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Cytosolic 59-Triphosphate Ended Viral Leader Transcript
of Measles Virus as Activator of the RIG I-Mediated
Interferon Response
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Marseille, France, 3 Immunobiologie Fondamentale et Clinique, Institut National de la Santé et de la Recherche Médicale (INSERM) U503, Université
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Background. Double stranded RNA (dsRNA) is widely accepted as an RNA motif recognized as a danger signal by the cellular
sentries. However, the biology of non-segmented negative strand RNA viruses, or Mononegavirales, is hardly compatible with
the production of such dsRNA. Methodology and Principal Findings. During measles virus infection, the IFN-b gene
transcription was found to be paralleled by the virus transcription, but not by the virus replication. Since the expression of
every individual viral mRNA failed to activate the IFN-b gene, we postulated the involvement of the leader RNA, which is a small
not capped and not polyadenylated RNA firstly transcribed by Mononegavirales. The measles virus leader RNA, synthesized
both in vitro and in vivo, was efficient in inducing the IFN-b expression, provided that it was delivered into the cytosol as a 59-
trisphosphate ended RNA. The use of a human cell line expressing a debilitated RIG-I molecule, together with overexpression
studies of wild type RIG-I, showed that the IFN-b induction by virus infection or by leader RNA required RIG-I to be functional.
RIG-I binds to leader RNA independently from being 5-trisphosphate ended; while a point mutant, Q299A, predicted to
establish contacts with the RNA, fails to bind to leader RNA. Since the 59-triphosphate is required for optimal RIG-I activation
but not for leader RNA binding, our data support that RIG-I is activated upon recognition of the 59-triphosphate RNA end.
Conclusions/Significance. RIG-I is proposed to recognize Mononegavirales transcription, which occurs in the cytosol, while
scanning cytosolic RNAs, and to trigger an IFN response when encountering a free 59-triphosphate RNA resulting from
a mislocated transcription activity, which is therefore considered as the hallmark of a foreign invader.
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INTRODUCTION
The cellular innate defence is initiated with the recognition of

peculiar danger molecular motifs called Pathogen Associated

Molecular Patterns (PAMP), by the Pattern Recognition Receptors

(PRR), which results in the induction of a type-I interferon (IFN-

a/b) response. In the cytosol, the helicases RIG-I and Mda-5

induce IFN transcription upon recognition of viral dsRNA [1,2]

from different viruses, with Mda-5 and RIG-I being required for

sensing picornaviruses and members of the Mononegavirales order

[1–4], respectively. Mononegavirales are characterized by having

their RNA genome (and antigenome) tightly encapsidated by the

viral nucleoprotein N, making them resistant to silencing by

siRNA [5], nuclease attacks or high salt concentration, as recently

shown by the crystal structure of short vesicular stomatitis virus

(VSV) and rabies virus nucleocapsids, which both pointed out that

the RNA is fully embedded within the nucleoprotein oligomer

[6,7]. Viral genome is used as a template for transcription of

unencapsidated RNAs and replication of positive stranded

antigenome, the complementary template for genome replication

(Figure S1). Notably, the nascent genome and antigenome are

concomitantly encapsidated and hence viral complementary RNA

strands are poorly prone to anneal. Indeed no detectable amounts

of dsRNA have been found in infected cells [8]. We therefore

searched for the PAMP and the PPR involved in the cellular

detection of infection by measles virus, a Mononegavirales member.

RESULTS

A virus transcript acts as the PAMP
An active viral polymerase is necessary for the induction of IFN

response by measles virus (Figure 1A,B) [9]. To identify which of

the two activities, transcription or replication, is required for the

production of the PAMP, we compared the kinetics of accumu-

lation of IFN-b mRNAs with the rate of measles virus transcription

and replication, using RT-QPCR assays [10]. IFN-b mRNA

accumulates exponentially in a manner that is paralleled by that of

the viral N mRNA, well ahead of the accumulation of the

genomes/antigenome (Figure 1A). The accumulation of genome/

antigenome is delayed for the first 15 h (Figure 1A), until the

cytoplasmic N protein concentration triggers activation of the

replication [11]. Reciprocally, the progressive inactivation of viral

genome by increasing doses of UV, applied to the virus before
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infection, results in a paralleled decrease of IFN-b and N tran-

scription, whereas the replication process is blocked already at the

lowest UV energy (Figure. 1B). When UV energy exceeds 2000

ergs, both viral and IFN-b transcriptions are abolished [9,11].

