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Abstract

We equip the polytope of n × n Markov matrices with the normalized
trace of the Lebesgue measure of R

n2

. This probability space provides ran-
dom Markov matrices, with i.i.d. rows following the Dirichlet distribution of
mean (1/n, . . . , 1/n). We show that if M is such a random matrix, then the
empirical spectral distribution of nMM⊤ tends as n → ∞ to a Marchenko-
Pastur distribution. This phenomenon complements an already known re-
sult on the sub-dominant eigenvalue of certain random matrices with in-
dependent rows, which suggests that the typical spectral gap of a uniform
random Markov matrix is of order 1 − 1/

√
n when n is large. However,

some computer simulations reveal striking asymptotic spectral properties of
such random matrices, still waiting for a rigorous mathematical analysis.
In particular, we conjecture that the empirical distribution of the complex
spectrum of

√
nM tends as n → ∞ to the uniform distribution on the unit

disc of the complex plane.

AMS 2000 Mathematical Subject Classification: 60F15; 15A52; 62H99.

Keywords: Random matrices; Markov matrices, Dirichlet distributions; Spectral gap; sin-

gular values.

1 Introduction

An n×n square real matrix M is Markov if and only if its entries are non-negative
and each line sum up to 1, i.e. if and only if each row of M belongs to the simplex

Λn = {(x1, . . . , xn) ∈ [0, 1]n such that x1 + · · · + xn = 1} (1)

which is the portion of the unit ‖·‖1-sphere of Rn with non-negative coordinates.
The spectrum of a Markov matrix lies in the unit disc D(0, 1) = {z ∈ C; |z| 6 1},
contains 1, and is symmetric with respect to the real axis in the complex plane.
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Uniform distribution on Markov matrices

Let Mn be the set of n×n Markov matrices. We need to give a precise meaning to
the notion of uniform distribution on Mn. This set is a convex compact polytope
with n(n − 1) degrees of freedom if n > 1. It has zero Lebesgue measure in Rn2

.
Since Mn is a polytope of Rn2

, the trace of the Lebesgue measure on it makes
sense1, despite its zero Lebesgue measure in Rn2

. Since Mn is additionally com-
pact, the trace of the Lebesgue measure can be normalized into a probability
distribution. We thus define the uniform distribution U(Mn) on Mn as the nor-
malized trace of the Lebesgue measure of Rn2

. The following theorem relates
U(Mn) to the Dirichlet distribution.

Theorem 1.1 (Dirichlet Markov Ensemble). We have M ∼ U(Mn) if and

only if the rows of M are i.i.d. and follow the Dirichlet law of mean ( 1
n
, . . . , 1

n
). The

probability distribution U(Mn) is invariant by permutations of rows and columns.

The set Mn is also a compact semi-group for the matrix product. The following
two theorems concern the translation invariance of U(Mn) and the question of the
existence of an idempotent probability distribution on Mn.

Theorem 1.2 (Translation invariance). For every T ∈ Mn, the law U(Mn)
is invariant by the left translation M 7→ TM if and only if T is a permutation

matrix. The same holds true for the right translation M 7→ MT.

Theorem 1.3 (Idempotent distributions). There is no probability distribution

on Mn, absolutely continuous with respect to U(Mn), with full support, and which

is invariant by every left translations M 7→ TM where T runs over Mn. The

same holds true for right translations.

The proofs of theorems 1.1, 1.2, and 1.3 are given in section 2.

Singular values and the Marchenko-Pastur distribution

The study of the spectral properties of large dimensional random matrices is a
very active topic, connected to many areas of mathematics, see for instance the
books [26], [24], [6] and the survey [5]. If M ∼ U(Mn), then almost surely, the real
matrix M is invertible, non-normal, with neither independent nor centered entries.
The singular values of certain large dimensional centered random matrices with
independent rows is considered for instance in [2] and [27].

1Actually, one can define the trace of the Lebesgue measure and then the uniform distribution
on many compact subsets of the Euclidean space, by using the notion of Hausdorff measure [19].
See also [15] for an approximate simulation method based on billiards and random reflexions.
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For any square n × n matrix A with real or complex entries, let the complex
eigenvalues λ1(A), . . . , λn(A) of A be labeled so that |λ1(A)| > · · · > |λn(A)|. The
empirical spectral distribution (ESD) of A is the discrete probability distribution
on C with at most n atoms defined by

1

n

n
∑

k=1

δλk(A).

