
HAL Id: hal-00175467
https://hal.science/hal-00175467v1

Submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of a timed multitask system with UPPAAL
Houda Bel Mokadem, Béatrice Berard, Vincent Gourcuff, Jean-Marc Roussel,

Olivier de Smet

To cite this version:
Houda Bel Mokadem, Béatrice Berard, Vincent Gourcuff, Jean-Marc Roussel, Olivier de Smet. Verifi-
cation of a timed multitask system with UPPAAL. 10th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’05), Sep 2005, Catania, Italy. pp.CF-000606. �hal-
00175467�

https://hal.science/hal-00175467v1
https://hal.archives-ouvertes.fr

Verification of a timed multitask system with UPPAAL ∗

Houda BEL MOKADEM
LSV – CNRS UMR 8643 & ENS de Cachan,

61 av. du Prés. Wilson, F-94235 Cachan Cedex, France
mokadem@lsv.ens-cachan.fr

Béatrice BÉRARD
LAMSADE – CNRS UMR 7024 & Université Paris-Dauphine,

Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16
berard@lamsade.dauphine.fr

Vincent GOURCUFF, Jean-Marc ROUSSEL and Olivier DE SMET
LURPA – EA 1385 – ENS de Cachan,

61 av. du Prés. Wilson, F-94235 Cachan Cedex, France
gourcuff, roussel, de smet@lurpa.ens-cachan.fr

Abstract

Since it is an important issue for users and system
designers, verification of PLC programs has already been
studied in various contexts, mostly for untimed programs.
More recently, timed features were introduced and mod-
eled with timed automata. In this case study, we consider
a part of the so-called MSS (Mecatronic Standard Sys-
tem) platform from Bosh Group, a framework where time
aspects are combined with multitask programming. Our
model for station 2 of the MSS platform is a network of
timed automata, including automata for the operative part
and for the control program, written in Ladder Diagram.
This model is constrained with atomicity hypotheses
concerning program execution and model checking of a
reaction time property is performed with the tool UPPAAL.

Keywords: Programmable Logic Controllers, Timed
Automata, Model Checking.

1 Introduction

Verification of safety properties for PLC (Pro-
grammable Logic Controller) programs is important when
these programs are to control critical applications for re-
active systems. This explains the increasing interest in
the past few years for the application of formal methods
to the analysis of such programs. In this area, work was
mostly devoted to the untimed framework [15], [4, 8],
even when function blocks for timers were included [16].

∗This work was supported by the Pluri Formation Project VSMT of
ENS Cachan.

Introducing the study of quantitative properties related to
time makes this verification step harder, because addi-
tional components must be added in the model, for in-
stance clocks, which increase the size of the model. How-
ever, the model of timed automata, introduced in 1990 by
Alur and Dill [2, 3], has proved very successful. Some
decidability results were obtained for this model as well
as for some extensions and they were implemented in effi-
cient tools called timed model-checkers, like HYTECH [9],
KRONOS [6] or UPPAAL [11], which have been applied
to industrial case studies. Timed automata have recently
been used for the modeling of timed features in PLC pro-
gramming [13, 12, 7].

In this work, we are interested in the combination of
time aspects with multitask PLC programming. Our case
study concerns a part (called station 2) of the MSS (Meca-
tronic Standard System) platform from Bosch Group, in
which multitask programming can be used to reduce the
reaction time of the control program to an external sig-
nal. The program is written in Ladder Diagram, one of
the languages most commonly used in this area, which is
part of the IEC-61131-3 standard [10]. We give seman-
tics for a subclass of Ladder Diagram programs including
timer function blocks, in terms of timed automata, and we
also provide a timed automata based model for the oper-
ative part of the system. These timed automata are de-
scribed in UPPAAL syntax. While a similar approach was
introduced in [12], we propose here additional restrictions
which allow us to reduce significantly the size of the com-
plete model, obtained from its components by a synchro-
nized product: these restrictions consist in atomicity hy-
potheses, compacting sequences of actions from the con-
trol program into a single one, and lead to reasonnable
verification times for the response property to be checked.

1

We also give a simpler model for timers, using particular
features of UPPAAL.

Section 2 of the paper explains the context of this
study: the problem of reaction times in PLC programs,
and includes a description of timed automata and a short
presentation of UPPAAL. In Section 3, we give more de-
tails on Bosch MSS platform and in Section 4, we give
the semantics of the control program. Section 5 presents
the timed automata which form the components of the net-
work, while Section 6 gives the results of the verification
step.

