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Abstract. The present paper describes modelization and discretization issues which seem to
play an important role in the numerical modeling of contact problems in solid dynamics.

The first aspect concerns subscale modeling, which is crucial when dealing with frictional
contact. We will see how the use of one dimensional implicit thermomechanic models resolved
in a subgrid inside each boundary cell leads to practical and physically accurate solutions. This
model is controlled by the average velocity of the cell, but can reproduce the detailed aspect of
the temperature field and elastoplastic strains in the interface layer.

The next issue concerns time discretisation scheme. The proper approximation in time of
elastic and contact efforts is a major issue in order to enforce energy conservation or persistency
during contact in an exact or controlled way. We review in the paper a technique proposed in
[1] which treats the contact by penalty and enforces energy correction techniques to all penalty
and energy terms present in the problem formulation.

A last key point concerns the treatment of inertia terms. The numerical solution of a dynamic
contact problem often predicts contact pressures which have spurious oscillations both in space
and in time at a scale related to the discretisation grid. As described in [2], the stability of
standard algorithms and the regularity of the contact pressures is improved by introducing a
modified mass matrix in which the nodes in potential contact will have no mass, the corre-
sponding mass being affected to the neighboring internal elements. One can prove that this
technique guarantees the regularity in time of the space discrete solution [2], and does not af-
fect the convergence rate in the linear case. The numerical results to be presented indicate that
these schemes are surprisingly good in practice. The authors would like to thank J.P. Perlat for
many helpful discussions.
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1 INTRODUCTION

Contact problems in dynamics lead to a large variety of open problems and numerical chal-
lenges. Many new solutions have been proposed in the recent litterature to handle different
aspects of this field. In particular, a lot of progress has been made in the understanding of the
physical aspect of contact at a nanoscopic scale. The situation is more disappointing when con-
sidering the numerical aspect of the problem. Most of the numerical work has been focused on
the development of numerical algorithms able to handle the algebraic structure of contact prob-
lems. It appears that such algorithms are of limited efficiency when they overlook modelisation
and discretisation issues. The present paper describes three such issues which play an important
role in the numerical modeling of contact problems in solid dynamics.

The first aspect concerns subscale modeling. This appears to be crucial when dealing with
any type of frictional contact. For example, as indicated in [3], when dealing with high speed
frictional contact between metallic objects, a very thin layer of hot metal is produced at a sub-
micrometric length due to the heat generated by friction. This brings locally the metal close to
melting and therefore strongly affects its resistance to friction. Because of this small scale in
space, this layer cannot be described by a standard finite element technique. As illustrated in
the second section of this paper, the use of one dimensional implicit thermomechanic models
resolved in a subgrid inside each boundary cell leads to practical and physically accurate solu-
tions. This model is controlled by the average velocity of the cell, but can reproduce the detailed
aspect of the temperature field and elastoplastic strains in the interface layer. The same philoso-
phy could be applied if one would like to resolve microrugosities when modelling rolling tyres
on roads, provided there is no strong two-way coupling between the two scales in space.

The next issue concerns space and time discretisation scheme. Monotonicity and stability can
be greatly improved by usisng adequate mortar elements formulations imposing in a weak way
the non penetration condition on positive nodal functions [4], [5]. But the proper approximation
in time of elastic and contact efforts is also a major issue in order to enforce energy conservation
or persistency during contact in an exact or controlled way. This is important for the robustness
and long term accuracy of the scheme. In section 3, different possible solutions are discussed,
including one proposed in [1] which treats the contact by penalty and enforces energy correction
techniques to all penalty and energy terms present in the problem formulation.

