈ R n × R n , v -= 0, x(t) = v + t + x + + y + (t), (1.7)

where v + = 0, v + = a(v -, x -), x + = b(v -, x -), ẏ+ (t) → 0, y + (t) → 0, as t → +∞.

The map S : (R n \{0}) × R n → (R n \{0}) × R n given by the formulas

v + = a(v -, x -), x + = b(v -, x -), (1.8)
is called the scattering map for the equation (1.1). In addition, a(v -, x -), b(v -, x -) are called the scattering data for the equation (1.1). By D (S) we denote the set of definition of S ; by R (S) we denote the range of S (by definition, if (v -, x -) ∈ D (S), then v -= 0 and a(v -, x -) = 0).

Under the conditions (1.3)-(1.4), the map S has the following simple properties: D (S) is an open set of R n × R n and Mes((R n × R n )\D(S)) = 0 for the Lebesgue measure on R n × R n ; the map S : D(S) → R (S) is continuous and preserves the element of volume ; a(v -, x - S).

) 2 = v 2 -. If V (x) ≡ 0 and B(x) ≡ 0, then a(v -, x -) = v -, b(v -, x -) = x -, (v -, x -) ∈ R n × R n , v -= 0. Therefore for a(v -, x -), b(v -, x -) we will use the following representation a(v -, x -) = v -+ a sc (v -, x -), b(v -, x -) = x -+ b sc (v -, x -), (v -, x -) ∈ D(
(1.9)

We will use the fact that, under the conditions (1.3)-(1.4), the map S is uniquely determined by its restriction to M(S) = D(S) ∩ M, where

M = {(v -, x -) ∈ R n × R n |v -= 0, v -x -= 0}.

X-ray transform

Consider

T S n-1 = {(θ, x)|θ ∈ S n-1 , x ∈ R n , θx = 0},
where S n-1 is the unit sphere in R n . Consider the X-ray transform P which maps each function f with the properties

f ∈ C(R n , R m ), |f (x)| = O(|x| -β ), as |x| → ∞, for some β > 1, into a function P f ∈ C(T S n-1 , R m ) where P f is defined by P f (θ, x) = +∞ -∞ f (tθ + x)dt, (θ, x) ∈ T S n-1 .
Concerning the theory of the X-ray transform, the reader is referred to [R], [GGG], [Na] and [No].

Main results of the work

The main results of the present work consist in the small angle scattering estimates and asymptotics for the scattering data a sc and b sc (and scattering solutions) for the equation (1.1) and in application of these asymptotics and estimates to inverse scattering for the equation (1.1) at high energies. Our main results include, in particular, Theorem 1.1, Proposition 1.1 formulated below and Theorem 3.1 given in Section 3.

Theorem 1.1. Under conditions (1.3)-(1.4), we have lim s→+∞ a sc (sθ, x) = W 1,1 (B, θ, x) (1.10) = +∞ -∞ B(τ θ + x)θdτ, and 
lim s→+∞ s (a sc (sθ, x) -W 1,1 (B, θ, x)) = W 1,2 (V, B, θ, x) (1.11) = -P (∇V )(θ, x) + +∞ -∞ B(τ θ + x)( τ -∞ B(σθ + x)θdσ)dτ + n k=1 θ k (Ω 1,1,k (θ, x), . . . , Ω 1,n,k (θ, x)) for (θ, x) ∈ T S n-1 , θ = (θ 1 , . . . , θ n ),
where

Ω 1,i,k = +∞ -∞ ∇B i,k (x + τ θ) •   τ -∞ σ -∞ B(ηθ + x)θdηdσ   dτ
for i, k = 1 . . . n (• denotes the usual scalar product on R n ); in addition, we have

lim s→+∞ sb sc (sθ, x) = W 2,1 (B, θ, x) (1.12) = 0 -∞ τ -∞ B(σθ + x)θdσdτ - +∞ 0 +∞ τ B(σθ + x)θdσdτ, lim s→+∞ s (sb sc (sθ, x) -W 2,1 (B, θ, x)) = W 2,2 (V, B, θ, x) (1.13) = 0 -∞ τ -∞ (-∇V (σθ + x))dσdτ - +∞ 0 +∞ τ (-∇V (σθ + x))dσdτ + 0 -∞ τ -∞ B(σθ + x)   σ -∞ B(ηθ + x)θdη   dσdτ - +∞ 0 +∞ τ B(σθ + x)   σ -∞ B(ηθ + x)θdη   dσdτ + n k=1 θ k (Ω 2,1,k (θ, x), . . . , Ω 2,n,k (θ, x)) for (θ, x) ∈ T S n-1 , θ = (θ 1 , . . . , θ n ),
where

Ω 2,i,k (θ, x) = 0 -∞ τ -∞ ∇B i,k (σθ + x) •   σ -∞ η 1 -∞ B(η 2 θ + x)θdη 2 dη 1   dσdτ - +∞ 0 +∞ τ ∇B i,k (σθ + x) •   σ -∞ η 1 -∞ B(η 2 θ + x)θdη 2 dη 1   dσdτ for i, k = 1 . . . n (• denotes the usual scalar product on R n ).
Theorem 1.1 gives the first two leading terms of the high energies asymptotics of the scattering data. Theorem 1.1 follows from Theorem 3.1 (see (3.16) and (3.18)) formulated in Section 3.

Note that Theorem 3.1 (see (3.16) and (3.18)) also gives the asymptotics of a sc , b sc , when the parameters α, n, s > 0, θ, x are fixed and the norm β m decreases to 0 (where β m = max(β 0 , β 1 , β 2 )), that is Theorem 3.1 also gives the "Born approximation" for the scattering data at fixed energy when the electromagnetic field is sufficiently weak.

Proposition 1.1. Under conditions (1.3)-(1.4), the following statements are valid: , θ, x) given for all (θ, x) ∈ T S n-1 , uniquely determine (V, B);

(i) W 1,1 (B, θ, x) given for all (θ, x) ∈ T S n-1 , uniquely determines B; (ii) W 1,1 (B, θ, x), W 1,2 (V, B, θ, x) given for all (θ, x) ∈ T S n-1 , uniquely de- termine (V, B); (iii) if n ≥ 3 W 2,1 (B, θ, x), W 2,2 (V, B
(iv) if n = 2, then V and B are not uniquely determined by W 2,1 (B, θ, x), W 2,2 (V, B, θ, x) given for all (θ, x) ∈ T S n-1 .

Proposition 1.1 is proved in Section 3. In particular, the following formula holds

P B i,k (θ, x) = θ k W 1,1 (V, B, θ, x) i -θ i W 1,1 (V, B, θ, x) k (1.14) for (θ, x) ∈ V i,k , i, k = 1 . . . n, where V i,k is the n-dimensional smooth manifold defined by V i,k = {(θ, x) ∈ T S n-1 |θ j = 0, j = 1 . . . n, j = i, j = k}, (1.15) for i, k = 1 . . . n, i = k. (To obtain (1.14) we use the relation θ 2 i + θ 2 k = 1 for (θ, x) ∈ V i,k , θ = (θ 1 , . . . , θ n ).)
Using (1.10), (1.11), Proposition 1.1 (i) and results on inversion of the X-ray transform P for n ≥ 2 (see [R], [GGG], [Na], [No]) we obtain that a sc determines uniquely ∇V and B at high energies. Moreover for n ≥ 2 methods of reconstruction of f from P f (see [R], [GGG], [Na], [No]) permit to reconstruct ∇V and B from the velocity valued component a of the scattering map at high energies. The formulas (1.12), (1.13) and Proposition 1.1 show that the first two leading terms of the high energies asymptotics of b sc do not determine uniquely (V, B) when n = 2 but that they uniquely determine (V, B) when n ≥ 3. Actually, (V, B) can be reconstructed from the first two leading terms of the high energies asymptotics of b sc when n ≥ 3 (see the proof of Proposition 1.1 given in Section 3).

Historical remarks

Note that inverse scattering for the classical multidimensional Newton equation at high energies was first studied by Novikov [No] for B ≡ 0. Novikov proved, in particular, two formulas which link scattering data at high energies to the X-ray transform of -∇V and V . These formulas are generalized by formulas (1.10)-(1.13) of the present work for the case B ≡ 0. Developing Novikov's approach [No], the author also studied the inverse scattering for the classical relativistic multidimensional Newton equation at high energies for B ≡ 0 [START_REF] Jollivet | On inverse scattering for the multidimensional relativistic Newton equation at high energies[END_REF] and for B ≡ 0 [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF]. We emphasize that there is an interesting difference in asymptotics for scattering solutions and scattering data for ( * ) on the one hand and for its relativistic version on the other. Only the first leading term of the high energies asymptotics for the scattering data is given in [START_REF] Jollivet | On inverse scattering for the multidimensional relativistic Newton equation at high energies[END_REF] and [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF]. In [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF], both V and B appear in this leading term.

Note also that for the classical multidimensional Newton equation in a bounded open strictly convex domain an inverse boundary value problem at high energies was first studied in [GN].