The singular values s1(A) > · · · > sn(A) > 0 of A are the eigenvalues of the
positive semi-definite Hermitian matrix (AA∗)1/2 where

A∗ = A
⊤

denotes the conjugate transpose of A. Namely, for every 1 6 k 6 n,

sk(A) = λk(
√

AA∗) =
√

λk(AA∗).

In particular, the atoms of the ESD of (AA∗)1/2 are s1(A), . . . , sn(A). If A is
normal, i.e. AA∗ = A∗A, then sk(A) = |λk(A)| for every 1 6 k 6 n. Back
to our Dirichlet Markov Ensemble, if M ∼ U(Mn) then M is almost surely a
non-normal matrix, and thus one cannot express the singular values of M in terms
of the eigenvalues of M. The following theorem gives the asymptotic behavior of
distribution built from the singular values of M.

Theorem 1.4 (Singular values for Dirichlet Markov Ensemble). Let (Xi,j)16i,j<∞
be an infinite array of i.i.d. exponential random variables of unit mean. For every

n, let M be the n × n random matrix defined for every 1 6 i, j 6 n by

Mi,j =
Xi,j

∑n
k=1 Xi,k

.

Then M ∼ U(Mn), and almost surely, the ESD of nMM⊤ tends as n → ∞ to

the Marchenko-Pastur distribution of density

x 7→ 1

2πx

√

(4 − x)x I[0,4](x).

As a consequence, almost surely, the ESD of
√

nMM⊤ tends as n → ∞ to the

quarter-circle Wigner distribution of density

x 7→ 1

π

√
4 − x2 I[0,2](x).
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The proof of theorem 1.4 is given in section 3. Since |λ1(A)| 6 s1(A) for any
square matrix A, and since λ1(M) = 1, we have

λ1(nMM⊤) = ns1(M)2
> n|λ1(M)|2 = n −→

n→∞
+∞.

However, theorem 1.4 implies in particular that almost surely

1

n
Card{1 6 k 6 n such that λk(nMM⊤) > 4} −→

n→∞
0.

Random Q-matrices

Bryc, Dembo, and Jiang studied in [13] the limiting spectral distribution of random

Hankel, Markov, and Toeplitz matrices. Let us explain briefly what they mean by
“random Markov matrices”. They proved the following theorem (see [13, Theorem
1.3] and also [33]) : let (Xi,j)1<i<j<∞ be an infinite triangular array of i.i.d. real
random variables of mean 0 and variance 1. Let Q be the symmetric n×n random
matrix defined for every 1 6 i 6 j 6 n by Qi,j = Qj,i = Xi,j if i < j, and

Qi,i = −
∑

16k6n
k 6=i

Qi,k for every 1 6 i 6 n.

Then, almost surely, the ESD of n−1/2Q converges as n → ∞ to the free convolu-
tion2 of a semi-circle law and a standard Gaussian law.

This result gives an answer to a precise question raised by Bai in his 1999
review article [5, Section 6.1.1 page 657]. The matrix Q is not Markov. However,
it looks like a Markov generator, i.e. a Q-matrix, since its rows sum up to 0.
Unfortunately, the assumptions do not allow the off-diagonal entries of Q to have
non-negative support, and thus Q cannot be almost surely a Markov generator. In
particular, if I stands for the identity matrix of size n × n, the symmetric matrix
M = Q + I cannot be almost surely Markov.

Eigenvalues and the circular law

If M is as in theorem 1.4, then λ1(
√

nM) =
√

n goes to +∞ as n → ∞ while its
weight in the ESD is 1/n. Thus, it does not contribute to the limiting spectral
distribution of

√
nM. Numerical simulations (see figure 1) suggest that the em-

pirical distribution of the rest of the spectrum tends as n → ∞ to the uniform
distribution on the unit disc. One can formulate this conjecture as follows.

2This limiting spectral distribution is a symmetric law on R with smooth bounded density of
unbounded support. See [24] or [11] for Voiculescu’s free convolution.
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Conjecture 1.5 (Circle law for the Dirichlet Markov Ensemble). If M is

as is theorem 1.4, then almost surely, the ESD of
√

nM tends as n → ∞ to the

uniform distribution over the unit disc D(0, 1) = {z ∈ C; |z| 6 1}.