2 Programmable Logic Controllers and
Timed Automata

2.1 Programmable Logic Controllers with multi-task
programming

Programmable Logic Controllers (PLCs) execute pro-
grams for the control of an operative part, to which they
are connected via an input/output system. The control pro-
grams can be written in several languages described in the
IEC-61131-3 [10] standard. The execution of such a pro-
gram consists in iterating a cycle with three main steps
(figure 1): first, input variables are read and their values
are stored in memory. Then a computation step is per-
formed using these values, producing output values which
are also stored. The last step is an activation using the out-
put values. The cycle duration P is called the PLC scan.

P: PLC scanProgram execution

Input scan

Output activation

Figure 1. The cyclic execution of a PLC pro-
gram

The programming design may be either monotask or
multitask. In the first case, a single program executes se-
quentially, while in the second case, the main task can be
interrupted by additional parts of code, either with a fixed
period or triggered by some events. These two execution
models result in different reaction times to changes of val-
ues. In the monotask case, if the change of value occurs at
the input scan, the corresponding output is emitted at the
end of the PLC cycle. If the change occurs later, this out-
put may be emitted at as far as the end of the next cycle.
This results in a reaction time in the interval [P, 2P] (fig-
ure 2). This reaction time can be reduced with multi-task
programming: consider an event-driven task interrupting
the main task when some event occurs. In turn, the inter-
rupting task reads its input and computes its new output

values. Depending on the configuration and type of the
PLC, these values can be emitted either at the end of the
event-driven task or at the end of the current main task.
In this work, we investigate the second case where output
values of the event-driven task are emitted by the main
program, which yields a reaction time of at most P .

input i2

Input i1 output o1

output o2

Cycle 1 Cycle 2

Figure 2. Reaction time with mono-task pro-
gramming

2.2 Timed automata
Timed automaton was introduced by Alur and Dill [2],

[3]. It consists of finite automaton, which handles a finite
set of variables called clocks. The clocks are used for the
specification of quantitative time constraints which may
be associated with transitions. These variables evolve syn-
chronously with time (slope 1).

For a set X of clocks, P(X) denotes the powerset of X

and we define C(X) as the set of conjunctions of atomic
formulas of the form x ./ c for a clock x, a constant c and
./ in {<,≤, =,≥, >}.
A timed automaton is a tuple A = (Σ, X, Q, q0, I, E),
where Σ is a finite set of actions, X is the finite set of
clocks, Q is a finite set of locations, with q0 ∈ Q the initial
location, I is a mapping associating with each location q

a clock constraint I(q) ∈ C(X), and E ⊆ Q × C(X) ×
Σ ×P(X) × Q is the set of transitions.

The clock condition I(q) is called an invariant for
location q, and contains usually only atomic formulas of
the form x ≤ c or x < c which must hold as long as time
elapses in this location.
A transition of the automaton, written q

g,a,r
−−−→ q′ ∈ E is

equipped with a label containing three parts (each one is
optional): a guard g expressing a condition in C(X) on
clock values, which must be satisfied for the transition to
be fired, an action name in Σ, and a clock reset r ∈ P(X).

The semantics of a timed automaton is given in terms
of transition systems. A configuration of the system is a
pair (q, v), where q is a location of the automaton and v

is a valuation of the variables, i.e. a mapping associating
a real value with each clock. The initial configuration is
(q0, v0) where all clock values are equal to 0 in v0.
The system may change its configuration in two ways.

• Either by a delay move of d time units, written
(q, v)

d
−→ (q, v + d), possible if v + d satisfies the

invariant I(q) of location q.

2

• Or by an action move, written (q, v)
a
−→ (q′, v′), as-

sociated with a discrete transition q
g,a,r
−−−→ q′, if v sat-

isfies the constraint g. In this case, the reset operation
yields v′(x) = 0 if x belongs to r and v′(x) = v(x)
otherwise, and v′ must satisfy the invariant of q′.

2.3 The tool Uppaal
The tool UPPAAL (see [5] for the more recent devel-

opments) offers a compact description language, a simu-
lation module and a model-checker. A system is repre-
sented by a collection for timed automata, which commu-
nicate through binary synchronization: a channel c can be
defined for two automata. Sending a message is denoted
by the discrete action c! while receiving the message is de-
noted by c?. An UPPAAL automaton also handles integer
variables. A guard is a conjunction of atomic clock con-
ditions and similar conditions on integer variables. More-
over, a clock reset may be augmented by an update of the
integer variables.