However, none of the individual capped and polyadenylated

viral mRNA per se contains any molecular motif recognized as

a PAMP, since their transient expression in 293T cells do not lead

to the induction of any IFN-b signal (Figure. 1C). This also rules

Figure 1. IFN-b gene activation correlates with measles virus transcription, and viral derived leader, but not viral mRNA, activates IFN-b. (A)
Kinetics of the accumulation of cellular IFN-b mRNA, viral mRNA and genomes+antigenomes. 293T cells were infected with measles virus, and total
RNA from cells, collected at different times post-infection, was reverse transcribed and quantified by QPCR. (B) Accumulation of cellular IFN-b and
viral mRNAs after infection with virus irradiated by variable UV energies. Cells were infected for 24 h with measles virus irradiated with a range of UV
energies and RNAs were quantified by RT-QPCR. Data were expressed as % of the RNA amounts from cells infected with non irradiated virus. (C) Lack
of IFN-b stimulation by measles viral mRNAs. 293T cells were transfected with expression vectors (0.4 mg/105 cells) encoding the various measles virus
or control (eGFP, T7 RNA polymerase) proteins or with 200 ng poly(I:C). IFN-b mRNA was quantified 24 h post-transfection and protein expression
was checked by western blot (see arrows). Note that, due to the lack of a suitable antibody, L protein expression could not be checked. (D) Short in
vitro leader transcripts from VSV activates IFN-b. Identical amounts of short RNAs purified from in vitro transcription of VSV and treated or not with
RNase A were transfected in 293T cells and IFN-b mRNA was quantified. Mock is transfection with oligofectamine alone. Results are from one
representative experiment out of three.
doi:10.1371/journal.pone.0000279.g001
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out that any viral protein is responsible for the IFN-b activation, in

agreement with a previous report showing that protein synthesis is

not required [12].

Viral leader RNA activates the IFN-b response
We hypothesized that the leader RNA [13] may host a PAMP

feature. Leader is the first transcript from the very 39end of the

genome, and is 56 nucleotides long, not capped, and not

translated. This first transcript could fulfil the requirements of

the rapid induction of the IFN system after infection, as shown by

the quick phosphorylation of I-kB, one of the upstream signals of

the IFN-b gene activation, which is observed as early as 5 minutes

after virus entry [14], and by the NF-kB DNA binding activity

detected within one hour [12].

The in vitro transcription of measles virus is hardly efficient [13].

Therefore, we first chose to produce in vitro the leader RNA (47 nt

long) from permeabilized VSV virions, since it is biochemically

indistinguishable from that isolated from VSV infected cells

[15,16]. Upon transfection, a VSV leader preparation stimulates

IFN-b gene transcription, while the IFN response is abolished

when the sample was pretreated with RNase A (Figure 1D). Thus,

a Mononegavirales leader RNA, synthesized by the viral polymerase,

can act as a PAMP. To demonstrate that the measles virus leader

can induce an IFN response, a leader-like RNA was transcribed in

vitro by the T7 phage DNA-dependent-RNA-polymerase from an

engineered plasmid. This single strand leader RNA turned out to

be a strong inducer of the IFN-b transcription in 293T cells

(Figure 2A, lE) with the PAMP activity being destroyed after

RNase treatment.

59-triphosphate end is required for optimal

activation of IFN-b
Measles virus and VSV leaders share a common 59-triphosphate

structure that could account for IFN activation. Indeed, the role of

the 59-triphosphate end of T7 transcripts as an IFN inducer had

been previously pointed out for shRNA [17]. Using different T7

transcripts, including a ‘‘delear’’ 56 nt long RNA (dle)-which has

the same bases as the leader, but in a scrambled order-a myc tag

sequence 86 nt long RNA (my) and a small hairpin 62 nt long

RNA with 21 base-pairing of the coding sequences of eGFP

(shRNAeGFP), we confirmed that T7 transcripts, independently of

their length, sequence or structure (Figure S2), do possess PAMPs

(Figure 2A). Furthermore, converting the triphosphate into

a monophosphate moiety at the 59end of leader and shRNAeGFP

RNAs before transfection, either by calf alkaline phosphatase

treatment (data not shown) or by RNase H digestion of a longer

RNA precursor partially annealed at the 59end to a short

complementary DNA (Figure S3), reduces their ability to activate

the IFN response (Figure 2B). Thus, 59-triphosphate represents

a PAMP even on short single strand RNA (ssRNA). To mimic viral

synthesis of measles viral leader in the cytoplasm, cells stably

expressing cytosolic T7 phage polymerase [18] were transfected

with a plasmid encoding the viral leader under the control of the

T7 promoter. As a control, the leader was alternatively put under

the control of the H1 promoter, which is recognised by the cellular

RNA-polymerase III. IFN-b was significantly induced only when

the viral leader was transcribed by the cytosolic T7, and not by the

nuclear endogenous RNA polymerase III (Figure 2C). Likewise,

shRNAeGFP transcribed in the nucleus by the cellular RNA-

polymerase III after transfection of pSUPER-shGFP DNA plas-

mid fails to activate the IFN-b response. Expression of shRNAeGFP

was assessed by its ability to silence eGFP expression [19]:

transfection of 0.01 mg of pSUPER-shGFP DNA plasmid was

found to be as efficient as transfection of 2 mg of shRNAeGFP to

silence the eGFP expression. While up to 2 mg of the former does

not activate any IFN-b response, transfection of 1 or 2 mg of the

latter strongly activates IFN-b (Figure 2A,D).

What would be the in vivo relevance of the recognition of the 59-

triphosphate motif in the cytosol as a danger signal? A major

feature of the nuclear (and mitochondrial) transcription, by either

RNA polymerase I, II or III (and mitochondrial RNA-poly-

merase), is that all, but one, RNAs are processed at the 59end

either by cleavage (ribosomal RNA, tRNAs, microRNAs) or by

a capping process resulting into the loss of the primary 59-

triphosphate end [20–22]. The only known exception is the

abundant 7SL RNA that is part of the signal recognition particle,

but its 59end is likely inaccessible as it is shielded by the p9/14

protein subunit [23]. Accordingly, cytoplasmic and nuclear RNA

extracted from non infected 293T cells were found to be incapable

of inducing any IFN-b response after transfection (Figure S4).