A last key point concerns the treatment of inertia terms. It was known for a rather long time
[6], [1] that a slight delay in the expression of inertia forces could lead to numerical schemes
with controllable dissipation terms. What has been recently identified in [2] deals with the
space discretisation of the mass operator. Indeed, the numerical solution of a dynamic contact
problem often predicts contact pressures which have spurious oscillations both in space and in
time at a scale related to the discretisation grid. But, as described in [2], the stability of standard
algorithms and the regularity of the contact pressures is improved by introducing a modified
mass matrix in which the nodes in potential contact will have no mass, the corresponding mass
being affected to the neighboring internal elements (Section 4). One can prove that for regular
problems not involving contact, this will not affect the convergence rate of the discretisation
scheme [7]. On the other hand in presence of contacts, this technique guarantees the regularity
in time of the space discrete solution [2]. As shown in section 4, for a good combination of
time and space step (which is still governed by intuition), these schemes are surprisingly good
in practice, although the theory is far to be fully understood.
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2 SUBGRID MODELLING OF HIGH SPEED FRICTION

2.1 The basic problem

High speed dynamic friction refers to the physics that governs the tangential force act-
ing across a material interface say after the passage of a shock wave. It plays a key role in
explosively-driven systems where metal interfaces are submitted to large sliding velocities,
large shear forces and large contact pressures. From a theoretical point of view, high speed
frictional properties remain largely unknown although various experimental techniques have
recently been developed [8]. Severe loading conditions lead to extremely localized thermome-
chanical processes. These local phenomena may profoundly change the state of interface during
the dynamic slip process. Since the sheared layer is very thin (0.1µm) and the sliding speeds
are relatively high, important strain rates are obtained near the interface with major irreversible
plastic deformation. Metal interfaces are also submitted to a warm-up phase due to frictional
heat production, and plastic dissipation. It leads to an important and localized increase in sur-
face temperature, that may lead in extremely short time to the fully melt temperature regime
and to the formation of a thin molten metal film.

Although they are widely used, the current generation of hydrocodes designed to handle
problems involving high energy, explosives and shock propagation either neglect friction or rely
on simple empirical models in which the frictional stress is related to the normal stress and/or
the sliding velocity through a user’s defined Coulomb’s law. A solution would be to apply
the regularisation law of [9]. Nevertheless, such laws do not really handle situations where
the shear stress is limited by yielding conditions strongly depending on the thermomechanical
history at the interface. Because of strong localisation effects, this history is not represented
inside standard finite element techniques. A simple solution is to integrate 1D implicit finite
difference sub-grid models accounting for frictional contact, elastoplastic behavior, yielding
and work hardening, heating by friction and plastic work, heat diffusion, thermal softening and
melting. The subgrid model introduces a thin shear layer of micrometric thickness h at the
interface (Figure 1)

Figure 1: Interface shear layer (out of [10]

Inside the layer, we want to predict the time and space evolution of the slip velocity uτ (t),
the stress tensor σ(x, t) whose deviatoric part is supposed to be in pure shear s = τ(en ⊗ eτ +
eτ ⊗ en), the strain rate tensor d(x, t) with its elastic and plastic components d

e
and d

p
and

the temperature field Θ(x, t) using the equations of motion, the heat equation, the elastoplastic

3



constitutive laws including pressure and kinematic hardening and thermal softening

ṡ (x, t) = 2G
(

d (x, t) − d
p
(x, t)

)

(elasticity) (1)

f (x, t) = σeq(x, t) − Y (x, t) ≤ 0, with σeq =

√

3

2

∥

∥s(x, t)
∥

∥ (yield condition) (2)

d
p
(x, t) = λ̇

∂f

∂σ (x, t)
=

3

2

(

s (x, t)

σeq (x, t)

)

+

· ε̇p (x, t) (plastic flow rule) (3)

Y (x, t) = Y0 (1 + βεp(x, t))
η (1 + gP − h(Θ(x, t) − Θ0)) exp

(

−0.001
Θ(x, t)

Θf − Θ(x, t)

)

(temperature dependent yield condition tending to zero at melting temperature Θf ), (4)

and adequate initial and boundary conditions. Temperature has a strong influence on the yield
limit, and therefore strongly affects the mechanical problem. On the other hand, the friction
heat governs the temperature evolution through the boundary conditions

q̇(0, t) = uτ (t) · τ(0, t), q̇(−h, t) = 0. (5)