A (global) configuration is of the form (`, v) where
` is a location vector (indicating the current state in
each component of the timed automata network) and v

is a valuation of both clocks and discrete variables. An
execution in the network starts in initial locations of the
different components with all the clocks and variables
set to zero. The semantics of this model is expressed by
moves between the configurations. Three types of moves
can occur in the system: delay moves, internal moves and
synchronized moves. Delay moves and internal moves
have already been described above for a single automaton,
so we simply describe now the global evolution.

Delaying. Given a current location vector, time elapses
for all automata synchronously, as long as no invariant is
violated. All clock values increase by the amount of time
elapsed. No change occur for the locations or the integer
variables.
Performing an internal action. An internal action is an
action which corresponds to neither c! (sending a mes-
sage), nor c? (receiving a message). If such an action is
enabled (the variable values satisfy the guard condition),
the component can perform this action alone, while the
others do nothing. Only the location of this component is
changed, as well as its variables, according to the transi-
tion.
Synchronizing. If, in the network, some complementary
actions c! and c? are enabled in two components (in par-
ticular, guards must be satisfied by the current valuation),
then these components must synchronize. The location
vector is changed for both components and the clock and
variable values are changed according to the clock reset
and updates of variables for the two transitions.

Finally, we introduce two additional features of UP-
PAAL which will be very useful in our modeling.

• A committed location (decorated by the special label
C) corresponds to a location in which no delay move
is possible. Only a discrete transition can be used

to leave such a location. Note that this mechanism
reduces the non-determinism in the parallel compo-
sition of the different components.

• A broadcast channel is a channel where more than
two automata may communicate: emission of a mes-
sage c! can be synchronized with several receptions
c? in other components. Note that this is a non-
blocking synchronization, since the sender is never
blocked, although the receiver must synchronize if it
can. Guards on clocks are not allowed on the receiv-
ing edge.

3 Description of the MSS (Mecatronic Stan-
dard System) platform

Figure 3. presentation of station 2 of the
MSS platform

Presentation. Platform MSS (from Bosch Group) pro-
vides a function for sorting a stock of pinions of different
materials and for adding or withdrawing a press-fit bush-
ing to a given pinion [14].
Our study is centered on station 2 (figure 3) which is in-
tended to identify the material of the pinion (steel, copper
or black PVC) and the presence or absence of a press-
fit bushing. The workpieces are transported by a linear
conveyor to a scanning position, where the presence or
absence of a press-fit bushing is detected. They are then
tested by three sensors to determine their material. This is
done using inductive, capacitive and optical sensors. The
detected information is forwarded to the next stations. A
rotary/lift gripper performs the transfer to a follow-on sta-
tion if applicable.

Issue detected. A problem arises when the conveyor
arrives at the bearing test position (POS TEST sensor). At
this time the conveyor moves at high speed (200 mm/s)

3

and the variation of the reaction time of the control sys-
tem, above 10ms, is not negligible. Indeed the conveyor
position should have a precision of 1mm for the tester (or
jack) to be able to penetrate inside the pinion, in case the
bearing is absent. So, we can deduce that the the variation
of the reaction time of the control system must be less
than 5ms. In the rest of the paper, we study the case of a
multitask controller, with an event-driven task, launched
on the rising edge of the test position (POS TEST) sensor,
which stops the conveyor if it comes from the loading
station.

Properties to check. The multitask control program of
this station must satisfy the following properties:

P1 To ensure safety, the conveyor must stop on its way
out but not when it comes back from unloading.

P2 The time performance is accurate: the conveyor stops
in less than 5ms at the press-fit bushing test point.

In this work, we focus on the timed property P2, to
show that the multitask solution reduces the reaction time.

4 Modeling principles

In this section, we briefly recall the timed automaton
based semantics proposed by Mader and Wupper [12] for
a control program. Then we explain the structure of our
model for (station 2 of) the MSS platform, with a particu-
lar attention to the question of timers.