Concerning the inverse scattering problem for the classical multidimensional Newton equation at fixed energy, we refer the reader to [No], [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF] and references given in [No], [START_REF] Jollivet | On inverse problems in electromagnetic field in classical mechanics at fixed energy[END_REF].

Concerning the inverse problem for (1.1) in the one-dimensional case, we can mention the works [Ab], [K], [AFC].

Concerning the inverse scattering problem for a particle in electromagnetic field (with B ≡ 0 or B ≡ 0) in quantim mechanics, see references given in [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF].

Structure of the paper

Further, our paper is organized as follows. In Section 2 we transform the differential equation (1.1) with initial conditions (1.6) into a system of integral equations which takes the form (y -, ẏ-) = A v -,x -(y -, ẏ-). Then we study A v -,x -on a suitable space and we give estimates for A v -,x -and for (A v -,x -) 2 , and, in particular, contraction estimates for (A v -,x -) 2 (Lemmas 2.1, 2.2, 2.3, 2.4). In Section 3 we give estimates and asymptotics for the deflection y -(t) from (1.6) and for scattering data a sc (v -, x -), b sc (v -, x -) from (1.9) (Theorem 3.1). From these estimates and asymptotics the four formulas (1.10)-(1.13) will follow when the parameters β m , α, n, v-, x -are fixed and |v -| increases (where

β |j| , α, n are constants from (1.3)-(1.4), β m = max(β 0 , β 1 , β 2 ); v-= v -/|v -|).
In these cases sup |θ(t)| decreases, where θ(t) denotes the angle between the vectors ẋ(t) = v -+ ẏ-(t) and v -, and we deal with small angle scattering. Note that, under the conditions of Theorem 3.1, without additional assumptions, there is the estimate sup |θ(t)| < 1 4 π and we deal with rather small angle scattering (concerning the term "small angle scattering" see [No] and Section 20 of [START_REF] Landau | Mechanics[END_REF]). In Section 3 we also consider the "Born approximation" of the scattering data at fixed energy, and we prove Proposition 1.1. In Section 4 we prove Lemmas 2.1, 2.2, 2.3. In Section 5, we prove Lemma 2.4.

Contraction maps

If x satisfies the differential equation (1.1) and the initial conditions (1.6), then x satisfies the system of integral equations

x(t) = tv -+ x -+ t -∞ τ -∞ F (x(s), ẋ(s))dsdτ, (2.1) ẋ(t) = v -+ t -∞ F (x(s), ẋ(s))ds, (2.2) for t ∈ R, where F (x, ẋ) = -∇V (x) + B(x) ẋ, v -∈ R n \{0}.
For y -(t) of (1.6) this system takes the form

(y -, u -) = A v -,x -(y -, u -)(t), (2.3)
where u -(t) = ẏ-(t) and

A v -,x -(f, h)(t) = (A 1 v -,x -(f, h)(t), A 2 v -,x -(f, h)(t)), (2.4) 
A 1 v -,x -(f, h)(t) = t -∞ A 2 v -,x -(f, h)(τ )dτ, (2.5) A 2 v -,x -(f, h)(t) = t -∞ F (x -+ τ v -+ f (τ ), v -+ h(τ ))dτ, (2.6) for v -∈ R n \{0}. From (2.3), (1.3)-(1.4) and y -(t) ∈ C 1 (R, R n ), |y -(t)| + | ẏ-(t)| → 0, as t → -∞, it follows, in particular, that (y -(t), ẏ-(t)) ∈ C(R, R n ) × C(R, R n ) and | ẏ-(t)| = O(|t| -α ), |y -(t)| = O(|t| -α+1 ), as t → -∞, (2.7) 
where v -= 0 and x -are fixed.

For nonnegative real numbers R and r, consider the complete metric space

M T,R,r = {(f, h) ∈ C(] -∞, T ], R n ) × C(] -∞, T ], R n ) | sup t∈]-∞,T ] |f (t) -th(t)| ≤ r, sup t∈]-∞,T ] |h(t)| ≤ R}, (2.8) with the norm . ∞,T defined by (f, h) ∞,T = max sup t∈]-∞,T ] |f (t) -th(t)|, sup t∈]-∞,T ] |h(t)| , (2.9) where T ∈]-∞, +∞] (if T = +∞, ]-∞, T ] must be replaced by ]-∞, +∞[)). From (2.7) it follows that (y -(t), ẏ-(t)) ∈ M T,R,r
for some R and r depending on y -(t) and T. (2.10)

Lemma 2.1. Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n × R n be such that |v -| > √ 2R, v -x -= 0. Then under conditions (1.3)-(1.4
), the following estimates are valid :

sup t∈]-∞,T ] |A 2 v -,x -(f, h)(t)| ≤ ρ T,2 (n, β 1 , α, |v -|, |x -|, R) (2.11) = 2 α+1 β 1 √ n(1 + √ n|v -| + √ nR) α( |v -| √ 2 -R)(1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α , sup t∈]-∞,T ] |A 1 v -,x -(f, h)(t) -tA 2 v -,x -(f, h)(t)| ≤ ρ T,1 (n, β 1 , α, |v -|, |x -|, R) (2.12) = 2 α+1 β 1 √ n(1 + √ n|v -| + √ nR) (α -1)( |v -| √ 2 -R) 2 (1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α-1 , for T ≤ 0 and (f, h) ∈ M T,R,r ; sup t∈]-∞,T ] |A 2 v -,x -(f, h)(t)| ≤ ρ 2 (n, β 1 , α, |v -|, |x -|, R) (2.13) = 2 α+2 β 1 √ n(1 + √ n|v -| + √ nR) α( |v -| √ 2 -R)(1 + |x -| √ 2 ) α , sup t∈]-∞,T ] |A 1 v -,x -(f, h)(t) -tA 2 v -,x -(f, h)(t)| ≤ ρ 1 (n, β 1 , α, |v -|, |x -|, R) (2.14) = 2 α+2 β 1 √ n(1 + √ n|v -| + √ nR) α(α -1)( |v -| √ 2 -R) 2 (1 + |x -| √ 2 ) α-1 . for T ≥ 0 and (f, h) ∈ M T,R,r . Remark 2.1. Note that for fixed n, β 1 , α, |x -|, R, we have ρ 1 (n, β 1 , α, |v -|, |x -|, R) → 0, as |v -| → +∞; (2.15) ρ 2 (n, β 1 , α, |v -|, |x -|, R) → 2 α+2 √ 2β 1 n α(1 + |x -| √ 2 ) α , as |v -| → +∞ (2.16) (we used (2.13)-(2.14)). Lemma 2.2. Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n × R n be such that |v -| > √ 2R, v -x -= 0. Then under conditions (1.3)-(1.4), for (f 1 , h 1 ), (f 2 , h 2 ) ∈ M T,R,
r , the following contraction estimates are valid :

sup t∈]-∞,T ] |A 2 v -,x -(f 1 , h 1 )(t) -A 2 v -,x -(f 2 , h 2 )(t)| ≤ λ 4,T sup t∈]-∞,T ] |h 1 (t) -h 2 (t)| +λ 3,T sup t∈]-∞,T ] |f 1 (t) -f 2 (t) -t(h 1 (t) -h 2 (t))| (2.17) sup t∈]-∞,T ] | A 1 v -,x -(f 1 , h 1 ) -A 1 v -,x -(f 2 , h 2 ) (t) -t A 2 v -,x -(f 1 , h 1 ) -A 2 v -,x -(f 2 , h 2 ) (t)| ≤ λ 2,T sup t∈]-∞,T ] |h 1 (t) -h 2 (t)| +λ 1,T sup t∈]-∞,T ] |f 1 (t) -f 2 (t) -t(h 1 (t) -h 2 (t))|, (2.18)
for T ≤ 0, where λ 1,T , λ 2,T , λ 3,T and λ 4,T are given below by formulas

(2.21)- (2.24); sup t∈]-∞,T ] |A 2 v -,x -(f 1 , h 1 )(t) -A 2 v -,x -(f 2 , h 2 )(t)| ≤ λ 4 sup t∈]-∞,T ] |h 1 (t) -h 2 (t)| +λ 3 sup t∈]-∞,T ] |f 1 (t) -f 2 (t) -t(h 1 (t) -h 2 (t))|, (2.19) sup t∈]-∞,T ] | A 1 v -,x -(f 1 , h 1 ) -A 1 v -,x -(f 2 , h 2 ) (t) -t A 2 v -,x -(f 1 , h 1 ) -A 2 v -,x -(f 2 , h 2 ) (t)| ≤ λ 2 sup t∈]-∞,T ] |h 1 (t) -h 2 (t)| +λ 1 sup t∈]-∞,T ] |f 1 (t) -f 2 (t) -t(h 1 (t) -h 2 (t))|, (2.20)
for T ≥ 0, where λ 1 , λ 2 , λ 3 and λ 4 are given below by formulas (2.25).