Furthermore, cellular RNA transcription from RNA template does

not occur in mammalian cells because of the lack of RNA-

dependent RNA-polymerase cellular homologue. A 59-triphos-

phate ended RNA in the cytoplasm thus represents a well-suited

feature for a danger signal, i.e. a molecular pattern that is absent

from uninfected cells according to the concept described by P.

Matzinger [24], and we propose that it acts as a PAMP used by

cells to recognise a virus infection at the very early steps.

RIG-I is required for recognition of measles virus

infection and sensing 59-triphosphate ended RNA

transcript
Since RIG-I has been associated to the sensing of infection by

other Mononegavirales [1–4], we tested if RIG-I could also sense

measles virus 59-triphosphate leader RNA. To ensure a homoge-

nous defect in RIG-I of the cell host, we took advantage of the

Huh7.5 cell sub-line derived from Huh7 cells. Huh7.5 expresses

a debilitated RIG-I with a point mutation in the first CARD

domain (T55I), which no longer produces IFN after infection by

VSV or SeV unless complemented by exogenous wild type RIG-I

[25]. Measles virus infection triggers the IFN response in human

Huh7 cells, but not in the RIG-I defective Huh7.5 cells, although

the accumulation of N mRNA reached a similar level in both cell

lines after 24 h (Figure 3A lower and upper panel, respectively).

Accordingly, Huh7.5 cells fail to respond the in vitro T7 transcribed

leader RNA (Figure 3B). However, IFN-b is activated in Huh7.5

by the dsRNA analogue poly(I:C), showing than the Mda-5-

mediated and the IPS-1 (also called MAVS, CARDIF or VISA)

downstream pathway, which binds to both RIG-I and Mda5 to

ensure a common signalling [26,27], is functional in this cell line.

The inefficiency of the Mda-5 pathway of Huh7.5 cells to respond

to measles virus infection is likely because of the Mda-5 inhibitory

properties of the Paramyxoviridae (including measles virus) V protein

[28,29]. Moreover, the co-transfection of RIG-I with leader RNA

has a strong synergic effect on the induction of IFN-b transcription,

the combination resulting in more than 10-fold higher IFN-

b accumulation than transfection of RIG-I or leader RNA alone

(Figure 3C). In contrast, the over-expression of RIG-I had little or

no enhancing effect on the IFN-b induction by poly-(I:C) [4].

RIG-I binds to leader RNA independently of RIG-I

ATPase activity and of RNA tri-or mono-phosphate

59end.
The ability of RIG-I to bind to the leader RNA was then tested in

vitro. Ten times more [32P]-labelled leader were pulled down by

59triphosphate RNA and RIG-I
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RIG-I when compared to a mock immunoprecipitate (Figure 4A).

Moreover, binding is independent from the ATPase activity of the

helicase. RIG-I pull-down of [32P]-labelled T7-driven transcripts is

indeed poorly affected by the presence of the non hydrolysable

ATPcs, and an ATPase-defective RIG-I mutant, K270A,

efficiently binds to [32P]-labelled T7-driven transcripts (data not

shown) and to biotinylated leader RNA (Figure 4A and C). [32P]-

labelled microRNAs, purified from in vitro VSV transcription, are

also specifically pulled down by RIG-I (data not shown). However,

the mono-or tri-phosphate status of the 59 end of RNA does not

strongly influence the RNA binding ability of RIG-I (Figure 4B), in

agreement with the reported ability of dsRNA to pull down RIG-I

[1]. Moreover, the RIG-I affinity for 59-triphosphate and 59-

monophosphate leader RNA is similar, as grossly judged on the

basis of saline elution step gradient (Figure 4D). Thus, the 59-

triphosphate appears to be dispensable for RNA binding to RIG-I,

but it is involved in RIG-I activation.

Modelling of the RIG-I helicase domain and

prediction of Q299 as an RNA contacting residue
In order to obtain mechanistic insights into the RIG-I interaction

with RNA, we searched the pdb for possible structural homolo-

gues. This led to the identification of Hef, a helicase from Pirococcus

Figure 2. 59-triphosphate ended RNA are strong activators of IFN-b. (A) In vitro T7 transcripts activate the IFN response independently of RNA
sequence 293T cells were transfected for 24 h with 200 ng of T7 transcripts purified according to their size: short single strand 56 nt leader (le), 56 nt
delear (dle, an anagram from leader with poor predicted structure, see Figure S3), single strand 86 nt myc (my) RNA, 62 nt shRNAeGFP (sh) or poly(I:C);
(mo) = mock. As controls, RNAs were digested with RNase A before transfection. (B) 59-triphosphate RNA are stronger IFN inducers than 59-
monophosphate RNA. Monophosphate RNAs were obtained as described in Figure S3 and have length identical to their 59triphosphate counterparts.
200 ng of 59-triphosphate short leader (le), 59-monophosphate short leader (le), 59-triphosphate long leader (lle), 59-triphosphate-shRNAeGFP, 59-
monophosphate-shRNAeGFP (sh) or poly(I:C), were transfected into 293T cells. The results are from one representative experiment out of three. (C) In
vivo T7-driven, but not in vivo Pol III-driven transcription of measles virus RNA leader activates IFN-b. 293T and 293-3-46 (noted 293-T7) cell line stably
expressing the T7 polymerase were transfected with 0.4 mg/105 cells of pcDNA-t7-leader or pSUPER-H1-leader and the amount of IFN-b transcripts
was quantified. (D) In vitro T7 transcripts but not in vivo Pol III transcripts induce IFN-b activation. 293T cells were transfected with peGFPN2 plasmid
coding for the eGFP together with either eGFP specific shRNA transcripts made in vitro by the T7 polymerase or a plasmid DNA encoding an eGFP
specific shRNA under the Pol III promoter.
doi:10.1371/journal.pone.0000279.g002

59triphosphate RNA and RIG-I
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furiosus [30] that shares 43% similarity and 25% identity with the

helicase domain of RIG-I. After refining the sequence alignment

between RIG-I and Hef (Figure 5A), we used it as a template to

build a homology-derived 3D model of the helicase domain of

RIG-I (Figure 5B).

