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Institut FEMTO-ST, Département d’Optique P.M. Duffieux, 16 route de Gray, 25030 Besançon, France

We present a comparison among several fully-vectorial methods applied to a basic scattering problem governed by the physics of the
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1 INTRODUCTION

The electromagnetic properties of metal-dielectric interfaces
have attracted a vast amount of research since the early works
of Mie and Ritchie on small particles and flat interfaces.
The ability of such structures to sustain electron oscillations,
known as surface plasmon polaritons (SPPs), has been inves-
tigated both to understand the fundamental physics involved
and for potential applications. More recently, the develop-
ment of nanofabrication techniques has lead to a resurgence
of interest in this field [1, 2]. This is partly because metal-
dielectric interfaces allow miniaturization of optical compo-
nents to subwavelength dimensions, well below those offered
by all-dielectric micro or nano systems.

Numerical computation plays an important role in the anal-
ysis of light scattered by subwavelength features in metallo-
dielectric structures. In this work, we benchmark several
fully-vectorial methods on a basic scattering problem gov-
erned by the physics of the electromagnetic interaction be-
tween subwavelength apertures in a metal film. The two-

dimensional construct studied is depicted in Figure 1. It is
composed of a slit and a groove etched into a silver film on
a glass substrate. The separation distance between the centres
of the slit and the groove is denoted by d in the following. The
other parameters, such as the permittivity of silver and the
metal film thickness, are given in the caption. The slit-groove
construct is illuminated by a normally incident plane wave
(TM polarization) with wavelength in vacuum λ = 852 nm.
The choice of the specific geometry depicted in Figure 1 is
motivated by the availability of experimental data [3], the in-
volvement of several physical mechanisms [4]-[7] leading to
an oscillatory behaviour of the transmitted power as a func-
tion of d, the difference between numerical solutions and ex-
perimental data [8] providing different interpretations for the
mechanisms responsible for the interaction at the metallo-
dielectric interface, and the discrepancies between numerical
solutions obtained with finite-difference time domain (FDTD)
and modal methods (MM) [9, 10]. Our objective is to under-
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FIG. 1 (a) The slit-groove doublet considered in this work. The centre-to-centre slit-

groove separation distance is denoted by d. (b) The single groove geometry used

for the near-field calculations. All computations are performed for εAg = −33.22 +

1.1700i, a value that is close to the permittivity of silver used in the experiment [3].

The construct is illuminated by a TM-polarized plane-wave, incident along the normal

to the film from air (n = 1) at λ = 852 nm. The width of both groove and slit and the

slit depth is 100 nm The metallic film is assumed to be deposited on a semi-infinite

glass substrate (n = 1.45). In (a) the silver film thickness is 400 nm.

stand these discrepancies and to provide an overview of the
state-of-art of the field of computational plasmonics.

Several groups in Europe and in the United States have been
contacted to participate in the benchmark using their in-house
developed software. In the following sections, three different
numerical exercises are benchmarked in relation with the ge-
ometry of Figure 1:

• Calculation of S/S0 as a function of d, for 100 linearly
spaced values starting from d = 100 nm to d = 10 µm
with an increment of 100 nm. S is defined as the verti-
cal flux of the Poynting vector along a 200 nm horizon-
tal cross section (horizontal thick line in Figure 1) located
400 nm below the substrate-metal interface and centred
with respect to the vertical slit axis. S0 is the same quan-
tity in the absence of the groove. The numerical S/S0 val-
ues can be directly compared with the measured data in
[3].

• Study of the convergence of S/S0 versus a parameter re-
lated to the discretisation accuracy of the methods for
d = 500 nm. This calculation is intended to compare the
convergence performance of the different methods and
to estimate the absolute accuracy of the computational
results.

• Calculation of the total field on the air-silver interface
(y = 0+) diffracted by a single groove, as shown in
Figure 1b. This particular field, known as the scattered
surface wave, gives rise to the oscillatory behaviour ob-
served in the field reflected by the geometry depicted in
Figure 1a [8]. Special attention has been given to the sin-
gular fields at the groove edges, since singularities are
known to be difficult to handle numerically [11].

In Table 1 we present the twelve different implementations
of fully-vectorial methods that have been benchmarked. We
have classified these implementations into five general cate-
gories: modal methods (MM), finite difference time domain

(FDTD) methods, finite-element methods (FEM), and volume
integral method (VIM). Also included is a newly proposed hy-
brid method (HYB) that relies on a combination of FEM and
a-FMM. The methods represent a selection of the most popu-
lar numerical methods used nowadays in computational elec-
trodynamics. Clearly, they do not cover all existing methods,
but nevertheless the results of the benchmark may be used
with confidence by other researchers in the field to test their
in-house or commercial software.

Method category Acronym Institution

Aperiodic Fourier MM1 Delft Univ. of Technol.
Modal Method MM2 LASMEA
(a-FMM) MM3 Institut d’Optique
Method of Lines (MOL) MM4 Fern Univ.
Local Eigenmode-Modal
method (CAMFR)

MM5 Ghent Univ.

FDTD method
FDTD1 Delft Univ. of Technol.
FDTD2 Institut FEMTO-ST
FDTD3 Northwestern Univ.

Finite Element Method
FEM1 Delft Univ. of Technol.
FEM2 Institut d’Optique

Volume Integral method VIM Delft Univ. of Technol.
Hybrid a-FMM/FEM HYB Institut d’Optique

TABLE 1 Benchmarked methods.

The remainder of this paper is organized as follows. A gen-
eral description of all methods is presented in Section 2. The
purpose of this section is to provide the reader with suffi-
cient background on the methods in order to obtain a basic
understanding of the numerical approaches. In Section 3 we
present and compare the numerical results obtained by the
different implementations of the methods. The implementa-
tions of these methods are described in Section 4. Detailed dis-
cussions of the methods are provided in the cited literature.
We include, however, an extensive description of the present
implementations and explain all specific modifications made
in order to improve the performance for the considered geom-
etry. We additionally discuss the discrepancies between the
results of the different methods. CPU times and memory re-
quirements are likewise provided in this section. We conclude
this paper in Section 5 with a summary of the derived insights.

2 BRIEF OVERVIEW OF THE DIFFERENT
METHODS

2.1 Aperiodic Fourier Modal Method (MM1,
MM2, MM3)

The Fourier modal method (FMM), also called the Rigorous
Coupled Wave Analysis, has been originally developed for the
rigorous analysis of diffraction by gratings [12]. The method,
which relies on modal expansions for all the electromagnetic
field components in a Fourier basis, is nowadays one of the
most popular methods in grating analysis. For 2D problems
like the present one, the FMM calculates the electric field par-
allel to the slits for the transverse electric case (TE), and the

07022- 2



Journal of the European Optical Society - Rapid Publications 2, 07022 (2007) M. Besbes, et. al.

magnetic field for the present transverse magnetic case (TM).
The remaining magnetic and electric field components for the
TE- and TM-case, respectively, are then obtained as derived
from Maxwell’s equations. The method solves the eigenprob-
lem in every layer of the structure and then, through the use
of S-matrix algorithms, reconstructs the field by matching the
boundary conditions imposed by Maxwell’s equation. The
eigenmodes are obtained using standard linear algebra rou-
tines as the eigenvectors of the system matrices for the TE- and
TM-case in the various layers of the configuration. To avoid
slow convergence, the present implementations use the TM-
formulation of the eigenvalue-problem as discussed in [13]-
[15].

The a-FMM is a generalisation of the FMM approach that al-
lows the method to handle non-periodic situations by artifi-
cial periodisation via the introduction of a Perfectly Matched
Layer (PML) [16] or of complex nonlinear coordinate trans-
formations [17]. The nonlinear transformation is applied to
satisfy the outgoing wave condition in the transverse direc-
tion. As the total number N of Fourier harmonics retained for
the computation increases (NxN also represents the size of the
matrix to be diagonalised for calculating N modes), limita-
tions may arise from memory requirements, or from the finite
precision of the numerical calculations, which essentially rely
on modes calculation and on a few matrix multiplications for
matching the tangential field components at the interfaces.