Lemmas 2.1, 2.2 are proved in Section 4.

Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n ×R n be such that |v -| > √ 2R.
For T ≤ 0, real constants λ i,T for i = 1 . . . 4, which appear in estimates (2.17)-(2.18) given in Lemma 2.2, are defined by the following formulas:

λ 1,T (n, β 2 , α, |v -|, |x -|, R) = 2 α+2 nβ 2 (1 + √ n|v -| + √ nR) α( |v -| √ 2 -R) 2 (1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α , (2.21) λ 2,T (n, β 1 , β 2 , α, |v -|, |x -|, R) = 2 α+1 n β 1 ( |v -| √ 2 -R) + 2β 2 (1 + √ n|v -| + √ nR) (α -1)( |v -| √ 2 -R) 3 (1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α-1 , (2.22) λ 3,T (n, β 2 , α, |v -|, |x -|, R) = 2 α+2 nβ 2 (1 + √ n|v -| + √ nR) (α + 1)( |v -| √ 2 -R)(1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α+1 , (2.23) λ 4,T (n, β 1 , β 2 , α, |v -|, |x -|, R) = 2 α+1 n β 1 ( |v -| √ 2 -R) + 2β 2 (1 + √ n|v -| + √ nR) α( |v -| √ 2 -R) 2 (1 + |x -| √ 2 + ( |v -| √ 2 -R)|T |) α ,
(2.24) Real constants λ i for i = 1 . . . 4, which appear in estimates (2.19)-(2.20) given in Lemma 2.2, are defined by the following formulas:

λ 1 = 2λ 1,0 α + 1 , λ 2 = 2λ 2,0 α , λ 3 = 2λ 3,0 , λ 4 = 2λ 4,0 .
(2.25)

We define real number λ T (n,

β 1 , β 2 , α, |v -|, |x -|, R) by λ T = max(λ 1,T λ 3,T + λ 2,T λ 3,T + λ 3,T λ 4,T + λ 2 4,T , (2.26) 
λ 2 1,T + λ 1,T λ 2,T + λ 2,T λ 4,T + λ 2,T λ 3,T ), for T ≤ 0 ; we define positive real number λ(n, β 1 , β 2 , α, |v -|, |x -|, R) by λ = max(λ 1 λ 3 + λ 2 λ 3 + λ 3 λ 4 + λ 2 4 , (2.27) λ 2 1 + λ 1 λ 2 + λ 2 λ 4 + λ 2 λ 3 ).
Remark 2.2. Note that for fixed n, β 1 , β 2 , α, |x -|, R, T , we have

λ T (n, β 1 , β 2 , α, |v -|, |x -|, R) = O(|v -| -1 ), as |v -| → +∞; λ(n, β 1 , β 2 , α, |v -|, |x -|, R) = O(|v -| -1 ), as |v -| → +∞.
(2.28)

Taking into account Lemma 2.1, Lemma 2.2, we obtain the following Corollary 2.1.

Corollary 2.1. Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n × R n be such that |v -| > √ 2R, v -x -= 0.
Then under conditions (1.3)-(1.4), the following statements are valid :

(i) for T ≤ 0, if max( ρ T,1 r , ρ T,2 R ) ≤ 1 then (A v -,x -) 2 is a map from M T,R,r into M T,R,r and (A v -,x -) 2 satisfies the following inequality (A v -,x -) 2 (f 1 , h 1 ) -(A v -,x -) 2 (f 2 , h 2 ) ∞,T ≤ λ T (f 1 -f 2 , h 1 -h 2 ) ∞,T , (2.29) for (f 1 , h 1 ), (f 2 , h 2 ) ∈ M T,R,r ; (ii) if max( ρ 1 r , ρ 2 R ) ≤ 1 then for T = +∞, (A v -,x -) 2 is a map from M T,R,r into M T,R,r and (A v -,x -) 2 satisfies the following inequality (A v -,x -) 2 (f 1 , h 1 ) -(A v -,x -) 2 (f 2 , h 2 ) ∞,T ≤ λ (f 1 -f 2 , h 1 -h 2 ) ∞,T , (2.30) for (f 1 , h 1 ), (f 2 , h 2 ) ∈ M T,R,r .
(Constants ρ T,1 , ρ T,2 , ρ 1 , ρ 2 , λ T and λ are respectively defined by (2.12), (2.11), (2.14), (2.13), (2.26) and (2.27).)

Taking into account (2.10) and using Lemmas 2.1, 2.2, Corollary 2.1 (see also (3.2)-(3.4)) and the lemma about the contraction maps we will study the solution (y

-(t), u -(t)) of the equation (2.3) in M T,R,r .
We will use also the following results (Lemmas 2.3, 2.4).

Lemma 2.3. Let conditions (1.3)-(1.4) be valid. Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n × R n be such that |v -| > √ 2R, v -x -= 0. Assume max( ρ 2 R , ρ 1 r ) ≤ 1
where ρ 1 , ρ 2 are respectively defined by (2.14), (2.13). Then the following statements are valid :

[ A v -,x - 2 ] 1 (f, h)(t) = k v -,x -(f, h)t + l v -,x -(f, h) + H v -,x -(f, h)(t), t ≥ 0, (2.31) where A v -,x - 2 = ([ A v -,x - 2 ] 1 , [ A v -,x - 2 ] 2 ) and k v -,x -(f, h) = +∞ -∞ F x -+ sv -+ A 1 v -,x -(f, h)(s), v -+ A 2 v -,x -(f, h)(s) ds,
(2.32)

l v -,x -(f, h) = 0 -∞ s -∞ F x -+ τ v -+ A 1 v -,x -(f, h)(τ ), v -+ A 2 v -,x -(f, h)(τ ) dτ ds - +∞ 0 +∞ s F x -+ τ v -+ A 1 v -,x -(f, h)(τ ), v -+ A 2 v -,x -(f, h)(τ ) dτ ds (2.33) H v -,x -(f, h)(t) = +∞ t +∞ τ F x -+ τ v -+ A 1 v -,x -(f, h)(τ ), v -+ A 2 v -,x -(f, h)(τ ) dτ ds,
(2.34)

for t ≥ 0, (f, h) ∈ M T,R,r , T = +∞.
In addition, the following estimates are valid :

|k v -,x -(f, h)| ≤ ρ 2 (n, β 1 , α, |v -|, |x -|, R), (2.35) |l v -,x -(f, h)| ≤ ρ 1 (n, β 1 , α, |v -|, |x -|, R), (2.36) | Ḣv -,x -(f, h)(t)| ≤ ζ(n, β 1 , α, |v -|, |x -|, R, t) (2.37) = 2 α+1 β 1 √ n(1 + √ n|v -| + √ nR) α( |v -| √ 2 -R)(1 + |x -| √ 2 + ( |v -| √ 2 -R)t) α , |H v -,x -(f, h)(t)| ≤ ξ(n, β 1 , α, |v -|, |x -|, R, t) (2.38) = 2 α+1 β 1 √ n(1 + √ n|v -| + √ nR) α(α -1)( |v -| √ 2 -R) 2 (1 + |x -| √ 2 + ( |v -| √ 2 -R)t) α-1 , for t ≥ 0, (f, h) ∈ M T,R,r , T = +∞; in addition, for (f, h) ∈ M T,R,r , T = +∞, such that (f, h) = A v -,x -(f, h), we have |k v -,x -(f, h) -k v -,x -(0, 0)| ≤ δ 1,1 (n, β 1 , β 2 , α, |v -|, |x -|, R) (2.39) = (λ 2 λ 3 + λ 2 4 )ρ 2 + (λ 1 λ 3 + λ 3 λ 4 )ρ 1 , |l v -,x -(f, h) -l v -,x -(0, 0)| ≤ δ 2,1 (n, β 1 , β 2 , α, |v -|, |x -|, R) (2.40) = (λ 1 λ 2 + λ 2 λ 4 )ρ 2 + (λ 2 1 + λ 2 λ 3 )ρ 1 ,
where λ 1 , λ 2 , λ 3 , λ 4 are defined by (2.25).

Lemma 2.3 is proved in Section 4.

