
HAL Id: hal-00175536
https://hal.science/hal-00175536

Preprint submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secretive Birds: Privacy in Population Protocols
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Eric Ruppert

To cite this version:
Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Eric Ruppert. Secretive Birds: Privacy
in Population Protocols. 2007. �hal-00175536�

https://hal.science/hal-00175536
https://hal.archives-ouvertes.fr

Secretive Birds:

Privacy in Population Protocols

Carole Delporte-Gallet∗ Hugues Fauconnier∗ Rachid Guerraoui† Eric Ruppert‡

September 28, 2007

Abstract

We study private computations in a system of tiny mobile agents. We consider the mobile
population protocol model of Angluin et al. [2] and ask what can be computed without ever
revealing any input to a curious adversary. We show that any predicate that can be computed
in the original population model can be made private through an obfuscation procedure that
exploits the inherent non-determinism of the mobility pattern. In short, the idea is for every
mobile agent to generate, besides its actual input value, a set of wrong input values to confuse
the curious adversary. To converge to the correct result, the procedure has the agents eventu-
ally eliminate the wrong values; however, the moment when this happens is hidden from the
adversary. This is achieved without jeopardizing the tiny nature of the agents: they still have
very small storage size that is independent of the cardinality of the system. We present three
variants of this obfuscation procedure that help compute respectively, remainder, threshold, and
or predicates which, when composed, cover all those that can be computed in the population
protocol model.

Keywords: population protocols, mobile computing, privacy, anonymity, secure multi-party com-
putation, automata.

A little bird has whispered a secret to me. [9]

1 Introduction

Despite the large amount of recent work on mobile systems, very little theoretical research has
been devoted to modelling such systems. A notable exception is the work of Angluin et al. [2]: they
introduced the population protocol model to describe systems of very simple mobile agents. The
model has totally asynchronous agents, only a constant amount of memory per agent, no system
infrastructure, and no assumptions about the mobility patterns of the agents, except for a fairness
guarantee that ensures (for example) that agents cannot be forever disconnected from the others.
The model was illustrated with a set of sensors, each strapped to a bird. Pairs of sensors could
communicate when their host birds were close together, and the sensor network would provide
aggregated information about the flock.

The population protocol model, along with some variations, has been studied in a series of
papers [1, 2, 3, 4, 5, 6, 7]. In particular, the class of decision problems that can be solved by the
population protocol model has been characterized precisely. Angluin et al. [2] gave several examples
of predicates that can be computed in the population protocol model, and it was later shown that

∗LIAFA, Université Paris VII
†School of Computer and Communication Sciences, EPFL
‡Department of Computer Science and Engineering, York University

no others are computable [4]. This provided a characterization of computable predicates in the
model: those that can be expressed in Presburger arithmetic [10]. (This is essentially first-order
arithmetic, using the symbols +, 0, 1,∧,∨,¬,∀,∃,=, <, (,) and variables.)

Computability within the population protocol model is defined in terms of eventually stabi-
lizing to the correct output value. This is an essential property of the model, since there are no
assumptions about the mobility pattern of the agents, beyond the rather weak fairness guarantee.
In particular, an individual agent may have no interactions at all for an arbitrarily long prefix of a
computation, so in general, one can never be certain that the final output value has been computed.

A key aspect of the population model is anonymity: there is no way to distinguish any two
agents. One motivation for such an assumption is the lack of infrastructure and the mass pro-
duction that might render it difficult to assign unique identifiers to agents or to programme them
individually. Another motivation is for the agents to preserve their privacy. An agent might simply
not want to reveal who it is, when it met which other agent or where it was. The first motivation
underlying anonymity is sometimes questionable. Indeed, it takes only a small number of bits to
store a huge collection of agent identifiers and a simple randomized procedure can generate distinct
identifiers with very high probability. The second motivation seems generally more relevant, for
there are many reasons a mobile agent might not like to leave its identifier wherever it goes or share
it with whomever it meets.

In this work, we explore the privacy aspect of these anonymous mobile systems. That is,
not only do we consider algorithms where agents never reveal their identifiers but we also seek
for them to hide their input values from one another while computing some function of those
inputs. In general, we say an algorithm is private if an honest but curious agent cannot learn any
information about the inputs to the system (including even the number of inputs) beyond what can
be deduced from its own input and the output value that must be computed. (This requirement
would enforce anonymity, even if the agents had identifiers: otherwise one could deduce a lower
bound on the number of participating agents.) Here, we focus on ensuring privacy in any finite
prefix of a computation. This, together with the fact that population protocols are only required
to eventually stabilize to the correct output value, allows us to strengthen the notion of privacy:
we require that an honest but curious agent cannot definitively learn anything about the inputs
of agents at any point in the computation, yet the algorithm must still correctly stabilize to the
correct output value.

Consider a simple example of determining which of two candidates is the winner of an election
by the agents. Assume each agent has input value 1 if it votes for the first candidate and 2 if
it votes for the second candidate. There is a simple protocol to achieve this computation [2]:
when two agents with different votes meet, they cancel each other. Once an agent has had its
vote cancelled, it remembers the last non-cancelled vote that it has seen to determine its output.
(Some extra care must be taken to deal with the possibility of a tie vote.) This protocol, however,
provides no privacy. In fact, the unpredictability of the mobility pattern might allow a single
curious agent to meet all others in their initial state and deduce the exact input vector of the
entire population, discovering exactly how many agents voted for each candidate. In this paper,
we ask what predicates can be computed without letting any curious agent, at any point of its
computation, determine any information about the input (or output) values of any other agent.
Following the specific example above, this means we would like a curious agent to be unable to
determine at any point of its computation how many agents voted for a candidate, the width of the
margin by which one candidate won, whether the number of voters was even or odd, and so on.