2.2 Method of Lines (MM4)

The results labelled MM4 are obtained with the method of
Lines (MoL) [18]-[21]. The MoL is a bidirectional eigenmode
method, where the eigenmodes are determined by means of
discretisation in real space. For the particular structure the
fields and the derivatives with respect to the x-coordinate
were discretised with finite differences. In this way, the wave
equation, which is a partial differential equation, is trans-
formed into a system of coupled ordinary differential equa-
tions. By computing the eigenvalues and eigenvectors of the
operator matrix, which corresponds to a determination of the
eigenmodes, this system can be decoupled and solved. As the
number N of lines used for the calculation increases (N also
represents the number of modes), the accuracy of the compu-
tational results increase. Details can be found in [19].

2.3 Local Eigenmode-Modal method (MM5)

Conceptually, the MM5 [22] is very similar to the Fourier
modal method. The main difference is that the fields are not
expanded in a Fourier basis, but in the local eigenmode ba-
sis of each section, whose propagation constants are obtained
by solving for the roots of a transcendental equation. An ad-
vantage compared to e.g. the a-FMM is that the field profiles
of the basis functions incorporate more information about the
refractive index of the structure to be modelled, and are more-
over calculated with high accuracy for two-dimensional prob-
lems. However, drawback of this method is that sometimes
modes can be missed when searching the complex plane for
zeroes of the transcendental function. This is in contrast to the
FMM, where all modes are found at the same time by solving

for the eigenproblem. To find the roots of the transcendental
equation for lossy materials, we first consider the solution of
the lossless case. These roots are then easily found as lying on
the coordinate axes of the complex plane. Then, the loss in the
system is gradually increased to the desired value and the lo-
cation of the modes is tracked in the complex plane. For the
current benchmark, the modes trace out a complex path with
many crossings, making it possible that sometimes one or sev-
eral modes are missed. The PML used in MM5 is implemented
by means of complex coordinate stretching [23].

2.4 Finite Difference Time Domain method
(FDTD1, FDTD2, FDTD3)

The FDTD method was first introduced in [24] and is used
extensively in computational electrodynamics. The method is
based on the discretisation of Maxwell’s equations in space
and time [25]. The structure is defined by the spatial distri-
bution of the relative dielectric permittivity and of the rel-
ative magnetic permeability, and partial derivatives are re-
placed by centred finite differences. Within the commonly
used Yee ”leapfrog” scheme, every field component is located
at a different node of the grid: electric and magnetic fields
being interleaved in time and space on staggered grids. The
present implementations use the PML boundary conditions
of Bérenger [26].

The computing time and memory requirement for a prob-
lem solved with an FDTD method increases gradually with
the number of elements. This means that large 2D- and many
3D-geometries can be computed on ordinary desktop comput-
ers. Time-domain methods are especially useful for obtaining
spectral information of a problem in a single simulation run.
As the domain, and thereby the distance, at which fields need
to interact in space and time increases, numerical dispersion
becomes an increasing problem. This may result in larger er-
rors for problems with a large slit-to-groove distance d. Cor-
ners and angles different from 90o as well as oblique interfaces
lead to staircasing. Since the FDTD operates in the time do-
main, a dispersion relation is needed to correctly simulate the
response of media with a negative real permittivity such as
metals in the optical regime. The FDTD implementations con-
sidered here employ a Drude dispersion model for the relative
permittivity εr :

εr = ε∞ −
ω2

p

ω2 + iγω
, (1)

where ε∞ = 3.36174, ωp = 1.33881016 rad/s and γ =
7.075921013 rad/s. This model provides the correct permittiv-
ity at the frequency ω used in the benchmark.

Due to the implementation of the metal dispersion, second or-
der accuracy is not guaranteed at metal-dielectric interfaces
even for straight interfaces. This alters the convergence per-
formance as shown in Figures 4 and 5. Because in the studied
geometry, the plasmon wave vector is almost parallel to the
interface, the PML placed above the structure must be rela-
tively large to sufficiently damp the plasmon. This also holds
for FEM methods, but not for MM that handle the vertical y-
direction analytically.
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2.5 Finite Element Method (FEM1, FEM2)

The analysis of the slit-groove problem has, also, been per-
formed using finite element methods. These methods oper-
ate under the assumption that any function over a global do-
main can be approximated by a series of functions operating
over a finite number of small sub-domains, called finite ele-
ments. The discretisation of Maxwell’s equations leads to an
algebraic system with unknowns expressed in the nodes or in
the edges of the mesh elements. For the studied problem, the
vector Helmholtz equation is solved numerically for the com-
plex magnetic field H on a given mesh. The electric field E
and Poynting vector S are derived afterwards. The FEM has
several advantages. It has been successfully used to model
complex geometries, anisotropic dielectric and metallic ma-
terials and allows for transient, harmonic or modal analysis.
It is mainly limited in the case of large system. For a large
sparse, indefinite and complex symmetric matrix, such as the
FEM matrix in the case of the time-harmonic Maxwell’s equa-
tions, the system of equations has to be preconditioned and re-
ordered appropriately. A large amount of memory is required
due to the preconditioning.

Two dual formulations have been used. The first one is based
on the curl-curl equation, with edge elements (FEM1) and
the second one (FEM2) uses an in-house implementation of
a nodal discretisation scheme based on the work described in
[27]-[29]. The structure is discretized by a mesh of unstruc-
tured triangular elements for the first method and with regu-
lar rectangular elements for the second one. Both types of ele-
ments are of second-order type. To enclose the computational
domain and prevent reflections, an anisotropic PML is placed
before the outer boundary. In the studied configuration, the
PML above the layer must be relatively thick because the SPP
is hardly damped in the PML.

PML parameters (thickness, number of elements in the PML,
etc) are very important and directly affect the result relia-
bility. Besides the PML, many other parameters, such as the
mesh density, number of nodes or edges, and the type of el-
ements, affect the accuracy and require specific attention. In
the present study, attention is focused on the effect of mesh
density to study the computation convergence, as shown in
Figures 3 and 4. To reduce the discretisation error, the mesh
has to be refined along the metal-dielectric interfaces.

2.6 Volume Integral Method (VIM)

The volume integral method (VIM) is based on Green’s the-
orem, where the vectorial Maxwell’s equations are solved by
a transformation into the inhomogeneous vector Helmholtz
equation for either the electric or magnetic field, of which the
homogeneous solution is known,

∇×∇× E f (r)− κ2
i E f (r) =

(
κ2

f − κ2
i

)
E f (r), (2)

where κ2
i contains material parameters of the background

medium and κ2
f contains material parameters of the non-

trivial scatterers. We shall refer to the right hand side as the
virtual source strength. It is non-zero only in the region of non-
trivial scatterers. The Green’s tensor is the solution of the same

equation where the virtual source is given by a mathematical
dipole

∇×∇×G
(
r, r′

)
− κ2

i G
(
r, r′

)
= δ

(
r− r′

)
I. (3)

Using Green’s theorem, the inhomogeneous equation of
Eq. (2) is solved by integration over the volume of the virtual
source using the Green’s tensor solution of Eq. (3),

E f (r) = Ei(r) +
∫
Vs

(
κ2

f (r′)− κ2
i (r′)

)
G

(
r, r′

)
· E f (r′)dr′. (4)

This is an integral equation for the unknown final electric field
E f , which, for comparison with other methods, is the sum of
the incident field Ei and the scattered field Es. It can be solved
by approximating E f by a linear combination of piecewise
basis-functions and applying the method of collocation. This
yields a system matrix which is full and often so large that an
iterative method has to be used to solve the problem. In our
implementation we have approximated the electric field E f
and the Green’s tensor G by piecewise constant functions, and
have computed the volume integral numerically for all collo-
cation points. To solve the discretized system we applied the
iterative procedure as described in [30, 31] and demonstrated
the used implementation for optical data storage in [32].

The effects of a stratified medium are incorporated in κ2
i

and treated analytically, such that only the fine-structure (i.e.
groove and/or slit) is considered as the virtual source. The
effect of the stratified layers on the Green’s tensor solution
results in a two dimensional integration in spatial frequency
space [33, 34]. The integration along the azimuthal-direction
can be done analytically, while the radial-direction is done nu-
merically using an adaptive Gauss-quadrature algorithm.