For M itself, apart λ1(M) = 1, the spectrum concentrates around 0 at speed
1/
√

n, suggesting a typical spectral gap 1 − λ2(M) of order 1 − 1/
√

n for large n.
The main difficulty in conjecture 1.5 lies in the fact that M is non-normal

with non i.i.d. entries. The limiting spectral distributions of non-normal random
matrices is an active and notoriously difficult subject, see for instance [4], [6, ch.
10], [22, 23], [28], and [37] for the centered case, and [14] for the non-centered case.
The method used for the singular values for the proof of theorem 1.4 fails for the
eigenvalues, due to the lack of variational formulas for the eigenvalues. In contrast
to singular values, the eigenvalues of non-normal matrices are very sensitive to
perturbations, a phenomenon captured by the notion of pseudo-spectrum [38].

The uniform distribution on the unit disc D(0, 1) is known as the circle or
circular law. If U = re

√
−1 θ is a complex random variable distributed according to

the uniform distribution on the disc D(0, 2σ) of radius 2σ > 0, the module r and
the argument θ or U are independent with joint law of density

(r, θ) 7→ 1

4πσ2
r I[0,2π](θ)I[0,2σ](r).

Both the real part Re(U) and the imaginary part Im(U) of U follow the Wigner
semi-circle law on R with density

x 7→ 1

2πσ2

√
4σ2 − x2 I[−2σ,+2σ](x). (2)

More generally, for any angle α ∈ [0, 2π), the random variables Re(e
√
−1αU) and

Im(e
√
−1αU) follow the Wigner semi-circle law mentioned above. Additionally, if a

real random variable S follows the Wigner semi-circle law mentioned above, then
its square S2 follows the Marchenko-Pastur law on R+ with density

x 7→ 1

2πxσ2

√

(4σ2 − x)x I[0,4σ2](x). (3)

Sub-dominant eigenvalue

The precise asymptotic behavior of the extremal eigenvalues of non-normal random
matrices is not well understood, even in the i.i.d. centered entries case, see for
instance [30, 29]. The fact that non-centered entries produce an explosive extremal
eigenvalue was already noticed in various situations, see [1], [35], [13, th. 1.4], [12],
and [14]. It is natural to ask about the asymptotic behavior (convergence and
fluctuations) of the sub-dominant eigenvalue λ2(M) when M ∼ U(Mn). The
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reader may find some answers in [20] and [21], and may forge new conjectures
from our simulations (see figures 2 and 3). For instance, one can expect that√

n|λ2(M)| → 1 a.s. as n → ∞ and that bn(|λ2(M)|−an) converges in distribution
as n → ∞ to some Gumbel type extreme distribution, for some deterministic
sequences (an) and (bn). Goldberg and Neumann have shown [20] that if X is an
n × n random matrix with i.i.d. rows such that for every 1 6 i, j, j′ 6 n,

E[Xi,j] =
1

n
, and Var(Xi,j) = O

(

1

n2

)

, and |Cov(Xi,j,Xi,j′)| = O
(

1

n3

)

then P(λ2(X) 6 1 + ε) > p for any p ∈ (0, 1), any ε > 0, and large enough n.

Other distributions

The Dirichlet distribution of dimension n and mean ( 1
n
, . . . , 1

n
) is the uniform distri-

bution on the simplex Λn defined by (1). One can replace the uniform distribution
by a Dirichlet distribution of dimension n and arbitrary mean. The argument used
in the proof of theorem 1.4 remains the same due to the very similar construction
of Dirichlet distributions by projection from i.i.d. Gamma random variables. One
can also replace the ‖·‖1-norm by any other ‖·‖p-norm, and investigate the limit-
ing spectral distribution of the corresponding random matrices. This case can be
handled with the construction of the uniform distribution by projection proposed
in [32]. Replacing the non-negative portion of spheres by the non-negative portion
of balls is also possible by using [8]. More generally, one can consider random ma-
trices with independent rows. The case of the uniform distribution on the whole
unit ‖·‖p-ball of Rn is considered for instance in [2] by using [8] together with
random matrices results for i.i.d. centered entries. It is crucial here to have an
explicit construction of the distribution from an i.i.d. array. For the link with the
sampling of convex bodies, see [3].