In a sense, we study a variant of secure multi-party computations [8] in the context of population
protocols. We consider a passive adversary that can read the state of one agent but cannot corrupt
it. However, there are several ways in which our work differs from the usual notion of secure
multi-party computation. The tiny nature of the devices we consider precludes the use of expensive

2

cryptographic protocols. The anonymity of the system means that signature schemes cannot be
used. Our algorithms do not use randomization, instead relying on the inherent non-determinism
of the mobility pattern. Interestingly, in our model, the curious agent can see the entire state of
any other agent it interacts with, so no secret keys can be used to achieve privacy.

This paper proves that any predicate that can be computed in the original population protocol
model, namely any predicate that can be expressed in Presburger arithmetic, can be computed
in a private way. Our result holds even if the curious agent can store an unbounded amount
of information, namely the states of all agents it has interacted with from the beginning of the
computation to the present. At the heart of our result lies the idea of an obfuscation procedure
which heavily relies on the non-determinism of the mobility pattern. We use this procedure in
different forms, according to whether we compute a remainder, a threshold or an or predicate.
(The composition of these covers all predicates that can be computed in the original population
protocol model.) Basically, we make agents change their input values without changing the overall
output, in a way that is carefully designed to confuse any curious agent. In the context of the
voting example, this would, roughly speaking, mean that every agent would generate, besides its
own vote several votes that cancel each other. The procedure is devised such that (a) the confusing
values are eventually cancelled, without any curious agent knowing when that happens, and (b) the
correct result is indeed computed, while making sure that the size of the memory of every agent is
fixed, independent of the size of the system.

The rest of the paper is organized as follows. We first recall the original population protocol
model and introduce our definition of private computation in this context. Then we show how to
compute any remainder or threshold predicate, and then how to compute any Boolean combination
of such predicates, deriving our general result about what can be computed in a private way. We
conclude the paper by discussing several research directions for private mobile computing.

2 Private Population Protocols

Our formalization of the population protocol model is based on the work of Angluin et al. [2].
For a population of n agents, Pn = {p0, . . . , pn−1} denotes the set of agents. (The subscripts are
for convenience only, and are not visible to the agents themselves: they do not have any effect on
an execution.) Each agent in the system is modelled as a finite state machine, and algorithms must
be uniform: each finite state machine is “programmed” identically and the programming does not
depend on the number of agents in the system. This makes the model strongly anonymous, since
there is not enough space in the state to give each agent a unique identifier.

Let Σ be a finite input alphabet and Y be a finite output alphabet. Each agent pi has an input
drawn from Σ. The input for a population protocol for n agents is a vector I = (σ0, . . . , σn−1) of
elements of Σ, where σi is the input of agent pi. Let D be the set of all vectors on Σ of length
at least two. The goal of an algorithm is to compute a function f : D → Y . Each agent must
eventually output the value of this function for the input that was initially provided to the agents.
Here we restrict ourselves to compute only predicates: the output alphabet is the set {0, 1}.

We now describe how to specify a population protocol. A population protocol is defined by
a finite set Q of possible agent states, an input assignment ι : Σ → Q, a transition relation
δ ⊆ Q × Q × Q × Q, and an output assignment ω : Q → Y . If two agents in states q1 and q2

encounter each other, they can change into states q′1 and q′2, respectively, where (q1, q2, q
′
1, q

′
2) ∈ δ.

We sometimes use the notation q1, q2 → q′1, q
′
2 to describe the elements of δ.

A configuration is a mapping C : Pn → Q specifying the state of each agent. Let C and C ′

be configurations, u, v be distinct agents and t be a transition. We say that C goes to C ′ with
interaction e = ((u, v), t), denoted C

e
→ C ′, if t = (C(u), C(v), C ′(u), C ′(v)) belongs to δ and

C ′(w) = C(w) for all w ∈ Pn − {u, v}. We say that C goes to C ′ in one step, denoted C → C ′, if

3

C
e

−→ C ′ for some interaction e = ((u, v), t); in this case e is called the interaction associated with
this step, t is the transition of this step and agent u and agent v are involved in this step.

An execution of the protocol on input I ∈ D is an infinite sequence of configurations, C0, C1, C2, . . .

such that (1) C0 is the initial assignment for I: if I = (σ0, . . . , σn−1) then, for all i such that
0 ≤ i ≤ n − 1, C0(pi) = ι(σi) and (2) Ci → Ci+1 for all i. An execution fragment is a contiguous
portion of an execution. The output of an agent in state q is ω(q). We say that the execution
stably outputs v ∈ Y if every agent eventually outputs v and never changes its output thereafter.
Formally, this means that there is an i such that for all agents p and for all j > i, ω(Cj(p)) = v.

If every sequence of interactions were considered to be a possible execution in the model, it
would be possible to have isolated agents that never interact with one another. So the model
must incorporate a fairness guarantee. In a fair execution, if a configuration C occurs infinitely
often and C → C ′, then C ′ occurs infinitely often. If, for example, we associate probabilities with
different interactions, then an execution will be fair with probability 1. A protocol stably computes
a function f : D → Y if, for every input I ∈ D, every fair execution on input I stably outputs f(I).
In the following, all executions are assumed to be fair.