In order to identify the RIG-I residues possibly involved in

RNA binding, we performed a structural alignment among the

RIG-I model, and the crystal structures of PcrA (a DNA helicase

from Bacillus stearothermophilus) [31], of Rep (a DNA helicase from

E. coli) [32] and of the hepatitis C virus (HCV) NS3 helicase [33].

Notably, PcrA and Rep, which share an identity of 42%, have

been crystallised with a DNA oligonucleotide [31,32], while the

crystal structure of the HCV NS3 contains an RNA molecule [33].

Although NS3 has a more divergent primary sequence, it has an

overall fold very similar to that of Rep and PcrA [34].

Among the nucleic acid binding motifs of helicases (namely

motifs Ia, III, IV, V), the motif Ia is devoted to oligonucleotide

binding, while the other motifs have also additional and not yet

well defined functions [35]. As these motifs are divergent in their

sequence, the oligonucleotide-binding residues are not conserved

[35]. Moreover, even when the motifs are strictly conserved, as is

the case of motif Ia (FTNKAA) in PcrA [31] and Rep [32], the

residues involved in DNA binding are not the same (Phe64 in

PcrA, and Thr56 plus Lys58 in Rep). In addition, despite the

overall very similar fold shared by these helicases, the bound

oligonucleotide molecules are not superimposable (data not

shown). Altogether, these latter points highlight the divergence

of helicases in their mode of binding to the nucleic acid.

Despite the low overall sequence identity (less than 15%), a very

good superimposition of the secondary structure elements of the Ia

motif was found among the four structures (with a rmsd of 0.5–

1.0 Å) (Figure 5C). In order to identify the RIG-I residue(s)

possibly involved in the interaction with RNA, we analysed the

residue(s) involved in the interaction with the oligonucleotide in

the three helicases, and their structural counterpart in RIG-I.

In Rep, two residues interact with the DNA, namely Thr56 via

its hydroxyl group, and Lys58 via its amino group (Figure 5D). In

the RIG-I model, the only residues close (,4 Å) to the DNA

molecule crystallized with Rep are Gln299 and Pro301. These

latter residues are also close enough to establish contacts with the

DNA molecule of the PcrA-DNA complex, although the PcrA

DNA binding residue is a phenylalanine (Phe64) (Figure 5E).

Within HCV NS3, two residues (namely Pro230 and Val232)

interact with the RNA molecule (Figure 5F). Within RIG-I, there

are three residues that could interact with the RNA molecule:

Tyr303, Ile300 and Gln299. Tyr303 could establish an H bond via

its OH group to the alpha phosphate of this RNA, and Ile300

could interact either by stacking the ribose (or base) cycle, or

through its backbone carbonyl or amide atoms. The side-chain

amide group of Gln can act simultaneously as hydrogen bond

donor and acceptor. Gln299 is the polar residue closest to RNA

and could more specifically interact (i.e. via its side chain) with the

nucleic acid.

In conclusion, the structural comparison led us to predict

Gln299 as the best located residue to specifically interact with

RNA. Accordingly, we designed and constructed a RIG-I Q299A

Figure 3. IFN-b activation by measles virus and by viral 59-triphosphate leader is mediated by RIG-I. Lack of IFN-b response in the RIG-I deficient
Huh7.5 cells after measles virus infection (A) or transfection with 200 ng of in vitro T7-driven leader transcript (B). Huh7 and Huh7.5 cells were infected
with measles virus for 24 h and checked for N and IFN-b mRNA expression. (C) Exogenous expression of Flag-RIG-I enhances IFN-b stimulation by in
vitro T7-driven leader transcript. 293T cells were transfected with a control plasmid or a plasmid coding RIG-I (0.4 mg DNA), followed 24 h later by
transfection with no RNA, T7 transcribed leader or poly(I:C) (200 ng). 24 h after the second transfection, IFN-b mRNA was quantified as described
above. Ectopic expression of Flag-RIG-I was controlled by western blotting (not shown).
doi:10.1371/journal.pone.0000279.g003

59triphosphate RNA and RIG-I
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mutant, and found that the mutated protein is unable to bind

significantly to biotinylated leader RNA (Figure 5G).

DISCUSSION
Our present findings strongly support 59-triphosphate ended ssRNAs

as being a danger signal capable of inducing cellular innate

immunity. These ssRNAs are recognised by the helicase RIG-I.