Remark 2.3. Note that for fixed n, β 1 , β 2 , α, |x -|, R, we have Lemma 2.4. Let conditions

δ 1,1 (n, β 1 , β 2 , α, |v -|, |x -|, R) = O(|v -| -2 ), as |v -| → +∞, δ 2,1 (n, β 1 , β 2 , α, |v -|, |x -|, R) = O(|v -| -3 ), as |v -| → +∞, where δ i,1 , i = 1, 2,
(1.3)-(1.4) be valid. Let R > 0, 0 < r ≤ 1 and let (v -, x -) ∈ R n × R n be such that |v -| > √ 2R, v -x -= 0. Assume max( ρ 2 R , ρ 1 r ) ≤ 1
where ρ 1 , ρ 2 are respectively defined by (2.14), (2.13). Then the following statements are valid:

|k v -,x -(0, 0) -w 1,v -,x -| ≤ δ 1,2 (n, β 1 , β 2 , α, |v -|, |x -|, R) (2.41) = 2 α+4 √ 2n 3 (1 + √ n|v -|)(2α 2 + α -2)β 1 (β 1 + 2β 2 + β 1 β 2 ) (α -1)α(α + 1) |v -| √ 2 ( |v -| √ 2 -R) 2 (1 + |x -| √ 2 ) 2α , |l v -,x -(0, 0) -w 2,v -,x -| ≤ δ 2,2 (n, β 1 , β 2 , α, |v -|, |x -|, R) (2.42) = 2 α+5 n 3 (2α + 4)β 1 (2β 2 + β 1 + β 1 β 2 )(1 + √ n|v -|) (α -1)α 2 (α + 1) |v -| √ 2 ( |v -| √ 2 -R) 3 (1 + |x -| √ 2 ) 2α-1
, where w 1,v -,x -and w 2,v -,x -are defined below by (2.43) and (2.45).

Lemma 2.4 is proved in Section 5.

Let (v -, x -) ∈ R n × R n , v -= 0. Let v-= v - |v -| , v-= (v 1 -, .
. . , vn -). Then vectors w 1,v -,x -and w 2,v -,x -, which appear in (2.41) and (2.42), are defined by

w 1,v -,x -= +∞ -∞ B(τ v-+ x -)v -dτ - 1 |v -| P (∇V )(v -, x -)dτ (2.43) + 1 |v -| +∞ -∞ B(τ v-+ x -)   τ -∞ B(σv -+ x -)v -dσ   dτ + 1 |v -| n k=1 vk -(Ω 3,1,k (v -, x -), . . . , Ω 3,n,k (v -, x -)),
where

Ω 3,i,k (v -, x -) = +∞ -∞ 1 0 ∇B i,k   τ v-+ x -+ ε |v -| τ -∞ σ -∞ B(ηv -+ x -)v -dηdσ   •   τ -∞ σ -∞ B(ηv -+ x -)v -dηdσ   dεdτ,
(2.44) for i, k = 1 . . . n (• denotes the usual scalar product on R n ), and

w 2,v -,x -= 1 |v -|   0 -∞ τ -∞ B(σv -+ x -)v -dσdτ - +∞ 0 +∞ τ B(σv -+ x -)v -dσdτ   + 1 |v -| 2   0 -∞ τ -∞ B(σv -+ x -)   σ -∞ B(ηv -+ x -)v -dη   dσdτ
(2.45)

- +∞ 0 +∞ τ B(σv -+ x -)   σ -∞ B(ηv -+ x -)v -dη   dσdτ   + 1 |v -| 2 n k=1 vk -(Ω 4,1,k (v -, x -), . . . , Ω 4,n,k (v -, x -)) + 1 |v -| 2   0 -∞ τ -∞ (-∇V (σv -+ x -))dσdτ - +∞ 0 +∞ τ (-∇V )(σv -+ x -)dσdτ   ,
where

Ω 4,i,k (v -, x -) = (2.46) 0 -∞ τ -∞ 1 0 ∇B i,k   σv -+ x -+ ε |v -| σ -∞ η 1 -∞ B(η 2 v-+ x -)v -dη 2 dη 1   •   σ -∞ η 1 -∞ B(η 2 v-+ x -)v -dη 2 dη 1   dεdσdτ - +∞ 0 +∞ τ 1 0 ∇B i,k   σv -+ x -+ ε |v -| σ -∞ η 1 -∞ B(η 2 v-+ x -)v -dη 2 dη 1   •   σ -∞ η 1 -∞ B(η 2 v-+ x -)v -dη 2 dη 1   dεdσdτ for i, k = 1 . . . n (• denotes the usual scalar product on R n ).
3 Small angle scattering and inverse scattering

Small angle scattering

Let the constants from (1.3)-(1.4) (β |j| , α and n) and r ∈]0, 1] be fixed, and let r x be a nonnegative real number and let R be a positive number such that

R > 2 α+2 √ 2β 1 n α(1 + rx √ 2 ) α (3.1) (see (2.16)). Consider the real numbers z 1 = z 1 (n, β 1 , α, R, r x ), z 2 = z 2 (n, β 1 , α, R, r, r x ) and z 3 = z 3 (n, β 1 , β 2 , α, R, r x )
defined as the roots of the following equations

ρ 1 (n, β 1 , α, z 1 , r x , R) r = 1, z 1 > √ 2R, (3.2) ρ 2 (n, β 1 , α, z 2 , r x , R) R = 1, z 2 > √ 2R, (3.3) λ(n, β 1 , β 2 , α, z 3 , r x , R) = 1, z 3 > √ 2R, (3.4)
where ρ 1 , ρ 2 and λ are respectively defined by (2.14), (2.13) and (2.27). Note that from (2.14), (2.13) and (2.27) it follows that

ρ 1 (n, β 1 , α, s 1 , r x , R) > ρ 1 (n, β 1 , α, s 2 , r x , R), for √ 2R < s 1 < s 2 , (3.5) ρ 2 (n, β 1 , α, s 1 , r x , R) > ρ 2 (n, β 1 , α, s 2 , r x , R), for √ 2R < s 1 < s 2 , (3.6) λ(n, β 1 , β 2 , α, s 1 , r x , R) > λ(n, β 1 , β 2 , α, s 2 , r x , R), for √ 2R < s 1 < s 2 ; (3.7) in addition ρ 2 (n, β 1 , α, s, r x , R 1 ) R 1 > ρ 2 (n, β 1 , α, s, r x , R 2 ) R 2 , for 0 < R 1 < R 2 < s √ 2 . (3.8)
As it was already mentioned in Introduction, under the conditions (1.3)-(1.4), for any (v -, x -) ∈ R n × R n , v -= 0, the equation (1.1) has a unique solution x ∈ C 2 (R, R n ) with the initial conditions (1.6). Consider the function y -(t) from (1.6). This function describes deflection from free motion. Using Corollary 2.1, the lemma about contraction maps and estimate (2.11) of Lemma 2.1, and using Lemmas 2.3, 2.4 and the definition of z 1 , z 2 , z 3 given by (3.2)-(3.4), we obtain the following result. (y -, ẏ-) ∈ M T,R,r for T = +∞;

Theorem 3.1. Let conditions (1.3)-(1.4) be valid. Let x -∈ R n and let 0 < r ≤ 1. Let R > 0 and v -∈ R n be such that R satisfies (3.1) (with "r x "= |x -|) and |v -| ≥ max(z 1 , z 2 ), |v -| > z 3 , v -x -= 0, where z 1 = z 1 (n, β 1 , α, R, |x -|), z 2 = z 2 (n, β 1 , α, R, r, |x -|) and z 3 = z 3 (n, β 1 , β 2 , α, R, |x -|)
(3.9)

| ẏ-(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v -| + √ nR) α( |v -| √ 2 -R)(1 + |x -| √ 2 + ( |v -| √ 2 -R)|t|) α , (3.10) |y -(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 ) α-1 , (3.11) for t ≤ 0; in addition, y -(t) = ta sc (v -, x -) + b sc (v -, x -) + h v -,x -(t), (3.12)
where Theorem 3.1 gives, in particular, estimates for the scattering process and asymptotics for the velocity valued component of the scattering map when β 1 , β 2 , n, v-, x -are fixed (where v-= v - |v -| ) and |v -| increases or , e.g. β 1 , β 2 , n, v -, x-are fixed and |x -| increases. In these cases sup t∈R |θ(t)| decreases, where θ(t) denotes the angle between the vectors ẋ(t) = v -+ ẏ-(t) and v -, and we deal with small angle scattering. Note that already under the conditions of Theorem 3.1, without additional assumptions, there is the estimate sup t∈R |θ(t)| < 1 4 π and we deal with a rather small angle scattering.

|h v -,x -(t)| ≤ ξ(n, β 1 , α, |v -|, |x -|, R, t), (3.13) | ḣv -,x -(t)| ≤ ζ(n, β 1 , α, |v -|, |x -|, R, t), (3.14) |a sc (v -, x -)| ≤ ρ 2 (n, β 1 , α, |v -|, |x -|, R), (3.15) |a sc (v -, x -) -w 1,v -,x -| ≤ δ 1,1 + δ 1,2 , (3.16) |b sc (v -, x -)| ≤ ρ 1 (n, β 1 , α, |v -|, |x -|, R), (3.17) |b sc (v -, x -) -w 2,v -,x -| ≤ δ 2,1 + δ 2,2 , (3.18) for t ≥ 0, where ξ, ζ, ρ 2 , ρ 1 , δ 1,1 , δ 1,2 , δ 2,1 , δ 2,2 , w 1,v -,
Using Theorem 3.1 we can obtain asymptotics and estimates for small angle scattering for functions which are expressed through a(v -, x -) and b(v -, x -) (e.g. see [No] for the time delay for the case B ≡ 0). Theorem 3.1 proves Theorem 1.1.