Given an execution E = C0, C1, C2, . . . and an agent u, the history of interactions for agent u in
E, denoted Hu(E) is the sequence of states and transitions of interactions associated with each step
of E in which u is involved. More precisely Hu(E) = (q0, t0), . . . (qi, ti) . . . where ti is the transition
of the i-th interaction in which pi is involved and qi is the state of agent u when this interaction
occurs. The history of interactions for agent u in E up to T is the initial segment of length T of
Hu(E) if T is greater than the length of Hu(E) and Hu(E) otherwise.

We now define the notion of privacy for a population protocol. If some agent encounters another
agent, we assume that it learns both the current state of the other one and what transition is chosen.
Then, intuitively, the protocol has the privacy property if no agent can learn anything about the
current input from any initial sequence of the history of interactions in which it is involved. Let
I1 and I2 be two inputs in D where some agent p gets the same input value. The agent p is able
to distinguish I1 from I2 if, for at least one execution E1 on input I1, the history of interactions
for p in E1 up to some T cannot be an initial segment of a history of interactions of agent p for
any execution on input I2. A population protocol has the output-independent privacy property if
no agent is able to distinguish any pair of sufficiently large input vectors in which it has the same
input value. More formally, a population protocol has this property if and only if there is a constant
n0 such that for any agent p and any inputs I1 and I2 of size at least n0 in which p has the same
input, and any execution E1 on input I1, and any T , there exists an execution E2 on input I2, such
that the histories of p’s interactions up to T are identical in E1 and E2. Thus, if the protocol is
private, at no time in the execution E1 on input I1 can an agent p deduce with certainty that the
input vector of the execution was not I2. In other words, there is no time when p can rule out any
possible input vector (of size at least n0).

3 Computing Predicates Privately

Our goal is to show that all predicates computable in the population protocol model are com-
putable privately. We shall show that all computable predicates can be computed by a protocol
satisfying several properties, and that those properties are sufficient to guarantee that the protocol
has output-independent privacy. We label the curious agent p0. (Since the identities of agents can-
not be used in the protocols themselves, the arguments below are not affected by this convention.)

Consider a population protocol with state set Q. Fix some collection G of system configurations,
which we shall call good configurations. A transition q, r → s, t of the protocol is called G-imitable
if, from any configuration C0 ∈ G with p0 in state q or r, there exists an execution fragment
C0 → C1 → · · · → Cm such that Cm ∈ G and agent p0 participates in exactly one interaction

4

during the fragment and that interaction’s transition is q, r → s, t. (This property should hold
both for the case where p0 is playing the role of the agent that changes from state q to s and for
the case where p0 changes from r to t.)

The following theorem, which will be proved in Sections 3.1, 3.2 and 3.3, will yield protocols
that have output-independent privacy.

Theorem 1 Let P be any predicate that is computable in the population protocol model (without
privacy). Then there exist a protocol A that computes P , a constant n0 and a set G of configurations
of A such that

1. for any input configuration of size at least n0, there is an execution fragment of A that contains
no interactions involving p0 and ends in a configuration of G,

2. every transition of A is G-imitable,

3. for any states q1 and q2, there is a sequence of interactions between two agents that start in
states q1 and q2 and end in states q2 and q1, respectively, and

4. for any states q1 and q2, the “null” transition q1, q2 → q1, q2 is permitted.

We now show that the first two properties of the preceding theorem are sufficient for privacy.

Theorem 2 Any population protocol that satisfies Properties 1 and 2 of Theorem 1 has output-
independent privacy.

Proof: Consider any execution prefix E, starting from an initial configuration C0. Let C ′
0 be any

initial configuration that has at least n0 agents. We must construct an execution prefix E′, starting
from C ′

0, such that p0 undergoes the same sequence of interactions in E and E′. We begin E′ with
the execution fragment that satisfies Property 1, which does not include any interactions involving
p0 and leaves the system in a good configuration.

Then, for each interaction involving p0 in E, we append an execution fragment to the end of
the constructed execution using the definition of G-imitability. Each fragment includes exactly one
interaction that involves p0, and that interaction’s transition is the same as in p0’s next interaction
in E, and the fragment leaves the system in a good configuration. The existence of such a fragment
is guaranteed by Property 2.

When all of these fragments have been appended, we obtain the required execution E′. The
history of interactions for p0 is the same in E and E′, by construction.

The following corollary follows immediately from Theorems 1 and 2.

Corollary 3 Every predicate that can be computed in the population protocol model (without pri-
vacy) can be computed with output-independent privacy.

Although Properties 3 and 4 of Theorem 1 are not required for privacy, they are crucial for
our proof, in Section 3.3, that Boolean combinations of privately computable predicates are also
privately computable.

5

3.1 Computing Remainder Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and let m and r be
integer constants such that 0 ≤ r < m. The predicate P (I) that is 1 on input I = (σ0, . . . , σn−1) if

and only if
n−1
∑

i=0

cσi
≡ r(mod m) is called a remainder predicate. In this section, we show that any

remainder predicate can be computed in a way that satisfies the properties of Theorem 1.
There is a fairly straightforward way to compute the predicate P (I) if there is no need for

privacy [2]. Each agent stores a value, initially cσ , where σ is the input symbol of the agent. When
two agents with values v1 and v2 meet, one agent gives its value to the other: they change their
values to 0 and v1 + v2. All arithmetic is done modulo m. The algorithm maintains the sum of the
values of all agents as an invariant. Eventually, the sum is stored in a single agent, which can then
determine the output value and disseminate it to all other agents.

