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Abstract

We present a novel strategy to perform estimation for a dynamical mechanical system in standard

operating conditions, namely, without ad hoc experimental testing. We adopt a sequential approach,

and the joint state-parameter estimation procedure is based on a state estimator inspired from col-

located feedback control. This type of state estimator is chosen due to its particular effectiveness

and robustness, but the methodology proposed to adequately extend state estimation to joint state-

parameter estimation is general, and – indeed – applicable with any other choice of state feedback

observer. The convergence of the resulting joint estimator is mathematically established. In addi-

tion, we demonstrate its effectiveness with a biomechanical test problem defined to feature the same

essential characteristics as a heart model, in which we identify localized contractility and stiffness

parameters using measurements of a type that is available in medical imaging.

1 Introduction

The challenges represented by estimation in distributed mechanical systems have been recently renewed

and extended – in particular – by the rapidly developing applications of biomechanics in medicine

[36, 4, 39]. Such problems often involve three dimensional continuum mechanics coupled to biologi-

cal phenomena and they can be represented by a set of coupled partial differential equations [15, 38, 17].

But the physical parameters considered in a biomechanical model are generally very difficult to deter-

mine a priori by experimentations, as living materials display very different behaviors when taken in vivo

on the one hand, and post-mortem or even in vitro on the other hand. Moreover, for diagnosis purposes in

medicine, estimation can be envisaged as a methodology to assess the condition of a patient’s living or-

gan. Therefore, there is a clear interest in being able to perform estimation using available measurements

of the system in “standard” operating behavior – as opposed to ad hoc experimentations – measurements

that for example can be provided by medical imaging. Note that this also holds, e.g., in meteorology

or more generally in geophysics. In such fields the process aiming at obtaining unknown parameters

– primarily initial conditions in the dynamical systems – by using various observational data is usually

referred to as data assimilation.

As is well known, data assimilation methodologies fall into two main categories: variational and sequen-

tial (or filtering) procedures. Variational procedures consist in minimizing – with respect to all unknown
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parameters – a criterion based on the observation error, with the model equations taken as constraints

[26, 23, 9, 22]. This leads to heavy computations in order to obtain the gradient of the criterion, generally

by using the (backward in time) adjoint state, which requires extensive storage for large systems. On the

other hand, sequential procedures in their classical forms – namely, Kalman filtering [21, 19, 8, 3], and

related extensions to nonlinear systems – are not adapted to distributed mechanical systems because they

involve the computation and manipulation – with some inversion steps – of covariance matrices that have

the size of the state variable, just for estimating the state.

Regarding state estimation, however, we know from classical control and observation theory that it has

close connections with control and stabilization [30]. Furthermore, since we are specifically concerned

with mechanical systems, we can seek state estimators based on mechanical stabilization strategies that

take into account the physical nature of the system at hand. In particular, collocated feedback is known

to provide very effective stabilization strategies, both from theoretical (see [2] and references therein)

and engineering perspectives [33], including with very “low-cost” (in terms of computations involved)

feedback operators that can be directly used as filters in sequential state estimation.

The objective of this paper is thus to construct a joint state-parameter estimation procedure based

on a simple collocated feedback strategy for state estimation, adequately extended by Kalman filtering

techniques to allow the simultaneous estimation of a limited set of unknown parameters.

The outline of the paper is as follows. Section 2 describes the underlying physical models and the

collocated feedback procedure which can be applied to estimate the state vector within the model. The

performances of this estimation strategy is analyzed and numerically assessed in Section 3, with a de-

tailed estimate of the damping properties of the proposed feedback. Section 4 introduces and analyses

– both theoretically and numerically – a specific Kalman filtering technique coupled to the above feed-

back procedure for the joint state-parameter estimation in a linear framework. This methodology is then

extended in Section 5 to a nonlinear estimation problem where the stiffness matrix depends linearly on

unknown parameters.

2 Problem statement

2.1 General framework

We consider a mechanical system in the realm of solid or structural continuum mechanics, where the

acceleration field inside the body is given by the imbalance between internal stresses and external forces.

When x denotes the state vector including displacements y and velocities ẏ, such systems are described

in a linear framework by a dynamical system – underlied by partial differential equations – written in

the following generic form


















dx

dt
= Ax + R

x(0) = x0 + ζx

(2.1)

whereA is a linear differential operator generating a continuous semi-group, and R a source term. More

specifically, this equation expresses the conservation of linear momentum, completed by the identity

relating the velocity and the time derivative of displacement, namely, in a weak form,

∫

Ω

ρ
dy

dt
· δy dΩ =

∫

Ω

ρẏ · δy dΩ, ∀δy (2.2)

∫

Ω

ρ
dẏ

dt
· δy dΩ = −

∫

Ω

Σ
(

y, ẏ
)

: δe dΩ +

∫

Ω

f · δy dΩ, ∀δy (2.3)
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Here Ω represents the geometrical domain of the system, ρ the mass per unit volume, Σ the second Piola-

Kirchhoff stress tensor, δy an arbitrary test function in the displacement space with δe the corresponding

infinitesimal variation for the Green-Lagrange strain tensor, and f the applied loading (taken here as a 3D

distributed field to fix the ideas). Hence, in System (2.1) x denotes the state variable
(

y ẏ
)T

. Assuming

small displacements, we can identify δe with the symmetric part of the gradient ∇δy, and take Σ – which

can then be identified with the Cauchy stress tensor – as a linear function of x. We are thus led to the

linear operator A. The differential system considered is of infinite dimension, its unknowns being the

displacement and velocity fields at each point of the continuous body.

In the above system, ζx represents the unknown part in the initial condition x(0). Likewise, we assume

that A and R depend on a set of parameters in the form

θ = θ0 + ζθ, (2.4)

in which ζθ is undetermined. Our objective is to obtain a joint estimation of the unknown quantities ζx
and ζθ, based on measurements available for the system. These measurements are assumed to be given

by

Z = H x + χ

where H is a linear operator referred to as the observation operator, and χ denotes a white noise intro-

duced by the measurement procedure (detection, sampling...) that we describe in more details below. We

also introduce

Z̄ = H x (2.5)

to represent an “exact measurement” which of course is never available in practice. More specifically, in

the whole paper the measurements considered will be the velocities taken in a subpart Ωm of the domain

Ω, and sampled in space by using weight functions (si)
q

i=1
defined on q non-overlapping “measurement

cells” within Ωm. Namely,H x = (0Hv)(y ẏ)T consists of the q three-dimensional vectors given by

∫

Ωm

si ẏ dΩ,

and we assume that the sampling functions are normalized, i.e. ‖si‖L2(Ωm) = 1. We also assume that each

of these measured vectors are independently perturbed with a white noise of associated covariance matrix

α2
i
I3, which all together make up the above white noise χ. Therefore, the covariance matrix of χ can also

be decomposed in the following manner:

Qχ =

q
∑

i=1

(αi)
2[V1

i (V1
i )T + V2

i (V2
i )T + V3

i (V3
i )T ]

, (2.6)

where V
j

i
denotes the column vector with a 1 in the entry corresponding to the j-th coordinate (for

j = 1, 2, 3) of the i-th cell and 0 elsewhere.

Our estimation strategy will be based on observer theory and feedback control.