4.1 Mader-Wupper model
Various models have already been proposed for the

analysis of PLC programs. Our approach is based on the
model introduced by Mader and Wupper [12], which dis-
regards the execution times of elementary instructions.

x ≥ ε1, x := 0

x ≤ ε2 x ≤ ε2 x ≤ ε2

x ≤ ε2x ≤ ε2

Figure 4. Mader-Wupper model

As depicted in figure 4, the model has a clock x to
measure the cycle scan, which is thus reset after each cy-
cle of the program. The invariant x ≤ ε2 is associated
with each location and represents an upper time bound for
each whole scan. The guard x ≥ ε1 appears on the last
edge of the cycle and represents a lower time bound for
the input/output part of the cycle. An edge in the model
describes a step of the control program.

Mader-Wupper also models each timer block as a timed
automaton that runs in parallel with the control program.
Synchronization is performed through operations on the
timer variables and on the timer calls, which requires one
extra clock and three synchronization channels for each
timer.

4.2 An overview of the model

Our model is built in a compositional way from a col-
lection of non deterministic processes with finite control
structure and real-valued clocks, communicating through
channels or shared variables. The two main parts are the
environment and the control program, which communi-
cate through shared variables and synchronization mes-
sages. The modeling of the operative part (environment)
is necessary for the verification of the safety and perfor-
mance properties stated previously. The details are ex-
plained in Section 5.

4.3 Modeling timers

Six independent timers (TON function block in IEC-
61131-3 [10]) are used in station 2 control program. We
now explain how our model of a TON function block dif-
fers from that of Mader-Wupper [12] and how we used
broadcast channels in UPPAAL to avoid deadlocks. Each
TON block is modeled by an automaton with three states,
one clocks x-Ton and two discrete variables Ton-ine (in-
put) and Ton-Qe (output) (figure 5): initially idle, the
state becomes running when the timer has been switched
on and Timeout, when some fixed preset delay (constant
Ton pte) has been reached. At each cycle of the main task,
a synchronization message is sent. The automaton is then
forced to evolve by taking into account the new values of
the variables computed by the previous cycle. A deadlock
could occur if the automaton is in a state where it cannot
receive the synchronization message of the program. So
we chose a single broadcast channel for all TON blocks
instead of three ordinary channels per TON in Mader-
Wupper’s model.

idle running
x_Ton <= Ton_pte

Timeout

Ton_ine == 1
TON?
Ton_Qe := 0,
x_Ton:=0

Ton_ine==0
TON?

(x_Ton == Ton_pte)
&& Ton_ine ==1

Ton_Qe := 1

Ton_ine == 0
TON?

Ton_Qe := 0

Figure 5. UPPAAL model of a TON block

4

5 Modeling with UPPAAL

5.1 Modeling the environment
Interest. In order to validate not only the PLC program
but also its integration in the system it has to control, we
also need to model the operative part. This implies a thor-
ough knowledge of the system to control, particularly the
behavior of each element and its reaction time. Modeling
the environment makes it possible to speed-up the veri-
fication time, in particular by reducing the combinatorial
aspects related to non deterministic definition of all possi-
ble input values, including sometimes non relevant ones.
Indeed, when the input values of the PLC program are
emitted by a model instead of a non deterministic process,
the space of reachable states is reduced. However, these
parts of the model are usually limited to the representation
of nominal operation modes, which is the case here.
Modeling. Each physical device is represented by a timed
automaton. In such an automaton, a given location repre-
sents a particular configuration of the device. In the mod-
els proposed here, clocks are the only continuous com-
ponents, while physical continuous moves are discretized
(for instance for the conveyor).
The external environment. In station 2, the leftmost po-
sition corresponds to the loading of pinions, while the
rightmost position is used for unloading. However, the
control of loading and unloading operations is not part of
this station, which just waits for them to be done. Infor-
mation about termination of one of these operations is ob-
tained through changes of input values. Upon loading, the
conveyor is provided an unspecified pinion. This is mod-
elled by an automaton, presented in figure 6, which selects
in a non deterministic way the nature of the pinion (vari-
able ob) when the conveyor is at the rightmost position.

wait_loading
pinion_loaded

left_pos== 1

DCY :=1,
ob:=1,
evac_pinion:=0

DCY:= 0,
evac_pinion:=1,
ob:=0

right_pos == 1

left_pos== 1

DCY := 1,
ob:=4,
evac_pinion:=0

left_pos==1

DCY := 1,
ob:= 3,
evac_pinion:=0

left_pos== 1

DCY :=1,
ob:= 2,
evac_pinion:=0

left_pos== 1

DCY:=1,
ob:=5,
evac_pinion:=0

left_pos== 1

DCY:=1,
ob:=6,
evac_pinion:=0

left_pos==1
ob:=0

Figure 6. Model of the environment external
to station 2

The jack. The jack detects the presence or absence of
a press-fit bushing in a workpiece. This test is made
by a vertical movement of the jack until a limiting posi-

top go_down limiting_position

down_jack?