Bistochastic matrices

The Birkhoff polytope is the set of n×n bistochastic matrices, i.e. matrices which
are Markov and have a Markov transpose. This polytope is a convex compact
subset of Mn of zero Lebesgue measure in R

n2

and (n − 1)2 degrees of freedom
if n > 1. As for Mn, one can define the uniform distribution as the normalized
trace of the Lebesgue measure. However, we ignore if this distribution has a
probabilistic representation that allows simulation as for U(Mn). The spectral
behavior of random bistochastic matrices was considered in the Physics literature,
see for instance [10]. On the purely discrete side, the Birkhoff polytope is also
related to magic squares, transportation polytopes and contingency tables, see
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[17, 16] and [18]. Notice also that if M is Markov, then MM⊤ and 1
2
(M + M⊤)

are not Markov in general. However, it is true when M is bistochastic.
Another interesting polytope of matrices is the set of symmetric n×n Markov

matrices, which is a convex compact polytope of zero Lebesgue measure in Rn2

with 1
2
n(n−1) degrees of freedom if n > 1. As for Mn, one can define the uniform

distribution as the normalized trace of the Lebesgue measure. However, we ignore
if this distribution has a probabilistic representation that allows simulation as for
U(Mn). One can ask about the spectral properties of the corresponding random
symmetric Markov matrices. Notice that these matrices are bistochastic, but the
converse is false except when n = 1 or n = 2.

Let M be as in theorem 1.4. Numerical simulations suggest that almost surely,
the ESD of the symmetric matrix 1

2
(M+M⊤) tends, as n → ∞, to the semi-circle

Wigner distribution of density (2) with σ2 = 1/2.
If U is an n × n unitary matrix, then (|Ui,j |2)16i,j6n is a bistochastic matrix.

These bistochastic matrices are called uni-stochastic or unitary-stochastic. There
exists bistochastic matrices which are not uni-stochastic, see [9] and [36]. However,
every permutation matrix is orthogonal and thus uni-stochastic. The Haar measure
on the unitary group induces a probability distribution on the set of uni-stochastic
matrices. How about the asymptotic spectral properties of the corresponding
random matrices?

Perron-Frobenius eigenvector

If M ∼ U(Mn), then almost surely, all the entries of M are non-zero, and in
particular, M is almost surely recurrent irreducible and aperiodic. By a standard
theorem of Perron and Frobenius, it follows that almost surely, the eigenspace of
M⊤ associated to the eigenvalue 1 is of dimension 1 and contains a unique vector
with non-negative entries and unit ‖·‖1-norm. One can ask about the asymptotic
behavior of this vector as n → ∞. For a fixed n, the distribution of this vector is
the distribution of the rows of the infinite product of random matrices limk→∞ Mk.

2 Structure of the Dirichlet Markov Ensemble

Let Λn be as in (1). For any a ∈ (0,∞)n, the Dirichlet distribution Dn(a1, . . . , an),
supported by Λn, is defined as the distribution of

1

‖G‖1

G =

(

G1

G1 + · · ·+ Gn
, . . . ,

Gn

G1 + · · ·+ Gn

)

7



where G is a random vector of R
n with independent entries with Gi ∼ Gamma(1, ai)

for every 1 6 i 6 n. Here Gamma(λ, a) has density

t 7→ λa

Γ(a)
ta−1e−λt I(0,∞)(t),

where Γ(a) =
∫∞
0

ta−1e−t dt is the Euler Gamma function. Let P ∼ Dn(a1, . . . , an).
For every partition I1, . . . , Ik of {1, . . . , n} into k non empty subsets, we have

(

∑

i∈I1

Pi, . . . ,
∑

i∈Ik

Pi

)

∼ Dk

(

∑

i∈I1

ai, . . . ,
∑

i∈Ik

ai

)

.

The mean and covariance matrix of Dn(a1, . . . , an) are given by

1

‖a‖1

a and
1

‖a‖2
1(1 + ‖a‖1)

(‖a‖1diag(a) − aa⊤)

where a = (a1, . . . , an)⊤ and diag(a) is the diagonal matrix with diagonal given by
a. For any non-empty subset I of {1, . . . , n}, we have

∑

i∈I

Pi ∼ Beta

(

∑

i∈I

ai,
∑

i6∈I

ai

)

,

where Beta(α, β) denotes the Euler Beta distribution on [0, 1] of Lebesgue density

t 7→ Γ(α + β)

Γ(α)Γ(β)
tα−1(1 − t)β−1 I[0,1](t).