To ensure privacy, we must add transitions that allow agents to disguise their input values.
When agents in states v1 and v2 meet, one can give the other part of its value: the agents change
their values to v1 + 1 and v2 − 1. This preserves the sum of the agents’ values as an invariant.
However, this modification, by itself, would prevent the protocol from converging to the correct
output. To avoid this problem, we introduce a mechanism that ensures that this transition is only
applied a finite (but unbounded) number of times. This will be sufficient to obscure the inputs
from the adversary, while still ensuring that the sum is eventually gathered into a single agent
to produce the output value. This mechanism is implemented by giving each agent a flag that is
initially 1 and is eventually changed to 0. The transitions in which one agent shifts part of its value
to the other are enabled only while the flags are 1. The algorithm is described more precisely in
the following proof.

Proposition 4 Any remainder predicate can be computed by a protocol satisfying the properties of
Theorem 1.

Proof: We describe the protocol that computes the predicate
n−1
∑

i=0

cσi
≡ r(mod m). The state of

each agent is a pair (v, f) comprised of a value v ∈ {⊥0,⊥1, 0, 1, . . . ,m − 1} and a Boolean flag f .
Let Q denote the set of all such pairs (v, f). The values ⊥0 and ⊥1 are used to indicate that the
agent has given its value to another agent and is no longer active in exchanging values; the subscript
indicates the agent’s output value. The initial state of an agent with input σ is (cσ mod m, 1). The
output for states (r, 0) and (⊥1, 0) is 1. The output for all other states is 0. The transitions M1 to
M10 are given below, where v1 and v2 are any values in {0, 1, . . . ,m−1}, i is any value in {0, 1} and
q1 and q2 are any states. All arithmetic is done modulo m. An asterisk (∗) is used as a wildcard to
match any value, and indicates that part of the state is not changed by the transition.

(v1, 1), (v2, 1) → (v1 + 1, 1), (v2 − 1, 1) (M1)

(∗, 1), (∗, ∗) → (∗, 0), (∗, ∗) (M2)

(∗, 0), (∗, 1) → (∗, 1), (∗, 1) (M3)

(v1, 0), (v2, 0) → (v1 + v2, 0), (0, 0) (M4)

(v1, 0), (0, 0) → (v1, 0), (⊥0, 0) (M5)

(⊥i, ∗), (∗, 1) → (0, 0), (∗, 1) (M6)

(r, 0), (⊥i, 0) → (r, 0), (⊥1, 0) (M7)

(v1, 0), (⊥i, 0) → (v1, 0), (⊥0, 0), if v1 6= r (M8)

q1, q2 → q2, q1 (M9)

q1, q2 → q1, q2 (M10)

6

Transition M1 is the one that is crucial for privacy: it conceals inputs by shifting part of an
agent’s value to another agent, and can be invoked as long as the agents’ flags are 1. Transitions
M2 and M3 control the flags. Transition M4 gathers the sum into a single agent once the flags are
0, and Transition M5 ensures that exactly one agent ends up with a non-⊥ value. Transition M6
allows the ⊥ values to be turned back to 0, reversing the effect of Transition M5 as long as flags
are 1. Transitions M7 and M8 spread the output value from the (eventually unique) agent with
a non-⊥ value to all other agents. Finally, Transitions M9 and M10 are included to satisfy the
properties 3 and 4 of Theorem 1.

We first argue that this protocol correctly computes the predicate P (I). Transition M2 ensures
that, from any configuration, there is always a reachable configuration in which all flags are 0.
Thus, any fair execution will eventually enter a configuration in which all flags are 0. After that
point, all flags will remain 0 forever. Then, Transition M4 ensures that every agent except one will
have a value that is either 0 or ⊥. Transition M5 ensures that, eventually, exactly one agent will
have a value different from ⊥. (Transition M6 cannot be applied since all flags are 0.) Since the
sum of the non-⊥ values stored in all agents (modulo m) is left invariant by all of the transitions,

the one remaining non-⊥ value will be

(

n−1
∑

i=0

cσi

)

mod m, so it will have the correct output value.

Transitions M7 and M8 ensure that all other agents eventually stabilize with output P (I) also.
We now show that the protocol satisfies the properties of Theorem 1. We choose n0 = 5 and

we define a configuration to be in G if and only if it has at least four agents, and agents p1, . . . , p4

each have flag 1 and non-⊥ values. Note that any initial configuration with at least n0 agents
is good, so Property 1 of Theorem 1 is trivially satisfied. Property 3 is trivially satisfied, since
the protocol includes Transition M9, which allows any pair of agents to swap states in a single
interaction. Property 4 is also trivially satisfied, since the protocol includes Transition M10. It
remains to show that every transition of the protocol is G-imitable.

Consider any transition to be imitated. Suppose the curious agent interacts with an agent in
state (v, f) in this transition. Let C0 be any good configuration. We show how to drive agent p1

into state (v, f), starting from configuration C0. We consider two cases.
If v is a non-⊥ value, p1 and p2 meet repeatedly using Transition M1 until p1 has value v. Then,

if f = 0, p1 sets its flag to 0 using Transition M2. At this point, p1 has state (v, f).
If v is ⊥0 or ⊥1, p1 and p2 meet repeatedly using Transition M1 until p1 has value 0. Then

agents p1 and p2 set their flags to 0 using Transition M2, and meet once more using Transition M5
to set p1’s state to (⊥0, 0). If v = ⊥1, p3 and p4 meet using Transition M1 until p3’s state is (r, 1),
p3 sets its flag to 0 using Transition M2, and then p3 meets p1 using Transition M7 to set p1’s state
to (⊥1, 0). At this point, p1’s state is (v, 0). If f = 1, then p1 meets p4 using Transition M3 to set
its flag to 1. Then, p1 will be in state (v, f).