up_jack?
up_jack?

jack_down:= 0

ob==1 || ob==5 || ob == 3,
pos_test==1

down_jack?up_jack? down_jack?

ob==0 ||ob==2 || ob == 4 || ob == 6||
((ob==1 || ob==3 || ob==5) && pos_test ==0)

down_jack?

jack_down:=1

Figure 7. Timed automaton for the jack.

tion. The jack must go down until the limiting position is
reached, in a given time, to conclude to the absence of the
press-fit bushing. The model of this sensor (figure 7) de-
pends on the characteristics of the workpieces which are
represented by the values of the variable ob. The automa-
ton starts from the state top. He moves to state go down
when he receives a message down-jack? from the PLC
program. From this point on, there are two cases: if there
is a press-fit bushing in the workpiece (represented in the
model by the guard ob == 1||ob == 3||ob == 5) then
the automaton waits in the state go down, else the automa-
ton moves to state limiting position.
The sensors. The optical, capacitive and inductive sen-
sors are modeled by automata synchronized with the au-
tomaton of the conveyor. The conveyor sends the activa-
tion messages (for example optics? in figure 8) when it is
under the corresponding sensor. According to the nature
of the material, the sensor modifies the value of the corre-
sponding variable (optical) which is then used by the PLC
program.

idle

x_co <= 400

ob==1||ob==2||ob==3||ob==4

optical:=1,
x_co:=0

optics?

x_co == 400
optical:= 0

ob==0 || ob==5 || ob==6
optics?
x_co:=0

Figure 8. Timed automaton for the optical
sensor.

The linear conveyor. The conveyor is the main element
of the operative part: several triggerings of sensor depend
on its position. The conveyor is also the most delicate to
model because of its continuous behavior along the belt,
while our model can only provide a discrete abstraction
of this behavior, leaving out the details which do not in-
fluence the properties to be checked. In order to obtain
reasonable performances in terms of memory and auto-
matic verification time, we model only the almost sta-
ble positions, i.e. the positions where the conveyor can
stop, or trigger a sensor. These positions correspond to the
six states: inductivesensor, capacitivesensor, optical-

5

left

moveR1

x_c <= 500

moveR2

x_c <= 500

moveR3

x_c <= 500

moveR4

x_c <= 500

moveR5

x_c <=1000

moveL1

x_c <= 500

moveL2

x_c <=500

moveL3

x_c <=500

moveL4

x_c <=500

moveL5

x_c <=1000

capacitive-sensor test optical-sensor inductive-sensor right

go-right?
x_c:=0,
left-pos:=0

x_c >=490

capaci!
go-right?

x_c:=0

x_c >= 490

postest!
x_c:=0

go-right?

x_c:=0,
pos_test:=0

x_c >= 490

optics!

go-right?

x_c :=0 induc!

x_c>=490 go-right?

x_c:=0

x_c >= 980

posright!

right-pos:= 1

go-left?

x_c:=0,
right-pos:=0

x_c ==1000
induc!

go_left?

x_c:=0

x_c==500
optics!

go-left?

x_c:=0

x_c==500
postest!
pos_test:=1

go-left?

x_c:=0,
pos_test:=0

x_c==500
capaci!

go-left!

x_c:=0

x_c==500

left-pos:=1

stop?

go-left?

stop? stop? stop? stop? stop? go-right?

go-right? go-right? go-right? go-right? go-right?

go-left? go-left? go-left? go-left? go-left?

Figure 9. Timed automaton for the conveyor.

sensor, test, left, right. Between two given positions,
we model the behavior of the conveyor by only one state
with an invariant which represents the time needed by the
conveyor to cross the distance between these two posi-
tions. For example, the conveyor goes from the left po-
sition to the capacitive-sensor position in 490 to 500ms.
There is another abstraction imposed by the fact that no
stopwatch exists in UPPAAL: between two almost stable
positions, the conveyor cannot change direction. The con-
veyor sends messages of synchronization to the various
sensors (like optics!) and the event-driven task (postest!)
at the time of its arrival to the test position. It also modi-
fies the input variables of the control program. The corre-
sponding automaton is represented in figure 9.