Before benchmarking and for debugging purposes, the VIM
has been compared to three analytically known problems for
one-, two- and three-dimensions, using an infinitely extend-
ing slab, a cylindrical rod and a Mie-sphere [35], showing a
relative error of the order of 10−5, depending on the refractive
index of the slab. Using the dependence found in Ref. [30],
where the error in the intensity scales with the cell size to
the power 3, a very crude estimate of the error for the cal-
culated field would be of the order of 10−4 for the calculation
of the Poynting vector as a function of the distance between
slit and groove, and 10−3 for the calculation of the field from
the groove only. Note that this estimate is based on far-field
considerations and cannot be used for the field very close to
the virtual source.

Since the volume integral method only depends on the vol-
ume of the virtual source, the calculation domain can be
discretized very efficiently. However, the amount of scatter-
ing cells is limited by computing capabilities (usually the
memory-limit). The radiation condition is automatically sat-
isfied due to the constraints on the Green’s tensor. When the
electromagnetic field within the virtual source has been ob-
tained, it is straightforward to obtain the field anywhere else
by integration over the source-domain using the Green’s ten-
sor corresponding to the homogenous problem. The imple-
mented iterative method avoids the problem of the memory
requirements due to the full system matrix and the task of
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preconditioning the matrix, but involves a lot of operations,
making the implementation relatively inefficient.

2.7 Hybrid finite element-modal method
(HYB)

Institut d’Optique has developed a hybrid method (HYB) that
combines FEM and a-FMM techniques. The basic underlying
idea is to sample zones with rapidly-varying fields (at sin-
gularities for instance) or curved surfaces in real space with
finite-element techniques, while using FMM expansion tech-
nique in all lamellar areas of the structure where modal ex-
pansions are numerically easier and physically more intuitive
than methods relying on a full discretisation. Figure 2 repre-
sents the zone that is sampled in Fourier space with the a-
FMM formulation and in real space with finite elements. The

a-FMM

y

h1

h2

x
FEM

a-FMM

FIG. 2 Sketch of the zone handled with FEM and a-FMM in the HYB method.

zone surrounding the groove for h2 < y < h1 is sampled in
real space. To improve the numerical performance, the mesh
grid is refined at all metal-air interfaces and edges with a
non-uniform triangular mesh with first- order elements (Hz
nodes). For y < h2 and for y > h1, the integration in the
y-direction is performed analytically with Fourier modal ex-
pansion techniques. The HYB implementation uses complex
nonlinear coordinate transformations to satisfy the outgoing
wave conditions in the x-direction, like the MM3.

With the a-FMM, and more generally speaking, with modal
methods, arbitrary shaped structures with round corners for
instance are handled with a staircase approximation. Numer-
ical results show that the staircase approximation introduces
sharp maxima in the local field map close to the stair edges
of the profile. As a consequence, a large number of layers is
generally required. Not only the computation load increases,
but also the convergence performance degrades and a greater
number of Fourier components is required to correctly repre-
sent the electromagnetic field. This is especially pronounced
in TM polarization for metallic structures [36]. This limitation
does not hold for finite-element approaches.

For the benchmark geometry that is fully lamellar, the HYB
method does not benefit from any advantage resulting from a
staircase approximation. Thus as will be shown in Section 3,
the HYB method provides slightly worse results in terms of
convergence performance and memory requirements than the

MM3. However, we believe that different conclusions would
be reached if one has to take into account inevitable curvatures
at the groove and slit edges. A draft containing numerical re-
sults for non-lamellar structures is in preparation. Technical
details on how to match the boundaries conditions at the inter-
faces between the Fourier and finite-element expansions, and
on how to implement finite-element techniques with a nonlin-
ear coordinate transform will be given there.

3 NUMERICAL RESULTS AND
COMPARISON

3.1 Transmission as a function of the
sl i t -groove separation distance

In the first numerical exercise, we calculate the normalized
transmission S/S0 as a function of the slit-groove separa-
tion distance, for one hundred separation distances dp, p =
1, 2, . . . , 100. For the sake of comparison, we define the aver-
aged deviation D between two different implementations (la-
belled by α and β) as the mean value (over the 100 separa-
tion distances) of the normalized transmissions calculated by
the implementations α and β, D = (1/100) ∑

p=100
p=1 |(S/S0)α

p −
(S/S0)

β
p|. Table 2 shows the values of D. Several conclusions

may be derived:

• The MM5 results significantly differ from those obtained
with all other methods, the minimum value for D in line
12 being 0.111.

• If we consider the subpart formed by the FDTD methods
only, see the part of the table outlined by a red box, we
observe that the results are consistent with one another,
with D values varying between 0.03 and 0.035, but differs
twice that value from those obtained by others methods.

• We note that the group formed by the seven first meth-
ods, namely MM2, MM3, FEM1, FEM2, HYB, VIM and
MM1 belonging to three different categories, provide
very similar results, with D values below 0.01. A more
careful inspection of the data obtained by these methods
(in bold in Table 1) has also revealed that the peak-to-
peak deviations between this group of methods do not
exceed 0.043 over the full range of separation distances.
On average over the one hundred separation distances,
the peak-to-peak deviation is 0.0126 (relative value 1.4%).

• Considering the subgroup formed by the first five meth-
ods MM2, MM3, FEM1, FEM2 and HYB, even higher con-
sistency is achieved, since the maximum D value does
not exceed 0.005. The peak-to-peak deviations between
this subgroup is 0.032, and on average over the dp’s,
the peak-to-peak deviation is as low as 0.008. This corre-
sponds to an impressive averaged 3-digit agreement. As
will be shown in Figures 4 and 5 these implementations
also provide the best convergence rates.

Figure 3 shows a comparison between the average transmis-
sion S/S0 obtained from the seven methods mentioned above,
and the experimental data (crosses) taken from [3].
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MM2 MM3 FEM1 FEM2 HYB VIM MM1 MM4 FDTD1 FDTD2 FDTD3 MM5
MM2 - 0.004 0.005 0.004 0.004 0.008 0.007 0.019 0.06 0.072 0.073 0.147
MM3 0.004 - 0.003 0.001 0.001 0.006 0.005 0.018 0.06 0.072 0.072 0.146
FEM1 0.005 0.003 - 0.003 0.004 0.009 0.008 0.021 0.061 0.072 0.073 0.149
FEM2 0.004 0.001 0.003 - 0.002 0.006 0.006 0.019 0.06 0.072 0.073 0.146
HYB 0.004 0.001 0.004 0.002 - 0.007 0.006 0.018 0.059 0.072 0.072 0.145
VIM 0.008 0.006 0.009 0.006 0.007 - 0.006 0.015 0.055 0.068 0.07 0.141
MM1 0.007 0.005 0.008 0.006 0.006 0.006 - 0.016 0.054 0.066 0.067 0.142
MM4 0.019 0.018 0.021 0.019 0.018 0.015 0.016 - 0.048 0.072 0.065 0.13
FDTD1 0.06 0.06 0.061 0.06 0.059 0.055 0.054 0.048 - 0.035 0.034 0.111
FDTD2 0.072 0.072 0.072 0.072 0.072 0.068 0.066 0.072 0.035 - 0.03 0.123
FDTD3 0.073 0.072 0.073 0.073 0.072 0.07 0.067 0.065 0.034 0.03 - 0.133
MM5 0.147 0.146 0.149 0.146 0.145 0.141 0.142 0.13 0.111 0.123 0.133 -

TABLE 2 The average deviation D = (1/100) ∑
p=100
p=1 |(S/S0)α

p − (S/S0)
β
p | obtained for all the benchmarked methods. α and β are the labels associated to the different

methods. The bold blue values outline the subset of seven methods that provide D values smaller than 0.01. The values in red are related to the subset comparing all FDTD

results.

Slit-groove distance (µm)

S/
S 0

FIG. 3 Normalized transmission S/S0 as a function of the slit-groove separation dis-

tance. The error bars represent the vertical intervals that bound the numerical data

provided by seven different methods (MM1, MM2, MM3, FEM1, FEM2, VIM and HYB).

The maximum peak-to-peak error between the four methods is smaller than 0.043 over

the full range of separation distances. The dashed curve represents the numerical data

obtained by interpolation of the average values. The red crosses are experimental data

taken from Ref. [3]. The dotted vertical lines indicate the locations of other maximum

in transmission of the averaged numerical data.