Once the agent p1 has been driven into state (v, f), it has the necessary interaction with p0.
After that, we must describe how to drive the system back into a good configuration. The above
procedure leaves p4 with a non-⊥ value and flag 1. Thus any of p1, p2, p3 that have values ⊥0 or
⊥1 can meet p4 using Transition M6 to get state (0, 1). Then any of p1, p2, p3 that have flag 0 can
meet p4 using Transition M3 to set their flags to 1. The resulting configuration is good.

3.2 Computing Threshold Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and let k be an integer

constant. The predicate P (I) that is 1 on input I = (σ0, . . . , σn−1) if and only if
n−1
∑

i=0

cσi
≥ k is

called a threshold predicate. In this section, we show that any threshold predicate can be computed
privately. We begin with the special case where the threshold k is positive.

7

Proposition 5 Any threshold predicate with a positive threshold k can be computed by a protocol
satisfying the properties of Theorem 1.

Proof: Let m = 2 ·max({|cσ | : σ ∈ Σ} ∪ {k}). Each agent will store a value between −m and m.
The general approach used to construct this algorithm is similar to the one used in Section 3.1

to compute remainder predicates privately. Each agent stores a value and a flag bit, and while flags
are 1, the agents can shift parts of their values to each other. Eventually, the flags will all be set
to 0, and the algorithm will compute the sum.

For remainder predicates, the sum (modulo m) could be stored in a single agent. For threshold
predicates, we cannot use modular arithmetic, so the sum may end up spread across several agents.
If the sum is positive, eventually, some number of agents (possibly 0) have the value m, at most
one other agent has a positive value, and the remaining agents have value 0. On the other hand, if
the sum is negative, all agents will eventually have non-positive values.

Because the sum is not collected into a single agent, distributing the output value to all agents
is more complicated than in Section 3.1. Each agent stores an output bit. As long as the agent’s
flag is 1, its output bit is meaningless, so by convention we require it to be 0. Once an agent’s flag
is 0, the value of the output bit behaves as follows. If an agent’s value is at least k, its output bit
must be 1. If an agent’s value is negative, its output bit must be 0. Otherwise, an agent’s output
bit can be either 0 or 1: in this case, the agent will determine its output bit from its interactions.

We now give a full description of the algorithm. The state of each agent is a triple (v, o, f)
where −m ≤ v ≤ m, and o and f are Boolean values representing the output bit and flag bit,
respectively. As described in the previous paragraph, not all triples are legal states: the output bit
can take values 0 and 1 only when f = 0 and 0 ≤ v < k. Initially, the state of an agent with input
symbol σ is (cσ , 0, 1). The transitions T1 to T8 are given below, where v1 and v2 are any values
between −m and m and q1 and q2 are any states. (The notation [v1 ≥ k] in Transition T2 indicates
that the output bit should be set to 1 if and only if v1 ≥ k.)

(v1, 0, 1), (v2, 0, 1) → (v1 + 1, 0, 1), (v2 − 1, 0, 1), if v1 < m and v2 > −m (T1)

(v1, 0, 1), (∗, ∗, ∗) → (v1, [v1 ≥ k], 0), (∗, ∗, ∗) (T2)

(∗, ∗, 0), (∗, 0, 1) → (∗, 0, 1), (∗, 0, 1) (T3)

(v1, ∗, 0), (v2, ∗, 0) →

(m, 1, 0), (v1 + v2 − m, 1, 0) if m ≤ v1 + v2 ≤ 2m
(v1 + v2, 1, 0), (0, 1, 0) if k ≤ v1 + v2 < m

(v1 + v2, 0, 0), (0, 0, 0) if − m ≤ v1 + v2 < k

, if v1v2 6= 0 (T4)

(v1, 1, 0), (v2, 0, 0) → (v1, 1, 0), (v2, 1, 0), if v1 ≥ k and 0 ≤ v2 < k (T5)

(v1, 0, 0), (v2, 1, 0) → (v1, 0, 0), (v2, 0, 0), if v1 < k and 0 ≤ v2 < k (T6)

q1, q2 → q2, q1 (T7)

q1, q2 → q1, q2 (T8)

Transitions T1, T2 and T3 play the same role as Transitions M1, M2 and M3 in Section 3.1.
Values are collected into a smaller number of agents using Transition T4. The output value is
distributed using Transitions T5 and T6. Transitions T7 and T8 are included to satisfy Properties
3 and 4 of Theorem 1.

We first argue that this protocol correctly computes P (I). Transition T2 ensures that, even-
tually, all flags are 0. After this point, they will always be 0. We focus on what happens after all
flags become 0. Notice that all transitions preserve the sum of values. We consider several cases.

First, consider the case where the sum of all inputs is negative. We now argue that Transition T4
ensures that, beyond some time, all agents will have non-positive values. Once all flags have become
0, only Transition T4 alters the multiset of values stored in agents’ states. It is easy to check that

8

an application of this transition cannot increase the sum of all positive values. Furthermore, the
sum of all positive values decreases whenever agents with oppositely signed values meet. Because
the sum of all agents is invariant, there must always be an agent whose value is negative. Thus,
the sum of all positive values will eventually be 0, so all values will be either 0 or negative beyond
that time. Since there is always an agent with a strictly negative value (and therefore a 0 output
bit), Transition T6 ensures that a configuration in which all agents have output bit 0 is always
reachable. Fairness guarantees that such a configuration will eventually be reached. At this point
the algorithm has stabilized with output 0.