5.2 The control program
The main program. The functional specification of the
global system is designed in GRAFCET (or SFC) lan-
guage, and further implemented in Ladder language. As
explained above, the execution of a PLC program is a cy-
cle with three phases: input reading, computation of new
values and output writing. This periodic operation is mod-
eled in UPPAAL by an automaton structured as a loop, and
including a clock to measure the cycle time (equal to 10
u.t. here). The complete cycle of the automaton for the
ladder program thus consists of a loop with four steps:

1. input reading and computation of new values for the
evolution conditions of the GRAFCET,

2. computation of other new values for GRAFCET vari-
ables: step activation and output computation,

3. output writing, performed by a sequence of messages
for synchronization with the operative part,

4. reset of the clock modeling the cycle time.

The atomicity hypothesis is the following: time can elapse
only in the three states between these steps, to represent
the duration of their execution.
The event-driven program. Since it is run upon acti-
vation of the bushing-test position, the event-driven task
is strongly dependent on the environment. This aspect is
modeled by the emission of a message from the environ-
ment, received by the automaton of the event-driven task
(figure 11).

idle
postest ?

i2==1|| i3 == 1
motor:=0,
evt1_activ:= 1

i2==0 && i3 ==0

motor==0
stop!

motor==1

X3 MOTOR

EVT1_ACTIVX2

Figure 11. UPPAAL model and Ladder Dia-
gram for the event-driven task

When the message postest! is emitted, the automaton
executes the algebraic equations which represent the Lad-
der program and sends the output message stop! if the
condition holds. Note that the execution time of the even-
driven task is null due to the committed location used to
model the priority of the event-driven task. Various pro-
gramming designs are considered in order to determine
the conditions under which the requirements are satisfied:

• the event-driven task emits his own output,

6

idle

input_reading
x_cycle<=10

output_emission
x_cycle <= 10

computing
x_cycle<=10

x0 :=1, x1:= 0,x2:= 0,
x3:= 0,x4:= 0,x5:= 0,
x6:= 0,x7:= 0,x8:= 0,
x9:= 0,x10:= 0,x11:= 0,
x_cycle:=0

motor == 1 && right == 1

go_right !

motor==1 && right == 0

go_left!

motor==0

stop!

up_jack==1

upjack!

down_jack==1

downjack!

motor == 0 || right == 0motor==0 || right == 1motor==1up_jack== 0

down_jack==0

x_cycle:= 0

x_cycle >=5

x0 := CFT18||(x0 && ! CFT0),
x1:= CFT0 ||(x1 && !CFT1 && !CFT2),
x2:= CFT1 || (x2 && ! CFT3),
x3:= CFT2||(x3 && ! CFT4),
x4:= (CFT3||CFT4)||(x4 && ! CFT5 && ! CFT6),
x5:= CFT5 ||(x5 && !CFT7),
x6:= CFT6 || (x6 && !CFT8),
x7:= (CFT7||CFT8)||(x7 && !CFT9 && !CFT10 && !CFT11),
x8:= CFT9 || (x8 && !CFT12),
x9 := CFT10 || (x9 && ! CFT13 && ! CFT14),
x10:= CFT13 ||(x10 && ! CFT15),
x11 := CFT14 || CFT11 ||(x11 && ! CFT16),
x12 := (CFT12 ||CFT15 ||CFT16)||(x12 && ! CFT17),
x13:= CFT17 ||(x13 && ! CFT18)

CFT0 := x0 && DCY,
CFT1:= x1 && capacitive,
Ton_in35 := x1,
CFT3 := x2 && evt1_activ,
CFT4:= x3 && evt1_activ,
Ton_in33:= x4,
CFT6:= x4 && jack_down,
Ton_in38 := x5,
Ton_in37 := !jack_down,
Ton_in34 := x7,
CFT10:= x7 && optical,
CFT11:= x7&& inductive,
CFT12:= x8 && right_pos,
Ton_in36 := x9,
CFT14 := x9 && inductive,
CFT15 := x10 && right_pos,
CFT16:=x11 && right_pos,
CFT17:= x12 && evac_pinion,
CFT18 := x13 && left_pos

TON!