If PI = (Pi)i∈I , PIc = (Pi)i6∈I , aI = (ai)i∈I , and |I| = card(I), then

1
∑

i∈I Pi

PI and PIc are independent and
1

∑

i∈I Pi

PI ∼ D|I|(aI),

For any α > 0, the Dirichlet distribution Dn(α, . . . , α) is exchangeable, with nega-
tively correlated components. More generally, if P ∼ µ where µ is an exchangeable
probability distribution on the simplex Λn with n > 1, then

0 = Var(1) = Var(P1 + · · ·+ Pn) = nVar(P1) + n(n − 1)Cov(P1, P2).

Consequently, Cov(P1, P2) = −(n−1)−1Var(P1) and in particular Cov(P1, P2) 6 0.

Proof of theorem 1.1. As a subset of Rn, the simplex Λn defined by (1) is of zero
Lebesgue measure. However, by considering Λn as a convex subset of the hyper-
plane of equation x1 + · · · + xn = 1 or by using the general notion of Hausdorff
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measure, one can see that in fact, the Dirichlet distribution Dn(1, . . . , 1) is the
normalized trace of the Lebesgue measure of Rn on the simplex Λn. In other
words, Dn(1, . . . , 1) can be seen as the uniform distribution on Λn, see [32].

We identify Mn with (Λn)n = Λn×· · ·×Λn where Λn is repeated n times. The
trace of the Lebesgue measure of Rn2

= (Rn)n on (Λn)
n is the n-tensor product of

the trace of the Lebesgue measure of Rn on Λn, i.e. the n-tensor product measure
Dn(1, . . . , 1)⊗n. Consequently, for every positive integer n,

(Mn,U(Mn)) = ((Λn)n,Dn(1, . . . , 1)⊗n).

This gives the invariance of U(Mn) by permutation of rows. If M ∼ U(Mn),
then the rows of M are i.i.d. and follow the Dirichlet distribution Dn(1, . . . , 1). In
particular, for every 1 6 i, j 6 n, Mi,j ∼ Beta(1, n − 1) and

E[Mi,j ] =
1

n

and

Cov(Mi,j,Mi′,j′) =











0 if i 6= i′

n−1
n2(n+1)

if i = i′ and j = j′

− 1
n2(n+1)

if i = i′ and j 6= j′

for every 1 6 i, i′, j, j′ 6 n. The entries Mi,j and Mi′,j′ are independent if and
only if i 6= i′. Finally, the invariance of U(Mn) by permutation of columns comes
from the exchangeability of the Dirichlet distribution Dn(1, . . . , 1).

Recursive simulation

The simulation of U(Mn) follows from the simulation of n i.i.d. realizations of
Dn(1, . . . , 1) by using n2 i.i.d. exponential random variables. The elements of
Dyson’s classical Gaussian ensembles GUE and GOE can be simulated recursively
by adding a new independent line/column. It is natural to ask about a recursive
method for the Dirichlet Markov Ensemble. If

X ∼ Dn−1(a2, . . . , an) and Y ∼ Beta(a1, a2 + · · · + an)

are independent, then

(Y, (1 − Y )X) ∼ Dn(a1, . . . , an).

This recursive simulation of Dirichlet distributions is known as the stick-breaking

algorithm [34]. It allows to simulate U(Mn) recursively on n. Namely, if M is
such that M ∼ U(Mn), then

(

Y (1 − Y ) · M
Z1 Z2 · · · Zn

)

∼ U(Mn+1)

9



where Z is a random row vector of R
n+1 with Z ∼ Dn+1(1, . . . , 1) and Y is a

random column vector of Rn with i.i.d. entries of law Beta(1, n), with M, Y, Z
independent. Here ((1 − Y ) · M)i,j := (1 − Y )iMi,j for every 1 6 i, j 6 n.

Semi-group structure and translation invariance

The set Mn is a semi-group for the usual matrix product. In particular, for every
T ∈ Mn, the set Mn is stable by the left translation M 7→ TM and the right
translation M 7→ MT. When T is a permutation matrix, then these transla-
tions are bijective maps, and the left translation (respectively right) translation
corresponds to rows (respectively columns) permutations.

For some fixed T ∈ Mn, let us consider the left translation M 7→ TM, where
M ∼ U(Mn). By linearity, we have

E[TM] = TE[M] = T
1

n
1n =

1

n
1n

where 1n is the n × n matrix full of ones. Thus, the left translation by T leaves
the mean invariant.