The depicted error bars delimit the maximum peak-to-peak
deviation between the seven methods and the blue dots rep-
resent their average values. From the statistical error analysis
given, we believe that the quantitative agreement obtained for
seven methods belonging to three totally different categories
is not fortuitous. Therefore, the average values are likely to
represent accurate estimates for the normalized transmission.
Thus the significant differences between the numerical and
the experimental data may have been caused by unobserved,
yet different physical parameters occurring in the measure-
ment condition. As shown in Figure 3, the amplitude of the
oscillations is not well reproduced. As confirmed by other cal-
culations not reported here, it is intuitively clear that the am-
plitude is related to the actual shape of the groove and to its
actual depth that might differ from the 100 nm depth used
for the benchmark. The difference between the frequency os-
cillation of the published experiment and the benchmarked
computation results is large and increasing as a function of
separation distance. Since the material and configuration are
carefully chosen to represent the experimental conditions,
this difference is quite unexpected. In agreement with [8], all

the benchmarked methods have provided an oscillation fre-
quency given by the normalized SPP propagation-constant
of the air-silver interface (neff = 1.01), which differs from
the experimental one (neff = 1.04). The impact of the SPP
mode on the oscillation frequency is further confirmed by the
very good agreement obtained in Figure 6b between the fields
diffracted by the groove on the interface and analytical SSP-
modal expressions.

3.2 Convergence performance

In this sub-section, we present the convergence performance
of the numerical implementations for d = 500 nm. The con-
vergence performance is shown as a function of some param-
eters labelled by N, which is related to the sampling resolu-
tion. N differs from one method to the other and starts from
an arbitrary Nmin value up to a Nmax value obtained before
a memory limitation is reached. For FDTD, FEM and HYB,
N is the total number of discretisation elements enclosing the
non-trivial scatterers, i.e. the groove and/or slit. For VIM, N
is the number of cells in the scattering volume (in this case
only inside the slit and/or the groove) and not the total com-
putational space. For Fourier modal methods, N represents
the total number of Fourier harmonics retained for sampling
the reciprocal space in the x-direction. For MM4, N repre-
sents the number of sampling points in the x-direction and for
MM5 N represents the total number of local eigenmodes re-
tained in the modal expansion. Note that for methods relying
on a full discretisation of the computational space (FEM and
FDTD), N grows as the computational area, while N grows
as the transverse computational-window width (along the x-
direction) for modal methods. More details are given in Sec-
tion 4. Although the computational effort strongly differs from
one method to another, in general, the CPU time also increases
with N, since N is related to the size of the matrices, which are
involved in the numerical implementation.

Figure 4 shows the absolute convergence performance for
S/S0 as a function of N. We have tried to use the same scale,
but because of the variation in convergence rates, this has not
been possible for all methods. In addition, since some meth-
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FIG. 4 Absolute convergence performance of the different methods as a function of the parameter N related to the sampling accuracy of the method, starting from an arbitrary

Nmin value up to a Nmax value obtained before memory or time limitations. Two curves corresponding to two different PML implementations are provided for MM5.

ods (MM2, MM3, FEM1, FEM2 and HYB) rapidly reach a
plateau for small N values, we have used two different verti-
cal scales as N increases. Note that these methods correspond
to the group of methods that provide the smallest deviations
in Table 2.

In addition, note that the same scale is not used in all plots
for the sake of clarity. In Figure 5, we show the convergence
rate on a logarithmic scale as a function of N. The relative er-
ror for a given N is defined as |[S/S0(N)]/[S/S0(Nmax)]− 1|,
where S/S0(Nmax) corresponds to the normalized transmis-
sion calculated with the highest resolution. Note that these
values provided in parenthesis differ from one method to the
other. Thus the figure is not intended to discuss the accuracy
of the results. The convergence rates are varying by almost
four orders of magnitude from one method to another. Since
the benchmarked value S/S0 is the ratio of two independent
simulations, the errors for the two simulations cumulate in the
benchmarked value. This may be disadvantageous for some
methods, like the FDTD method, which are relatively sensitive
to small changes in the discretisation. This is especially sen-
sitive near metallic interfaces, for which FDTD methods are

locally first-order accurate, leading to relatively large residual
oscillations even for small discretisations.

3.3 Field scattered by a single groove

The governing physical phenomenon in the experiment in [3]
is the surface wave diffracted by the groove on the metal in-
terface, see Figure 1b. This wave propagates on the surface,
interacts with the slit, and because of the delayed coherent in-
teraction with the light directly coupled, results in the oscillat-
ing pattern of Figure 2. The analysis of this surface wave is the
subject of the third numerical investigation.

Before providing a detailed comparison between the different
field predictions obtained by the benchmarked methods, let
us first examine some general properties of the field scattered
by the isolated groove. Figure 6a displays the normalised z-
component of the scattered magnetic field Re(Hz,scat)/|Hz,inc|,
where Hz,inc is defined as the magnetic field of the nor-
mally incident plane wave on the interface at y = 0. To
obtain the scattered field, we have subtracted the incident
and back-reflected (specular) plane waves in the displayed
images for y > 0. Clearly, the scattered field looks like
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Number of modes Number of modes Number of modes

Number of modes

Total number of 
discretized points

Number of elements

Number of elements Number of scattering cells Number of nodes

Inverse of spatial 
discretisation (µm-1)

Number of elements

MM1
( 2.206775)

MM2
( 2.200904)

MM3 
( 2.200952)

MM4 
( 2.201970)

MM5
( 2.008785)

FDTD1
( 2.211482)

FDTD3
( 2.193380)

FEM1
( 2.201632)

FEM2 
( 2.201143)

VIM
( 2.204575)

HYB
(2.200940)

S/
S 0

S/
S 0
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FIG. 5 Convergence performance of the different methods as a function of the parameter N starting from one arbitrary Nmin value up to a Nmax value obtained before memory

or time limitations. The error is defined as |[S/S0(N)]/[S/S0(Nmax)]− 1|, and the number in parenthesis located below the method acronym represents S/S0(Nmax).

that of a cylindrical wave. This behaviour is expected be-
cause of the subwavelength dimensions of the groove, which
therefore acts similarly as a line current [8]. Figure 6b is in-
tended to roughly discuss additional properties of the scat-
tered wave on the interface y = 0. The black curves represent
the three components of the scattered field on the interface,
calculated with MM3 for a normalized incident plane wave
Hz,inc(y = 0) = 1. The superimposed dotted curves for Hz, Ey
and Ex are respectively the analytical functions |S exp(ikSPx)|,
|S(kSP/k0)exp(ikSPx)| and |S[1 − (kSP/k0)2]1/2 exp(ikSPx)|,
where S is determined with the rigorous treatment in [37], kSP
being the SPP propagation constant of the air-silver interface,
kSP/k0 = [εAg/(εAg + 1)]1/2. The scattered field on the inter-
face is shown to be essentially composed of a SPP for x > 1.5λ.
This will be confirmed by the numerical data provided by the
other methods in Figures 7 and 8. Further investigation on the
numerical data shows that the transmission curve in Figure 3
and the magnetic-field curve in Figure 6b can almost be su-
perimposed after renormalization. This indicates the key role
played by the SPP on the silver-air interface in the oscillatory

behaviour reported in the experiment. A related discussion
can be found in [8, 38, 39].

After these preliminary considerations, we now compare the
total fields calculated by the various numerical methods at the
interface y = 0+. For the sake of brevity, we simply compare
the x-component of the electric field on the interface and do
not report on Hz and Ey. This tangential component is contin-
uous, but exhibits a singularity near the groove edges. In Fig-
ure 7, we show the normalised total electric field |Ex,tot/Ex,inc|
as a function of the x-coordinate. The two plots on the top are
related to short x-distances, 2 µm < x < 3 µm, while the plots
in the bottom are related to larger x’s, 9 µm < x < 10 µm.
We first note that the oscillation amplitudes of the FDTD data
are different from each other and are also different from those
provided by the other methods. The x-locations of their min-
ima and maxima are also different and are shifted towards
small x-values. The systematic offset explains why the group
of FDTD implementations provides similar distances in Ta-
ble 2. We believe that the difference between the FDTD results
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FIG. 6 General properties of the electromagnetic fields scattered by a single groove

on an air-silver interface under normal incidence. Note that the incident and specular

reflected plane waves have been removed for y > 0 in (a) and (b). The groove depth

and width is 100 nm. (a) Overall display scattered field Re(Hz) was obtained with

FEM2. Red and blue colours represent positive and negative values, respectively. (b)

Surface wave scattered on the interface at y = 0+ by a single groove. The solid

curves were obtained with MM3. The dotted curves correspond to the analytical SPP

contribution, see text.

and the other ones is due to the metal dispersion that prevents
second-order accuracy at metal-dielectric interfaces even for
lamellar interfaces as those considered in this work. Except
for the FDTD data, a quantitative agreement is achieved over
the full range of x’s for all other methods (the MM5 data are
not considered in this comparison). However a more careful
inspection shows that the remaining results can be divided
into two sets. These two sets are formed by the data obtained
from MM2, MM3, MM4, and FEM2 as one set, and from MM1,
FEM1, VIM as another set. The slight difference in oscillation
amplitudes (not frequency) is due to the fact that for the sec-
ond set of methods, the field has been calculated at y = 1 nm
above the interface, instead at y = 0 as requested for the
benchmark (see the next section for more details). The 1 nm
difference may appear negligible at first sight, but as shown
by additional computations obtained with the MM1 and MM3
at y = 1 nm, it is almost fully responsible for the slight differ-
ence between the two sets of results.