3.2

The "Born approximation" for the scattering data at fixed energy The estimates (3.16) and (3.18) also give the asymptotics of a sc , b sc , when the parameters R, r, α, n, |v -| > √ 2R, x -are fixed and the norm β m decreases to 0 (where β m = max(β 0 , β 1 , β 2 )). Therefore Theorem 3.1 gives also the "Born approximation" for the scattering data at fixed energy when the electromagnetic field is sufficiently weak.

Let the parameters R, r, α, n, s > √ 2R, be fixed. Note that for fixed (θ, x) ∈ T S n-1 , from (2.43), (2.45), it follows that wi,sθ,x -w i,sθ,x = O(β 2 m ), as β m → 0, for i = 1, 2.

(3.19)

where vectors w1,sθ,x , w2,sθ,x , are defined by

w1,sθ,x = +∞ -∞ B(τ θ + x)θdτ - 1 s P (∇V )(θ, x), (3.20) w2,sθ,x = 1 s   0 -∞ τ -∞ B(σθ + x)θdσdτ - +∞ 0 +∞ τ B(σθ + x)θdσdτ   (3.21) + 1 s 2   0 -∞ τ -∞ (-∇V (σθ + x))dσdτ - +∞ 0 +∞ τ (-∇V )(σθ + x)dσdτ   .
From (3.19) and (3.16), it follows that the leading term of the "Born approximation" for a sc (sθ, x), (θ, x) ∈ T S n-1 , at fixed energy, is given by w1,sθ,x . From (3.19) and (3.18), it follows that the leading term of the "Born approximation" for b sc (sθ, x), (θ, x) ∈ T S n-1 , at fixed energy is given by w2,sθ,x .

Note that

P (∇V )(θ, x) = - s 2 ( w1,sθ,x + w1,s(-θ),x ), (3.22) +∞ -∞ B(τ θ + x)θdτ = 1 2 ( w1,sθ,x -w1,s(-θ),x ), (3.23) 0 -∞ τ -∞ B(σθ + x)θdσdτ - +∞ 0 +∞ τ B(σθ + x)θdσdτ = s 2 ( w2,sθ,x + w2,s(-θ),x ), (3.24) 0 -∞ τ -∞ (-∇V )(σθ + x)dσdτ - +∞ 0 +∞ τ (-∇V )(σθ + x)dσdτ = s 2 2 ( w2,sθ,x -w2,s(-θ),x ),
(3.25) for s > 0, (θ, x) ∈ T S n-1 . Using (3.22), (3.23), (3.20), (1.14) and results on inversion of the X-ray transform (see [R], [GGG], [Na], [No]), we obtain that for n ≥ 2 the electromagnetic field (V, B) can be reconstructed from the leading term w1,sθ,x of the "Born approximation" for a sc at fixed energy. We can also prove that V for n ≥ 2 can be reconstructed from the leading term w2,sθ,x of the "Born approximation" for b sc at fixed energy (see (3.25), (3.21), (3.26)). For n ≥ 3, B can be reconstructed from the leading term w2,sθ,x of the "Born approximation" for b sc at fixed energy (see (3.24), (3.21) and [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF]). For n = 2 the leading term w2,sθ,x of the "Born approximation" for b sc at fixed energy does not determine uniquely B (see (3.24) and, for example, [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF]).

Proof of Proposition 1.1

Now we prove Proposition 1.1 that deals with the reconstruction of the force field from the high energies asymptotics we found for the scattering data. The first item of Proposition 1.1 follows from formula (1.14) and from inversion formulas for the X-ray transform (see [R], [GGG], [Na], [No]). The second item follows from the first one and from inversion formulas for the X-ray transform.

We prove the third item. We assume that n ≥ 3. The magnetic field B can be reconstructed from the vector W 2,1 (B, θ, x) given for all (θ, x) ∈ T S n-1 (see [START_REF] Jollivet | On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies[END_REF]). As B is now known and W 2,2 (V, B, θ, x) is given for all (θ, x) ∈ T S n-1 , from (1.13) it follows that

-P V (θ, x) =   0 -∞ τ -∞ (-∇V (σθ + x))dσdτ - +∞ 0 +∞ τ (-∇V (σθ + x))dσdτ   • θ (3.26)
is known for all (θ, x) ∈ T S n-1 , where • denotes the usual scalar product on R n . Hence using also methods of reconstruction of a function from its X-ray transform (see [R], [GGG], [Na], [No]), we obtain that for n ≥ 3, (V, B) can be reconstructed from W 2,1 (B, θ, x), W 2,2 (V, B, θ, x) given for all (θ, x) ∈ T S n-1 .

We prove the fourth item. Assume that n = 2. We shall prove the existence of spherical symmetric magnetic fields B 1 and B 2 satisfying (1.4) and the existence of a spherical symmetric potential V satisfying (1.3) such that B 1 ≡ B 2 , V ≡ 0 and

W 2,2 (V, B 1 , θ, x) = W 2,2 (0, B 2 , θ, x), (3.27)
for all (θ, x) ∈ T S n-1 . Note that if B is a spherical symmetric magnetic field satisfying (1.4), then from (1.12) it follows that W 2,1 (B, θ, x) = 0 for (θ, x) ∈ T S n-1 . We denote by C ∞ 0 (R l , R) the space of infinitely smooth and compactly supported function from R l to R, where l ≥ 1. Let χ ∈ C ∞ 0 (R, R) be such that χ ≡ 0, suppχ ⊆]0, 1[, χ(x) ≥ 0 for all x ∈ R.

(3.28)

Consider the even functions fi ∈ C ∞ 0 (R, R), i = 1, 2, given by the following formulas fi (q) = χ(q) + χ(-q) + ǫ i χ(q -4) + ǫ i χ(-4 -q), for q ∈ R,

(3.29)

where ǫ 1 = 1 and ǫ 2 = -1. Note that using (3.28)-(3.29) we obtain

f1 2 ≡ f2 2 .
(3.30)

Using the Gelfand-Graev-Helgason range characterization of the X-ray transform on the Schwartz space S(R 2 ) (see [GG], [H]), we obtain that there exists an unique function B i 1,2 ∈ S(R 2 ) such that R) since its X-ray transform is compactly supported on T S 2 (see support results going back to [C], [H] for the classical 2-dimensional X-ray transform).

P B i 1,2 (θ, qθ ⊥ ) = fi (q), for all θ ∈ S 1 , q ∈ R. (3.31) Note that B i 1,2 ∈ C ∞ 0 (R 2 ,
From (3.31), it follows that for i = 1, 2, the Fourier transform F B i 1,2 of the function B i 1,2 is given by

F B i 1,2 (p) = +∞ -∞ e -i|p|q P B i 1,2 (p ⊥ , q p)dq = +∞ -∞
e -i|p|q fi (q)dq, for p ∈ R 2 , p = 0, p = p |p| and where θ ⊥ = (θ 2 , -θ 1 ) for θ = (θ 1 , θ 2 ) ∈ S 1 . Hence for i = 1, 2, the Fourier transform F B i 1,2 is spherical symmetric. Therefore for i = 1, 2, B i 1,2 is spherical symmetric and we put

B i 1,2 (x) = f i (|x| 2 ) (3.32)
for any x ∈ R 2 . We consider the infinitely smooth and compactly supported magnetic fields B i , i = 1, 2, defined by

B i (x) = f i (|x| 2 ) 0 1 -1 0 . (3.33)
From (3.32), (3.31), (3.28)-(3.29), it follows that B 1 ≡ B 2 . We also consider

the potential V ∈ C ∞ 0 (R 2 , R) defined by P V (θ, qθ ⊥ ) = - 0 -∞ τ -∞ f 1 (σ 2 + q 2 ) σ -∞ f 1 (η 2 + q 2 )dη dσdτ - +∞ 0 +∞ τ f 1 (σ 2 + q 2 ) σ -∞ f 1 (η 2 + q 2 )dη dσdτ (3.34) + 0 -∞ τ -∞ f 2 (σ 2 + q 2 ) σ -∞ f 2 (η 2 + q 2 )dη dσdτ - +∞ 0 +∞ τ f 2 (σ 2 + q 2 ) σ -∞ f 2 (η 2 + q 2 )dη dσdτ,
for all θ ∈ S 1 , q ∈ R.