To simplify the local model, we neglect in a first step inertial effects and tangential derivatives
which implies from the local equations of motion that the stresses are constant through the
layer. We also assume that the velocities at both ends of the cell (slip regime) are given by
the macroscopic velocity of the cell. By integrating the elastic constitutive law through the
thickness, we then obtain a relation between the time derivative of the shear stress and the
integral of the plastic deformation (when assuming equality of velocities at both ends of the
cell)

h ṡ(t) = −2Gd
p

= −3G

∫ 0

−h

s (t)

σeq

ε̇p (z, t) , (6)

the local evolution of the plastic deformation being governed by the plastic flow rule when the
shear reaches its yield limit.

2.2 Numerical scheme

Using a time implicit discretisation scheme, inheriting the contact pressure P n+1 and the
slip velocity vn+1

slip from the global finite element model, and knowing the values of the internal
variables sn, εn

p(z), Θn(z) at the previous time step, the local problem reduces to the following
scalar problem in |sn+1|

h
(

sn+1 − sn
)

+ 3G ·
sn+1

σn+1
eq

∫ 0

−h

(∆εp(z))
n+1 dz = 0. (7)

In this equation, the equivalent stress is given by σn+1
eq =

√

3

2

∥

∥sn+1
∥

∥, the local increase

∆εp(z)
n+1 = εn+1

p (z) − εn
p(z) is a function of the stress intensity through the yield criteria

σn+1
eq ≤ Y n+1(z), ∆εp(z)

n+1 ≥ 0, (σn+1
eq − Y n+1(z)) ∆εp(z)

n+1 = 0,

Y n+1(z) =
Y0

Cn+1

T

(

1 + βεn+1
p (z)

)η (
1 + gP n+1 − h

(

Θn+1(z) − Θ0

))

,

Cn+1

T = exp

(

0.001
Θn+1(z)

Θf − Θn+1(z)

)

.
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On the other hand, the temperature is obtained by solving the following one dimensional partial
differential equation in space with homogeneous Neumann boundary condition at the lower
boundary

c
Θn+1 − Θn

∆t
(z) − k∆Θn+1(z) = sn(z), ∀z ∈ (0, h), −k∂Θ

n+1

∂z
(−h) = 0, (8)

and heterogeneous Neumann boundary condition at the interface

−k∂Θ
n+1

∂z
(0) = q̇n+1

int = βvn+1

slip ·
(

σn+1
eq√
3

)

.

The coefficient β corresponds to the part of the heat flux which is transmitted to the lower layer.
This scalar equation in equivalent stress could be solved in theory by a secant method, each

evaluation of the function requiring the solution of a one dimensional partial differential equa-
tion in space to compute the temperature and an integration of plastic strain through the thick-
ness. In practice, the differential equation in temperature is solved by a finite difference tech-
nique, and the integration uses a trapezoidal quadrature rule using the same nodes as for the
temperature.

This numerical strategy turns out to be unstable next to the melting temperature (taken here
to be at 1900 degrees Kelvin), because there is no guarantee that the temperature would not
exceed the melting temperature during the iterative process. A much more stable technique is
to solve the same scalar equation with respect to the inverse of the thermal softening factor

Cn+1

T = exp









0.001

Θf

Θn+1(0)
− 1









∈ (0,∞).

The interface temperature is an explicit function of this new unknown and the internal tempera-
ture can be obtained by solving the differential equation (8) with Dirichlet boundary condition

Θn+1(0) =
Θf · log

(

Cn+1

T

)

0.001 + log
(

Cn+1

T

) .

From this, we deduce the heat flux q̇n+1
int = −k∂Θ

n+1

∂z
(0), the shear stress τn+1 =

q̇n+1
int

βvn+1

slip

, and

the plastic strain

σn+1
eq ≤ Y n+1(z), ∆εp(z)

n+1 ≥ 0, (σn+1
eq − Y n+1(z)) ∆εp(z)

n+1 = 0,

Y n+1(z) =
Y0

Cn+1

T

(

1 + βεn+1
p (z)

)η (
1 + gP n+1 − h

(

Θn+1(z) − Θ0

))

.