Mechanism of RIG-I binding to RNA and activation
The bioinformatics analysis of the RIG-I sequence, as well as RNA

binding experiments, confirm previous findings [1] indicating that

this molecule belongs to the DExD/H RNA helicase family. RNA

binding is mediated by the helicase domain [1,36] and we showed

that it involves the Gln299 within the helicase Ia motif, while the

ATPase site does not play a crucial role. RIG-I has been reported

to bind to many different ssRNA and dsRNA ([1,36,37] and this

work). Using a physiological RNA target for RIG-I, the measles

virus leader RNA, in vitro RNA binding to RIG-I was found not to

be significantly enhanced by the presence of a 59-triphosphate end

in contrast with the recent reports from Hornung et al. and

Pilchmair et al. who carried out similar assays [36,37]. A possible

reason for this discrepancy could be that the longer ssRNA (56 nt)

we used, as compared to those used by Hornung et al. (24 and

31 nt) [36] could obscure the contribution of the 59 triphosphate

end to the RNA binding. Pilchmair et al. [37] used much longer

RNAs (356 nt) and a RIG-I-GFP fusion protein instead of Flag-

tagged RIG-I protein. We could speculate that the presence of the

GFP tag may lead to subtle conformational changes of the helicase

domain, possibly by modifying its post-translational modification

through changes in the cellular polyubiquitination system [38].

Since alanine substitution of Gln299, predicted to bind to the

RNA chain and not to the 59-triphosphate end, abolishes the

ability of RIG-I to bind to RNA, we propose that the 59 end of

RNA only marginally contributes to RNA binding, while it is

critical for RIG-I activation and exposure of CARD domains for

binding to IPS-1. Indeed, isolated CARD domains from RIG-I act

as constitutive activator of the IFN response [1].

Short uncapped measles virus RNA leader transcript

as activator of the RIG-I-mediated IFN response
As other Mononegavirales, measles virus has a polymerase producing

two types of 59-triphosphate RNAs [39,40], the 15,894 nt long

genomic and antigenomic RNAs, and the short leader RNA which

could be recognised by RIG-I. The 59-triphosphate moieties of

genome and antigenome are not recognized, as shown by the

inability of UV inactivated measles virus to induce an interferon

response ([9] and our data), likely because they are shielded within

the nucleocapsid [41]. Moreover, during virus replication, the

simultaneous encapsidation by the N protein of nascent 59-

triphosphate genome/antigenome ends is predicted to prevent

them from being recognised by RIG-I. As a consequence, if, as

recently described [36], the 59-triphosphate moieties of naked

genomes and antigenomes from rabies virus, a Mononegavirales, can

be recognized by RIG-I, this is unlikely to reflect the in vivo

situation. Rather, we propose that the short 59-triphosphate leader

RNAs transcribed in the cytosol by all Mononegavirales members but

Figure 4. Binding of in vitro transcribed leader RNAs to RIG-I. (A) Anti-Flag M2 immunoprecipitates from cytoplasmic extracts of cells over-
expressing Flag RIG-I or Redfp proteins as control (ctrl) were incubated with [32P]-labelled RNA leader or shRNA transcripts made in vitro by the T7
polymerase, in the presence or absence of non hydrolysable ATPcs. Western blotting using Anti-Flag M2 antibody were used to assess the
precipitation of Flag-RIG-I on the beads (not shown). (B) A similar experiment was performed with radio-labelled 59-triphosphate or 59-
monophosphate leader transcribed in vitro by T7 polymerase. Mock (mo): beads incubated with [32P]-radio-labelled RNA in the absence of
cytoplasmic extracts. (C) Extracts of cells over-expressing FlagRIG-I (noted wt), FlagRIG-I[K270A] or Redfp as control (ctrl) were incubated with
biotinylated 59-triphosphate measles virus leader RNA, and the complex was then pulled-down with Streptavidin-coupled beads. Proteins were
eluted with 500 mM NaCl and analysed by Western blot for RIG-I binding to RNA. Mock represents incubation of RNA without protein. (D) Step
gradient elution of FlagRIG-I with either 59-triphosphate (59-ppp) or 59-monophosphate (59-p) biotinylated measles virus leader RNA. Proteins were
sequentially eluted with increasing NaCl concentrations, and analysed for bound RIG-I by western blot.
doi:10.1371/journal.pone.0000279.g004

59triphosphate RNA and RIG-I
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Figure 5. Structural model of the helicase domain of RIG-I, prediction of Gln299 as an RNA binding residue and validation by RNA binding
assays. (A) Sequence alignment of the RIG-I helicase domain (residues 242–763) and of Hef (1WP9, residues 1–494). Protein sequences were aligned
using the program MUSCLE [51], and manually refined. Predicted and actual secondary structure elements of RIG-I and Hef are shown above the
alignment. Sequence numbering corresponds to the RIG-I sequence. The dots in the alignment and in the structural elements indicate gaps. Identical
amino acids are boxed in red. Similar residues are drawn in red. The seven helicase motifs are underlined. (B) Superimposition between the RIG-I
homology-derived 3D model (cyan) and the crystal structure of the Pyrococcus furiosus helicase (yellow). (C) Superimposition of the motif Ia from Rep
(red), PcrA (white), HCV NS3 (orange) and RIG-I (cyan). (D, E, F) Superimposition of RIG-I motif Ia onto that of Rep (D), PcrA (E), and HCV NS3 (F). The
residues contacting the nucleic acid are shown in sticks. The base closest to the Ia motif in each helicase is shown in white and in sticks. (D) Stick
representation of Rep Thr56 and Lys 58 (red), and of RIG-I Gln 299 (cyan). (E) Stick representation of PcrA Phe64 (white) and of RIG-I Gln299 (cyan). (F)
Stick representation of NS3 HCV Pro230 and Val232 (orange), and of RIG-I Gln299 (cyan). (G) Loss of RIG-I binding to RNA after Gln299Ala mutation.
Binding assays were carried out as described in Fig. 4 legend.
doi:10.1371/journal.pone.0000279.g005
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Bornaviridae, which replicate into the nucleus, represents a danger