Proof of theorem 1.2. First of all, the case n = 1 is trivial and one can assume that
n > 1 in the rest of the proof. A probability distribution µ on Mn is invariant
by the left translation M 7→ PM for every permutation matrix P of size n ×
n if and only if µ is row exchangeable. Similarly, µ is invariant by the right
translation M 7→ MP for every permutation matrix P of size n × n if and only
µ is column exchangeable. Theorem 1.1 gives then the invariance of U(Mn) by
left and right translations with respect to permutation matrices. Notice however
that as a probability distribution over Rn2

, U(Mn) is not exchangeable. The
permutation of rows and columns correspond to a proper subset of the group of
permutations of the n2 entries.

Conversely, let us assume that the law U(Mn) is invariant by the left translation
M 7→ TM for some T ∈ Mn. If M ∼ U(Mn), and since the components of the
first column M·,1 of M are i.i.d. we have

Var((TM)1,1) = Var

(

n
∑

k=1

T1,kMk,1

)

=

n
∑

k=1

(T1,k)
2Var(Mk,1)

= Var(M1,1)

n
∑

k=1

(T1,k)
2.

10



The invariance hypothesis implies in particular that Var(M1,1) = Var((TM)1,1).
Since Var(M1,1) = (n − 1)/(n2(n + 1)) > 0, we get 1 =

∑n
k=1(T1,k)

2. Now, T is
Markov and thus

∑n
k=1 T1,k = 1, which gives

n
∑

k=1

(T1,k − (T1,k)
2) = 0.

Since T is Markov, its entries are in [0, 1] and hence T1,k ∈ {0, 1} for every
1 6 k 6 n. The condition

∑n
k=1 T1,k = 1 gives then that the first line of T is

an element of the canonical basis of R
n. The same argument used for (TM)k,1

for every 1 6 k 6 n shows that every line of T is an element of the canonical
basis, and thus T is a binary matrix with exactly a unique 1 on each line. Since
TM ∼ U(Mn), it has independent rows, and thus the position of the 1’s on the
rows of T are pairwise different, which means that T is a permutation matrix as
expected.

Let us consider now the case where the law U(Mn) is invariant by the right
translation M 7→ MT for some T ∈ Mn. If M ∼ U(Mn), we can first take a look
at the mean. Namely, E[MT] = E[M]T = 1

n
S where S is defined by

Si,j =
n
∑

k=1

Tk,j

for every 1 6 i, j 6 n. Now, the invariance hypothesis gives on the other hand

E[MT] = E[M] =
1

n
1n

and thus S = 1n, which means that T is bistochastic, i.e. both T and T⊤ are
Markov. The invariance hypothesis implies also that

Var((MT)1,1) = Var(M1,1) = (n − 1)/(n2(n + 1)).

But since the first line M1,· of M is Dn(1, . . . , 1) distributed,

Var((MT)1,1) =
∑

16i,j6n

Ti,1Tj,1Cov(M1,i;M1,j)

=
n − 1

n2(1 + n)

n
∑

i=1

(Ti,1)
2 − 2

n2(n + 1)

∑

16i<j6n

Ti,1Tj,1.

Since T is bistochastic, we have 1 =
∑n

i=1 Ti,1 and thus

(n − 1)
n
∑

i=1

(Ti,1 − (Ti,1)
2) = −2

∑

16i<j6n

Ti,1Tj,1.
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The terms of the left and right hand side have opposite signs, which gives that
Ti,1 ∈ {0, 1} for every 1 6 i 6 n. The same method used for (MT)1,k for every
1 6 k 6 n shows that T is a binary matrix. Since T is bistochastic, it follows that
T is actually a permutation matrix, as expected.

The set of n×n permutation matrices is a discrete subgroup of the orthogonal
group of Rn, isomorphic to the symmetric group Σn. The group of permutation
matrices plays for the Dirichlet Markov Ensemble the role played by the orthogonal
group for Dyson’s GOE or COE, and the role played by the unitary group for
Dyson’s GUE or CUE. In some sense, we replaced an L2 Gaussian structure by an
L1 Dirichlet structure while maintaining the permutation invariance.

A very natural question is to ask about the existence of a convolution idempo-
tent probability distribution on the compact semi-group Mn. Recall that a prob-
ability distribution µ on a semi-group S is idempotent if and only if µ ∗ µ = µ.
Here the convolution µ∗ν of two probability distributions µ and ν on S is defined,
for every bounded continuous f : S → R, by

∫

S

f(s)d(µ ∗ ν)(s) =

∫

S

(
∫

S

f(slsr) dµ(sl)

)

dν(sr).