Hence the scalar function (7) is indeed a scalar function of CT whose evaluation also requires
the solution of a one dimensional partial differential equation in space and an integration of
plastic strains through the thickness, and whose root is easily obtained by a secant method.

2.3 Numerical results

The above technique has been applied to a case with constant normal pressure and slip veloc-
ity, taking as initial conditions a state of stress in shear reaching the elastic limit at temperature
Θ0. The simulation was carried with an imposed slip velocity of 34m/s, on a time interval
of 0, 6µs with a time step of ∆t = 10−9s, on a shear layer of h = 10µm with two hundred
discretization points inside the layer. The normal pressure was of 1.3 GPa.
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Figure 2: Cross section in space of the yield limit at different times. The top part corresponds to region where the
material is in plastic flow. Results are displayed in international units (SI).

Figure 3: Time evolution of the interface temperature and shear between 0 and 0.6µs.
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3 ENERGY CONSERVING SCHEMES

3.1 Basic time integration schemes

The next issue in the numerical simulation of contact problem in dynamics deals with the
design of an appropriate time discretisation scheme. To address this issue, we consider the
simpler case of an elastic body in frictionless contact with a rigid obstacle, whose governing
equations define the position x(M, t) of the different material points M at time t by :

m(ẍ, Û) + a(∇x,∇Û) =

∫

Ω

f · Û +

∫

∂Ω

g · Û +

∫

∂Ωc

λν · Û , ∀Û ∈ U , (9)

x · ν ≥ g0, λ ≥ 0 and λ(x · ν − g0) = 0 on ∂Ωc. (10)

Above, the structural mass operator m has the usual linear expression encountered in La-
grangian dynamics

m(ẍ, Û) =

∫

Ω

ρẍ · Ûdx.

The stiffness term a(∇x,∇Û) is defined as a(∇x,∇Û) =
∫

Ω
F ·Σ(∇x)·∇Û with Σ the second

Piola-Kirchhoff stress tensor given by :

Σ = 2W,C , (11)

where W denotes the stored elastic energy, which is a given function of the right Cauchy-Green
strain tensor C = F t · F , and F = ∇x denotes the deformation gradient. The frictionless
contact constraint x · ν ≥ g0 is imposed on a part ∂Ωc of the domain boundary where the
distance x · ν of the material point to a given obstacle cannot get below a given threshold g0.
In practice, this frictionless contact constraint is often handled by a penalty approach giving the
normal reaction λ as a function of the interpenetration distance |x ·ν−g0|− = max(0, g0−x ·ν)
by λ = 1

εc

|x · ν − g0|−, where εc is a small penalty coefficient.
A standard implicit scheme in elastodynamics uses a trapezoidal rule for time integration

of the acceleration
un+1 − un

∆tn
=

1

2
(ẍn+1 + s̈xn), of the velocity

xn+1 − xn

∆tn
=

1

2
(un+1 + un)

and of stresses. For nonlinear problems, Simo or Crisfield [12, 13] have proposed to use in
addition a transport averaging, which reduces the time integral of the stiffness term in (9) to
1

2
(∇xn+1 +∇xn) ·Σn+1/2. In theory, the above time integration schemes have good properties

with respect to energy conservation, achieving second order accurate conservation, with an error
vanishing at the linear limit. In practice, for both the trapezoidal and the mid point schemes,
such a second order conservation is not good enough for nonlinear structures, and numerical
instabilities are often observed in real life simulations [1].

Nonlinear corrections are then needed, with different choices proposed in the litterature. We
have tested and adopted a nonlinear and non symmetric correction term proposed by Gonzalez
[14], where the elastic stress appearing in the time integration of the stiffness term is given by :

Σn+1/2 = 2
∂W
∂C

(

Cn+1/2

)

+2

(

W(Cn+1) −W(Cn) − ∂W
∂C

(

Cn+1/2

)

: δCn+1/2

)

δCn+1/2

δCn+1/2 : δCn+1/2
, (12)
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with δCn+1/2 = Cn+1 − Cn. By construction, we then directly have

1

2
(∇xn+1 + ∇xn) · Σn+1/2 : (∇xn+1 −∇xn) =

1

2
Σn+1/2 : δCn+1/2 = W(Cn+1) −W(Cn),

implying exact energy conservation, even at the incompressible limit. The resulting numerical
tests observed on a simple incompressible beam are then quite convincing and in sharp contrast
with the diverging results of the original trapezoidal rule.