signal that triggers the RIG-I mediated innate immunity and

accounts for the massive and immediate IFN induction after

infection. Although 59-triphosphate ended leader RNA from

measles virus has the potential of being responsible for the

activation of the RIG-I dependent IFN-b activation, it remains to

be established whether this small RNA is produced as free RNA in

significant amounts during virus transcription. So far, measles

virus leader RNAs have been found only as encapsidated read-

through leader-N gene RNAs, and they should be poorly prone to

activate RIG-I, based on the same arguments as for the genomes/

antigenomes. From the current model [42] mostly derived from

studies done on Sendai virus and VSV, replication and transcrip-

tion promoters of Mononegavirales are always switched on and their

polymerases continuously enter at the 39end of genomes and

antigenomes to initiate RNA synthesis. In the absence of soluble N

protein, the polymerase is poorly processive and produces small

amounts of leader and a larger amount of leader-N readthrough

short RNAs [43] which fall off the template because of the poor

processivity of the polymerase. Upon scanning forward and

backward, the polymerase encounters the transcription promoter

located downstream of the genomic promoter and starts the

transcription of the first N gene. Transcription becomes processive

because the nascent mRNA is capped by the polymerase shortly

after the initiation of the mRNA synthesis. Upon arriving at the

next intergenic junction, the polymerase stutters to add polyA,

stops and restarts to synthesize the next gene. Later in the infection,

the availability of soluble N allows the specific encapsidation of

nascent leader sequence which contains the encapsidation signal,

and switches the polymerase to a processive replicase mode. Indeed,

most of the read-through leader-N RNAs are also found

encapsidated at later times after infection [43–45]. Although a similar

RNA synthesis initiation can occur on the antigenome with the

synthesis of a short trailer transcript, it requires the accumulation of

viral antigenomes [46] that begins 12–15 h post-infection [11].

According to this model, 59-triphosphate ended leader sequences are

continuously transcribed at a level similar to the transcription of the

first N gene and as such remain the best candidate for the RIG-I-

dependent stimulation of the IFN-b response. The lack of detection

of such small non encapsidated transcripts in the case of measles

virus [45] may reflect their high instability and/or their rapid

dismantling after their interaction with RIG-I.

Finally, from a co-evolution point of view, our and other data

[1–7,36,37] suggest that mammalian cells have evolved so as to

confine transcription and various RNA maturation processes

within cellular organelles. As a result, this has enabled cells to

develop new tools to detect any RNA synthesis occurring in the

cytosol such as a pathogen transcriptional activity. Such RNAs,

being 59-triphosphate ended, are readily recognised by RIG-I. As

a result, RNA viruses completing transcription in the cytosol have

developed various strategies such as efficient capping process

either by cap-snatching (Orthomyxoviridae) or capping activities of

their polymerases (Mononegavirales), shielding nascent genome

and antigenome in the nucleocapsid (Mononegavirales) or efficient

coupling of nascent 59end RNA with a protein which is necessary

to prime the viral polymerase (Picornaviridae). In addition they have

developed many other strategies to counteract the IFN activation

pathway (see [47] for review).

METHODS

Cell lines and viruses
Human kidney 293T/17 and liver Huh7 and Huh7.5 epithelial

cell lines, measles virus Hallé and VSV Indiana strains were used

and maintained as reported [11]. In all experiments, measles virus

infections were performed at a multiplicity of infection of 1. In the

case of UV irradiation, this infectivity was determined before this

treatment.

Plasmids
Plasmids used were pSC6-N, pSC6-P, pSC-M, pcX2N-F, pcX2N-

EdH, pRSV-L, pegfpN2 (Invitrogen), pSC6-T7, pDsRed (Invitro-

gen), pEF-BOS-RIG-I [1] coding for measles virus-N, -P, -F, -H, -

L, eGFP, T7 polymerase, Redfp, Flag-RIG-I, respectively.

In vitro transcription and RNA purification
In vitro transcriptions were performed on 1 mg of linearized

plasmids to get the exact length of RNA transcripts using Ribomax

large scale in vitro Transcription System-T7 (Promega). pSUPER-

leader, pegfpN2-leader, pegfpN2-delear, pegfpN2-trailer, and

pegfpN2-longleader were constructed to serve as templates for in

vitro or in vivo transcription of leader, delear, trailer and long leader

RNAs. Note that these RNAs possessed a 59GG extension as

compared to measles virus leader or trailer RNAs, as a requirement

for T7 transcription initiation. Linearized pcDNA3-myc and

pSUPER-shGFP [19] were also used for T7 in vitro RNA synthesis.