Actually, the structure of compact semi-groups and their idempotent measures was
deeply investigated in the 1960’s, see [31, pages 158-160] for a historical account.
In particular, one can find in [31, Lemma 3 page 141] the following result.

Lemma 2.1. Let µ be a regular probability distribution over a compact Hausdorff

semi-group S such that the support of µ generates S. Then the mass of the

convolution sequence µ∗n concentrates on the kernel K(S) of S. More precisely,

for every open set O containing K and every ε > 0, there exists a positive integer

nε such that µ∗n(O) > 1 − ε for every n > nε.

Here µ∗n denotes the convolution product µ∗· · ·∗µ of n copies of µ. If µ∗n tends
to µ as n → ∞ then µ is convolution idempotent, that is µ ∗ µ = µ. The kernel
K(S) of S is the sub-semi-group of S obtained by taking the intersection of the
family of two sided ideals of S, see [31, Theorem 1 page 140]. A direct consequence
of lemma 2.1 is the absence of a translation invariant probability measure µ on S

with full support such that the kernel of S is a µ-proper sub-semi-group of S. By
µ-proper sub-semi-group here we mean that its µ-measure is < 1. This result can
be easily understood intuitively since the translation associated to a non-invertible
element of S gives a strict contraction of the support.

Proof of theorem 1.3. The kernel of the semi-group Mn is constituted by the n×n
Markov matrices with equal rows, which are the n×n idempotent Markov matrices
(i.e. M2 = M). The reader may find more details in [31, page 146]. Since the
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kernel of Mn is a U(Mn)-proper sub-semi-group of Mn, lemma 2.1 implies the
absence of any convolution idempotent probability distribution on Mn, absolutely
continuous with respect to U(Mn) and with full support. The proof is finished
by noticing that if a probability distribution on Mn is invariant by every left (or
right) translation, then it is convolution idempotent. Notice by the way that the
Wedderburn matrix 1

n
1n belongs to the kernel of Mn, and also that this kernel is

equal to {limk→∞ Mk;M ∈ An} where An is the collection of irreducible aperiodic
elements of Mn. The reader may find in [31, Chapter 5] the structure of non
fully supported idempotent probability distributions on compact semi-groups and
in particular on Mn.

3 Proofs of theorem 1.4

The following theorem can be found for instance in [6, th. 3.6 p. 43].

Theorem 3.1 (Singular values of large dimensional non-centered random
arrays). Let (Xi,j)16i,j<∞ be an infinite array of i.i.d. real random variables with

mean m and variance σ2 ∈ (0,∞). If X = (Xi,j)16i,j6n, then almost surely, the

ESD of n−1XX⊤ tends, as n → ∞, to the Marchenko-Pastur distribution (3).

Theorem 3.1 implies in particular that almost surely

1

n
Card{1 6 k 6 n such that λk(n

−1XX⊤) > 4σ2} −→
n→∞

0.

However, it can be shown (see [6]) that if m 6= 0, then almost surely,

λ1(n
−1XX⊤) −→

n→∞
+∞.

The following lemma is a consequence of [7, le. 2] (see also [6, le. 5.13 p. 102]).

Lemma 3.2 (Uniform law of large numbers). If (Xi,j)16i,j<∞ is an infinite

array of i.i.d. random variables of mean m, then by denoting Si,n =
∑n

j=1 Xi,j,

max
16i6n

∣

∣

∣

∣

Si,n

n
− m

∣

∣

∣

∣

a.s.−→
n→∞

0

and in the case where m 6= 0, we have also

max
16i6n

∣

∣

∣

∣

n

Si,n

− 1

m

∣

∣

∣

∣

a.s.−→
n→∞

0.

The following lemma is a consequence of the Courant-Fischer variational for-
mulas for singular values, see [25]. Also, we leave the proof to the reader.
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Lemma 3.3 (Singular values of diagonal multiplicative perturbations).
For every n × n matrix A, every n × n diagonal matrix D, and every 1 6 k 6 n,

sn(D)2sk(A) 6 sk(DA) 6 s1(D)2sk(A).

We are now able to prove theorem 1.4.

Proof of theorem 1.4. We use the method of Aubrun [2], by replacing the unit
‖·‖1-ball by the portion of the unit ‖·‖1-sphere with non-negative coordinates. Let
M be as in theorem 1.4. We have M = DE where E = (Xi,j)16i,j6n and D is the
n × n diagonal matrix given for every 1 6 i 6 n by

Di,i =
1

∑n
j=1 Xi,j

.

