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The Lorentz force effect on the On-Off dynamo intermittency

Alexandros Alexakis, Yannick Ponty
Laboratoire Cassiopée, Observatoire de la Côte d’Azur,

BP 4229, Nice Cedex 04, France

An investigation of the dynamo instability close to the threshold produced by an ABC forced flow
is presented. We focus on the on-off intermittency behavior of the dynamo and the counter-effect
of the Lorentz force in the non-linear stage of the dynamo. The Lorentz force drastically alters
the statistics of the turbulent fluctuations of the flow and reduces their amplitude. As a result
much longer burst (on-phases) are observed than what is expected based on the amplitude of the
fluctuations in the kinematic regime of the dynamo. For large Reynolds numbers, the duration time
of the “On” phase follows a power law distribution, while for smaller Reynolds numbers the Lorentz
force completely kills the noise and the system transits from a chaotic state into a “laminar” time
periodic flow. The behavior of the On-Off intermittency as the Reynolds number is increased is also
examined. The connections with dynamo experiments and theoretical modeling are discussed.

PACS numbers: 47.65.-d,47.20.Ky,47.27.Sd,52.65.Kj

I. INTRODUCTION

Dynamo action, the self amplification of magnetic field
due to the stretching of magnetic field lines by a flow, is
considered to be the main mechanism for the generation
of magnetic fields in the universe [1]. To that respect
many experimental groups have successfully attempted
to reproduce dynamos in liquid sodium laboratory ex-
periments [2, 3, 4, 5, 6, 7, 8]. The induction experiments
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18] studying the response
of an applied magnetic field inside a turbulent metal liq-
uid represent also a challenging science. With or without
dynamo instability the flow of a conducting fluid forms
complex system, with a large degree of freedoms and a
wide branch of non linear behaviors.

In this work we focus on one special behavior: the On-
Off intermittency or blowout bifurcation [19, 20]. On-off
intermittency is present in chaotic dynamical systems for
which there is an unstable invariant manifold in the phase
space such that the unstable solutions have a growth rate
that varies strongly in time taking both positive and neg-
ative values. If the averaged growth rate is sufficiently
smaller than the fluctuations of the instantaneous growth
rate, then the solution can exhibit on-off intermittency
where bursts of the amplitude of the distance from the
invariant manifold are observed (when the growth rate is
positive) followed by a decrease of the amplitude (when
the growth rate is negative). (See [21, 22] for a more
precise definition).

On-Off intermittency has been observed in different
physical experiments including electronic devices, elec-
trohydrodynamic convection in nematics, gas discharge
plasmas, and spin-wave instabilities [23]. In the MHD
context, near the dynamo instability onset, the On-Off
intermittency has been investigated by modeling of the
Bullard dynamo [24]. Using direct numerical simulation
[21, 22] were able to observe On-Off intermittency solving
the full MHD equations for the ABC dynamo, (here we
present an extended work of this particular case). On-Off
intermittency has also been found recently for a Taylor-

Green flow [25]. Finally, recent liquid metal experimental
results (VKS) [26] show some intermittent behavior, with
features reminiscent of on-off self-generation that moti-
vated our study.

For the MHD system we are investigating the evolu-
tion of the magnetic energy Eb = 1

2

∫

b
2dx3 is given by

∂tEb =
∫

b(·b∇)u − η(∇b)2dx3. If the velocity field
has a chaotic behavior in time the right hand side of
the equation above can take positive or negative val-
ues and can be modeled as multiplicative noise. A sim-
ple and proved very useful way to model the behav-
ior of the magnetic field during the on-off intermittency
is using a stochastic differential equation (SDE-model)
[19, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35]:

∂tEb = (a + ξ)Eb − NL(Eb) (1)

where Eb is the magnetic energy, a is the long time av-
eraged growth rate, ξ models the noise term typically
assumed to be white (see however [34, 35]) and of am-
plitude D such that 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). NL is
a non-linear term that guaranties the saturation of the
magnetic energy to finite values typically taken to be
NL(X) = X3 for investigations of supercritical bifurca-
tions or NL(X) = X5 −X3 for investigations of subcrit-
ical bifurcations. Alternative, an upper no-flux bound-
ary is imposed at Eb = 1. In all these cases (indepen-
dent of the non-linear saturation mechanism) the above
SDE leads to the stationery distribution function that
for 0 < a < D has a singular behavior at Eb = 0:

P (Eb) ∼ E
a/D−1

b indicating that the systems spends a
lot of time in the neighborhood of Eb = 0. This is singu-
larity is the signature of On-Off intermittency. Among
other predictions of the SDE model here we note that the
distribution of the duration time of the “off” phases fol-
lows a power law behavior PDF (∆Toff) ∼ ∆T−1.5

off , all
moments of the magnetic energy follow a linear scaling
with a, 〈Em

b 〉 ∼ a, and for a = 0 the set of the burst has
a fractal dimension d = 1/2 [30, 31, 32, 33].
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FIG. 1: A typical example of a burst. The top panel shows
the evolution of the kinetic energy (top line) and magnetic
energy (bottom line). The bottom panel shows the evolution
of the magnetic energy in a log-linear plot. During the on
phase of the dynamo the amplitude of the noise of the kinetic
energy fluctuations is significantly reduced. The runs were for
the parameters Gr = 39.06 and GM = 50.40.

In this dynamical system eq.(1) however the noise am-
plitude or the noise proprieties do not depend on the
amplitude of the magnetic energy. However, in the
MHD system, when the non-linear regime is reached, the
Lorentz force has a clear effect on the the flow such as the
decrease of the small scale fluctuation, and the decrease
of the local Lyapunov exponent [36, 37]. Some cases, the
flow is altered so strongly that the MHD dynamo system
jumps into an other attractor, that cannot not sustain
any more the dynamo instability [38]. Although the ex-
act mechanism of the saturation of the MHD dynamo is
still an open question that might not have a universal
answer, it is clear that both the large scales and the tur-
bulent fluctuations are altered in the non-linear regime
and need to be taken into account in a model.

Figure 1 demonstrates this point, by showing the evo-
lution of the kinetic and magnetic energy as the dynamo
goes through On- and Off- phases. During the On phases
although the magnetic field energy is an order of magni-
tude smaller than the kinetic energy both the mean value
and the amplitude of the observed fluctuations of the ki-
netic energy are significantly reduced. As a result the
On-phases last a lot longer than what the SDE-model
would predict. With our numerical simulations, we aim
to describe which of the On-Off intermittency proprieties
are affected through the Lorentz force feed-back.

This paper is structured as follows. In the next section
II we discuss the numerical method used. In section III A
we present the table of our numerical runs and discuss
the dynamo onset. Results for small Reynolds numbers
investigating the transition from a laminar dynamo to on-
off intermittency are presented in III B, and the results on
fully developed on-off intermittency behavior are given in

section III C. Conclusions, and implications on modeling
and on the laboratory experiments are given in the last
section IV.

II. NUMERICAL METHOD

Our investigation is based on the numerical integration
of the classical incompressible MagnetoHydroDynamic
equations (MHD) (2) in a full three dimensional peri-
odic box of size 2π, with a parallel pseudo-spectral code.
The MHD equations are:

∂tu + u · ∇u = −∇P + (∇× b) × b + ν∇2
u + f

∂tb = ∇× (u × b) · u + η∇2
b (2)

along with the divergence free constrains ∇·u = ∇·b =
0. Where u is the velocity, b is the magnetic field (in
units of Alfvén velocity), ν the molecular viscosity and η
the magnetic diffusivity. f is an externally applied force
that in the current investigation is chosen to be the ABC
forcing [39] explicitly given by

f = x̂(A sin(kzz) + C cos(kyy))

ŷ(B sin(kxx) + A cos(kzz)) (3)

ẑ(C sin(kyy) + B cos(kxx))

with all the free parameters chosen to be unity A = B =
C = kx = ky = kz = 1.