3.2 Extension to contact problems

But, even after these first two corrections, the proposed scheme does not handle well contact
conditions. In the framework of frictionless contact, both Laursen and Chawla [15] and Armero
and Petocz [16] observing such difficulites, have shown the interest of the persistency condition
λ(t, x) d

dt
(x · ν − g0) = 0 to obtain energy conservation in the discrete framework. This dif-

ficulty can be overcome as in [17] by introducing a discrete jump in velocities during impact.
Another solution, proposed in [1], adapts the energy correction (12) in order to enforce energy
conservation by averaging separately the geometric update (transport) of the normal ν and the
kinetic force λ, and by replacing local derivatives by divided differences. In more details, this
technique defines the normal vector during the time step by

νn+1/2 = ν(xn+1/2) +
[

xn+1 · ν(xn+1) − xn · ν(xn) − ν(xn+1/2) · δx
] δx

δx · δx,

where ν(xn+1/2) is the normal outward unit vector to the obstacle at mid point xn+1/2 and
δx = xn+1 − xn is the displacement update between two successive time steps. Observe that
we always have by construction

νn+1/2 · δx = xn+1 · ν(xn+1) − xn · ν(xn) := δg,

and that for a plane obstacle for which ν(xn+1/2) = ν(xn+1) = ν(xn) = ν, the above construc-
tion simply reduces to νn+1/2 = ν. Similarly, the reaction force is updated by

λn+1/2 =
1

εcδg

(

1

2
|xn+1 · νn+1 − g0|2− − 1

2
|xn · νn − g0|2−

)

,

which implies by construction
∫

λn+1/2νn+1/2 · δx =

∫

1

2εc
|xn+1 · νn+1 − g0|2− − 1

2εc
|xn · νn − g0|2−,

that is perfect conservation of the penalty energy. The numerical efficiency of this technique is
assessed in [1].

4 MODIFIED MASS LUMPING METHODS

4.1 Motivation

Even when using stable monotone finite element discretisation of the frictionless contact
problem (that we may write in a mixed form introducing mortar elements to represent contact
stresses as in [4]) and energy conserving schemes, the numerical solutions may exhibit large
spurious oscillations of the contact pressures, both in time and in space, directly related to the
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discretisation steps in time and space [2, 7]. Such a behavior indicate a weak convergence of
these contact pressures. In fact, this can be related to a deep mathematical problem : there is
no general theory on the solvability of variational inequalities involving dynamic terms [18].
In specific cases, existence of solutions can be obtained but with very little regularity [19].
After space discretisation, using a standard discretization of the inertia terms, and imposing the
contact persistency condition [15], solutions of the time continuous problem can be proved to
exist, but they are not uniquely defined and have little regularity [20].

We therefore have a theoretical problem even in the absence of friction and of time discretiza-
tion errors. A practical solution has been recently proposed by H.B. Khenous, P. Laborde et Y.
Renard [21, 22] by redistributing nodal masses next to the contact region in order to remove
all mass from nodes in potential contact with the obstacle. This decomposes the initial time
evolution problem into a standard elastodynamic problem set on all internal nodes coupled to
static variational inequalities to be satisfied at nodes in potential contact.

4.2 Modified lumped mass matrix

In a variational framework, a consistent finite element mass redistribution can be obtained
by defining the new mass operator by

mh(xh, Ûh) =
∑

T

mT (ITxh, IT Ûh), (13)

the discrete interpolation operator IT being defined on each finite element T from the local
finite element space (Uh)T into itself with the following properties :

1. IT is equal to the identity except for triangles having a node in potential contact,

2. ITψk = 0 for all nodal functions ψk associated to nodes k ∈ K in potential contact.

3. IT is L2 stable and preserves constant functions.

In matricial form, by introducing the matrices IT and MT of the interpolation operator and
local mass matrix in the finite element nodal basis, the local modified mass matrix is given by

M̄T = IT MT I
t
T .