The fact that M ∼ U(Mn) follows immediately from theorem 1.1 combined with
the construction of the Dirichlet distribution Dn(1, . . . , 1) from i.i.d. exponential
random variables. It remains to prove the convergence of the ESD of nMM⊤ as
n → ∞ to the Marchenko-Pastur distribution. We have

nMM⊤ = (nDn−1/2E)(nDn−1/2E)⊤.

By lemma 3.3, we get for every 1 6 k 6 n,

sn(nD)2λk(n
−1EE⊤) 6 λk(nMM⊤) 6 s1(nD)2λk(n

−1EE⊤).

Now, lemma 3.2 gives that almost surely, s1(nD) → 1 and sn(nD) → 1 as n → ∞.
By theorem 3.1, almost surely, the ESD of n−1EE⊤ converges as n → ∞ to the
Marchenko-Pastur distribution (3) with σ2 = 1. It follows that almost surely, the
ESD of nMM⊤ tends as n → ∞ to the same distribution.

There is no equivalent of lemma 3.3 for the eigenvalues instead of the singular
values, and thus the method used to prove theorem 1.4 fails for conjecture 1.5.
Notice that by lemma 3.2 used with the exponential distribution of mean m = 1,

‖nD − I‖2 = max
16i6n

∣

∣

∣

∣

∣

n
∑n

j=1 Xi,j
− 1

∣

∣

∣

∣

∣

−→
n→∞

0 a.s.

where ‖A‖2 = s1(A) = max‖x‖
2
=1 ‖Ax‖2 is the Euclidean operator norm of A. If

A is diagonal, then we simply have ‖A‖2 = s1(A) = max16k6n |Ak,k|, and when

A is diagonal and invertible, ‖A−1‖−1
2 = sn(A) = min16k6n |Ak,k|. Now, by the

circular law theorem for non-central random matrices [14], we get that almost
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surely, the ESD of n−1/2E converges, as n → ∞, to the uniform distribution on
D(0, 1). It is then natural to decompose

√
nM as

√
nM = nDn−1/2E = (nD − I)n−1/2E + n−1/2E.

Unfortunately, since m = 1 6= 0, we have almost surely (see [14])

∥

∥n−1/2E
∥

∥

2
= s1(n

−1/2E) −→
n→∞

+∞.

This suggests that
√

nM cannot be seen as a perturbation of n−1/2E with a ma-
trix of small norm. Actually, even if it was the case, the relation between the
two spectra is unknown since E is not normal. One can think about using log-
arithmic potentials to circumvent the problem. The strength of the logarithmic
potential approach is that it allows to study the asymptotic behavior of the ESD
(i.e. eigenvalues) of non-normal matrices via the singular values of a family of
matrices indexed by z ∈ C. The details are given in [28] and [14] for instance. The
logarithmic potential of the ESD of

√
nM at point z is

Un(z) = −1

n
log
∣

∣det(
√

nM− zI)
∣

∣

= −1

n
log |det(nD)| − 1

n
log
∣

∣det(n−1/2E − z(nD)−1)
∣

∣.

Now, by lemma 3.2,
1

n
log |det(nD)| −→

n→∞
0 a.s.

By the circular law theorem for non-central random matrices (see [14]) together
with the lower envelope theorem (see [28] and [14]), almost surely, for quasi-every
z ∈ C, the quantity

lim inf
n→∞

−1

n
log
∣

∣det(n−1/2E − zI)
∣

∣

is equal to the logarithmic potential at point z of the uniform distribution on the
unit disc D(0, 1). It is thus enough to show that almost surely, for every z ∈ C,

1

n
log
∣

∣det(n−1/2E− z(nD)−1)
∣

∣− 1

n
log
∣

∣det(n−1/2E − zI)
∣

∣ −→
n→∞

0.

Unfortunately, we ignore how to prove that, mainly because we ignore how to
bound the extremal singular values of an additive diagonal perturbation of a non-
normal matrix.
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Figure 1: Plot of the spectrum of a single realization of
√

nM where M ∼ U(Mn)
with n = 81. We see one isolated eigenvalue λ1(

√
nM) =

√
n = 9 while the rest

of the spectrum remains near the unit disc and seems uniformly distributed, in
accordance with conjecture 1.5.
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