We shall prove (3.35) and (3.37). From (1.13), (3.26) and (3.33)-(3.34), it follows that

W 2,2 (V, B 1 , θ, qθ ⊥ ) • θ = W 2,2 (0, B 2 , θ, qθ ⊥ ) • θ (3.35) for q ∈ R, θ ∈ S 1 (θ = (θ 1 , θ 2 ), θ ⊥ = (θ 2 , -θ 1 )).
From (3.34) it follows that V is spherical symmetric. Hence using also (1.13) and (3.33) we obtain

W 2,2 (V, B 1 , θ, qθ ⊥ )•θ ⊥ = 2q 0 -∞ τ -∞ df 1 ds (s) |s=σ 2 +q 2   σ -∞ η 1 -∞ f 1 (η 2 2 + q 2 )dη 2 dη 1   dσdτ -2q +∞ 0 +∞ τ df 1 ds (s) |s=σ 2 +q 2   σ -∞ η 1 -∞ f 1 (η 2 2 + q 2 )dη 2 dη 1   dσdτ for θ ∈ S 1 , q ∈ R. Let θ ∈ S 1 and q ∈ R.
Integrating by parts (we remind that f 1 is compactly supported), we obtain

W 2,2 (V, B 1 , θ, qθ ⊥ ) • θ ⊥ = -2q 0 -∞ τ df 1 ds (s) |s=τ 2 +q 2   τ -∞ η 1 -∞ f 1 (η 2 2 + q 2 )dη 2 dη 1   dτ -2q +∞ 0 τ df 1 ds (s) |s=τ 2 +q 2   τ -∞ η 1 -∞ f 1 (η 2 2 + q 2 )dη 2 dη 1   dτ = q 0 -∞ f 1 (τ 2 +q 2 )   τ -∞ f 1 (η 2 + q 2 )dη   dτ +q +∞ 0 f 1 (τ 2 +q 2 )   τ -∞ f 1 (η 2 + q 2 )dη   dτ = 2q   +∞ 0 f 1 (τ 2 + q 2 )dτ   2 = q 2 f1 (q) 2 (3.36)
(we used the equality d dτ f 1 (τ 2 + q 2 ) = 2τ d ds f 1 (s) |s=τ 2 +q 2 ). Using (3.30), (3.32) and (3.36), we obtain

W 2,2 (V, B 1 , θ, qθ ⊥ ) • θ ⊥ = W 2,2 (0, B 2 , θ, qθ ⊥ ) • θ ⊥ .
(3.37)

Formulas (3.35) and (3.37) prove that W 2,2 (V, B 1 , θ, x) = W 2,2 (0, B 2 , θ, x) for all (θ, x) ∈ T S 1 .
Now it remains to prove that V ≡ 0. Using first polar coordinates and then using (3.31)-(3.32), we obtain that

+∞ 0 f i (s)ds = 2 +∞ 0 rf i (r 2 )dr = 1 π R 2 f i (|x| 2 )dx = 1 π +∞ -∞ fi (q)dq, i = 1, 2. (3.38) Note that +∞ -∞ f2 (q)dq = 0 and +∞ -∞ f1 (q)dq = 4 +∞ -∞ χ(q)dq > 0 (we used (3.28), (3.29)). Therefore from (3.38) it follows that +∞ 0 f 1 (s)ds 2 = +∞ 0 f 2 (s)ds 2 .
(3.39)

Note that for any q ∈ R, i = 1, 2,

0 -∞ τ -∞ f i (σ 2 + q 2 ) σ -∞ f i (η 2 + q 2 )dη dσdτ - +∞ 0 +∞ τ f i (σ 2 + q 2 ) σ -∞ f i (η 2 + q 2 )dη dσdτ = - +∞ 0 +∞ τ f i (σ 2 + q 2 ) σ -σ f i (η 2 + q 2 )dη dσdτ. (3.40) Assume that V ≡ 0, i.e. +∞ 0 +∞ τ f 1 (σ 2 +q 2 )   σ -σ f 1 (η 2 + q 2 )dη   dσdτ = +∞ 0 +∞ τ f 2 (σ 2 +q 2 )   σ -σ f 2 (η 2 + q 2 )dη   dσdτ
(3.41) for all q ∈ R (we used (3.34), (3.40)).

For i = 1, 2, we consider the bounded function

F i ∈ C 1 ([0, +∞[, R) defined by F i (s) = - +∞ s f i (t)dt, for s ∈ R.
(3.42)

Let q ∈ R. Note that by integrating by parts, we obtain

+∞ 0 +∞ τ f i (σ 2 +q 2 )   σ -σ f i (η 2 + q 2 )dη   dσdτ = +∞ 0 τ f i (τ 2 +q 2 )   τ -τ f i (η 2 + q 2 )dη   dτ = - +∞ 0 F i (τ 2 + q 2 )f i (τ 2 + q 2 )dτ (3.43)
for i = 1, 2 (we used the equality d dτ F i (τ 2 + q 2 ) = 2τ f i (τ 2 + q 2 )). From (3.43) and (3.41) and inversion of the X-ray transform (put +∞[. (3.44) Using also (3.42) (F i (s) → 0 as s → +∞) and using the equality 2F

g i (x) = F i (|x| 2 )f i (|x| 2 ), x ∈ R 2 , then P g i (θ, x) = +∞ -∞ F i (τ 2 + x 2 )f i (τ 2 + x 2 )dτ for (θ, x) ∈ T S 1 ), it follows that F 1 (s)f 1 (s) = F 2 (s)f 2 (s), for s ∈ [0,
1 (s)f 1 (s) = dF 2 1 ds (s), s ∈ R, we obtain that F 2 1 ≡ F 2 2 .
We obtain, in particular, F 1 (0) 2 = F 2 (0) 2 , which with (3.42) contradicts (3.39).

Proposition 1.1 is proved.

Remark 3.1. Note that there do not exist nontrivial spherical symmetric magnetic fields satisfying (1.4) (and (1.2)) in dimension n ≥ 3.

Note also that using (1.13) we obtain

W 2,2 (V, B, θ, x) = W 2,2 (V, -B, θ, x)
for (θ, x) ∈ T S n-1 and for (V, B) satisfying (1.3)-(1.4).

4 Proof of Lemmas 2.1, 2.2, 2.3

Throughout this Section, we omit index -for v -and x -.

Preliminary estimates

First we prove the following Lemma.

Lemma 4.1.Let (v, x) ∈ R n × R n such that vx = 0 and |v| > √ 2R. Let T ∈] -∞,
+∞] and let r be a positive real number such that r ≤ 1. Then

|f (t)| ≤ R|t| + r, (4.1) |h(t)| ≤ R, (4.2) 1 + |x + tv + f (t)| ≥ 1 2 1 + |x| √ 2 + ( |v| √ 2 -R)|t| , (4.3) |v + h(t)| ≤ |v| + R, (4.4) 
for any (f, h) ∈ M T,R,r and t ≤ T . Under the conditions (1.3)-(1.4), we have

|F (x, v)| ≤ β 1 √ n(1 + √ n|v|)(1 + |x|) -α-1 , (4.5) |F (x, v) -F (x ′ , v ′ )| ≤ nβ 1 sup ε∈[0,1] (1 + |x + ε(x ′ -x)|) -α-1 |v -v ′ | (4.6) +nβ 2 |x -x ′ | sup ε∈[0,1] (1 + |x + ε(x ′ -x)|) -α-2 (1 + √ n|v + ε(v ′ -v)|), for x, x ′ , v, v ′ ∈ R n .
Proof of Lemma 4.1. Estimates (4.1) and (4.2) follow immediatly from (2.8). Estimate (4.4) follows from (4.2). Let (f, h) ∈ M T,R,r and t ≤ T . As v • x = 0, we obtain

|x + tv| ≥ |x| √ 2 + |t| |v| √ 2 . (4.7)
From (4.1), (4.7), it follows that

2(1 + |x + tv + f (t)|) ≥ 2 + (1 + |x + tv + f (t)|) ≥ 2 + |x + tv| -R|t| -r ≥ 2 -r + |x| √ 2 + |t|( |v| √ 2 -R). (4.8) 
Then estimate (4.3) follows from (4.8) and the estimate r ≤ 1.

Estimates (4.5)-(4.6) follow from conditions (1.3)-(1.4). 4.2 Proof of Lemma 2.1 Let (v, x) ∈ R n × R n be fixed such that v • x = 0 and |v| > √ 2R.
Let r be a positive number such that r ≤ 1.

Let (f, h) ∈ M T,R,r . From (2.6), (4.5), (4.3) and (4.4), it follows that

|A 2 v,x (f, h)(t)| ≤ β 1 √ n t -∞ (1 + √ n|v + h(τ )|)(1 + |x + τ v + f (τ )|) -α-1 dτ ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) t -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|τ |) -α-1 dτ , (4.9)
for t ≤ T . Hence we obtain the following estimates

|A 2 v,x (f, h)(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α( |v| √ 2 -R)(1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α , (4.10) for t ≤ 0, t ≤ T ; |A 2 v,x (f, h)(t)| ≤ 2 α+2 β 1 √ n(1 + √ n|v| + √ nR) α( |v| √ 2 -R)(1 + |x| √ 2 ) α , (4.11) 
for t ≥ 0, t ≤ T . Estimates (4.10)-(4.11) prove (2.11) and (2.13). From (2.5) and (4.10), it follows that

|t||A 2 v,x (f, h)(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α-1
, (4.12)

|A 1 v,x (f, h)(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α-1
, (4.13) for t ≤ 0, t ≤ T. Hence from (4.12) and (4.13), it follows that

|A 1 v,x (f, h)(t) -tA 2 v,x (f, h)(t)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) (α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α-1 (4.14) for t ≤ 0, t ≤ T.
Let t ≥ 0 and t ≤ T. Then from (2.5) and (2.6), it follows that

A 1 v,x (f, h)(t)-tA 2 v,x (f, h)(t) = A 1 v,x (f, h)(0)- t 0 t τ F (x+σv+f (σ), v+h(σ))dσdτ.
(4.15) Using (4.5), (4.3) and (4.4), we obtain

t 0 t τ F (x + τ v + f (τ ), v + h(τ ))dσdτ ≤ β 1 √ n t 0 t τ (1 + √ n|v + h(σ)|)(1 + |x + σv + f (σ)|) -α-1 dσdτ ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 ) α-1 . (4.16)
From (4.13), it follows that

|A 1 v,x (f, h)(0)| ≤ 2 α+1 β 1 √ n(1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 ) α-1
.