2.2 Modelling and discretization

Our observer approach relies on a discretized version of the above reference model. Namely, we approx-

imate x by xh where xh can be represented by a finite dimensional state vector X of dimension n. The
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corresponding finite dimensional system can be written in the following formalism:















Ẋ = AX + R

X(0) = X0 + ζX
(2.7)

where the initial condition expresses that xh(0) is the interpolation (or projection) of x(0) in the finite

dimensional subspace of the state space. We also introduce the operator ℑh as the one-to-one mapping

from Rn to this subspace, namely, so that xh = ℑhX. Like the continuous formulation, this dynamical

system represents the state space form of a variational – here discrete – formulation, typically derived

from (2.2)-(2.3) by using a finite element discretization. Denoting by Y the vector of degrees of freedom

corresponding to the discrete displacement field, in the linear case the variational formulation yields a

matrix equation of the type

MŸ +CẎ + KY = F, (2.8)

where M, C and K respectively denote the mass, damping and stiffness matrices, and F the load vector

(see [7, 18]). With X =
(

Y Ẏ
)T

, we thus have the following expressions for A and R in (2.7):

A =

(

0 I

−M−1K −M−1C

)

, R =

(

0

M−1F

)

. (2.9)

As a natural norm in the state space, we will use the energy norm, where the energy considered is the

sum of kinetic energy and strain energy, namely,

‖X‖2E =
1

2
ẎT MẎ +

1

2
YT KY, (2.10)

and we define

N =
1

2

(

K 0

0 M

)

,

so that ‖X‖2
E
= XT NX. Of course, the energy norm can also be considered for the continuous state,

although not with the above matrix expressions.

As regards the observation, we have

Z = HX + ǫh + χ, (2.11)

with

H = Hℑh,

ǫh = H(x − xh). (2.12)

The quantity ǫh denotes a “small” approximation error produced by the discretization procedure in the

observations.

Noting that H only acts on velocities – like the continuous observation operator H – we will also use

the expression

H = (0 Hv).

From a practical point of view, Hv consists of the collection of consistent force vectors S
j

i
, (1 ≤ i ≤

q, 1 ≤ j ≤ 3), associated with the loading corresponding to a distributed force si along the j-th cartesian

coordinate, each of these vectors being stored in a separate line of Hv.
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2.3 Model problem

In order to illustrate and assess our estimation procedures, we will consider an example problem inspired

from biomechanics and representing a simplified cardiac ventricle. The geometry of our example problem

is depicted in Figure 1, and the characteristic dimensions of this object are – indeed – comparable to

those of a human left ventricle. We thus resort to cardiac terminology to refer to the two extremities of

the object, namely “apex and base” (see Figure). The system is clamped over the planar surface at the

base, and activated by a planar wave of prestress – representing electrical activation – traveling from apex

to base at wave speed c = 0.5 m.s−1, which means that it takes 0.2 s for the wave to reach the base. The

wave shape itself is shown in Figure 2. The resulting prestress state is assumed to be isotropic and gives

an external virtual work defined by

δWPS =
∑

1≤i≤17

∫

ΩAHA
i

θiσ0w(x3 − ct) Tr(δ∇y) dΩ = δYT · R, (2.13)

where the subdivision of the solid domain into 17 sub-regions is similar to the subdivision of the left

ventricle advocated by the American Heart Association, see [1]. In the case of our simplified geometry

this subdivision is depicted in Fig. 1. In the above expression σ0 denotes a constant contractility parame-

ter, and θi a multiplicative coefficient that may take a different value in the range [0, 1] within each AHA

region to represent pathological contraction. Namely, setting θi < 1 in a given region corresponds to a

simplified model of infarcted tissue in that area, hence the parameters (θi)1≤i≤17 represent the quantities

to be estimated for diagnosis purposes. In our reference simulations we take all these parameters to be 1

(healthy value) except for

θ14 = 0.5, (2.14)

see Figure 3.
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Figure 1: Model geometry (left) and AHA regions (center and right)

Our simulations will correspond to an isotropic viscoelastic material in linear analysis, with material

parameters given by

Ei = 12.6 103 Pa, νi = 0.3, ηi = 0.227 s ∀i ∈ {1, . . . , 17}, (2.15)

and respectively denoting Young’s modulus, the Poisson ratio and a viscoelastic coefficient associated

with the pseudo-potential

Wv = ηi

(

λi

2
(Tr ε̇)2 + µi Tr(ε̇2)

)

, ∀i ∈ {1, . . . , 17},
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Figure 3: Reference mesh with ‘infarcted’ region (left) - ‘Desired’ mesh to be used in estimation (right)

where λi et µi are the Lamé constants derived from Ei and νi, and

ε =
1

2

(

∇yT + ∇y
)

denotes the linearized strain tensor approximating – at the first order – the Green-Lagrange deformation

tensor in the small displacements framework. Note that this viscoelastic contribution corresponds to

stiffness-based Rayleigh proportional damping. This leads to the following constitutive law to be taken

into account in the variational formulation

Σ = λi Tr(ε + ηiε̇)1 + 2µi(ε + ηiε̇). (2.16)

Also, volumic mass is set as ρ = 103 kg ·m−3, a standard value for biological tissues.

The measurements used in the estimation procedures will be provided by a “reference model” given

by a rather fine finite element discretization of the above object. The corresponding mesh is displayed

in Figure 3 and features nearly 40000 degrees of freedom. The observer itself will be based on coarser

discretizations, where the adequate mesh size will be a matter of discussion in the sequel. In all our

simulations we used for time discretization the energy-conserving Newmark algorithm with time step
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∆t = 1 ms. This time step is adequate for accurately representing the first 1000 eigenmodes of the system

with at least 20 time steps per modal period, but is primarily determined in relation to the activation

wave velocity. We show in Figure 4 the resulting energy and internal volume profiles for the reference

simulations. Note that – unless otherwise stated – all physical units correspond to the SI system. We point

out that internal volume is an important medical indicator and that our numerical values are “realistic”

in this respect.
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Figure 4: Energy and volume of the cavity for the reference solution

Finally, the measurement cells introduced above are defined by subdividing a (rectangular) box enclos-

ing the geometry into 10×10×15 smaller (rectangular) cells of equal sizes. This subdivision is visualized

in Figure 5. The weight functions are then simply defined by scaled indicator functions of the cells. We

point out that this resolution is comparable to that of standard tagged MRI images.

1 cm

1 cm

1 cm

Figure 5: Measurement cells
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2.4 State estimation using collocated damping

We now introduce the finite dimensional state estimator of our original system (2.1)















˙̄X = AX̄ + R + KX(Z − HX̄)

X̄(0) = X0

(2.17)

This state estimator uses the unbiased estimate of the initial condition and corrects the dynamics of the

discrete system by a feedback proportional to the measured error. In essence, the filter KX that we want to

use corresponds to a force proportional and opposed to the measured velocity, namely a “direct velocity

feedback” (DVF) stabilization strategy, see [33, 10]. This is the simplest type of collocated feedback,

namely a feedback law in which the control applied in a given location only uses the measurement

corresponding to that location. In our case, the available measurements are weighted velocities within

cells, hence inside each cell we want to apply a “filtering force” given by

−γsi

∫

Ωm

si ẏ dΩ.

Noting that the corresponding variational form of this feedback reads

−γ

∫

Ωm

si ẏ dΩ

∫

Ωm

si δy dΩ,

we infer that KX is simply given by

KX = (0 γHvM−1)T .

Hence, the dynamics of the associated mechanical system is governed by

M ¨̄Y +
(

C + γ(Hv)T Hv) ˙̄Y + KȲ = F + γ(Hv)T Z, (2.18)

where the dissipative effect of the filter clearly appears through the positive factor γ(Hv)T Hv. Note that

this matrix is straightforward to compute in a mechanical finite element software, and that collocation

induces a very narrow bandwidth, whereas Kalman filtering would yield full matrices.

3 Analysis of the state estimator

We point out that – in our mathematical error estimates – we use the symbol C to denote a generic

positive constant that may take different values for all occurrences.