To assess the robustness of a particular technique, it is interest-
ing to consider the computation of the electromagnetic fields
near the groove edges. When the radius or curvature of the
edge is negligible with respect to other relevant lengths as is
the case for the ideal geometry considered in this work, singu-
larities appear. The problem of the scattering of a monochro-
matic plane wave by a homogeneous wedge has received
much attention in the literature [11], since knowledge of sin-
gular behaviour may be incorporated into numerical algo-
rithms to increase their speeds of convergence. Reversely,

|E
x/E

x,
in
c|

|E
x/E

x,
in
c|

x-coordinate (µm) x-coordinate (µm)

FIG. 7 Comparison between the different methods for the normalized total field

|Ex/Ex,inc| as function of the x-coordinate at y = 0+. Top: small x values. Bot-

tom: large x values. The repartition of the method results between the left and right

sides of the figure is arbitrary. This choice is simply motivated by clarity reasons.

when the singularity is not incorporated into the method (this
is the case for all considered methods), the method accuracy
can be tested by looking at the divergence properties of the
computed fields in the vicinity of singular points and by com-
paring it to analytical expression for the critical exponent, see
Section 4.

In Figure 8, we compare the results obtained by all methods
in the immediate vicinity of the upper groove edge located
at x = 50 nm. Note the use of vertical logarithmic scales. A
good overall agreement is achieved for x < 50 nm, where the
medium is uniform (n = 1). For x > 50 nm, strong deviation
occurs and the overall relative accuracy is rather low. Note the
quantitative agreement between MM2, MM3 and HYB over
the full range of x values, even at the immediate vicinity of
the singularities, where the field theoretically diverges. As dis-
cussed hereafter, this can be explained by the specific attention
paid by these methods to accurately sample the field in the
vicinity of edges, in Fourier space for MM2 and MM3 or in
real space for HYB.

4 METHOD IMPLEMENTATION AND
DISCUSSION

The main objective of this section is to underscore the differ-
ent computing specifications and to give additional explana-
tions of the obtained results relative to each method. Note that
all co-authors have been able to provide numerical data in a
60-day term. This short duration implies that no optimisation
of the in house-developed software have been performed for
the benchmark. For each method, the CPU time and the mem-
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ory load are also given in order to estimate typical computa-
tional efforts that one may be faced with in reproducing the
computed data for a given accuracy. However, let us keep in
mind that these numbers are only estimates that do not allow
a quantitative comparison between the method implementa-
tions that have been run on different hardware with different
software.

MM1. The MM1 used in this work is an electromagnetic field
solver that is based on the a-FMM. While the main procedure
of implementation is similar to that in the general description
of the method, special care is taken to prevent numerical in-
stability of the evanescent contributions. We have combined
the S- and R-matrix algorithm [40, 16], such that the outward
travelling waves are obtained using the S-matrix and the in-
ward travelling waves using the R-matrix. This implementa-
tion is inherently stable and especially relevant for systems
with many layers, as has been confirmed with the VIM [35].

The calculation for the benchmarked non-periodic structures
has been performed by using a complex nonlinear coordi-
nate transformation combined with a perfectly matched layer
(PML) as described in [17]. This modification, however, in-
creases the computational time, since it requires that even for
the non-corrugated layers (the incident air medium and the
glass substrate) the modes are found numerically. Also, the
number of modes that have to be taken for convergence de-
pends on the PML and the nonlinear complex transformation.

In Figures 7 and 8, the MM1 requires more modes for an ac-
curate field calculation, especially to include the evanescent
modes. Finite numerical accuracy results in singularities in
the system matrix. This in turn results in inaccuracies of the
largest eigenvalues and corresponding eigenvectors used for
calculating the near-field, which becomes apparent when the
distance to the interface gets very close.

The convergence tests in Figures 4 and 5 were carried out us-
ing an artificial period width of 21.85λ and show a conver-
gence from 350 modes onwards. The complex parameters for
the nonlinear coordinate transformation fct = (1 − i)−1 and
for the PML fPML = (1 + i)−1 [17] are applied over a 2λ range
at both sides of the artificial period. For the calculation as a
function of d, an artificial period width in the x-direction of
18.85λ is used to obtain the data discussed in Table 2. We
use 302 modes, with 3501 points for the numerical integra-
tion of the permittivity function to obtain its Fourier compo-
nents. The same parameters but with 300 modes were used
for computing the electromagnetic field in Figure 7, by using
1011 sampling points at a distance of 1 nm above the metal
interface. For the calculation presented in Figure 8, we have
used 10001 sampling points in the integration for obtaining
the electric permittivity, 201 sampling points in the interval of
−50 nm to 150 nm for the reconstruction of the field, a compu-
tational width of 8.29λ and 1000 modes.

A typical calculation takes 12 minutes and requires 0.7 GB of
memory on an AMD Opteron 265 running at 1.8 GHz. The
field calculation far from the edge takes 20 minutes and 0.7 GB
of memory, and the one near to the edge takes 6.5 hours and
5.7 GB of memory on the same computer.
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FIG. 8 Comparison between the different methods for |Ex/Ex,inc| as function of the
x-coordinate at y = 0+ in the immediate vicinity of the upper groove edge located at

x = 0.05 µm.

In comparison with MM2 or MM3, MM1 offers a slower con-
vergence and a larger computational effort. This is due to the
fact that the large distance between the slit and the groove is
not squeezed by any coordinate transformation. In MM1, the
coordinate transformation is only used to create an aperiodic
structure by incorporating PMLs.

MM2. Since the problem under consideration is translation in-
variant in one direction, any modal method is an efficient tool
that not only calculates but also gives physical insight in the
simulations. Here we have used a Fourier Modal Method. This
method is very popular although it presents intrinsic weak
points. For instance, the Fourier basis is certainly not the best
choice to represent permittivity functions that exhibit simul-
taneously high contrast and narrow geometrical details. The
use of a parametric representation of space allows an adaptive
spatial resolution [41]. The coordinate transformation maps
non-uniformly spaced points along x-direction in the physi-
cal domain to uniformly spaced points in the transformed do-
main. In the present context, one demands that the coordinate
lines in the physical space are stretched in the neighbourhood
of the transitions of the permittivity function. Furthermore,
the transformation has to allow different spacing between the
transitions in the physical and in the transformed domains.
Such transformations have been used by Granet in [42] and
improved by Vallius [43]. In the present benchmark, the struc-
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ture under consideration is aperiodic. In order to take into ac-
count the radiation boundary for a periodic basis, we have
used Perfect Matched Layers. Chew and Weedon have shown
in [23] that PMLs are equivalent to a complex stretching on
the coordinate space of Maxwell’s equations. Hence, from the
practical point of view, adaptive spatial resolution and PML
are very similar.

The a-FMM introduces at least two arbitrary parameters: the
artificial periodicity and the PML thickness. In the x-direction,
we call a transition point xl the x-location where the medium
experiences a discontinuity. The geometry of the structure is
described by 6 transition points. The first arbitrary transition
point, x1, corresponds to the thickness of the PML. The dis-
tances between the left PML and the groove and between the
slit and the right PML are given by x2 − x1 and x6 − x5, respec-
tively. For the numerical implementation, we chose x1 = λ

and x2 − x1 = x6 − x5 = λ. All the other transition points are
imposed by the structure under consideration, namely by the
metallo-dielectric interfaces. The overall periodicity is thus:
L = 2x1 + 2(x2 − x1) + d + w. For d = 500 nm, it corresponds
to L = 4.7042λ. In the transformed domain, we keep the same
periodicity and make the transition points equally spaced. In
addition to this first transformation, the resolution around the
transition points has been refined. The functions used for the
mapping between the two domains allow to calculate analyt-
ically all the coefficients of the Fourier series.