VSV in vitro transcription was performed as described elsewhere

[48]. Radiolabelling was carried out by either performing the T7

in vitro transcription in the presence of UTP[a32P] (Amersham

Biotechnology) or incubating 293T cells for 4 h in a serum free

medium supplemented with 32P labelled orthophosphate to get

radiolabelled cellular RNA. RNA was biotinylated by in vitro

transcription in the presence of 3.5 mM [biotin-16-UTP] (Roche)

and 6.5 mM [UTP] (Promega). RNA purifications were per-

formed with Trizol reagent (Invitrogen). Short size VSV RNA

transcripts (microRNAs, ,200 nucleotides) were purified using

RNeasy Minelute (Qiagen) columns. For cellular nuclear and

cytoplasmic RNA preparation, a pellet of 56106 293T cells,

washed once in PBS, was lysed for 15 min on ice in a buffer

containing 25 mM Tris/HCl pH 7.8, 150 mM NaCl, 5 mM

EGTA, 1 tablet of Complete (Roche) protease inhibitor per 50 ml,

5 mM Na3VO4 and 0.5% NP40. Sample was centrifuged for

10 min at 14,000 rpm and the pellet containing the nuclei were

washed once with the lysis buffer. RNAs were purified from the

nuclei with RNeasy minispin columns with DNase treatment

(Qiagen). RNAs were visualised after size separation in 12%

acrylamide denaturating gel containing 8 M of urea and ethidium

bromide staining. RNase A treatments were done in low salt

conditions.

Transfections
DNA was transfected into 293T cells with Profection Mammalian

Transfection System-Calcium Phosphate (Promega). Purified

RNAs (200 ng) were transfected with Oligofectamine (Invitrogen).

The concentration of the microRNAs (size ,200 nucleotides,

which is the cut off of RNeasy mini-columns from Qiagen)

transcribed in vitro from VSV was too low to be quantified using

standard procedures and a fixed volume of the preparation was

transfected. RNA transfections in Huh7/7.5 cells, were performed

with Fugene 6 reagent (Roche). For positive controls, 0.5 mg of

poly(I:C) (Amersham) were transfected.

RNA extraction, cDNA reverse transcription (RT), and

real-time QPCR analysis
The procedures and primers sequences have been described in full

detail elsewhere [10]. N mRNA was quantified by using a specific
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set of primers while genome/antigenome was quantified by using

primers targeting a L-Tr sequence, which straddles the end of the

39 most distal L gene on the genome and the genome trailer 59 end

(see Figure S1 for details). Primers used for the quantification of

IFN-b transcripts were forward 59-TGGGAGGATTCTGCAT-

TACC-39, reverse 59-CAGCATCTGCTGGTTGAAGA-39. Re-

sults were normalized according to the amounts of 18S rRNA.

Preparation of 59-monophosphate leader
A long-leader, containing a 59 extension of 33 extra nt upstream of

measles virus leader sequence, was synthesized in vitro by T7

polymerase as described above. 1 volume of Stratascript Reverse

Transcriptase (Stratagene) buffer was added together with 0.5

nmol of a DNA oligonucleotide complementary to the 59extension

upstream of the leader sequence, incubated for 5 min at 70uC and

annealed for 5 min at RT. The DNA-RNA hybrid was treated

with 2 ml of RNase H (Promega) for 1 h at 37uC. Then, 1 ml of

RQ1 DNase was added for further 15 min at 37uC before RNA

extraction with RNeasy Minelute (Qiagen) columns. RNAs were

treated with Calf Intestine Phosphatase (Promega) according to the

manufacturer’s instructions.

RIG-I immunoprecipitation and RNA binding
293T cells (86105) were transfected for 30 h with pEF-BOS RIG-I

or pDsRed as mock and lysed in 200 ml of NP-40 buffer (50 mM

Tris/HCl pH 8, 150 mM NaCl, 2 mM MgCl2, 2 mM CaCl2,

Complete protease inhibitors, 1% NP40). A preclearing step was

performed for the different samples for 1 h at 4uC with 20 ml of an

irrelevant antibody, 9E10 anti-myc and anti-mouse Ig antibodies

bound to protein G–Sepharose beads. 0.5 ml of anti-Flag M2

antibody (Sigma) was added to the lysates overnight. Flag-RIG-I

proteins were immunoprecipitated 3 h at 4uC using anti-mouse Ig

antibodies bound to protein G–Sepharose beads which were

washed in the lysis buffer before the RNA binding step. Since T7

transcripts had comparable sizes, specific activities of the different

RNAs were considered identical. RNA inputs were adjusted in

order to get the same input radioactivity between the different

samples. Radiolabelled RNAs (adjusted to 105 cpm/assay corre-

sponding to 200 ng for leader RNA and 100 ng for the longer

shRNA) were incubated with the beads in 200 ml of lysis buffer

supplemented with 1 mg of unlabelled cellular RNA from 293T

cells and 2 ml of the RNase inhibitor Rnasin (Promega), for 30 min

at RT. Beads were washed 3 times with lysis buffer before liquid

scintillation counting. ATP-cS (Sigma) was used at a final

concentration of 2 mM.

RIG-I pulldown by biotinylated RNA
293T cells (46106) cells were transfected according to Lipofecta-

mine 2000 method (Invitrogen) with 10 mg of pEF-BOS FlagRIG-

I, pEF-BOS FlagRIG-I[K270A], pEF-BOS[Q299A] or pDsRed.

48 h post-transfection, cells were lysed in 1 ml of 50 mM Hepes-

KOH pH7.5, 150 mM K-acetate, 5 mM Mg-acetate, 0.1%

digitonin, 0.5 mM PMSF, CompleteH protease inhibitor tablet

(Roche) 16and 2 mM DTT, and sonicated (5610 s). Insoluble

material was removed by centrifuging at 20,000 g for 15 min.