CFT2 := Ton_Q35,
CFT5 := Ton_Q33,
CFT7:= x5 && Ton_Q38,
CFT8 := x6 && Ton_Q37,
CFT9:= Ton_Q34,
CFT13:= Ton_Q36

motor:=(x0==1 || x12==1 ? 0 : motor),
motor:=(x1==1 || x7 ==1 || x13 ==1 ? 1 : motor),
right:=(x1==1 ? 1 : right),
right:=(x13==1 ? 0 : right),
down_jack:=x4,
up_jack:= x6 || x5,
present_pinion:=(x2==1 ? 1 : present_pinion),
present_pinion:=(x3==1 ? 0 : present_pinion),
pvc_pinion :=(x8==1 ? 1 :pvc_pinion),
pvc_pinion :=(x10==1 || x11==1 ? 0 : pvc_pinion),
cooper_pinion := (x10==1 ? 1 : cooper_pinion),
cooper_pinion := (x8==1 || x11==1 ? 0 : cooper_pinion),
steel_pinion := (x11==1 ? 1 :steel_pinion),
steel_pinion := (x8==1 || x10==1 ? 0 : steel_pinion),
evt1_activ := (x4==1 ? 0 : evt1_activ),
present_bearing := (x5 ? 1 : present_bearing),
present_bearing := (x6 ? 0 : present_bearing)

Figure 10. UPPAAL model of main program

• the event-driven task only modifies the internal mem-
ory of the output,

• the event-driven task is not activated.

6 Verification with UPPAAL

The observer automaton. In order to verify the timed
property P2, we need an additional automaton (see be-
low), which plays the role of an external observer with
respect to the model previously described.

idle

obs

stop

postest ?
X:=0
i2==1 || i3==1

stop?

X:=0

This automaton contains a state stop, reached when the
conveyor stops in testing position. It also contains a clock
X to measure the reaction time. The observer automa-
ton starts from state idle with X set to 0. When the mes-
sage postest? is received from the conveyor, the automa-
ton moves to state obs and resets the clock X . From this
point on, the clock value again increases with time. When
the message stop? is received from the main program, the
automaton switches to state stop. Thus, the value of X in
this last state corresponds to the time elapsed between the
triggering of the event-driven task and the physical stop of
the conveyor. To check the timed property P2, we express

its negation (C1 in the table below): the observer automa-
ton will eventually reach the state stop with the value of
the clock X greater than 5 time units. This property is
written as

E<> (obs.stop and X > 5)

in UPPAAL syntax, which is a fragment of the logic
TCTL [1]. In this formula, the combination E<> means
“for some path in the future” and obs.stop denotes loca-
tion stop of the observer automaton.
Experiments. First note that the global model has about
30.106 configurations, which are explored in an on the
fly computation of the set of reachable states. The table
below gives the time and memory used for verification (on
a linux machine with a pentium4 at 2.4 GHz with 3 Go
RAM). The results provide a comparison of the reaction
times between monotask and multitask programming.
Indeed, on one hand, properties C5, C6 and C7 show that
the conveyor stops between 10 and 20 time units after it
reaches the test position. This is far from being a surprise
because these values correspond respectively to one and
two PLC cycle times. On the other hand, property C3
shows that the conveyor stops in less than one PLC cycle
time. So, multitask programming reduces the reaction
time. However, property C1 proves that it is not sufficient
to satisfy the requirement P2.
Note that, after 29 hours of computation, we stopped the
verification process in the case of Mader-Wupper model.

7

property result time memory
with the event driven task

C1:E<> obs.stop and X > 5 yes 15 s 30 Mo
C2:E<> obs.stop and X ≤ 5 yes 15 s 30 Mo
C3:E<> obs.stop and X > 10 no 22 s 61 Mo

without the event driven task

C5:E<> obs.stop and X ≥ 10 yes 16 s 30 Mo
C6:E<> obs.stop and X > 20 no 22 s 70 Mo
C7:E<> obs.stop and X < 10 no 22 s 69 Mo

with Mader-Wupper model

C8:E<> obs.stop and X > 5 - - -

These performances are due to two main reasons: the
atomicity hypothesis for executions between some states
of the main program and the enhanced model of the TON
block.

• The atomicity hypothesis: we assume that each one
of the four steps of the main program (section 5.2)
executes instantaneously. Recall that time can elapse
only in three states.

• The enhanced model of the TON block: we use one
broadcast channel to synchronize all the TON blocks
and the main program instead of three ordinary chan-
nels for each TON block as in Mader-Wupper model.