The MHD equations have two independent control pa-
rameters that are generally chosen to be the kinetic and
magnetic Reynolds numbers defined by: Re = UL/ν
and RM = UL/η respectably, where U is chosen to
be the root mean square of the velocity (defined by

U =
√

2Eu/3, where Eu is the total kinetic energy
of the velocity) and L is the typical large scale here
taken L = 1.0. Alternatively we can use the ampli-
tude of the forcing to parametrize our system in which
case we obtain the kinetic and magnetic Grashof numbers
Gr = FL3/ν2 and GM = FL3/νη respectably. Here F
is the amplitude of the force that is taken to be unity
F =

√

(A2 + B2 + C2)/3 = 1 following the notation of
[53].

We note that in the laminar limit the two different
sets of control parameters are identical Gr = Re and
GM = RM but in the turbulent regime the scaling
Gr ∼ Re2 and GM ∼ ReRM is expected. In the ex-
amined parameter range the velocity field fluctuates in
time generating uncertainties in the estimation of the
root mean square of the velocity and then the Reynolds
numbers. For this reason in this work we are going to
use the Grashof numbers as the control parameters of
our system.

Starting with a statistically saturated velocity, we in-
vestigate the behavior of the kinetic and magnetic en-
ergy in time by introducing a small magnetic seed at
t = 0 and letting the system evolve. When the mag-
netic Grashof (Reynolds) number is sufficiently large the
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magnetic energy grows exponentially in time reaching the
dynamo instability. We have computed the dynamo on-
set for different kinematic Grashof (Reynolds) numbers
(III.A) starting from small Gr = 11.11 that the flow ex-
hibits laminar ABC behavior to larger values of Gr (up
to Gr = 625.0) that the flow is relatively turbulent.

Typical duration of the runs were 105 turn over
times although in some cases even much longer inte-
gration time was used. For each run during the kine-
matic stage of the dynamo the finite time growth rate
aτ (t) = τ−1 log(Eb(t + τ)/Eb(t) was measured. The
long time averaged growth rate was then determined as
a = limτ→∞ aτ (0) and the amplitude of the noise D
was the measured based on D = τ〈(a − aτ )2〉/2 (see
[21, 22]). Typical value of τ was 100 while the for long
time average the typical averaging time ranged from 104

to 105 depending on the run. The need for long compu-
tational time in order to obtain good statistics restricted
our simulations to low resolutions that varied from 323

(for Gr ≤ 40.0) to 643 (for Gr > 40).

III. NUMERICAL RESULTS

A. Dynamo onset

The ABC flow is a strongly helical Beltrami flow with
chaotic Lagrangian trajectories [40]. The kinematic dy-
namo instability of the ABC flow, even with one of the
amplitude coefficients set to zero (2D1/2 flow) [41, 42] has
been study intensively [43, 44, 45, 46, 47], especially for
fast dynamo investigation [48, 49, 50, 51, 52]. In the lam-
inar regime and for the examined case where all the pa-
rameter of the ABC flow are equal to the unity (equations
(4), the flow has dynamo in the range 8.9 . GM . 17.8
and 24.8 < GM [43, 44]. In this range the magnetic field
is growing near the stagnation point of the flow, produc-
ing “cigar” shape structures aligned along the unstable
manifold.

As the kinematic Grashof number is increased, a crit-
ical value is reached (Gr = Re ∼ 13.) that the hy-
drodynamic system becomes unstable. After the first
bifurcation, further increase of the kinematic Grashof
(Reynolds) number, leads the system to jump to different
attractors [53, 54], until finally the fully turbulent regime
is reached.