All the calculations have been performed on a PC computer
Dell latitude 820 equipped with a 2.16 Ghz processor and with
a Matlab 7 software. For 201 retained Fourier harmonics (from
−100 to +100), the code runs in about 11 seconds and for 601
Fourier harmonics it takes 4 minutes. Except for the conver-
gence test, all other calculations in this benchmark have been
performed with 561 Fourier harmonics.

MM3. The MM3 benchmarked in this work uses nonlinear
complex coordinate transforms to map the semi-infinite open
spaces (x → ±∞) onto finite segments in the computational
space. The width of the coordinate transform, q in the nota-
tions of [17], is equal to one wavelength. When applied to
the analysis of metallo-dielectric structures, the a-FMM, or the
FMM in general, suffers from a lack of accuracy. The difficulty
arises from the fact that the electromagnetic fields rapidly vary
at the metal boundaries (skin depth effect) and that these vari-
ations have to be correctly sampled in Fourier space. Con-
ceptually, fine sampling in Fourier space can be achieved by
real coordinate-transforms that locally map segments of the
real space onto enlarged or reduced segments of the compu-
tational space.

Figure 9 sketches the two coordinate transformations that
have been applied to remove this difficulty. In addition to
the complex coordinate transforms that are applied on the
two boundaries of the computational space, two different real
PML-like coordinate transforms have been implemented. The
real PML-like transform in the centre (dashed bold lines) com-
presses the real space, and avoids the difficulty related to the
sampling of large computational domains for large slit-groove
separation distances. For large d’s, this enhances the numeri-
cal accuracy. The real dilatation PML-like transform (dashed

L (artificial period)

+∞
- ∞

x

x ’

(a)

(b)

compressiondilatation

Complex
coordinate
transform

FIG. 9 Real and complex coordinate transforms applied in the MM3 from the real space

(a) to the computational space (b). Black dashed lines: nonlinear complex coordi-

nate transform to satisfy outgoing wave conditions for x → ±∞. Dotted blue lines:

real PML-like compression transform used for reducing the transversal size L of the

computational window. Solid red lines: real dilatation PML-like transform used for en-

larging in the new space the vertical silver-air boundaries. This transform is applied

four times, but for the sake of clarity, only the left boundary transform is shown. Note

that the transversal dimension x’ in the computation space is regularly sampled in

the Fourier domain.

lines) applied at the slit and groove boundaries (in the figure,
a single transform is shown) implement a zoom that results
in a better sampling in the Fourier space. The concept of us-
ing real PML-like transforms for space dilatation or compres-
sion is similar to the adaptive spatial resolution [41, 43], al-
though the former is easier to implement since the real PML-
like transform simply results in a renormalization of the per-
mittivity and permeability coefficients by a factor fPML, let-
ting unchanged the eigenproblem formulation in the Fourier
space [17]. Figure 10 illustrates the impact of the dilatation
PML-like transform on the accuracy of the computed data for
d = 500 nm. Star and dot data are obtained without and with

N

R
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iv

e 
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FIG. 10 Impact of the dilatation transform at the slit and groove boundaries on the

performance of the MM3 for d = 500 nm. Stars and dots are respectively obtained

without and with the transform. N represents the total number of Fourier harmonics

retained in the calculation. The relative error is defined as |S/S0 − T0|/T0, with

T0 = 2.200952 being the best extrapolated value for S/S0.

PML-like transforms, respectively. Basically, the net effect is
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an additional two-digit-accuracy improvement. The compres-
sion PML-like transform is not used for this computation.

All the calculations have been performed on a PC computer
equipped with a 3 Ghz processor and with Matlab 7 software.
In Figures 4 and 5, N represents the total number of Fourier
harmonics retained for the computation. A typical CPU time
for a single computation is 3 minutes for N = 401.

The fields calculation in Figures 7 and 8 have been performed
for N = 1001. As shown by comparisons with the MM4 and
HYB methods, the field singularities at the edge are accurately
described in the Fourier domain. This may appear surprising
since one could expect that a method relying on Fourier ex-
pansions is not capable to calculate field discontinuities be-
cause of the inevitable Gibbs phenomenon. However, this pos-
sible source of artefact can be largely removed by considering
Fourier expansions only for the fields which are continuous
and then from their computation to derive the other discontin-
uous field components in real space directly from the constitu-
tive relations [44]. Additionally, we have verified that the field
divergence at the edge singularities scales with x−p up to edge
distances of 10−4 nm, where p = 0.3563 is the critical exponent
calculated with the method described in [11]. Although such
small distances rule out the domain of validity of the macro-
scopic Maxwell’s equations in photonics, the agreement with
the asymptotic closed-form expression provides evidence for
the accuracy of the calculation. A related discussion without
using dilatation PMLs at the edges can be found in [44].

MM4.The actual structure was modelled with a discretisation
distance of 25 nm. The total size of the computational window
was 11.1 µm with a 0.4 µm spacer-width right from the slit
leading to 444 discretisation lines. The required CPU-time per
point was 70 seconds (Matlab 6.5 on a Pentium IV processor).
Zero reflection for the special angles of 0, 40 and 85 degrees
were chosen [19]. All the parameters were varied, and gave
virtually identical results. Closer examinations for d = 0.5 µ m
have shown that the results weakly depend on the size of the
computational window. The variations occur in the second
digit, i.e. for an uncertainty of less than 5%.

To examine the reason for this, the electric field in the output
plane (400 nm below the silver layer) was studied (no groove).
Figure 11 shows that we do not see an exponential decrease
to zero of the field within the computational window, even
though this was already quite large compared to size of the
slit. Instead we have an oscillatory behaviour. This is in con-
trast to results obtained for “classical” waveguide problems,
with the concatenation of two (or more) waveguides for in-
stance. In the latter case only a few eigenmodes are respon-
sible for the main features of the device. Here, we have a
high number of modes that are important for the overall be-
haviour. Therefore optimising the absorbing boundary condi-
tions (ABC) and the computational window is a much more
difficult task in the present case.

In view of the above remarks, it might be expected that the
position of the boundaries and the actual ABCs play a crucial
role for the results. For this reason, both the size of the compu-
tational window as well as the angles for zero reflection were

x (µm)
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FIG. 11 Influence of the computational window and of the absorbing boundaries on

|Ex | obtained with the MM4 in the horizontal plane located at 400nm below the silver
interface. The computational window is 20.5 µm for (a) and (b), 10.5 µm for (c) and

(d). The three angles for zero reflection are [0˚, 0˚, 0˚] for (b) and (c), and [0˚, 80˚

and 85˚] for (a) and (d).

modified to examine their influence. We see in (Figure 11), that
we have relatively small variations of the maximum field in
the “slit-area”. Therefore, the determined transmission is sta-
ble in spite of the variation of the field. However, we can also
conclude that it might be a difficult task to improve the accu-
racy (i.e. above the 5% mentioned before).

MM5. As illustrated by Figures 4 and 5, the convergence of
our implementation at the moment is worse for this particular
benchmark as compared to other modelling problems, see for
instance the recently published mode-solver benchmark [45],
where several methods presented here are also compared. The
main limitation currently is that, especially for small separa-
tions between the slit and the groove, the coupling between
the identical slit and groove waveguides results in a com-
plicated modal structure, with e.g. near-degeneracies. This
means that the search for zeroes in the complex plane some-
times misses a mode, which results in poorer convergence as
compared to larger slit-groove separations. As for calculation
times, a calculation of S/S0 for a single geometry with 100
modes takes about 20 sec on a 2 GHz Pentium IV.

FDTD1. In the FDTD1 implementation, the scattered field is
defined as the total field minus the analytic solution of the air-
silver-silica multilayer. During the last time interval before ter-
mination of the simulation, the amplitudes and the phases of
the fields are determined from the calculated real fields to ob-
tain the complex field amplitudes. The total electromagnetic
field and the Poynting vector are then calculated as a post-
processing step from the scattered electromagnetic field and
the analytic solution.