The first property guarantees that the sparsity of the modified mass matrix M̄ is unchanged
compared to M . It imposes that for all nodes i and j belonging to the set J of nodes which are
not in potential contact, the coefficient (IT )ij of I must be zero if i 6= j and 1 for i = j. The
second property guarantees that when ordering the nodes in order to place the nodes in potential
contact at the end of the list, the modified mass matrix M̄ takes the block form

M̄ =

(

M̄JJ 0
0 0

)

The L2 stability is satisfied by taking all coefficients of IT to be non negative. Preserving
constant functions requires that the coefficients of a given column be of unit sum

∑

i

(IT )ij = 1.

It guarantees mass conservation at the finite element level.

9



Our choice uses as interpolating coefficients the weighted inverses of the distances to the
contact surface. If k ∈ K (respectively i ∈ J ) is the number of a node M in (respectively not
in) potential contact, we define

(IT )ik = dist(Mi,Mk)
−1/

(

∑

j∈J∩T

dist(Mj,Mk)
−1

)

.

More complex choices are proposed in [2, 7].

4.3 Theoretical results

After space discretisation and modification of the mass matrix, the problem takes the matri-
cial form

M̄JJ ẌJ (t) = −KJJXJ (t) −KJKXK(t) + FJ (t) (14)

KJKXK(t) −
∑

k∈K

λ(k)ψ
k
· ν(Mk) = −KKJXJ (t) (15)

x(Mk, t) · ν(Mk) ≤ g0(Mk), λ(k) ≥ 0, (16)
(x(Mk, t) · ν(Mk) − g0(Mk))λ(k) = 0, ∀k ∈ K. (17)

Here, we have separated all vectors and matrices in components J (respectively K) associ-
ated to nodes j (respectively k) which are not in (respectively in) potential contact. Because
of the absence of any inertia term, the last three lines define a well posed elliptic variational
inequation with unknown XK(t) and data XJ (t). Hence XK(t) is a Lipschitz continuous func-
tion of XJ (t). The first equation is thus a second order Lipschitz ordinary differential equation
with respect to the unknown XJ (t). Its solution exists, is unique, is differentiable in time, with
a Lipschitz continuous time derivative [2].

Moreover, for linear problems in dynamics, hence for problems not involving contacts, one
can prove that the local modification of mass matrix on the boundary ∂Ωc does not affect the
optimal convergence rate of the underlying finite element approximation [7], if the local in-
terpolation operator satisfies the properties enumerated in the previous section. For first order
elements in space with shape regular elements of maximal diameter h and second order time
discetization schemes with time step ∆t, the error between the fully discrete solution and the
continuous solution stays of order h + ∆t2.

4.4 Numerical simulations

As a simple test case, we consider a cube of 10cm width impacting a plane wall at 10 km/h.
The tests deal with nonlinear materials, using a trapezoidal rule for integrating the inertia terms
and a backward Euler scheme for the integration of stiffness and contact terms.

The figures show the time evolution of the penetration energy during time with and without
mass redistribution. Without redistribution, the results display chaotic oscillations in time which
stay alive even after refining the time steps. Animations to be presented at the conference
confirm the presence (respectively the absence) of time and space instabilities on the contact
zone in the case without (respectively with) mass redistribution.

5 CONCLUSIONS

We can see from the above that the important points in contact probems more or less identi-
fied and deal with subscale modeling, approximation strategies and treatment of inertia terms.
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Figure 4: Penetration energies for a cube impacting a plane wall without mass redistribution (left) and with mass
redistribution (right).

Partial remedies are available in order to handle each of this point. But a global picture of the
problem is lacking. In particular, we would need to know in our numerical simulations which
local regularisation should be used in time and which is the right limiting mathematical model.
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