The On-off intermittency dynamo was studied with the
forcing ABC by [21, 22] although their study was focused
on a single value of the mechanical Grashof number while
the magnetic Grashof number was varied. We expand
this work by varying both parameters. For each kine-
matic Grashof number a set of numerical runs were per-
formed varying the magnetic Grashof number. A table
of the different Grashof (Reynolds) numbers examined is
shown in table I. The case examined in [21, 22] is closer to
the set of runs with Gr = 39.06 although here examined
at higher resolution.

First, we discuss the dynamo onset. For each kinetic

TABLE I: Parameters used in the simulations. GMc is the
critical magnetic Grashof that the dynamo instability begins
and GMo is the critical magnetic Grashof that the dynamo
instability stops having on-off behavior. Thus, on-off inter-
mittency is observed in the range GMc < GM < GMo.

Run ν Gr Re GMc GMo

I 0.30 11.11 11.11 8.89–17.8, 24.0 8.89
II 0.28 12.75 12.75/11.22 8.50 8.50
III 0.25 16.00 14.82 9.35 9.35
IV 0.22 20.66 11.65 11.3 11.8
VI 0.20 25.00 18.45 29.4 56.8
VII 0.18 30.86 19.47 37.0 50.5
VII 0.16 39.06 20.60 48.0 59.5
VII 0.08 156.25 34.08 123.7 137.
VII 0.04 625.00 67.20 327.2 362.

FIG. 2: Critical magnetic Grashof number GMc that the dy-
namo instability is observed (solid line) and the critical mag-
netic Grashof number GMo where the on-off intermittency is
disappears (dashed line).

Grashof number the critical magnetic Grashof number
GMc is found and recorded in table I. For our lowest kine-
matic Grashof number Gr = 11.11 which corresponds to
a slightly smaller value than the critical value that hy-
drodynamic instabilities are present, the flow is laminar
and the two windows of dynamo instability [43, 44] are
rediscovered, shown in fig. 2. At higher Grashof number,
the hydrodynamic system is not stable anymore, and the
two dynamo window mode disappear, to collapse in only
one (see fig.2). The critical magnetic Reynolds number
is increasing with the Grashof (Reynolds) number fig.2,
and saturates at very large values of Gr [55] that are far
beyond the range examined in this work.

B. Route to the On-Off intermittency

The first examined Grashof number beyond the lami-
nar regime is Gr = 12.75 (run II). In this case two sta-
ble solutions of the Navier-Stokes co-exist. Depending of
the initial starting condition, this hydrodynamic system
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FIG. 3: Kinetic (inset) and magnetic energy for the run with
Gr = 12.75 and GM = 22.32 for two runs starting with dif-
ferent initial conditions for the velocity field. The first flow
(solid line) is attracted to the laminar ABC flow and gives no
dynamo the second flow (dashed line) is attracted to a new
solution that gives dynamo.

converges into one of the two attractors. The two veloc-
ity fields have different critical magnetic Grashof num-
bers. The first solution is the laminar flow that shares
the same dynamo properties with the smaller Grashof
number flows. For the second flow however the previous
stable window between GM ≃ 17.8 and GM = 24.0 dis-
appears and the critical magnetic Grashof number now
becomes GMc = 8.50, resulting in only one instability
window. Figure 3 demonstrates the different dynamo
properties of the two solutions. The evolution of the ki-
netic and magnetic energy of two runs is shown with the
same parameters Gr, GM but with different initial con-
ditions for the velocity field. GM is chosen in the range
of the no-dynamo window of the laminar ABC flow.