3.1 General framework

Let us define the error X̌ between (2.7) et (2.17), namely,

X̌ = X − X̄,

whose dynamics is given by














˙̌X = (A − KXH)X̌ − KX(ǫh + χ)

X̌(0) = ζX
(3.1)
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mesh DOF (∽)

Reference 4 104

Fine 2 104

Desired 6.5 103

Coarse 2.9 103

Table 1: Number of dofs for the computational meshes

A straightforward computation shows that the covariance matrix of the vector KX χ is of order n – with

n very large in finite element applications – and given by

Q =













0 0

0 γ2 ∑q

i=1

∑3
j=1(αi)

2M−1S
j

i
(S

j

i
)T M−1













. (3.2)

Considering (3.1), in order to drive the above estimation error to zero, we are concerned with the

properties – and more particularly the stability – of the dynamical system governed by A−KXH, namely,

the discretized form of a mechanical system with dissipative feedback. It is known that, under certain

assumptions regarding the location and extent of Ωm, in the infinite dimensional case this closed-loop

system is asymptotically exponentially stable in the energy norm, see in particular [27, 6]. However, such

theoretical results do not provide quantitative estimations of exponential stability constants, which we

are much concerned with. In addition, in our case the observer is based on a discrete system for which

stability properties must be specifically investigated. We thus undertake this investigation by analysing

the poles of the system considered, namely the eigenvalues of (A − KXH). As is well established in

control theory (see [13] and references therein), this allows quantitative estimation of stability properties.

Nevertheless, in our case a particular attention is necessary as to how these properties may be affected

when changing the space discretization, since this constitutes a “modeling parameter” that may be varied

in the observer formulation, in particular in order to improve the accuracy. Hence, we now present a

numerical study of the poles for the above example problem with various values of γ and several choices

of discretizations.

We show in Figure 6 the root locus of the first 150 eigenmodes for four different values of the gain

parameter γ, with a zoom near the imaginary axis in Fig. 7. These eigenpairs are computed with a mesh

corresponding to about 6500 degrees of freedom – henceforth referred to as the “desired mesh” – but

we show in Figure 8 that the dependence of the stabilization effect on the discretization is of no serious

concern, see Table 1 for the sizes of the meshes considered. We point out that the “desired mesh” was

deliberately selected with a limited number of degrees of freedom in order to provide fast computations

in the estimation procedure, while representing a “reasonable” discretization of the geometry, see Figure

3. Of course, we will be concerned with the errors induced by this discretization, much coarser than

that used in the reference simulations, and we will assess these discretization errors in our forthcoming

analyses.

3.2 Damping properties of the collocated system

Although the above numerical results indicate a very effective stabilizing effect for our collocated feed-

back, these results only concern – of course – a limited number of poles, and – furthermore – provide

no information on the associated eigenvectors, in particular as to how well they “span” the state space.

Therefore, they only give an incomplete description of the dynamics of the error system (2.18). For a
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continuous system, a desirable related feature is that the eigenvectors make up a Riesz base [13, 37].

This can be mathematically established for the corresponding one-dimensional problem, see [12]. How-

ever, there is no such general result in 2D or 3D or in elasticity, in particular due to geometrical effects

[24, 25]. Nevertheless, for practical purposes it is not necessary to take into account the full complex-

ity of the spectral problem – and in particular as regards the behavior of the numerical and physical

high frequencies and modes – in order to evaluate the rate of exponential stability for the sequence of

homogeneous dynamical systems














˙̌Xhg = (A − KXH)X̌hg

X̌hg(0) = ζX
(3.3)

Indeed, a “real” initial condition x(0) = x0 + ζx is in general sufficiently regular to be well approximated

by only “a few” eigenmodes of the system without stabilizer. The discrete solution at any time can then

be bounded using the following result, where we denote by (Φi, λi) and (Ψi, µi) the complex eigenpairs

of A and A − KXH, respectively – assuming that these eigenpairs are arranged in ascending order of the

associated eigenfrequencies.

� Proposition 3.1

Assume that for System (3.3) the initial condition can be expanded in the modal basis {Φi} of the original

system as

X̌hg(0) =

q
∑

i=1

αiΦi + rq.

Then, for any time t we have the bound

‖X̌hg(t)‖E ≤ C(q′)e−δ(q
′)t(1 + d(q, q′)

)

(

‖X̌hg(0)‖E + ‖rq‖E
)

+ ‖rq‖E + d(q, q′)
(

‖X̌hg(0)‖E + ‖rq‖E
)

, (3.4)

where the constants appearing in this estimate are defined as follows,

δ(q′) = inf
i≤q′

(

−ℜ(µi)
)

,

d(q, q′) = sup
V∈span(Φi)

q

i=1

inf
W∈span(Ψi)

q′

i=1

‖V −W‖E

‖V‖E
,
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C(q′) =
γ2(q′)

γ1(q′)
s.t. γ1(q′)

q′
∑

i=1

|αi| ≤
∥

∥

∥

∥

q′
∑

i=1

αiΨi

∥

∥

∥

∥

E
≤ γ2(q′)

q′
∑

i=1

|αi|.

The estimate (3.4) is straightforward to establish, and it means that, once the initial condition is decom-

posed using the modes of the original system (up to some “small” remainder rq), the state at all times

can be bounded using the poles of the collocated system with ℜ(µi) the real parts of the corresponding

eigenfrequencies. The constant d(q, q′) represents the distance between the subspaces spanned by the

eigenvectors {Φi} and {Ψi} of the original and collocated systems, and C(q′) the constant of equivalence

of norms between the energy norm and the norm associated with modal components. It can be checked

numerically (by computing the corresponding Rayleigh quotients) that d(q, q′) is “small” as soon as

q′ ≥ q, and that C(q′) remains finite, both properties being obtained rather independently of the mesh

considered. This can be seen as a numerical verification of the fact that the collocated eigenvectors ad-

equately span the state space – the numerical counterpart of the above-mentioned Riesz basis property,

valid at least for the low frequencies which are the main concern in our case.

Hence we are led to an estimate of the type

‖X̌hg(t)‖E ≤ C1e−δ1t‖X̌hg(0)‖E + ε, (3.5)

where δ1 is related to the poles positions of the collocated system, and ε denotes a small quantity. Our

aim is that δ1 . T >> 1, which expresses that the exponential stability is meaningful with respect to the

time constant of the dynamics. In other words, we want to estimate quantitatively the time constant of

the stability, and analysing the poles is a way to achieve such an estimation whereas abstract results on

exponential stability usually just provide the existence of such an exponential estimate. In this respect,

only limited semi-quantitative results are available – see e.g. [33] – such as the following expression for

the sensitivity of the poles position with respect to γ

dµi

dγ
(0) =

dℜ(µi)

dγ
(0) = −

WiH
T HWi

2

where Wi denotes the i-th mass-normalized displacement eigenvector of the original system, namely such

that

KWi = λiMWi, WT
i MWi = 1.

We now illustrate this discussion with some numerical simulations obtained with our example problem.

Figure 9 displays the effect of an error in the initial condition corresponding to a static displacement

obtained by imposing an internal pressure of 103 Pa, which is the order of magnitude of the pressure

induced by atrium contraction during ventricular filling. The quantity shown is the energy (in base 10

log) of the simulated state corresponding to System (3.3). We can distinguish two parts in the resulting

evolutions, corresponding to two clearly distinct stabilization rates for each choice of γ. The first slope

is related to the eigenmodes which dominate in the initial condition, while the second one corresponds

to the least stable poles that are led to the real axis due to the damping added by the collocated stabilizer,

recall Figs. 6–7. Note that the asymptotic behavior may also be conditioned by some high frequencies

– whether they be physical or purely numerical as discussed in [5] – which is not observed here. We can

see in Figure 9 that the choice γ = 2 is optimal as regards the initial slope, and that the corresponding

asymptotic slope is associated with errors that are of no practical concern.