Now, consider the case where the sum input values is non-negative. Once all flags have become
0, the sum of negative values is non-decreasing, and there is an increase in this sum whenever two
agents with oppositely signed values meet. Since the sum of values is invariant, there is always an
agent with positive value, so the sum of negative values is eventually 0. This means all agents have
non-negative values beyond that time. We now consider two subcases.

If the sum of values is less than k, then all agents must have values between 0 and k − 1
(inclusive). Transition T4 will ensure that, eventually, only one agent has a positive value, and all
others have value 0. After this time, only Transitions T4, T6, T7 and T8 can be applied. Agents
meeting according to Transition T4 will both get output bit 0 and applications of Transition T6
can only increase the number of agents with output bit 0, so eventually, all agents will have output
bit 0 forever, as required.

If the sum of values is greater than or equal to k, we consider the time when all agents’ values
have become non-negative and remain so forever. Then, Transition T4 ensures that, eventually,
each agent, except possibly one, has value 0 or m. Beyond that point, any application of Transition
T4 will have v1 + v2 ≥ k, so output bits of both agents will be set to 1. Also, at least one agent
will always have value at least k (and therefore output bit 1), so Transition T5 will ensure that all
agents eventually stabilize with output bit 1.

This completes the proof that the protocol computes P (I). We now show that the protocol
satisfies the properties of Theorem 1. We choose n0 to be 12. We define a configuration to be in
G if and only if it has at least 6 agents, the flags of agents p1, . . . , p5 are all 1, and the sum of the
values of agents p0, . . . , p5 is equal to 0.

First we establish Property 1 of Theorem 1. Consider any initial configuration that has at
least 12 agents. We describe how to drive the system into a good configuration without using any
interactions involving p0. For i = 1, 2, 3, 4, 5, agents pi and pi+5 interact using Transition T1 until
each of the agents p1, . . . , p5 have value 0. Then, p5 interacts with p11 using Transition T1 until its
value is the negation of p0’s value. The resulting configuration is good.

Next, we show that the protocol satisfies Property 2 of Theorem 1. Consider any transition to
be imitated. Suppose the curious agent interacts with an agent in state (v, o, f) in this transition.
Let C0 be any good configuration. We show how to drive agent p1 into state (v, o, f), starting from
C0. First, p1, . . . , p5 meet using Transition T1 until p1, p2, p3 and p4 each have value 0. (This is
possible, since the sum of values of p1, . . . , p5 in configuration C0 is equal to the opposite of the
value of p0, so the sum is between −m and m.) Next, p1 and p2 meet repeatedly, using Transition
T1 until p1 has value v. If f = 0, p1 and p2 meet again, this time using Transition T2, to change
p1’s flag to 0. If, at this point, p1’s output bit differs from o, we must have 0 ≤ v < k and o = 1.
In this case, p3 and p4 meet repeatedly using Transition T1 until p3’s value is k, then once more to
change p3’s flag to 0 using Transition T2, and then p3 and p1 meet using Transition T5 to change
p1’s output bit to 1. When all of these interactions have occurred, p1 is in state (v, o, f).

Next, p0 and p1 have their interaction. Now, we must restore the system to a good configuration.
In C0, the sum of the values of p0, . . . , p5 was 0, since C0 ∈ G. All interactions since C0 have been
among agents p0, . . . , p5 and every transition preserves the sum of the values of the two interacting
agents. Thus, the sum of the values of agents p0, . . . , p5 is still 0. The interactions since C0 may

9

have changed at most three agents’ flags from 1 to 0. Since p1, . . . , p5 all had flag 1 in C0, there is
at least one agent whose flag is still 1. If any of p1, . . . , p5 have flag 0, those agents meet an agent
whose flag is 1 using Transition T3 to set their flags back to 1. The resulting configuration is good.

Properties 3 and 4 of Theorem 1 are trivial, since the protocol has Transitions T7 and T8.

Corollary 6 Any threshold predicate can be computed by a protocol satisfying the properties of
Theorem 1.

Proof: We have already described how to compute any threshold predicate with a positive thresh-

old k. To compute a threshold predicate with a threshold k ≤ 0, notice that
n−1
∑

i=0

cσi
≥ k if and only

if
n−1
∑

i=0

(−cσi
) 6≥ −k+1. Since −k+1 > 0, we can compute the threshold predicate

n−1
∑

i=0

(−cσi
) ≥ −k+1

as described in the proof of Proposition 5 and negate the result.

3.3 Computing All Semilinear Predicates

To complete the proof of Theorem 1, we show that the properties of the theorem can be preserved
when computing Boolean combinations of predicates.

Theorem 7 If predicates P 1 and P 2 can be computed by population protocols which satisfy the
properties of Theorem 1, then there are population protocols that compute ¬P 1 and P 1 ∨ P 2, also
satisfying the properties of Theorem 1.

Proof: The required population protocol for ¬P 1 is obtained by simply negating the output map
of the protocol for P 1.

We now construct the required population protocol for computing P 1∨P 2. Let A1 = (Q1, δ1, ι1, ω1)
and A2 = (Q2, δ2, ι2, ω2) be the population protocols for P 1 and P 2, respectively. The protocol
for P 1 ∨ P 2 is quite straightforward: it simply runs the algorithms A1 and A2 in parallel. Each
agent’s state will contain two components, one representing the state of the agent in each of the two
algorithms. Whenever two agents meet, they have an interaction from the first algorithm, using
the first components of their states, and an interaction from the second algorithm, using the second
components of their states.