This choice of Gr although it exhibits interesting be-
havior does not give on-off intermittency since both hy-
drodynamic solutions are stable in time. The next exam-
ined Grashof number (III), gives a chaotic behavior of the
hydrodynamic flow and accordingly a “noisy” exponen-
tial growth rate for the magnetic field. The evolution of
the kinetic energy and the magnetic energy in the kine-
matic regime is shown in fig. 4 for a relatively short
time interval. The kinetic energy “jumps” between the
values of the kinetic energy of the two states that were
observed to be stable at smaller Grashof numbers in a
chaotic manner. Accordingly the magnetic energy grows
or decays depending on the state of the hydrodynamic
flow, in a way that very much resembles a biased random
walk in the log-linear plane. Thus, this flow is expected
to be a good candidate for on-off intermittency that could
be modeled by the SDE model equations given in eq.1.
However this flow did not result in on-off intermittency
for all examined magnetic Grashof numbers, even for the
runs that the measured growth rate and amplitude of
the noise were found to satisfy the criterion a/D < 1
for the existence of on-off intermittency. What is found

FIG. 4: The evolution of the kinetic (top panel) and magnetic
(bottom panel) energy for the run with Gr = 16.0 and GM =
9.39.

FIG. 5: The evolution of the magnetic energy for the run with
Gr = 16.0 and GM = 9.39. At the linear stage the logarithm
of the magnetic energy grows like a random walk. At the
nonlinear stage however the solution is trapped in a stable
time periodic solution. The inset shows the evolution of the
magnetic energy in the nonlinear stage in a much shorter time
interval. The examined run has a/D = 0.022 < 1.

instead is that at the linear stage the the magnetic field
grows in a “random” way but in the nonlinear stage the
solution is “trapped” in a stable periodic solution and
remains there throughout the integration time. This be-
havior is demonstrated in fig. 5 where the evolution of
the magnetic energy is shown both in the linear and in
the non-linear regime. ‘

An other interesting feature of this flow is that ex-
hibits subcriticality [25]. The periodic solution that the
dynamo simulations converged to in the nonlinear stage
appears to be stable even for the range of GM that no
dynamo exists. Figure 6 shows the time evolution of two
runs with the same parameters Gr, GM one starting with
very small amplitude of the magnetic field and one start-
ing using the output from one of the successful dynamo
runs in the nonlinear stage. Although the magnetic en-
ergy of the first run decays with time the nonlinear solu-
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FIG. 6: Subcritical behavior of the ABC dynamo. The evo-
lution of the magnetic energy for two runs with Gr = 16.0
and GM = 9.30 starting with small amplitude magnetic field
(bottom line) and starting with an amplitude of the magnetic
field at the nonlinear stage (top almost straight line).

tion appears to be stable.

The next examined Grashof number G = 20.66 (IV)
appears to be a transitory state between the previous
example and on-off intermittency that is examined in
the next section. Figure 7 shows the evolution of the
magnetic energy for three different values of GM =
20.66, 12.0, 11.6 for all off which the ratio a/D was mea-
sured and was found to be smaller than unity and there-
for are expected to give on-off intermittency based on the
SDE model. Only the bottom panel however (which cor-
responds to the value of GM = 11.6 closest to the onset
value GM = 11.3) shows on-off intermittency. A singu-
lar power law behavior of the pdf of the magnetic energy
during the off phases (small Eb) for the last run was ob-
served to be in good agreement with the predictions of
the SDE. This is expected since for small Eb the Lorentz
force that is responsible for trapping the solution in the
nonlinear stage does not play any role.

C. On-off intermittency

All the larger Grashof numbers examined display on-
off intermittency and there is no trapping of the solutions
in the “on” phase. Figure 8 shows an example of the on-
off behavior for Gr = 25.0 and three different values of
GM ( GM = 41.6 (top panel), GM = 35.7 (middle panel),
GM = 31.2 (bottom panel)). As the critical value of GM

is approached the “on” phases of the dynamo (bursts)
become more and more rare as the SDE model predicts.
Note however that the “on” phases of the dynamo last
considerably long. In fact the distribution of the dura-
tion of the “on” phase ∆Ton is fitted best to a power
law distribution rather than an exponential that a ran-
dom walk model with an upper no-flux boundary would
predict, as can be seen in fig. 9.