Unless otherwise indicated, we will use the static displacement produced by the above internal pressure

as the initial state error in our numerical estimation experiments in the sequel.
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Figure 9: Energy for initial condition error (log scale)

3.3 Influence of measurement and discretization errors

Let us now concentrate on the influence of the right-hand side KX(ǫh + χ). In this matter, we distin-

guish between the deterministic term KXǫh and the probabilistic one KXχ. The main difference with our

previous analysis is that we cannot assume any space regularity on these terms and they may – indeed

– include some high frequency contents. As a consequence, we will consider both the case of uniformly

exponential stability and the case where we only have stability in the error system (3.1). To that end we

define – independently of the discretization in all cases – two positive constants δ and C such that:














δ . T >> 1 if uniformly exponential stability

δ = 0 if only stability
(3.6)

This allows to bound the (discrete) semi-group T h(t) generated by the operator (A − KXH) as

‖T h(t)‖ ≤ Ce−δt, (3.7)

which in turn will provide bounds on the errors.

We first consider the effect of the probabilistic term KXχ. To that purpose we can analyze the dynamical

system














˙̌Xχ = (A − KXH)X̌χ − KXχ

X̌χ(0) = 0
(3.8)

The random variable X̌χ is then Gaussian, hence characterized by the behavior of its mean and covariance.

We obviously have E(X̌χ) = 0 for the mean. In order to deal with the covariance we use the semi-group

formulation and obtain

E(‖X̌χ‖
2
E) =

∫ T

0

Tr
(

Q(T h(t − τ))T NT h(t − τ)
)

dτ

where Q is the covariance of the white noise KXχ and N is the energy norm matrix. Substituting the

expression in (3.2) and using (3.7), we directly obtain

E(‖X̌χ‖
2
E) ≤ C2T2γ

2

q
∑

i=1

α2
i , (3.9)
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with

T2 =















1/δ ≪ T if uniformly exponential stability

T if only stability
(3.10)

The influence of observation noise is illustrated with our example problem. We took a white noise

standard deviation corresponding to ten percent of a reference velocity value in our simulations for a

sampling rate of 50 ms. When rescaled according to white noise rules to the actual computational time

step, this corresponds to a standard deviation of about 70 percent of the reference value. We show in

Figure 10 the energy of the solution X̌ obtained with various values of the observer gain γ. As expected
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Figure 10: Error induced by measurement noise (energy in log scale)

from the above numerical analysis, the gain has an amplification effect on the noise which is of the type

predicted by (3.9). Nevertheless, we can see that for all values of γ of interest, the error associated with

the noise is rather small – and indeed not dominant compared to the modeling error that we will now

investigate.

We thus complete our stability analysis with the study of the the deterministic source term KXǫh.

Namely, we consider the system














˙̌Xd = (A − KXH)X̌d − KXǫh

X̌0 = 0
(3.11)

Using Duhamel’s formula we obtain

X̌d(t) =

∫ t

0

T h(t − τ)KXǫh(τ)dτ

and we infer the following estimation for the deterministic right-hand side

‖X̌d(t)‖E ≤ Cγ
√

T2‖x − xh‖L2([0,T ];E). (3.12)

We can summarize the convergence of our state estimator in the following estimate combining the

contributions of initial error, discretisation error, measurement noise, and high frequency cut-off.

E(‖X̌‖2E) ≤ C
[

e−2δ1t
E(‖ζX‖

2
E) + T2γ

2‖x − xh‖
2
L2([0,T ];E)

+ T2γ
2

q
∑

i=1

α2
i + ε

2
]

. (3.13)
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We give the corresponding numerical results in Figure 11, where we clearly see that the modeling error

– here due to the discretization – is dominant in the error after the initial condition error has been damped

according to the above discussion. As expected this modeling error only arises with the occurrence of the

activation wave. We also remark that the modeling error effect is quite stable in the range of γ chosen,

and that we do not observe the amplification effect of γ that could be expected from (3.13).
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Figure 11: Global error with respect to γ (energy in log scale)

Eventually, in order to assess the dependence of our procedure with respect to the discretization, we

give in Figure 12 the results obtained with observers based on three different meshes – recall Table 1 –

with measurements generated from the same above-defined reference mesh. We conclude that the effect

of the discretization is roughly as predicted from (3.13). Also, we compare in Figure 13 the estimation

error for the desired mesh with the errors associated with

• the solution of the direct problem (2.7) generated with the desired mesh without initial condition

error (this gives the curve labeled “discretization error” in Fig.13);

• the reference solution interpolated in the desired mesh at each time step (the “interpolation error”).

This comparison shows that – after a short time corresponding to the stabilization of the collocated

system – the observer provides an estimation with optimal accuracy as compared with the interpolation

error. The estimated state is indeed superior to the solution directly simulated on the desired mesh for

the period of maximum energy, despite the very small time step that reduces – in the direct solution – the

error due to the approximation of high frequency dynamics. This – of course – is only possible because

of the feedback provided by the measurements in the observer.

4 Joint state-parameter estimation: the linear case

4.1 General framework

In this section, we consider the estimation of parameters only included in the right-hand side of the

dynamical equation, and with a linear dependence on the parameter vector θ of dimension r. Hence, we
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Figure 12: Global error with respect to the discretization (energy in log scale and γ = 2)
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Figure 13: Comparison of estimation, interpolation and discretization errors

can write the following linear state-parameter system:



























ẋ = Ax + Bθ + R

x(0) = x0 + ζx

θ = θ0 + ζθ

(4.1)

where ζθ represents the unknown part in the parameters.

If the parameters were perfectly known we could apply the above state estimation procedure. Therefore,

we have formally

∀ζθ, lim
t→∞
‖x̄h(t, ζθ) − x(t, ζθ)‖ = O(hp) + noise. (4.2)

But since we do not know ζθ the state-estimator X̄ (and equivalently x̄h) is unusable as such. Our main

objective here is to propose an estimator X̂ which can start from θ0 – not θ0 + ζθ – and estimate the pair
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(ζX , ζθ). This is what we call joint state-parameter estimation, also referred to as adaptative observation

in [41, 42].

4.2 Construction and analysis of the estimation procedure

Since we want to jointly estimate the state and the parameters, we could think of using filtering proce-

dures – such as Kalman filtering – on the (discrete) system describing the evolution of the “augmented

state” incorporating the parameters with the actual state (as described in [11]), namely,















Ẋe = AeXe + Re

Xe(0) = Xe
0
+ ζe

(4.3)

where

Xe =

(

X

θ

)

, Ae =

(

A B

0 0

)

, Re =

(

R

0

)

, (4.4)

and

Xe
0 =

(

X0

θ

)

, ζe =

(

ζX
ζθ

)

. (4.5)

However, the size of the augmented state vector Xe, namely, 2n + r, makes classical filtering techniques

– which would also not take advantage of the state estimator introduced above – untractable for this

problem. Thus, we aim at building a joint state-parameter estimator based on the “cheap” state estimator

X̄. Therefore we define the system describing the dynamics of X̄e = (X̄ θ)T , viz.















˙̄Xe = AeX̄e + Re + Ke
X

(Z − HeX̄e)

X̄e(0) = Xe
0
+ ζe
θ

(4.6)

where

ζe
θ =

(

0

ζθ

)

, Ke
X =

(

KX

0

)

, He = (H 0).

Here we point out that X̄e only depends on the initial condition ζθ. Hence we can define X̄e[ξ] for an

arbitrary initial condition θ(0) = θ0 + ξ.