A computational domain is defined by an area that encloses
all non-trivial scatterers, which are in this case the slit and
groove. The mesh in this domain consists of rectangular el-
ements, but it is non-uniform. By aligning the non-uniform
mesh with the material interfaces, staircasing errors of the
in general non-conforming mesh are minimized. In addition,
better accuracy is obtained by using a relatively denser mesh
in the slit, groove and metal skin depth area. The absorbing
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boundary surrounding the computational domain is a Com-
plex Frequency-Shifted PML implemented as a convolutional
PML (CPML), see [46].

The Drude model for silver is implemented using an Auxil-
iary Differential Equations (ADE) method [47]. This gives an
update rule for the polarization density in the metal. For ev-
ery element, field values at a certain discrete time are obtained
by subsequently updating the displacement field D, the elec-
tric field E, the polarization densities P, and the magnetic field
H using values from a previous discrete time. Maxwell’s equa-
tions for the scattered field include a virtual source term inside
the groove and slit, with a source density which depends on
the incident field. The time-domain simulations are stopped
when the fields have become time harmonic that is when the
relative RMS error between two subsequent time periods of
the absolute magnetic field component averaged over the en-
tire grid drops below a predefined small value.

Due to the implementation of the dispersion in the metal, sec-
ond order accuracy is not guaranteed at metal-dielectric inter-
faces even when they are straight. This explains the ripples in
the convergence results of Figures 4 and 5. The S/S0 values
at the requested line in space are converged to the final value
long before the entire domain becomes steady-state and time-
harmonic. The simulated time is therefore probably too long.
Because in the studied geometry, the plasmon wave vector is
almost parallel to the interface, the PML above the structure
must be quite large to sufficiently damp the plasmon. This also
holds for FEM methods.

In Figure 8, the FDTD1 results do not show a distinct singular-
ity. In the used discretisation the Ex field component is always
located half a cell away from the edge. The field decays then
more smoothly and causes the general higher values on the
surface elsewhere. The Ex field could be relocated to the edge,
but since the field values are located in a staggered grid, the
Ez would then not be exactly on the edge. The grid could be
made denser in the vicinity of the edges at the cost of compu-
tational time. Similar considerations hold for the other FDTD
implementations.

In Figures 4 and 5, N is defined as the number of grid elements
in the entire domain including the PML. For all simulations
except for the convergence curve, N = 448103. In the con-
vergence curve Nmax = 619103. We used a discrete time step
∆t = 7.3810−3 fs, which corresponds to a Courant stability-
factor of 0.9. The simulation is stopped when the relative RMS
error described above drops below 0.5%. The total simulated
time ranges then between 56 fs and 85 fs.

The 2D computational domain stretches from x = −10800 nm
to x = 800 nm and from y = −900 nm to y = 500 nm, with
the origin at the centre of the slit on the metal-air interface.
The mesh is three times more dense in the x direction for
x = −150 nm to 150 nm, as well as in the y direction for
y = −120 nm to 20 nm.

The PML is 80 elements wide with the characteristic param-
eters described in [25] set as σmax = σopt, amax = 2σmax and
κmax = 15. The parameters are smoothly varied using third

order polynomial grading. (At the moment of publication, a
correction in the PML implementation now gives the same ac-
curacy using only 20 elements and amax = 0.006σmax.)

A typical problem used 215 MB of memory and took 50 min-
utes on an AMD Opteron running at 2.6 GHz. For N = 210103,
this reduces to 98 MB of memory and 10 minutes of comput-
ing time.

FDTD2. In FDTD2, the electric and magnetic conductivities
of the PML media are chosen in order to completely annihi-
late the back-reflected wave on the external side of the PML
region. The number of the PML layers is fixed to 8 throughout
all our simulations (i.e. a PML thickness of 320 nm).

For dispersive materials, the dielectric constant is described
by a Drude model that implies the computation of an addi-
tional field, the electric displacement vector D. The consti-
tutive equation linking the E and D fields is expressed as
D(ω) = ε(ω)E(ω) = ε0(ω2 − ω2

p + jγω)/[ω(ω + jγ)]E(ω).
This equation can be recast to

ω(ω + jω)D(ω) = ε0(ω2 −ω2
p + jω)E(ω), (5)

and then Fourier transformed to give the time-differential
equation

∂2D(t)
∂t2 + γ

∂D(t)
∂t

= ε0

[
∂2E(t)

∂t2 + γ
∂E(t)

∂t
+ ω2

pE(t)
]

. (6)

Eq. 6 is also discretized both in space and in time via finite
centred differences and then integrated into the Yee scheme
[48, 49]. Furthermore, in the case of large structures with fine
details (as it is the case here), a very small value of the spa-
tial step is needed to accurately describe all the small features.
Consequently, this leads to a huge number of nodes which is
both memory and time consuming. To bypass this problem,
the FDTD2 method implements a non-uniform discretisation
of the structure [25].

The spatial meshing step is then set to ∆m
x,y = 5 nm (i.e. λ/160)

for fine geometrical features and to ∆M
x,y = λ/20 = 40 nm else-

where. To avoid large local errors, virtual reflections, due to
the large change of ∆ between the two meshes, an intermedi-
ate temperate domain (100 cells) is introduced with a spatial
step varying gradually from ∆m

x,y to ∆M
x,y or conversely. With

these values of ∆M
x,y and ∆m

x,y, a total parasitical reflection of
about 3 × 10−4 in amplitude is obtained from the intermedi-
ate area, while the PML reflections are of 1× 10−7 magnitude.

The computational time strongly depends on the distance d
between the groove and the slit. Indeed as d increases, the
number of time steps needed to reach the steady state also in-
creases. Thus, the number of time steps is varied between 4000
and 40000. More precisely, the mean time spent to compute the
curve of Figure 3 is about 15 hours on a personal computer
equipped with a Centrino processor running at 2.8 GHz.

FDTD3. With the FDTD3, the optical response of slit-groove
structures is simulated using a finite-difference time-domain
(FDTD) approach [25]. The light source is an x-polarized plane
wave generated along a horizontal line parallel to the sur-

07022- 13



Journal of the European Optical Society - Rapid Publications 2, 07022 (2007) M. Besbes, et. al.

face of the metal film. Time propagation of Maxwell equa-
tions is performed by a time-stepping leapfrog technique. In
order to absorb all outgoing electromagnetic (EM) waves on
the grid boundaries, we implement perfectly matched lay-
ers (PML) absorbing boundaries with the exponentially dif-
ferenced equations so as to avoid diffusion instabilities [26].
In regions of space occupied by a metal, we implement the
auxiliary differential equations method [25] and add equa-
tions to describe the current densities to the set describing
the electromagnetic field components. As a convergence cri-
terion, we use the comparison of the transmission S/S0 and
the electromagnetic intensity W/W0, where W is the time-
averaged EM energy. In the CW limit, both functions result in
the same slit-groove dependence. Results are converged with
a total propagation time of 200 fs (in calculations the electro-
magnetic field components are propagated in time for 250 fs).
The simulations are performed on distributed memory paral-
lel computers at the National Energy Research Scientific Com-
puting Center and San Diego Supercomputer Center. The par-
allel technique used in our simulations is described in details
in [50].

Similar simulations to those provided here have been per-
formed recently [51] and showed better agreement with the
experimental observations. Although the effective wave-
length of the surface waves in the present calculations is
the same as was found in [51], the amplitude of oscillations
of the normalized transmission S/S0 as a function of the
slit-groove distance in Figure 2 differs slightly. The main
difference between the calculations leading to the FDTD
data presented here and the ones reported in [51] is the
choice of a detection line shown in Figure 1a. We found that
simulations with a closed contour, as performed in [51], lead
to more reliable transmission as a function of the slit-groove
distance, since the closed detection line allows one to register
electromagnetic waves that escape laterally from the output
side of the slit.

Numerical convergence is achieved with spatial steps δx =
δy ≤ 4 nm and a time step δt = δx/(1.5c), where c denotes
the speed of light in vacuum. Simulations were carried out for
a total number of mesh points (including 16 steps in each PML
layer) of 5300× 320. The total number of time iterations was
32000. A single run (single point in Figure 2) on 64 processors
at the San Diego Supercomputer Center on DataStar IBM clus-
ter took about 1 minute.