FIG. 7: Evolution of the magnetic energy for Gr = 20.66
and GM = 20.66 (top panel), GM = 12.0 (middle panel),
GM = 11.6 (bottom panel).

FIG. 8: Evolution of the magnetic energy for Gr = 20.66
and GM = 20.66 (top panel), GM = 12.0 (middle panel),
GM = 11.6 (bottom panel).

FIG. 9: Distribution of the “on” times for the Gr = 39.06
case and three different values of GM . The fit (dashed line)
corresponds to the power-low behavior ∆T−3.2. Here ”on”
time is considered the time that dynamo has magnetic energy
Eb > 0.2.
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FIG. 10: The probability distribution functions of Eb, for
Gr = 25 and and seven different values of GM (starting from
the top line: GM = 31.2, GM = 33.3, GM = 35.7, GM =
38.4, GM = 41.6, GM = 50.0, GM = 83.3. The last case
GM = 83.3 shows no on-off intermittency. The dashed lines
shows the prediction of the SDE model. The pdfs have not
been normalized for reasons of clarity.

The effect of the long duration of the “on” times can
also be seen in the pdfs of the magnetic energy. The pdfs
for the Gr = 20.66 for the examined Gr are shown in
figure 10. For values of GM much larger from the critical
value GMc the pdf of the amplitude of the magnetic field
is concentrated at large values Eb ≃ 1 producing a peak
in the pdf curves. As GM is decreased approaching GMc

from above a singular behavior of the pdf appears with
the pdf having a power law behavior ∼ E−γ

b for small Eb.
The closer the GM is to the critical value the singularity
becomes stronger. The dashed lines show the prediction
of the SDE model γ = 1 − a/D. The fit is very good for
small Eb, however the SDE for a supercritical bifurcation
fails to reproduce the peak of the pdf at large Eb, that is
due to the long duration of the “on” phases.

An other prediction of the SDE model is that
all the moments of the magnetic energy 〈Em

b 〉 =
∫

PDF (Eb)E
m
b dEb have a linear scaling with the devia-

tion of GM from the critical value GMc provided that the
difference GM − GMc is sufficiently small. This result is
based on the assumption the singular behavior close to
Eb = 0 gives the dominant contribution to the pdf that
is always true provided that the ratio a/D is sufficiently
small. However if the system spends long times in the
“on” phase the range of validity of the linear scaling of
〈Eb〉 with a ∼ GM − GMc is restricted to very small val-
ues of the difference GM − GMc. Figure 11 shows the
time averaged magnetic energy 〈Eb〉 as a function of the
relative difference (GM − GMc)/GM in a log-log scale.
The dependence of 〈Eb〉 on the deviation of GM from
the critical value appears to approach the linear scaling
albeit very slow. The best fit from the six smallest values
of GM shown in the fig.11 gave an exponent of 0.8 (e.g
〈Eb〉 ∼ (GM − GMc)

0.8). The small difference from the
linear scaling (〈Eb〉 ∼ (GM−GMc)

1 ) is probably because

FIG. 11: Averaged magnetic energy as function of the rel-
ative deviation from the critical magnetic Grashof num-
ber. The dash-dot vertical line indicates the location of
(GMo −GMc)/GM beyond which On-Off intermittency is no
longer present.

not sufficiently small deviations (GM −GMc) were exam-
ined. We note however that there is a strong deviation
from the linear scaling for values of GM close to GMo.