Our idea is to apply a Kalman filtering procedure on System (4.6). Two difficulties are to be noted in this

respect: (1) Z is not the observation corresponding to X̄e but to x; (2) Z, which contains some (unknown)

noise, is in the right-hand side of the system observed, hence this introduces some modeling noise in

the state equation. In order to circumvent these difficulties in a first stage, we introduce the additional

auxiliary system














˙̄Xe
a = AeX̄e

a + Re + Ke
X

(Z̄ − HeX̄e
a)

X̄e
a(0) = Xe

0
+ ζe
θ

(4.7)

using the abstract observation without noise defined in (2.5). Considering also the “virtual” observation

Za = HX̄e
a + χ, (4.8)

we define X̂e
a as the Kalman observer for this system (4.7) when using the virtual observation Za. The

error covariance of this observer, namely,

Pe
a = E((X̄e

a − X̂e
a)(X̄e

a − X̂e
a)T |Za) (4.9)
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is such that

Pe
a(0) =

(

0 0

0 E(ζθζ
T
θ

)

)

. (4.10)

Therefore, we are then in a position to apply Kalman filtering to a system with reduced rank covariance

error. As shown in [32], in the absence of model noise, the covariance matrix at every time remains of

constant rank r, namely, the size of the parameter vector. This leads to the so-called “Singular Evolutive

Extended Kalman” (SEEK) algorithm in which the evolution equation of Pe
a is:



















































Pe
a = LeU−1LeT

L̇e = (Ae − Ke
X

H)Le

Le(0) = (0 Ir)
T

U̇ = LeT HeT W−1HeLe

U(0) =
(

E(ζθ.ζ
T
θ

)
)−1

(4.11)

where W denotes the covariance matrix of the observation noise χ. If we decompose the equation de-

scribing Le as Le = (LX Lθ)
T we have in our case







































L̇X = (A − KXH)LX + BLθ

L̇θ = 0

LX(0) = 0

Lθ(0) = Ir

(4.12)

Hence Lθ = Ir,∀t, which implies

L̇X = (A − KXH)LX + B, (4.13)

and

U̇ = LT
XHT W−1HLX. (4.14)

Finally, Kalman filtering specialized for the auxiliary system (4.7) gives the following observer equations







































˙̂Xa = AX̂a + Bθ̂a + R + KX(Z̄ − HX̂a) + LX
˙̂θa

˙̂θa = U−1LT
X

HT W−1(Za − HX̂a)

X̂(0) = X0

θ̂(0) = θ0

(4.15)

with LX and U respectively given by (4.13) and (4.14), and we note that we only need to manipulate a

matrix of size r (namely, U), instead of a covariance matrix with the size of the extended state, which

makes the computation of the filter tractable. We emphasize that this rank reduction was achieved by

considering the (stabilized) state estimator instead of the original state equations in the augmented system

(4.7), which in essence amounts to “canceling” the uncertainty associated with the state initial conditions.

This differs from the SEEK approach per se, in which rank reduction is performed by retaining only the

dominating singular values in the global covariance matrix. Here, the uncertainty considered has the

same dimension as the complete parameter space.

Of course, the observer X̂a cannot be used as such, since neither Z̄ nor Za are available. We then resort

to the natural idea of substituting the actual measurements Z for these two quantities, which provides the

18



following system.


























































































˙̂X = AX̂ + Bθ̂ + R + KX(Z − HX̂) + LX
˙̂θ

˙̂θ = U−1LT
X

HT W−1(Z − HX̂)

L̇X = (A − KXH)LX + B

U̇ = LT
X

HT W−1HLX

X̂(0) = X0

θ̂(0) = θ0

LX(0) = 0

U(0) =
(

E(ζθ.ζ
T
θ

)
)−1

(4.16)

Note that Z differs from Z̄ only by the noise, and that Za converges to a numerical approximation of

Z with the time constant of the collocated closed-loop system, see Section 2. Through this substitution

we lose the “theoretical optimality” associated with Kalman filtering in the reduced covariance rank

framework (namely, SEEK). However, we can still establish an optimality result in a variational context.

� Theorem 4.1

Considering the variational criterion

JT (ξ) =
1

2
ξT U(0)ξ +

1

2

∫ T

0

(Z − HeX̄e(ξ))T W−1(Z − HeX̄e(ξ)) dt, (4.17)

there exists a unique minimizer ξ̂ and the system (4.16) is such that

X̂(T ) = X̄e[ξ̂](T ), ∀T ≥ 0. (4.18)

⋄ Proof :

In order to obtain the minimizer, we differentiate JT

dJT (ξ).h = ξT U(0)h −

∫ T

0

(Z − HeX̄e)T W−1He dX̄e

dξ
.h dt

where














d
dt

dX̄e

dξ
= (Ae − Ke

X
He)dX̄e

dξ
dX̄e

dξ
(0) = (0 Ir)

T

Let us introduce the adjoint variable pe satisfying














ṗe + (Ae − Ke
X

He)T pe = HeT W−1(Z − HeX̄e)

pe(T ) = 0

Then,

dJT (ξ).h = ξT U(0)h −

∫ T

0

(ṗe + (Ae − Ke
XHe)T pe)T dX̄e

dξ
.h dt

= ξT U(0)h +

∫ T

0

peT
(

d

dt

dX̄e

dξ
− (Ae − Ke

XHe)
dX̄e

dξ

)

.h dt

−

[

peT dX̄e

dξ
.h

]T

0

=
(

(0 Ir)pe(0) + U(0)ξ
)T
.h
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Defining ξe = (0 ξ)T , so that X̄e[ξ](0) = Xe
0
+ ξe, we have for the minimizer

ξ̂e = −Pe
a(0)pe(0)

and X̄e
inf
= X̄e[ξ̂] verifies







































˙̄Xe
inf
= AeX̄e

inf
+ Re + KX(Z − HeX̄e

inf
)

ṗe + (Ae − Ke
X

He)T pe = HeT W−1(Z − HeX̄e
inf

)

X̄e
inf

(0) = Xe
0
− Pe

a(0)pe(0)

pe(T ) = 0

(4.19)

This is a two-point boundary value problem that we would like to express in a Cauchy problem form in

order to obtain a recursive procedure. Let us seek a solution in a form such that an affine relation exists

between X̄e
inf

and pe – in fact, such an affine relation can be proven to hold due to the linearity of (4.19),

see [26]. Then there exists some (re, Pe) such that

X̄e
inf(t) = re(t) − Pe(t)pe(t). (4.20)

Substituting in (4.19) we obtain

ṙe(t) + PeHeT
W−1Here − (Ae − Ke

XHe)re − Re − KX Z

+(−Ṗe + Pe(Ae − Ke
XHe)T + (Ae − Ke

XHe)Pe − PeHeT
W−1HePe)pe = PeHeW−1Z,

Clearly, this equation and the condition at t = 0 of (4.19) will be satisfied if (re, Pe) are solutions of the

system






































Ṗe − Pe(Ae − Ke
X

He)T − (Ae − Ke
X

He)Pe + PeHeT W−1HePe = 0

ṙe + PeHeT W−1Here − (Ae − Ke
X

He)re = PeHeT W−1Z + Re + KX Z

Pe(0) = Pe
a(0)

re(0) = Xe
0

(4.21)

Then, for (re, Pe) solutions of this system, substituting (4.20) in the second equation of (4.19) we can

solve for pe and it is easy to check that the resulting X̄e
inf

solution obtained from (4.20) itself satisfies

the first and third equations in (4.19) (respectively, the dynamics and initial condition). Therefore, with

(4.21) and the affine relation (4.20) we obtain the solutions of the two-point boundary value problem

(4.19).

We note that re and Pe are independent of the time interval [0, T ] and we can show by using the evolution

equations of Le and Ue and the initial condition of Pe that

∀t ≥ 0, Pe = LeU−1LeT
= Pe

a. (4.22)

It is then straightforward to verify that re satisfies the same Cauchy problem as X̂e, namely (4.16), hence

∀t ≥ 0, re = X̂e, (4.23)

and at the end of a given minimization time interval,

X̂e(T ) = X̄e
inf(T ). (4.24)
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⋄

� Remark :

A direct interpretation of this result is that θ̂ represents the so-called “maximum a posteriori estimate”

associated with the (parametrized) model given by the state estimator, see e.g. [29] for detailed discus-

sions on this type of parameter estimation and other related procedures. Furthermore, although we have

directly constructed our estimator using a spatially-discrete system, we point out that we would obtain a

similar algorithm by considering the maximum a posteriori estimate for the DVF-stabilized continuous

system and then discretizing the sensitivity dynamics (namely, LX in the discrete system) using the same

finite element scheme as for the state equations.