(4.17)

From (4.15)-(4.17), it follows that 

|A 1 v,x (f, h)(t) -tA 2 v,x (f, h)(t)| ≤ 2 α+2 β 1 √ n(1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 ) α-1 . ( 4 
|A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t)| ≤ (4.19) nβ 1 t -∞ sup ε∈[0,1] (1 + |x + vt + εf 1 (τ ) + (1 -ε)f 2 (τ )|) -α-1 |h 2 (τ ) -h 1 (τ )|dτ +nβ 2 t -∞ |f 1 (τ ) -f 2 (τ )| sup ε∈[0,1] (1 + |x + vt + εf 1 (τ ) + (1 -ε)f 2 (τ )|) -α-2 ×(1 + √ n|v| + √ n|h 1 (τ ) + ε(h 2 (τ ) -h 1 (τ ))|)dτ, for t ≤ T. Note that |h 2 (τ ) -h 1 (τ )| ≤ sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)|, (4.20) |f 2 (τ ) -f 1 (τ )| ≤ sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))| +|τ | sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)|, ( 4 
|A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t)| ≤ 2 α+1 n   β 1 t -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|τ |) -α-1 dτ + 2β 2 (1 + √ n|v| + √ nR) × t -∞ (1 + |x| √ 2 + ( v √ 2 -R)|τ |) -α-2 |τ |dτ   sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| +2 α+2 nβ 2 (1 + √ n|v| + √ nR) t -∞ (1 + |x| √ 2 + ( |v| √ 2 -R|τ |)) -α-2 dτ × sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))| (4.22)
(we also use the convexity of M T,R,r , in order to estimate, for example, |h 1 (τ )+ ε(h 2 (τ ) -h 1 (τ ))| for τ ∈]-∞, T ] and ε ∈ [0, 1]). Hence we obtain the following estimates

|A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t)| ≤ 2 α+1 n β 1 ( |v| √ 2 -R) + 2β 2 (1 + √ n|v| + √ nR) α( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + 2 α+2 nβ 2 (1 + √ n|v| + √ nR) (α + 1)( |v| √ 2 -R)(1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α+1 × sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, (4.23) for t ≤ 0, t ≤ T ; |A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t)| ≤ 2 α+2 n β 1 ( |v| √ 2 -R) + 2β 2 (1 + √ n|v| + √ nR) α( |v| √ 2 -R) 2 (1 + |x| √ 2 ) α sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + 2 α+3 nβ 2 (1 + √ n|v| + √ nR) (α + 1)( |v| √ 2 -R)(1 + |x| √ 2 ) α+1 × sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, (4.24) 
for t ≥ 0, t ≤ T . Estimates (4.23), (4.24) prove (2.17), (2.19). From (4.23), it follows that (4.26) for t ≤ 0, t ≤ T . Using (4.25)-(4.26), we obtain

|A 1 v,x (f 1 , h 1 )(t) -A 1 v,x (f 2 , h 2 )(t)| ≤ 2 α+1 n β 1 ( |v| √ 2 -R) + 2β 2 (1 + √ n|v| + √ nR) α(α -1)( |v| √ 2 -R) 3 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α-1 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + 2 α+2 nβ 2 (1 + √ n|v| + √ nR) (α + 1)α( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α × sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, (4.25) |t||A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t)| ≤ 2 α+1 n β 1 ( |v| √ 2 -R) + 2β 2 (1 + √ n|v| + √ nR) α( |v| √ 2 -R) 3 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α-1 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + 2 α+2 nβ 2 (1 + √ n|v| + √ nR) (α + 1)( |v| √ 2 -R) 2 (1 + |x| √ 2 + ( |v| √ 2 -R)|t|) α × sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|,
|A 1 v,x (f 1 , h 1 )(t) -A 1 v,x (f 2 , h 2 )(t) -t(A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t))| ≤ 2 α+1 n β 1 ( |v| √ 2 -R)+2β 2 (1+ √ n|v|+ √ nR) (α-1)( |v| √ 2 -R) 3 (1+ |x| √ 2 +( |v| √ 2 -R)|t|) α-1 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| (4.27) + 2 α+2 nβ 2 (1+ √ n|v|+ √ nR) α( |v| √ 2 -R) 2 (1+ |x| √ 2 +( |v| √ 2 -R)|t|) α sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|,
for t ≤ 0, t ≤ T . Estimate (2.18) follows from (4.27). From (4.15), it follows that 

|A 1 v,x (f 1 , h 1 )(t) -A 1 v,x (f 2 , h 2 )(t) -t(A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t))| ≤ |A 1 v,x (f 1 , h 1 )(0) -A 1 v,x (f 2 , h 2 )(0)| (4.28) + t 0 t τ |F (x + τ v + f 1 (τ ), v + h 1 (τ )) -F (x + τ v + f 2 (τ ), v + h 2 (τ ))|dσdτ for t ≥ 0, t ≤ T. Using (4.25), we obtain |A 1 v,x (f 1 , h 1 )(0) -A 1 v,x (f 2 , h 2 )(0)| ≤ λ 2 2 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + λ 1 2 sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, ( 4 
(x + sv + f 1 (s), v + h 1 (s)) -F (x + sv + f 2 (s), v + h 2 (s))|dsdτ ≤ λ 2 2 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + λ 1 2 sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, (4.30) for t ≥ 0, t ≤ T .
From (4.28)-(4.30), we obtain 

|A 1 v,x (f 1 , h 1 )(t) -A 1 v,x (f 2 , h 2 )(t) -t(A 2 v,x (f 1 , h 1 )(t) -A 2 v,x (f 2 , h 2 )(t))| ≤ λ 2 sup σ∈]-∞,T ] |h 2 (σ) -h 1 (σ)| + λ 1 sup σ∈]-∞,T ] |f 2 (σ) -f 1 (σ) -σ(h 1 (σ) -h 2 (σ))|, ( 4 
A 1 v,x (f, h)(t) = 0 -∞ τ -∞ F (x + σv + f (σ), v + h(σ))dσdτ (4.32) - +∞ 0 +∞ τ F (x + σv + f (σ), v + h(σ))dσdτ +t +∞ -∞ F (x + τ v + f (τ ), v + h(τ ))dτ + +∞ t +∞ τ F (x + σv + f (σ), v + h(σ))dσdτ for t ∈ R and (f, h) ∈ M T,R,r , T = +∞. Let T = +∞. As max( ρ 2 R , ρ 1 r ) ≤ 1, using Corollary 2.1 we obtain A v,x (f ′ , h ′ ) ∈ M T,R,r , for any (f ′ , h ′ ) ∈ M T,R,r . (4.33) Let (f, h) ∈ M T,R,
k v,x (f ′ , h ′ ) = lim t→+∞ A 2 v,x (A v,x (f ′ , h ′ ))(t), (4.34) l v,x (f ′ , h ′ ) = lim t→+∞ A 1 v,x (A v,x (f ′ , h ′ ))(t) -tA 2 v,x (A v,x (f ′ , h ′ ))(t), (4.35) for any (f ′ , h ′ ) ∈ M T,R,r .
We prove (2.39). The proof of (2.40) is similar to the proof of (2.39). Using (4.34), (4.33) and applying (2.19) ("(f 1 , h 1 ) = A v,x (f, h)" and "(f 2 , h 2 ) = A v,x (0, 0)"), we obtain 

|k v,x (f, h) -k v,x (0, 0)| ≤ λ 4 sup t∈]-∞,+∞[ |A 2 v -,x -(f, h)(t) -A 2 v -,x -(0, 0)(t)| +λ 3 sup t∈]-∞,+∞[ | A 1 v -,x -(f, h) -A 1 v -,x -(0, 0) (t) -t A 2 v -,x -(f, h) -A 2 v -,x -(0, 0) (t)|. ( 4 
|k v -,x -(f, h) -k v -,x -(0, 0)| ≤ (λ 2 λ 3 + λ 2 4 ) sup t∈]-∞,+∞[ |h(t)| +(λ 1 λ 3 + λ 3 λ 4 ) sup t∈]-∞,+∞[ |f (t) -th(t)|. (4.37) Assume that (f, h) = A v,x (f, h). Then from (2.13)-(2.14), it follows that |h(t)| ≤ ρ 2 and |f (t) -th(t)| ≤ ρ 1 for t ∈ R.
These two latter estimates with (4.37) prove (2.39).