16 mg of biotinylated RNA were added to 350 mg of lysate in

binding buffer (20 mM Hepes pH 7.9, 2 mM EDTA, 15%

glycerol and 0.05% NP-40), 50 mM NaCl, 1000 units/ml RNasin

(Promega), 0.2 mg/ml tRNA (Ambion), 0.5 mM PMSF, Com-

pleteH protease inhibitor tablet 16and 2 mM DTT. The mixture

was stirred for 2 h at 4uC. 50 ml of DynabeadsH M-270

Streptavidin (Dynal Biotech, Invitrogen) pre-washed twice and

pre-equilibrated for 2 h at 4uC with blocking buffer (base buffer

with 100 mM NaCl, 100 units/ml RNasin, 0.2 mg/ml tRNA,

0.1 mg/ml glycogen, 10 mM BSA and 2 mM DTT) was added to

the binding mixture and incubated for two additional hours. The

complex was washed thrice by incubating for 10 min (with agitation)

in wash buffer (binding buffer with 100 units/ml RNasin). Proteins

were eluted from the beads by incubating the complex in 25 ml of

wash buffer containing 500 mM NaCl. When step gradient elution

was performed, the complex was sequentially incubated in wash

buffer containing 50, 100, 150, 200, 300 and 500 mM NaCl.

Proteins were finally analysed by SDS-PAGE. An anti-Flag M2

antibody (Sigma) was used to assess RIG-I binding to RNA.

Modelling of RIG-I helicase domain
Using a BLAST [49] search of the RIG-I sequence against the pdb

[50], we identified a structural homologue, Hef (pdb code 1WP9)

[30]. We then searched RIG-I for the Walker A, Ia, Walker B, III,

IV, V, VI helicase motifs [35]. Using the MUSCLE program [51],

we performed a multiple sequence alignment among RIG-I, Mda-

5 (accession number: Q9BYX4), Hef, PcrA (pdb code 1PJR),

a DNA helicase from Bacillus stearothermophilus, and Rep (pdb code

1UAA), a DNA helicase from E. coli. The resulting alignment was

then manually adjusted so as to align the conserved helicase

motifs. A good correlation was observed between the RIG-I

predicted secondary structure elements (as obtained by using

Psipred [52] and those observed in the crystal structure of Hef [30]

(see Figure 5A), which points out the reliability of the sequence

alignment. This refined sequence alignment was used as a template

to build a homology-derived 3D model of the RIG-I helicase

domain by using the Swiss-model server [53]. Notably, a threading

approach using 3D-PSSM [54] led to a model that is nicely

superimposable onto the homology-derived one (rmsd of 1.35 Å,

data not shown). The two models share the same overall topology,

despite minor structural differences within loops (data not shown).

The good agreement between the two models points out the

reliability of the structural prediction.

We then performed a multiple structural alignment among the

RIG-I model, PcrA, Rep, and the NS3 helicase from HCV (pdb

code 1A1V) using the MSDFOLD server [55].

SUPPORTING INFORMATION

Figure S1 Schematic view of measles virus RNAs and

recognition by RIG-I. Measles virus genome is an encapsidated

negative strand RNA composed of (from 39 to 59 end): the leader

(Le), containing the transcription and replication promoters, 6

genes encoding in the order of the nucleoprotein (N), the

phosphoprotein (P), the matrix protein (M), the fusion protein

(F), the hemagglutinin (H), the polymerase (L), and finally the

trailer (Tr), which hosts the antigenome promoter. It is transcribed

sequentially into non capped non poly-adenylated leader (Le)

RNA and into 6 capped and polyadenylated mature mRNAs. The

genome is replicated into antigenome, which is essentially

a replication template. Encapsidation of the genome and

antigenome is represented by grey N blocks with levels of grey

indicating gene borders. Note that the gene sizes do not match real

ones. The presence of the phosphate group in 59 end is indicated

by ‘‘p’’ letters. RIG-I binds to Leader RNA and the recognition of

its 59ppp end activate RIG-I and downstream signalling leading to

IFN response.

Found at: doi:10.1371/journal.pone.0000279.s001 (4.14 MB TIF)

Figure S2 Predicted structure of leader, delear and myc short

RNAs. Predictions were made according to Zuker’s program

(www.bioinfo.rpi.edu/applications/mfold/old/rna/form1.cgi).

59triphosphate RNA and RIG-I

PLoS ONE | www.plosone.org 9 March 2007 | Issue 3 | e279



Found at: doi:10.1371/journal.pone.0000279.s002 (4.04 MB TIF)

Figure S3 (A) Strategy used to derived 59-monophosphate leader

(le) RNA from longer 59-triphosphate RNA leader (lle) precursors

synthesized in vitro. (B) Pure RNAs were analysed by electropho-

resis on polyacrylamide gel and stained with ethidium bromide.

Note that the 59-triphosphate leader migrated slightly ahead of the

59-monophosphate leader as expected from its more acidic charge.

Found at: doi:10.1371/journal.pone.0000279.s003 (4.43 MB TIF)

Figure S4 Inability of cellular RNA to activate the IFN

response. Cytoplasmic and nuclear RNAs extracted from un-

infected cells were transfected into 293T cells and analysed for

their ability to induce IFN-b response.

Found at: doi:10.1371/journal.pone.0000279.s004 (0.49 MB TIF)
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