�

� Remark :

We note that our proposed estimation methodology – derived from (although not strictly equivalent to)

the SEEK procedure – leads to observer equations that correspond to the adaptative observer method

introduced in [42, 41]. In other words, we have established – for a given choice of state estimator – an

equivalence property between this adaptative observer strategy and the SEEK algorithm particularized

to uncertainties restricted to parameters. An important advantage of our approach is that the variational

framework provides a natural optimality criterion satisfied by the observer. Furthermore, the Kalman

setting allows to obtain a time-discrete version of our procedure in a straightforward manner – in the

classical prediction-correction form – with the corresponding time-discrete optimality result.

�

4.3 Error analysis

We now carry out the analysis of the errors defined by X̃ = X − X̂ , θ̃ = θ − θ̂. Following [42, 41], we

introduce the auxiliary quantity

η = X̃ − LX θ̃.

Then






































η̇ = (A − KXH)η − KX(ǫh + χ)
˙̃θ = −U−1LT

X
HT W−1HLX θ̃ − U−1LT

X
HT W−1Hη − U−1LT

X
HT W−1(ǫh + χ)

η(0) = ζX

θ̃(0) = ζθ

(4.25)

We note that η follows exactly the same dissipative dynamics as the state-estimator error X̌, recall (3.1),

hence the same conclusions as above hold. We now consider the dynamics of θ̃, which we rewrite as

˙̃θ = −U−1LT
XHT W−1HLX θ̃ + U−1LT

XHT̺,

with

̺ = −W−1(Hη + ǫh + χ).

We have
d

dt

(

U θ̃
)

= U̇ θ̃ + U
(

−U−1LT
XHT W−1HLX θ̃ + U−1LT

XHT̺) = LT
XHT̺,
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taking into account the dynamics of U given in (4.16). This gives

θ̃ = U−1
(

U(0)θ̃(0) +

∫ t

0

LT
XHT̺ dτ

)

. (4.26)

Noting that

U(t) = U(0) + Υ(t),

with

Υ(t) =

∫ t

0

LT
XHT W−1HLX dτ, (4.27)

we define λinf(t) as the smallest solution of the generalized eigenvalue problem

Υ(t)ξ = λU(0)ξ,

and the norm in which we evaluate parameters (as in Eq.(4.17)) as

‖ξ‖U(0) =
(

ξT U(0)ξ
)

1
2 .

Bounding U(t) from below by (1 + λinf(t))U(0) we infer from (4.26)

‖θ̃‖U(0) ≤
1

1 + λinf(t)

(

‖θ̃(0)‖U(0) +
∥

∥

∥U(0)−1

∫ t

0

LT
XHT̺ dτ

∥

∥

∥

U(0)

)

. (4.28)

The sensitivity matrix LX obeys the same dynamics as the damped state, hence it is stable. More specifi-

cally, we have a bound of the following type, for any set of parameters,

‖LX(t)θ‖2E ≤ C

∫ t

0

‖B(τ)θ‖2RHS dτ, (4.29)

where ‖·‖RHS denotes an adequate norm for the right-hand side of the mechanical system equation. Defin-

ing the following natural norms for LX and B

‖LX‖L = sup
‖θ‖U(0)=1

‖LXθ‖E, ‖B‖B = sup
‖θ‖U(0)=1

‖Bθ‖RHS , (4.30)

we thus obtain

‖LX(t)‖2L ≤ C

∫ t

0

‖B(τ)‖2B dτ. (4.31)

We infer that the integral term in (4.28) is a sum of “small contributions” associated with the terms

contained in ̺ and controlled due to the above considerations. As a consequence, the convergence of the

parameter estimation is mainly governed by the eigenvalue λinf(t). In this respect, we note that Υ(t) is an

observability grammian matrix for which λinf(t) gives the best lower bound with respect to U(0), namely,

Υ(t) ≥ λinf(t)U(0). (4.32)

Therefore the growth of λinf(t) – which is an increasing function of time – is related to observability

considerations.
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We now analyze in more details the effect of the small contributions contained in ̺ on the error bound

(4.28). Starting with the deterministic term due to ǫh, we have

∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1ǫh dτ

∥

∥

∥

U(0)
≤

∫ t

0

∥

∥

∥U(0)−1LT
XHT W−1ǫh

∥

∥

∥

U(0)
dτ, (4.33)

and
∥

∥

∥U(0)−1LT
XHT W−1ǫh

∥

∥

∥

2

U(0)
= ǫTh W−1HLXU(0)−1LT

XHT W−1ǫh. (4.34)

Noting that the induced norm defined on LX is related to Rayleigh quotients as follows

‖LX‖
2
L = sup

θ,0

θT LT
X

NLXθ

θT U(0)θ
= sup

X,0

XT NLXU(0)−1LT
X

NX

XT NX
, (4.35)

we infer

∥

∥

∥U(0)−1LT
XHT W−1ǫh

∥

∥

∥

2

U(0)
≤ ‖LX‖

2
L (ǫTh W−1HN−1HT W−1ǫh)

≤ ‖LX‖
2
L (ǫTh W−1ǫh) sup

Y,0

YT W−1HN−1HT W−1Y

YT W−1Y

= ‖LX‖
2
L ‖ǫh‖

2
W−1 sup

X,0

XT HT W−1HX

XT NX
,

using again an identity similar to (4.35). Invoking the continuity of the observation operator, viz.

‖HX‖W−1 ≤ Cobs‖X‖E, (4.36)

this leads to
∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1ǫh dτ

∥

∥

∥

U(0)
≤ Cobs

∫ t

0

‖LX(τ)‖L ‖ǫh(τ)‖W−1 dτ. (4.37)

Note that we also have, recalling (2.12),

‖ǫh(τ)‖W−1 ≤ Cobs‖x − xh‖E,

using the same notation for the energy norm applied in the discrete and continuous state spaces. There-

fore,
∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1ǫh dτ

∥

∥

∥

U(0)
≤ (Cobs)

2

∫ t

0

‖LX(τ)‖L ‖(x − xh)(τ)‖E dτ. (4.38)

Similarly, for the contribution of η in ̺ we obtain

∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1Hη dτ

∥

∥

∥

U(0)
≤ Cobs

∫ t

0

‖LX(τ)‖L ‖Hη(τ)‖W−1 dτ

≤ (Cobs)
2

∫ t

0

‖LX(τ)‖L ‖η(τ)‖E dτ. (4.39)

Note that this bound allows to handle both the deterministic and probabilistic parts of η. In particular,

we can obtain the bound for the term due to the probabilistic part in η by using the estimate (3.9), also

applicable for η.
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Finally, considering the random part in the right-hand side of the error bound (4.28) due to the white

noise in ̺, we have zero mean – of course – and the covariance of the norm gives:

E

(

∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1χ dτ

∥

∥

∥

2

U(0)

)

= E

(

∫ t

0

χT W−1HLXU(0)−1LT
XHT W−1χ dτ

)

= E

(

∫ t

0

Tr
(

U(0)−1LT
XHT W−1χχT W−1HLX

)

dτ

)

=

∫ t

0

Tr
(

U(0)−1LT
XHT W−1QχW

−1HLX

)

dτ

=

q
∑

i=1

(αi)
2

3
∑

j=1

∫ t

0

(V
j

i
)T W−1HLXU(0)−1LT

XHT W−1V
j

i
dτ,

where we used the decomposition (2.6) and standard trace properties. Then, using similar arguments as

for the deterministic contributions we obtain

E

(

∥

∥

∥U(0)−1

∫ t

0

LT
XHT W−1χ dτ

∥

∥

∥

2

U(0)

)

≤ C2
obs

(

q
∑

i=1

(αi)
2

3
∑

j=1

‖V
j

i
‖2

W−1

)

∫ t

0

‖LX(τ)‖2L dτ. (4.40)

We can now summarize the convergence of parametric estimation as follows, combining the above

estimates and (3.13).