More formally, this protocol has the form A = (Q, δ, ι, ω), where

Q = Q1 × Q2,

ι(σ) = (ι1(σ), ι2(σ)),

ω(q) = ω1(q) ∨ ω2(q), and

δ = {((q1, q2), (r1, r2), (s1, s2), (t1, t2)) : (q1, r1, s1, t1) ∈ δ1 and (q2, r2, s2, t2) ∈ δ2}.

Since A1 and A2 satisfy Property 4 of Theorem 1, this definition of δ allows two agents who have an
interaction to update the first or second halves of their states according to the transition relation of
A1 or A2, respectively, while leaving the other halves of their states unchanged. Similarly, because
A1 and A2 satisfy Property 3, this definition of δ allows two agents to swap the first or second
half of their states while leaving the other halves unchanged. These facts are useful in some of the
constructions we give below. If C = ((q1

1 , q
2
1), (q

1
2 , q

2
2), . . . , (q

1
n, q2

n)) is a configuration of algorithm A,
we use the notation C1 for (q1

1 , q
1
2 , . . . , q

1
n) and C2 for (q2

1, q
2
2 , . . . , q

2
n). Also, we write C = (C1, C2).

We first argue that this algorithm A stably computes the predicate P 1 ∨ P 2. Consider any
fair execution E = (C1

0 , C2
0), (C1

1 , C2
1), (C1

2 , C2
2), . . . of A on some input I of size n. We show that

E1 = C1
0 , C1

1 , C1
2 , . . . is a fair execution of A1. By the definition of A, C1

0 is the initial configuration

10

of A1 on input I, and for all i, C1
i → C1

i+1, according to the transition relation of A1. To see that
E1 is fair, suppose some configuration C1 appears infinitely often in the execution and C1 → D1

is a possible transition of A1. Since there are only a finite number of possible configurations of
A2 with n agents, some configuration (C1, C2) must appear infinitely often in E. Because A2

satisfies Property 4 of Theorem 1, (C1, C2) → (D1, C2) is a possible transition of A. Since E

is fair, (D1, C2) must appear infinitely often in E. Thus, D1 appears infinitely often in E1, as
required. A symmetric argument proves that C2

0 , C2
1 , C2

2 , . . . is a fair execution of A2. Thus, after
some point, if any agent is in state (q1, q2), we must have ω1(q1) = P 1(I) and ω2(q2) = P 2(I), so
ω(q1, q2) = ω1(q1) ∨ ω2(q2) = P 1(I) ∨ P 2(I).

In the remainder of this proof, we show that the algorithm A satisfies the properties of Theorem
1. Choose n1

0 and G1 to satisfy the properties of Theorem 1 for A1. Choose n2
0 and G2 to satisfy the

properties of Theorem 1 for A2. Let n0 = max(n1
0, n

2
0). Let G be the set of configurations C where

the first components of the elements of C form a configuration in G1 and the second components
of elements of C form a configuration in G2. (I.e., G = {(C1, C2) : C1 ∈ G1 and C2 ∈ G2}.) We
shall show that n0 and G satisfy the properties of Theorem 1 for A.

First, we show that A has Property 1. Consider any input configuration C0 = (C1
0 , C2

0) for
algorithm A that has size at least n0. Then, C1

0 is an input configuration of A1 with at least
n0 ≥ n1

0 agents. There exists an execution fragment of A1 that starts from C1
0 and leads to a

configuration C1 ∈ G1. Thus, there is an execution fragment of A that starts from (C1
0 , C2

0) and
leads to (C1, C2

0). Since C2
0 is an input configuration of A2 with at least n0 ≥ n2

0 agents, there is also
an execution fragment of A2 that starts from C2

0 and leads to a configuration C2 ∈ G2. Thus, there
is an execution fragment of A that starts from (C1, C2

0) and leads to (C1, C2) ∈ G. Concatenating
the two execution fragments of A establishes Property 1 of Theorem 1 for protocol A.

Next, we show that A has Property 2. Consider any transition (q1, q2), (r1, r2) → (s1, s2), (t1, t2).
Let C = (C1, C2) be any good configuration of A in which p0 has state (q1, q2). Then, C1 ∈ G1

and C2 ∈ G2.
Since p0 is in state q1 in C1, there is an execution fragment of A1 starting from C1 and

ending in a good configuration G1 during which p0 has a single interaction, which has transition
q1, r1 → s1, t1. Let pi be the agent that p0 has its interaction with. Let D1 and F 1 be the
configurations immediately before and after p0’s interaction in this fragment. Then, there is an
execution fragment α1 of A starting from (C1, C2) and ending in (D1, C2) during which p0 has no
interactions. (The interactions in α1 only affect the first components of agents’ states.)

Since p0 is in state q2 in C2, there is an execution fragment of A2 starting from C2 and ending in
a good configuration G2 during which p0 has a single interaction of the form q2, r2 → s2, t2. Let pj be
the agent that p0 has its interaction with. Let D2 and F 2 be the configurations immediately before
and after p0’s interaction in this fragment. Then, there is an execution fragment α2 of A starting
from (D1, C2) and ending in (D1,D2) during which p0 has no interactions. (The interactions in α2

only affect the second components of agents’ states.)
If i 6= j, let β1 be an execution fragment starting from (D1,D2) in which pi and pj swap the

second components of their states. (Otherwise, let β1 be an empty execution fragment.) At the
end of β1, agent pi is in state (r1, r2). Let β2 be an execution fragment starting from the end of
β1 consisting of a single interaction between p0 and pi, applying the transition (q1, q2), (r1, r2) →
(s1, s2), (t1, t2). If i 6= j, let β3 be an execution fragment starting from the final configuration of
β2 in which pi and pj swap the second components of their states. (Otherwise, let β3 be an empty
execution fragment.) Then, at the end of β1 · β2 · β3, the configuration of the system is (F 1, F 2).