FEM1. The discretisation by finite elements leads to an al-
gebraic system represented by a sparse matrix which FEM1
solves using an iterative solver. It first employs an Incomplete
LU Threshold Pivoting (ILUTP) [52] pre-conditioner. Subse-
quently, an iterative solver based on the BiConjugate Gradi-
ent Stabilized Algorithm (Bi-CGSTAB) gives the solution. Al-
though the system matrix is sparse and hence does not require
much storage, the preconditioning causes a partial fill-in and
consequently more memory is required.

A computational domain is defined by an area that encloses
all non-trivial scatterers [53], which are in this case the slit and
groove. The computational domain contains a non-uniform
conformal mesh of triangular elements. Because of the tri-

angular shape, the elements can be small in some areas and
large in others, depending on the discretized geometry and
the field distribution. Denser meshes are used in critical re-
gions. Similar to the FDTD method, the computational do-
main is extended in every non-periodic direction by a complex
stretched-coordinate PML [26] to prevent reflections.

The number N, defined as the total number of elements in the
computational domain including the PML, is N = 37, 000.
The meshed computational domain is kept fixed for all sim-
ulations. It stretches from x = −10.15 µm to x = 0.15 µm and
from y = −900 nm to y = 100 nm, with the origin at the centre
of the slit on the metal-air interface. The PML is 100 nm wide
and is meshed with 10 elements in the PML direction.

The simulations were all performed on Linux machines sta-
tioned at Philips Research Laboratory in Eindhoven with an
AMD Opteron running at 2.4 GHz. A single simulation uses
a typical CPU time of about 41 seconds and requires a 1.1 GB
memory. Computation time decreases with the number of el-
ements used for discretisation. For example, for N = 16, 000,
the CPU time is only 21 seconds with a memory requirement
of 0.5 GB.

FEM2. The implementation of FEM2 uses a rectangular mesh,
which is well adapted for the lamellar benchmarked geome-
try, and allows for a reduction of the required CPU time for
the mesh generation and for the computation.

For a computational example with a mesh of 59, 000 elements,
the CPU is equal to 240 seconds with a Intel processor PIV-
2.8 GHz. The algebraic system is solved by using a sparse LU
method provided in Matlab 7. This algorithm is very fast but
requires a large memory. For 179, 000 nodes, 1 GB memory is
required to solve the problem. As shown in Figure 4a, the con-
vergence of the method is monotone and stable as N increases.
Nmax is equal to 282, 000 and the extrapolated value for S/S0 is
2.2012. A relative variation of 10−3 is obtained for N = 14, 000
elements.

VIM. For the slit-groove calculations we used 1, 620 cells, with
a typical dimension of 5.56 nm of each cell. For a more accu-
rate near-field, we used for the single slit calculations 10000
cells, with a typical dimension of 1 nm of each cell. The nu-
merical integration of the Green’s tensor has a relative accu-
racy better than 10−5. The field is calculated at 1 nm above the
metal interface since the distance to the scattering cells should
not be smaller than the typical dimension of the cell.

For the case of Figures 7 and 8, the number of the required
scattering cells increases dramatically. At low number of scat-
terers, oscillations may occur and get more pronounced closer
to the surface, where the results will start to deviate quite
strongly from other methods. This is mainly caused by the as-
sumption that the field (and Green’s tensor) is constant within
a cell. If an observation point is chosen very close to the cell,
either more cells should be taken into account (effectively in-
creasing the distance to the cell, since it is normalized on the
cell-width) or the integration over the cell should be done nu-
merically.
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The calculation for 1, 620 cells took about 1 hour and 260 MB
of memory on an AMD Opteron 852 running at 2.6 GHz. The
calculation for 10, 000 cells took about 34 hours and 9.8 GB of
memory on an AMD Opteron 248 running at 2.2 GHz.

HYB. The HYB method shares basic features with the MM3.
For instance, it uses the same complex nonlinear transform
and the same compression PML between the groove and the
slit. In this HYB approach, the dilatation PML is not used, but
it is replaced by a very fine sampling in real space in the vicin-
ity of the singularities at the slit and groove edges. The resolu-
tion of the sampling has been shown to quantitatively impact
the accuracy of the method. All results have been obtained for
h1 = 50 nm and h2 = −150 nm, see Figure 2 for a definition of
these parameters.

A relative inspection of data provided by the MM3 and
the HYB methods has shown that the computational results
obtained with the MM3 with dilatation PMLs and those
achieved with the HYB are rather similar, the maximum peak-
to-peak deviation in Figure 3 remaining smaller than 0.005 for
the one hundred values of d.

In Figures 4 and 5 the parameter N used for convergence tests
represents the number of nodes of the non uniform triangular
mesh. For every N values, the number of Fourier harmonics
of the Fourier expansion above and below the finite-element
area is equal to one third of the number of nodes at the upper
boundary of the meshed region. The calculated fields in Fig-
ures 7 and 8 have been obtained with a refined mesh in the
vicinity of the groove edges, with a minimum feature size of
10−5λ at the groove edges.

All the calculations have been performed on a PC computer
equipped with a 3 Ghz processor and with Matlab 7 software.
A typical value for the CPU time for a single computation is
10 minutes for N = 150, 000.

5 CONCLUSIONS

We have presented a comparison of twelve different imple-
mentations of five numerical methods (Table 1) used to solve
the electromagnetic field distribution of a slit-groove structure
at a metallo-dielectric interface. The methods cover the most
commonly used techniques, modal methods, finite-difference-
time-domain methods, finite-element methods, a volume in-
tegral method and a hybrid method. Three different numeri-
cal problems have been defined for benchmarking purposes,
for which experimental data is also available, to identify the
intrinsic differences between the various methods and imple-
mentations.

The transmitted flux as a function of the separation distance
between the slit and the groove shows a very good agree-
ment for eleven different implementations of the five differ-
ent methods, see Figure 3. As shown in Table 2, a subset
of seven implementations has an error of less than one per-
cent. One modal method implementation, MM5, yields sub-
stantially different results since some of the essential modes
have been missed for this particular problem. The results from

the three implementations of the FDTD method show a small
difference for the amplitude and frequency of the transmis-
sion curve in Figure 3, due to only a first order accuracy near
metallo-dielectric interfaces. The convergence of every imple-
mentation has been estimated for a fixed groove-slit sepa-
ration distance, see Figures 4 and 5. The achieved accuracy
varies from one implementation to another, from 4− 5 digits
to 2 digits. Note that even though convergence is achieved for
a particular implementation, this does not necessarily mean
that the calculated result is accurate or reliable. Finally, the
electric and magnetic field for only a single groove has been
calculated. Again, the agreement between the subset of seven
implementations is very good, as is clear from the overlap-
ping curves in Figure 7, shown for a range of more than 10
wavelengths. Special attention has been given to the singular-
ity located at the edge of the groove, see Figure 8.

Based on the quantitative agreement obtained between differ-
ent results obtained with various numerical methods and im-
plementations, we conclude that for the chosen simulation pa-
rameters, the simulations are all reliable. Thus the differences
between the numerical predictions and the experimental data,
may have been caused by unobserved, yet different physical
parameters occurring in the measurements.

We would like to emphasize that the conclusions derived from
this exercise concerning the numerical accuracy achieved with
the various benchmarked methods strongly depend on the
considered problem. Perfectly vertical walls with 90 ˚ corners
have been assumed in this work. The incorporation of in-
evitable rounded corners or slanted groove walls for instance,
may reduce the numerical performance of some methods, like
modal or FDTD methods for instance, while the performance
achieved by other methods relying on an accurate sampling in
real space, like FEMs or HYB or VIM, may remain unchanged.
However, these deviations from the ideal geometry do not im-
pact the physical interpretation that is related to the actual
nature of the surface waves involved in the interaction. As
shown by other computational results not presented here, the
assumptions made for the ideal geometry only affect the os-
cillation amplitude but not the oscillation frequency, the lat-
ter being only governed by the actual dielectric constants in-
volved at the air-silver interface, see Figure 6.

Aside from a discussion of the accuracy of the obtained re-
sults, we have provided per method a general description,
typical characteristics of the method and of the implementa-
tion, and the computational requirements. Although the re-
sults were calculated and compared for a two-dimensional
slit-groove problem, the physics involved is universal and im-
portant for almost all structures with features of the order of a
wavelength or less.
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