E(‖θ̃‖2U(0)) ≤
C

(

1 + λinf(t)
)2

{

1 + ‖LX‖
2
L2([0,T ];L)

[

C2
obs

(

q
∑

i=1

(αi)
2

3
∑

j=1

‖V
j

i
‖2

W−1

)

+(Cobs)
4
(

T1E(‖ζX‖
2
E) + (1 + t T2γ

2)‖x − xh‖
2
L2([0,T ];E)

+ t T2γ
2

q
∑

i=1

α2
i + t ε2

)

]}

.

(4.41)

With the above error estimate for the parametric estimation combined with the bound (3.13) which

also holds with η substituted for X̌, it is now straightforward to derive an error estimate for the state

estimation, recalling that η = X̃ − LX θ̃. Namely, we simply have

‖X̃‖E ≤ ‖η‖E + ‖LX‖L‖θ̃‖U(0). (4.42)

� Remark :

As already pointed out, the smallest eigenvalue of the matrix Υ(t) is related to observability. In fact, this

matrix can be interpreted as a parameter-related observability Grammian matrix, as is classically consid-

ered in control theory, see e.g. [30]. Furthermore, it can be noted that the above error analysis still holds

when changing the observation operator used in the parameter observer dynamics, namely, in the 2nd

line of System (4.16). Hence, the observation operator H appearing in the observability Grammian can

be different from that used in the state estimator, and in particular incorporate additional measurements

in order to improve identifiability.

�

We show in Figures 14–19 the numerical results obtained with our joint estimation procedure for the

test problem of Section 2 when seeking to identify the contractility parameters σ0 in the AHA regions.
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In these computations the initial covariance for the contractility parameters was set as 117×17 – which

corresponds to the actual uncertainty that we aim at representing – and the state observer gain as γ = 2.

We can see that the values of the contractility parameters are quite accurately and rapidly estimated, even

though the accuracy significantly depends on the modeling error. On the other hand, state estimation

is much more accurate – and also much faster – and indeed is not very different from the behaviour

observed in the previous section (namely, state estimation by itself).

5 Joint state and parameter bilinear estimation

In the previous sections we have dealt with the estimation of prestress parameters, and this problem led

to a linear dynamical system in the combined state and parameter variables. However, this linearity only

holds when the parameters appear in the “right-hand side” of the dynamical system. When considering

the estimation of other mechanical parameters – and typically that of constitutive parameters – the re-

sulting augmented system is in general non-linear, even if the mechanical system by itself obeys a linear

dynamics.

In this framework, let us consider that we want to determine unknown variations of Young’s modulus

with respect to a reference value. Keeping our above subdivision of Ω in 17 regions where the parameters

are assumed to be constant, we can write the following bilinear augmented state-parameter system



























ẋ = (A + ∆A.θ)x + R

x(0) = x0 + ζx

θ = θ0 + ζθ

(5.1)

where we can decompose ∆A using the canonical basis for the parameter space aθ
i
= (δi j)1≤ j≤17, namely,

∆A =

17
∑

i=1

∆Ai ⊗ aθi ⇐⇒ ∆A.θ =

17
∑

i=1

∆Aiθi

We can also explicitly write the corresponding second-order discrete dynamical equation as

MŸ +CẎ + (K + ∆K.θ)Y = F, (5.2)

where F may contain the prestress contribution as above.

Since the mechanical system by itself is linear, the above-described state estimator is applicable, and we

can directly focus on extending our results on parameter estimation in the augmented system. Although

Kalman filtering is optimal for linear systems only, extended algorithms based on linearized operators

may lead to efficient – albeit non-optimal – filtering procedures [3]. Here, we present an original in-

terpretation of our previous algorithm in order to find an extended version. To this end, we reconsider

the equations on the state estimator X̄ – recall (2.17) – and on the quantity LX defined in the linear

framework in (4.16), namely,







































˙̄X = AX̄ + KX(Z − HX̄) + Bθ + R

X(0) = X0 + ζX

L̇X = (A − KXH)LX + B

LX(0) = 0

(5.3)
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Figure 14: Convergence of 4 contractility parameters corresponding to regions [1,5,10,14].
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Figure 15: Estimated values of the 17 contractility parameters.
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Figure 16: Estimated values of the 17 contractility parameters with the coarse mesh.
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Figure 17: Estimated values of the 17 contractility parameters with the fine mesh.
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Figure 18: State error in joint estimation with respect to the discretization.
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Figure 19: Estimated volume with respect to the discretization.
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We note that LX can be interpreted as the sensitivity of the state estimator X̄ with respect to θ, i.e. LX =
dX̄
dθ

.

From this interpretation we can devise an observer in the bilinear case by differentiating the first line of

(5.3), which gives


























































































˙̂X = AX̂ + ∆A.θ̂X̂ + R + KX(Z − HX̂) + LX
˙̂θ

˙̂θ = U−1LT
X

HT W−1(Z − HX̂)

L̇X = (A + ∆A.θ̂ − KXH)LX + ΛX̂

U̇ = LT
X

HT W−1HLX

X̂(0) = X0

θ̂(0) = θ0

LX(0) = 0

U(0) =
(

E(ζθ.ζ
T
θ

)
)−1

(5.4)

where

ΛX = ∂θ([∆AX]θ) =
∑

i

∆AiX ⊗ aθi .

Compared to the system (4.16) describing the dynamics of the observer in the linear case, we have

included the additional term ∆A.θ̂ in the equation governing LX to take into account the dependence of

the stiffness matrix with respect to the unknown parameters θ.

� Remark :

This estimation scheme can also be obtained by formally applying extended Kalman filtering (EKF,

see [19]) on the augmented bilinear system with the “virtual” measurement Za, similarly to the Kalman

filtering construction that we presented for the linear case in Section 4.2, namely, by using the linearized

dynamics in the construction of the filter.

�

Let us now analyze the convergence of this algorithm. We still rewrite the system satisfied by the error

(X̃, θ̃) using the change of variables into (η, θ̃). A straightforward computation leads to







































η̇ = (A + ∆Aθ − KXH)η + ∆Aθ̃LX θ̃ + KX(ǫh + χ)
˙̃θ = −U−1LT

X
HT W−1HLX θ̃ − U−1LT

X
HT W−1Hη − U−1LT

X
HT W−1(ǫh + χ)

η(0) = ζX

θ̃(0) = ζθ

(5.5)

which has lost its linearity. But the associated tangent system in (η, θ̃) = (0, 0) remains exactly as System

(4.25) of which we have proven the stability in the previous section. From the classical theory of stability

of non linear systems [35, 34], we infer that there exists a neighbourhood of (η, θ̃) = (0, 0) – hence of

(X̃, θ̃) = (0, 0) – such that System 5.5 remains stable. As a consequence, we expect to accurately achieve

our joint estimation if the indeterminations ζX et ζθ are “small”.

� Remark :

The collocated state estimator belongs to the class of “deterministic models” as defined in [28], hence the

asymptotic (in time) convergence results obtained in this reference for extended Kalman filtering applied

to such models hold in our case, namely, the parameter estimates converge to values which maximize a

likelihood functional, provided they are kept (using a suitable projection algorithm) in a set for which

the collocated system remains stable.