7 Conclusion

In this work, we give formal semantics to (partial) Lad-
der diagrams and TON blocks, with timed automata. We
also describe the operative part of station 2 of MSS plat-
form with timed automata. On this network of timed au-
tomata represented in UPPAAL syntax, we formally prove
by model-checking that multitask programming reduces
the reaction time of the conveyor, upon emission of an
output order to stop. While this does not really come as
a surprise, we obtain reasonable verification times (less
than 30s) on a global model with about 30.106 states, by
adding an atomicity hypothesis to Mader-Wupper model
and modifying the automata for timer blocks. In compar-
ison, model-checking the same formula with the original
model had to be stopped after several hours.

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-
checking in dense real-time. Information and Computa-
tion, 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. Automata for modeling real-time
systems. In Proc. 17th Int. Coll. Automata, Languages,
and Programming (ICALP’90), Warwick University, Eng-
land, July 1990, volume 443 of Lecture Notes in Computer
Science, pages 322–335. Springer, 1990.

[3] R. Alur and D. L. Dill. A Theory of Timed Automata. The-
oretical Computer Science (TCS), 126(2):183–235, 1994.

[4] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and Ph. Schnoe-
belen. Towards the automatic verification of PLC programs
written in Instruction List. In Proc. IEEE Int. Conf. Sys-
tems, Man and Cybernetics (SMC’2000), Nashville, TN,
USA, Oct. 2000, pages 2449–2454, 2000.

[5] A. David, G. Behrmann, K. G. Larsen, and W. Yi. A Tool
Architecture for the Next Generation of UPPAAL. Techni-
cal Report 2003-011, Department of Information Technol-
ogy, Uppsala University, Feb. 2003. 20 pages.

[6] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool
KRONOS. In Proc. Workshop Hybrid Systems III: Verifi-
cation and Control, New Brunswick, NJ, USA, Oct. 1995,
volume 1066 of Lecture Notes in Computer Science, pages
208–219. Springer, 1996.

[7] H. Dierks. PLC-Automata: A New Class of Imple-
mentable Real-Time Automata. Theoretical Comput. Sci.,
253(1):61–93, 2000.

[8] G. Frey and L. Litz. Formal methods in PLC-
programming. In Proc. IEEE Int. Conf. Systems, Man and
Cybernetics (SMC’2000), Nashville, TN, USA, Oct. 2000,
pages 2431–2436, 2000.

[9] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user
guide to HyTech. In Proc. 1st Int. Workshop Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS’95), Aarhus, DK, May 1995, volume 1019 of Lec-
ture Notes in Computer Science, pages 41–71. Springer,
1995.

[10] IEC (International Electrotechnical Commission). IEC
Standard 61131-3 : Programmable controllers - Part 3,
1993.

[11] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nut-
shell. Journal of Software Tools for Technology Transfer,
1(1–2):134–152, 1997.

[12] A. Mader and H. Wupper. Timed automaton models for
simple programmable logic controllers. In Proc. 11th Eu-
romicro Conference on Real-Time Systems (ECRTS’99),
York, UK, June 1999, pages 114–122. IEEE Comp. Soc.
Press, 1999.

[13] E. Olderog. Correct real-time software for programmable
logic controllers. In Correct System Design. Recent In-
sights and Advances, volume 1710 of Lecture Notes in
Computer Science, pages 342–362. Springer, 1999.

[14] Rexroth Bosch Group. Mechatronik standard system.
http://www.boschrexroth.com/country_
units/europe/germany/sub_websites/
brs_germany/de/didactic/lehrsysteme/
mechatronik/mechatronik_standard_
system_mss/index.jsp.

[15] O. Rossi, O. de Smet, S. Lamprire-Couffin, J.-J. Lesage,
H. Papini, and H. Guennec. Formal verification: a tool to
improve the safety of control systems. In 4th Symposium
on Fault Detection, Supervision and Safety for Technical
Processes (IFAC Safeprocess 2000), Budapest, Hungary,
pages 885–890, 2000.

[16] O. Rossi and Ph. Schnoebelen. Formal modeling of
timed function blocks for the automatic verification of
Ladder Diagram programs. In Proc. 4th Int. Conf. Au-
tomation of Mixed Processes: Hybrid Dynamic Systems
(ADPM’2000), Dortmund, Germany, Sept. 2000, pages
177–182. Shaker Verlag, Aachen, Germany, 2000.

8