There is an execution fragment γ1 of A starting from (F 1, F 2) and ending in (G1, F 2) during
which p0 has no interactions. (The interactions in γ1 affect only the first halves of agents’ states.)
There is also an execution fragment γ2 of A starting from (G1, F 2) and ending in (G1, G2) during
which p0 has no interactions. (The interactions in γ2 affect only the second halves of agents’ states.)

11

Putting these fragments together, we obtain the fragment α1 · α2 · β1 · β2 · β3 · γ1 · γ2 of A,
which starts from configuration (C1, C2), ends in (G1, G2) ∈ G, and during which p0 has exactly
one interaction, which has transition (q1, q2), (r1, r2) → (s1, s2), (t1, t2). Thus, this transition is
G-imitable. This completes the proof of Property 2 for A.

Next, we establish Property 3 for A. Let (q1
1 , q

2
1) and (q1

2 , q
2
2) be any two states of Q. There is a

sequence of interactions of A1 between two agents that start in states q1
1 and q1

2 and end in states
q1
2 and q1

1 , respectively. Thus, there is a sequence of interactions of A between two agents that start
in states (q1

1 , q
2
1) and (q1

2 , q
2
2) and end in states (q1

2 , q
2
1) and (q1

1, q
2
2), respectively. Also, there is a

sequence of interactions of A2 between two agents that start in states q2
1 and q2

2 and end in states
q2
2 and q2

1, respectively. So there is a sequence of interactions of A between two agents that start in
states (q1

2, q
2
1) and (q1

1 , q
2
2) and end in states (q1

2, q
2
2) and (q1

1, q
2
1), respectively. Concatenating the

two sequences of interactions of A yields the required sequence that starts with two agents in states
(q1

1 , q
2
1) and (q1

2 , q
2
2) and ends with the agents in states (q1

2 , q
2
2) and (q1

1 , q
2
1), respectively. Thus, A

satisfies Property 3 of Theorem 1.
Finally, Property 4 of Theorem 1 for A follows trivially from the definition of δ and the fact

that both A1 and A2 have this property.

Putting together all of the preceding results yields a proof of Theorem 1. It is known that every
predicate computable in the population protocol model can be expressed as a Boolean combination
of remainder and threshold predicates [4]. It follows from Proposition 4, Corollary 6 and Theorem
7 that all such predicates can be computed by a protocol that satisfies the properties of Theorem
1. (Notice that in no case do we ever choose a value of n0 that is greater than 12, so the choice of
n0 does not depend on the predicate to be computed.)

4 Concluding Remarks

Although we restricted attention to computing predicates, the techniques can be applied to any
function. Let f : D → Y be any function that is computable by a population protocol without
privacy. Then, for each y ∈ Y , define a predicate Py(x) to be 1 if and only if f(x) = y. This
predicate can be computed, and can therefore be computed privately. All of the (finitely many)
predicates Py can be computed in parallel using the same approach as in Section 3.3 to yield a
private protocol for computing f .

This work is a first step towards studying private mobile computing. Several directions for
future research are appealing. Some seem fairly accessible. For instance, one could show that our
obfuscation procedure can also be effective against a dynamic adversary that can control several
agents on the fly. None of these agents will be able to determine the input values of the other agents,
either individually or collectively. Other problems appear more difficult. It is not clear whether it is
possible to devise an obfuscation procedure that would work if the adversary need only eventually
converge towards obtaining knowledge of the inputs of other agents, without necessarily knowing
when the correct input values have been discovered. We have restricted attention to problems where
all agents produce the same output, but one could also consider problems that require agents to
output different values. Some papers have altered the basic model of population protocols by
putting a probability distribution on the possible transitions. Can we design protocols that would
protect privacy with high probability, even if the adversary knows the probability distribution? It
would also be intriguing to figure out how the agents should be strengthened to hide their inputs
from an active adversary, who can cause agents to diverge from their protocol.

12

References

[1] D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Stably computable
properties of network graphs. In Proc. 1st IEEE International Conference on Distributed
Computing in Sensor Systems, volume 3560 of LNCS, pages 63–74, 2005.

[2] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in networks
of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, Mar. 2006.

[3] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols with a
leader. In Proc. 20th International Symposium on Distributed Computing, volume 4167 of
LNCS, pages 61–75, 2006.

[4] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population
protocols. Distributed Computing. To appear.

[5] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing behavior in networks of
nondeterministically interacting sensors. In Proc. 9th International Conference on Principles
of Distributed Systems, 2005.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When birds die: Making
population protocols fault-tolerant. In Proc. 2nd IEEE International Conference on Distributed
Computing in Sensor Systems, volume 4026 of LNCS, pages 51–66, 2006.

[7] M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state anonymous
agents. In Proc. 10th International Conference on Principles of Distributed Systems, number
4305 in LNCS, pages 395–409, 2006.

[8] O. Goldreich. Foundations of Cryptography, volume 2, chapter 7. Cambridge University Press,
2004.

[9] F. Marryat. Peter Simple, volume 3, chapter I. Saunders and Otley, 1834.

[10] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. In Comptes-Rendus du I Congrès
de Mathématiciens des Pays Slaves, pages 92–101, Warszawa, 1929.

13