�
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We have tested our observer in a configuration quite similar to the one described in the linear case, and

we used the same measurement operator. In the 14th AHA region we set θ14 = 0.3, while we let θ = 0

in the other regions, which means that the infarct produces an increase of the stiffness in the region con-

cerned. Keeping the same initial error produced by a pressure of 1000Pa on the endocardium, however,

we did not directly obtain convergence. In our computations, indeed, we only achieved convergence with

an initial error corresponding to a pressure 100 times lower, which reflects the above local convergence

property, but is not satisfactory for practical purposes. Nevertheless, we know from the spectral analysis

of Section 2.4 that the state observer X̄ can estimate the state with an accuracy comparable to this reduced

initial error in a very short time (about 0.1 s in our case). Furthermore, this convergence is robust with

respect to the parameters, which means that for a quite large range of θ = ξ, X̄(ξ) the observer can reach

the desired neighbourhood in a comparable period of time.

Therefore, we propose to begin the estimation procedure with state estimation only, and to start the

actual joint estimation after a delay ts calibrated based on the spectral analysis of the state estimator, recall

Section 2.4. We remark that this proposed modified procedure can be simply written – and implemented

in a straightforward manner – as







































































































˙̂X = AX̂ + ∆A.θ̂X̂ + R + KX(Z − HX̂) + LX
˙̂θ

˙̂θ = U−1LT
X

HT W−1(Z − HX̂)

L̇X = 0, if t ≤ ts

L̇X = (A + ∆A.θ̂ − KXH)LX + ΛX̂, if t > ts

U̇ = LT
X

HT W−1HLX

X̂(0) = X0

θ̂(0) = θ0

LX(0) = 0

U(0) =
(

E(ζθ.ζ
T
θ

)
)−1

(5.6)

In terms of computational complexity, compared to the state equation itself – and also to the observer

equation in the linear case – the governing matrix in this new observer equation – namely, A+∆A.θ̂−KXH

– is not constant in time, hence leads to a different matrix factorization for each time step. Nevertheless,

the matrix to be factorized can be pre-assembled by parts for effective assembling at each step, and the

resulting factors are then used for the equations that govern both X̂ and the sensitivity LX.

We display the corresponding numerical results in Fig. 20 and 21. The delay parameter was set as

ts = 0.1 s, and the stiffness parameter covariance was taken as 0.04 in the regions numbered 7–10 and

13–17 – i.e. Region 14 and the neighbouring parts – and very small in all other regions to represent an

approximate “a priori prediction” of the infarcted area, and to enhance identifiability.

� Remark :

The fact that parameter convergence is not obtained in this case without using the above delay in the

parameter estimation startup confirms the crucial need for an effective and robust state estimation pro-

cedure to carry out joint state-parameter estimation. This can be interpreted by recalling our discussion

on the optimization criterion associated with this estimation strategy, namely, that we minimize the error

between the measurements and the state estimator X̄, which can be successful only if the state estimator

is sufficiently close to the real state. This is a general difficulty for parameter estimation problems, but in

the special case of linear estimation the state X did not enter in the dynamics of the parameter sensitivity

LX, hence an error on the state did not induce an error on the sensitivity, which made the joint estimation
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Figure 20: Estimated values of the 17 stiffness parameters
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Figure 21: Convergence of 4 stiffness parameters corresponding to regions [1,7,10,14].
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simpler and more effective.

�

6 Concluding remarks

We have proposed a joint state-parameter estimation procedure specifically adapted to the class of phys-

ical models of interest – which includes dynamically active soft tissues in biomechanics, in particular

– and to the fundamental features of available measurement techniques, with an emphasis on imaging

modalities. This estimator was built based on an effective and robust state estimation sequential strat-

egy, namely, collocated feedback, which provides an estimation at the same computational cost as the

simulation of the system itself.

Thus, in essence our estimation strategy consists in using physics-based estimators for the state vari-

ables, and rely on Kalman-like filtering only for the remaining variables in the augmented system,

namely, the parameters for which the dynamics is non-physical.

We have demonstrated the performance of this procedure to estimate parameters of primary interest,

namely, activation and stiffness parameters. For the stiffness estimation problem we had to consider a

non-linear dynamical system, which required an extension of the methodology and an adaptation of

the parameter estimation dynamics with the introduction of a startup delay. This necessary adaptation

confirms that parameter estimation cannot be considered independently of state estimation, hence that a

robust and effective state estimation procedure is an essential prerequisite.

Although the performance of the joint state-parameter estimator crucially depends on the effectiveness

of the state filter considered, we emphasize that the methodology proposed to extend state estimation to

joint state-parameter estimation is general and – indeed – applicable with any state filter. Other variants

could also be constructed by considering for parameter estimation other types of nonlinear filtering than

EKF– such as unscented Kalman filtering [20, 40] – or recursive identification algorithms, see e.g.[29].

Of course, biomechanical models frequently involve large displacements – as for cardiac mechanics

– hence further work is required to extend our proposed methodology to nonlinear state equations. We

also point out that other nonlinearities may arise from the observation operator, e.g. for the segmentation

of contours in imaging measurements.

Furthermore, boundary measurements require a different approach to model measurement errors, be-

cause a white noise applied on the boundary of a mechanical system can be shown to induce solutions for

which the mean energy is unbounded, in general. Indeed, in the case of boundary measurements – e.g.,

for ultrasound scans post-processed by optical flow techniques, see [31] – it is then more natural to set

the estimation problem in the H∞ formalism (see [16]) where the space of measurement errors can be

adequately defined.

We finally point out that further work is under way to evaluate the effectiveness of the proposed method-

ology when using synthetic measurements – namely, measurements produced by the model considered,

as in this paper – specifically generated with physical models of real imaging modalities available in car-

diology [14]. Using synthetic measurements allows to circumvent modeling difficulties and concentrate

on the estimation per se. Nevertheless, once it has been validated with synthetic measurements accurately

representing real data, the estimation procedure can also be used as a tool to assess model validity, since

its success would then only depend on model adequacy.
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[9] H.D. Bui. Inverse Problems in the Mechanics of Materials: An Introduction. CRC Press, 1994.

[10] M. Collet, V. Walter, and P. Delobelle. Active damping of a micro-cantilever piezo-composite beam.

J. Sound Vibration, 260(3):453–476, 2003.

[11] A. Corigliano and S. Mariani. Parameter identification in explicit structural dynamics: perfor-

mance of the extended Kalman filter. Computer Methods in Applied Mechanics and Engineering,

193:3807–3835, 2004.

[12] S. Cox and E. Zuazua. The rate at which energy decays in a damped string. Comm. Partial

Differential Equations, 19(1-2):213–243, 1994.

[13] R.F. Curtain and H. Zwart. An introduction to infinite-dimensional linear systems theory, volume 21

of Texts in Applied Mathematics. Springer-Verlag, New York, 1995.

[14] Q. Duan, Ph. Moireau, E. Angelini, D. Chapelle, and A.F. Laine. Simulation of 3D ultrasound with

a realistic electro-mechanical model of the heart. In Proceedings of FIMH’07 Conference. Springer

Verlag, 2007.

[15] Y.C.. Fung. Biomechanics: Mechanical properties of Living Tissues, second edition. Springer-

Verlag, 1993.

[16] B. Hassibi, A.H. Sayed, and T. Kailath. Indefinite-quadratic estimation and control, volume 16 of

SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

1999. A unified approach to H2 and H∞ theories.

33



[17] G.A. Holzapfel and R.W. Ogden, editors. Mechanics of Biological Tissue. Springer Verlag, 2006.

[18] T.J.R. Hughes. The Finite Element Method : Linear Static and Dynamic Finite Element Analysis.

Prentice Hall, 1987.

[19] A.H. Jazwinsky. Stochastic Processes and Filtering Theory. Academic Press, 1970.

[20] S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation. In Proceedings of the IEEE,

volume 92, 2004.

[21] R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory. ASME Trans.–

Journal of Basic Engineering, 83(Series D):95–108, 1961.

[22] E. Laporte and P. Le Tallec. Numerical Methods in Shape Optimisation and in Sensitivity Analysis.

Birkhauser, 2002.

[23] F.X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation of meteoro-

logical observation : theoretical aspects. Tellus, 38:97–110, 1986.
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