Of particular interest to the experiments is how the
range of intermittency changes as Gr is increased. Typ-
ical Gr numbers for the experiments are of the order
of Gr ∼ Re2 ∼ 1012 that is not currently possible to
be obtained in numerical simulations. In figure 2 we
showed the critical magnetic Grashof number GMc that
dynamo instability is observed and the critical magnetic
Grashof number GMo that the on-off intermittency is
present. GMc was estimated by interpolation between
the run with the smallest positive growth rate and and
the run with the smallest (in absolute value) negative
growth rate. The on-off intermittency range was based on
the pdfs of the magnetic energy. Runs that the pdf had
singular behavior at Eb ≃ 0 are considered on-off while
runs with smooth behavior at Eb ≃ 0 are not considered
to show on-off intermittency. The slope of the pdfs (in
log-log scale) for small Eb were calculated and the tran-
sition point GMo was determined by interpolation of the
two slopes (see for example the bottom two curves in fig.
10). In figure 12 we show the ratio (GMo − GMc)/GMc

as a function of Gr that expresses the relative range that
on-off intermittency is observed. The error-bars corre-
spond to the smallest examined values of GM that no
on-off intermittency was observed (upper error bar) and
the largest examined values of GM that on-off intermit-
tency was observed (lower error bar). The range of on-off
intermittency is decreasing as Gr is increased probably
reaching an asymptotic value. However to clearly de-
termine the asymptotic behavior of GMo with Gr would
require higher resolutions that the long duration of these
runs does not allow us to perform.
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IV. DISCUSSION

In this work we have examined how the on-off intermit-
tency behavior of a near criticality dynamo is changed as
the kinematic Reynolds is varied, and what is the effect of
the Lorentz force in the non-linear stage of the dynamo.
The predictions of [30, 31, 32, 33], linear scaling of the
averaged magnetic energy with the deviation of the con-
trol parameter from its critical value, fractal dimensions
of the bursts, distribution of the “off” time intervals, and
singular behavior of the pdf of the magnetic energy that
were tested numerically in [21, 22] were verified for a
larger range of Kinematic Grashof numbers when On-Off
intermittency was present. Note however that all these
predictions are based on the statistics of the flow in the
kinematic stage of the dynamo. However it was found
that the Lorentz force can drastically alter the On-Off be-
havior of the dynamo in the non-linear stage by quench-
ing the noise. For small Grashof numbers the Lorentz
force can trap the original chaotic system in the linear
regime in to a time periodic state resulting to no On-Off
intermittency. At larger Grashof numbers Gr > 20 On-
Off intermittency was observed but with long durations
of the “on” phases that have a power law distribution.
These long “on” phases result in a pdf that peaks at fi-
nite values of Eb. This peak can be attributed to the
presence of a subcritical instability or to the quenching
of the hydrodynamic “noise” at the nonlinear stage or
possibly a combination of the two. In principle the SDE
model (eq.1) can be modified to include these two effects:
a non-linear term that allows for a subcritical bifurcation
and a Eb dependent amplitude of the noise. There many
possibilities to model the quenching of the noise, however
the nonlinear behavior might not have a universal behav-
ior and we do not attempt to suggest a specific model.

FIG. 12: The ratio (GMo − GMc)/GMc as a function of Gr

that expresses the relative range that on-off intermittency is
observed. Error-bars correspond to the smallest examined
values of GM that no on-off intermittency was observed (up-
per error bar) and the largest examined values of GM that
on-off intermittency was observed (lower error bar).

The relative range of the On-Off intermittency was
found to decrease as the Reynolds number was increased
possibly reaching an asymptotic regime. However the
limited number of Reynolds numbers examined did not
allow us to have a definite prediction for this asymptotic
regime. This question is of particular interest to the dy-
namo experiments [2, 3, 4, 5, 6, 7, 8] that until very
recently [26] have not detected On-Off intermittency .
There are many reasons that could explain the absence
of detectable On-Off intermittency in the experimental
setups, like the strong constrains imposed on the flow
[4, 5] that do not allow the development of large scale
fluctuations or the Earths magnetic field that imposes a
lower threshold for the amplitude of the magnetic energy.
Numerical investigations at higher resolution and a larger
variety of flows or forcing would be useful at this point
to obtain a better understanding.
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