5 Proof of Lemma 2.4

Throughout this Section, we omit index -for v -and x -. We shall prove (2.41). Note that using changes of variables and the equality

B i,k (x+ σv + ω) = B i,k (x+ σv) + 1 0 ∇B i,k (x+ σv + εω) • ωdε for σ ∈ R, ω ∈ R n (where • denotes the usual scalar product on R n ), we obtain w 1,v,x = - +∞ -∞ ∇V (sv + x)ds + +∞ -∞ B(sv + x)   s -∞ B(τ v + x)vdτ   ds + +∞ -∞ B   sv + x + s -∞ τ -∞ B(σv + x)vdσdτ   vds.
Therefore, from (2.32) and (2.6) (we remind that F

(x, v) = -∇V (x) + B(x)v) it follows that |k v,x (0, 0) -w 1,v,x | ≤ 4 i=1 ∆ 1,i , (5.1) 
where

∆ 1,1 = +∞ -∞ ∇V (sv + x + A 1 v,x (0, 0)(s)) -∇V (sv + x) ds, (5.2) ∆ 1,2 = +∞ -∞ B(sv + x + A 1 v,x (0, 0)(s))   s -∞ ∇V (τ v + x)dτ   ds, (5.3) ∆ 1,3 = +∞ -∞ B(sv + x + A 1 v,x (0, 0)(s)) -B(sv + x)   s -∞ B(τ v + x)vdτ   ds, (5.4) ∆ 1,4 = +∞ -∞   B(sv + x + A 1 v,x (0, 0)(s)) (5.5) -B   sv + x + s -∞ τ -∞ B(σv + x)vdσdτ     v ds.
We shall estimate each ∆ 1,i , i = 1 . . . 4. First note that using Corollary 2.1 and the inequality max( ρ 2 R , ρ 1 r ) ≤ 1 we obtain, in particular, A v,x (0, 0) ∈ M T,R,r , T = +∞.

(5.6) Note also that using (1.3)-(1.4) and the estimate |x

+ σv| ≥ |x| √ 2 + |σ| |v| √ 2 , σ ∈ R (we remind that x • v = 0), we obtain |∇V (σv + x)| ≤ β 1 √ n(1 + |x| √ 2 + |σ| |v| √ 2 ) -α-1 , (5.7) |B(σv + x)v| ≤ β 1 n|v|(1 + |x| √ 2 + |σ| |v| √ 2 ) -α-1 , (5.8) 
for σ ∈ R.

We remind that

A 1 v,x (0, 0)(s) = s -∞ τ -∞ (-∇V )(σv + s)dσdτ + s -∞ τ -∞ B(σv + x)vdσdτ, (5.9) 
for s ∈ R.

We shall use the following estimate (5.10): from (5.7)-(5.9), it follows that

|A 1 v,x (0, 0)(s)| ≤ β 1 √ n(1 + √ n|v|) s -∞ τ -∞ (1 + |x| √ 2 + |σ| |v| √ 2 ) -α-1 dσdτ ≤ β 1 √ n(1 + √ n|v|)   0 -∞ τ -∞ (1 + |x| √ 2 + |σ| |v| √ 2 ) -α-1 dσdτ +|s| +∞ -∞ (1 + |x| √ 2 + |τ | |v| √ 2 ) -α-1 dτ   ≤ 2β 1 √ n(1 + √ n|v|) α(α -1)|v| 2 (1 + |x| √ 2 ) α-1 + |s| 2 √ 2β 1 √ n(1 + √ n|v|) α|v|(1 + |x| √ 2 ) α
, (5.10) for s ∈ R.

Using (1.3), (5.6) and (4.3), we obtain ∇V (σv + x + A 1 v,x (0, 0)(σ)) -∇V (σv + x) (5.11) for all σ ∈ R.

≤ 2 α+2 β 2 n(1 + |x| √ 2 + ( |v| √ 2 -R)|σ|) -α-2 |A 1 v,x (0, 0)(σ)|,
From (5.2), (5.10), (5.11), it follows that

∆ 1,1 ≤ n2 α+2 β 2 +∞ -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|s|) -α-2 |A 1 v,x (0, 0)(s)|ds ≤ 2 α+3 n 3/2 (2α 2 + α -2)β 1 β 2 (1 + √ n|v|) (α -1)α 2 (α + 1) |v| √ 2 ( |v| √ 2 -R) 2 (1 + |x| √ 2 ) 2α
.

(5.12)

Similarly, by using (5.4) (and by using (1.4) instead of (1.3)) and (5.8) we obtain .

∆ 1,3 ≤ 2 α+2 β 1 β 2 n 5 2 +∞ -∞ (1 + ( |v| √ 2 -R)|s| + |x| √ 2 ) -α-2 |A 1 v,x (0, 0)(s)|
(5.13) Using (5.3), (1.3)-(1.4), (5.6) and (4.3), we obtain

∆ 1,2 ≤ β 2 1 n 3/2 2 α+1 +∞ -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|s|) -α-1 × s -∞ (1 + |x| √ 2 + |v| √ 2 |τ |) -α-1 dτ ds ≤ n 3/2 2 α+3 β 2 1 α 2 |v| √ 2 ( |v| √ 2 -R)(1 + |x| √ 2 ) 2α
.

Using (5.5), (5.9), growth property of the elements of B (1.4), and using

(1.3) and the assumption max( ρ 1 r , ρ 2 R ) ≤ 1 and (4.3), we obtain

∆ 1,4 ≤ |v|n 3/2 2 α+2 β 2 +∞ -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|s|) -α-2 × s -∞ τ -∞
|∇V (x + σv)| dσdτ ds

≤ |v|n2 α+2 β 1 β 2 +∞ -∞ (1 + |x| √ 2 + ( |v| √ 2 -R)|s|) -α-2 × s -∞ τ -∞ (1 + |x| √ 2 + |v| √ 2 |σ|) -α-1 dσdτ ds ≤ n 2 2 α+3 √ 2(2α 2 + α -2)β 1 β 2 α 2 (α + 1)(α -1)( |v| √ 2 -R) 2 (1 + |x| √ 2 ) 2α
.

(5.14) Estimate (2.41) follows from (5.1) and (5.12)-(5.14). We shall prove (2.42). Note that using changes of variables and the equality B i,k (x+ σv + ω) = B i,k (x+ σv) + ≤ n 3/2 β 2 2 α+2 |v|(1 .

+ |x| √ 2 + ( |v| √ 2 -R)|σ|) -α-2 σ -∞ η 1 -∞ ∇V (η 2 v + x)dη 2 dη 1 ≤ n 2 β 1 β 2 2 α+2 |v|(1 + |x| √ 2 + ( |v| √ 2 -R)|σ|) -α-2 × σ -∞ η 1 -∞ (1 + |x| √ 2 + |v| √ 2 |η 2 |) -α-
(5.28) Estimate (2.42) follows from (5.15), (5.22), (5.24), (5.25), (5.27) and (5.28).

  are respectively defined by (3.2), (3.3) and (3.4). Then the deflection y -(t) has the following properties:
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  ∇B i,k (x+ σv + εω) • ωdε for σ ∈ R, ω ∈ R n(where • denotes the usual scalar product on R n ), we obtain w 2,v,x = )(σv + x)dσds, Therefore, from (2.33) and (2.6) (we remind that F (x, v) = -∇V (x) + B(x)v) it follows that |l v,x (0, 0) -w 2,v,x | ≤

  1 dη 2 dη 1 , (5.26) for all σ ∈ R. Therefore by using (5.20)-(5.21) we obtain

		∆ 2,5 ≤	2 α+2 √ (α -1)α 2 (α + 1) |v| √ 2 ( |v| 2n 2 β 1 β 2 √ 2 -R) 2 (1 + |x| √ 2 ) 2α-1	;	(5.27)
	and	∆ 2,6 ≤	2 α+2 √ (α -1)α 2 (α + 1)( |v| 2n 2 (2α + 3)β 1 β 2 √ 2 -R) 3 (1 + |x| √ 2 ) 2α-1
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We shall estimate each ∆ 2,i for i = 1 . . . 6. From (5.16), (5.17), (5.10) and (5.11) it follows that

.

(5.22)

Using (1.3), (1.4), (5.6), (4.3) and (5.7) we obtain that

for all σ ∈ R. From (5.23) and (5.18) it follows that

(5.24)

Using growth properties of B (1.4), (5.6), (4.3), and (5.8) we obtain

Using also (5.10), we obtain

.

(5.25)

From growth property of B (1.4), and from the inequality max( ρ 1 r , ρ 2 R ) ≤ 1, (5.9), (1.4), (4.3) and (5.7), it follows that   B(σv + x + A 1 v,x (0, 0)(σ)) -B(σv