
HAL Id: hal-00175431
https://hal.science/hal-00175431

Submitted on 28 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient representation for formal verification of PLC
programs

Vincent Gourcuff, Olivier de Smet, Jean-Marc Faure

To cite this version:
Vincent Gourcuff, Olivier de Smet, Jean-Marc Faure. Efficient representation for formal verification
of PLC programs. 8th International Workshop On Discrete Event Systems (WODES’06), Jul 2006,
Ann Arbor, United States. pp. 182-187. �hal-00175431�

https://hal.science/hal-00175431
https://hal.archives-ouvertes.fr

Efficient representation for formal verification of PLC programs *

Vincent Gourcuff, Olivier De Smet and Jean-Marc Faure
LURPA – ENS de Cachan,

61 avenue du Prés. Wilson, F-94235 Cachan Cedex, France
Email: {gourcuff, de smet, faure}@lurpa.ens-cachan.fr

Abstract— This paper addresses scalability of model-checking
using the NuSMV model-checker. To avoid or at least limit
combinatory explosion, an efficient representation of PLC
programs is proposed. This representation includes only the
states that are meaningful for properties proof. A method to
translate PLC programs developed in Structured Text into
NuSMV models based on this representation is described and
exemplified on several examples. The results, state space size
and verification time, obtained with models constructed using
this method are compared to those obtained with previously
published methods so as to assess efficiency of the proposed
representation.

I. INTRODUCTION

Formal verification of PLC (Programmable Logic Con-
trollers) programs thanks to model-checking tools has been
addressed by many researchers ([1], [2], [3], [4], [5], [6],
[7], [8]). These works have yielded formal semantics of the
IEC 61131-3 standardized languages [9] as well as rules to
translate PLC programs into formal models that can be taken
as inputs of model-checkers such as SMV [10] or UPPAAL
[11].

Despite these valuable results, it is easy to observe that
model-checking is not employed daily in companies that
develop PLC programs (see ([12]) for a comprehensive study
of logic design practices). Automation engineers prefer to
use the traditional, while being tedious and not exhaustive,
simulation techniques to verify that programs they have de-
veloped fulfill the application requirements. Several reasons
can be put forward to explain this situation: specifying formal
properties in temporal logic or in the form of timed automata
is an extremely tough task for most engineers; model-
checkers provide, in case of negative proof, counterexamples
that are difficult to interpret; PLC vendors do not propose
commercial software able to translate automatically PLC
programs into formal models, ...

All these difficulties are real and solutions must be found
to overcome them, e.g. libraries of application-oriented prop-
erties, explanations of counterexamples in suitable languages,
automatic translation software. Nevertheless, in our view,
the main obstacle to industrial use of formal verification is
combinatory explosion that occurs when dealing with large
size control programs. Formal models that underlie model-
checking are indeed discrete state models such as finite state
machines or timed automata. Even if properties are proved

* This work was carried out in the frame of a research project funded by
Alstom Power Plant Information and Control Systems, Engineering tools
Department.

symbolically, using binary decision diagrams (BDDs) for
instance, existing methods produce, from industrial, large
size, PLC programs, models that include too many states
to be verified by the present model-checking tools. In that
case, no proof can be obtained and formal verification is then
useless.

The aim of the research presented in this paper is to tackle
out, or at least to lessen, this problem by proposing a transla-
tion method that yields, from PLC programs, formal models
far smaller than those obtained with existing methods. These
novel models will include only the states that are meaning-
ful for properties proof and then will be less sensitive to
combinatory explosion. This efficient representation of PLC
programs will contribute to improve scalability of model-
checkers and to favor their industrial use.

This paper includes five sections. Section 2 delineates the
frame of our research. The principle of the translation method
is explained in section 3. Section 4 describes how efficient
NuSMV models can be obtained from PLC programs de-
veloped in a standardized language thanks to this method,
while section 5 presents experimental results. Prospects for
extending these works are given in section 6.

PLCs (Figure 1) are automation components that receive
logic input signals coming from sensors, operators or other
PLCs and send logic output signals to actuators or other
controllers. The control algorithms that specify the values
of outputs according to the current values of inputs and the
previous values of outputs are implemented within PLCs in
programs written in standardized languages, such as Ladder
Diagram (LD), Structured Text (ST) or Instruction List (IL).
These programs run under a real-time operating system
whose scheduler may be multi- or mono-task. This paper
focuses only on mono-task schedulers. Given this restriction,
a PLC performs a cyclic task, termed PLC cycle, that
includes three steps : inputs reading, program execution,
outputs updating. The period of this task may be constant
(periodic scan) or may vary (cyclic scan).

II. MODEL-CHECKING OF LOGIC CONTROLLERS

Previous works that have been carried out to check PLC
programs properties by using existing model-checkers ad-
dressed either timed ([4], [7]) or untimed ([1], [2], [3],
[6], [8]) model-checking. Since our objective is to facilitate
industrial use of formal verification techniques by avoiding or
limiting combinatory explosion and that this objective seems
more easily reachable for untimed systems, only untimed

Fig. 1. PLC basic components

model-checking will be considered in this paper. In what
follows, all examples of formal models will use the syntax
of the NuSMV model-checker [13], though similar results
would be obtained with that of other model-checkers of the
same class. It matters also to point out that, given the kind of
systems that are considered, periodic and cyclic tasks behave
in the same fashion: PLC cycle duration is meaningless.

Several approaches have been proposed to translate a PLC
program into a formal untimed model. For room reasons,
only two of them will be sketched below. [14] for instance
expresses the semantics of each element (contact, coil,
links,...) of LD in the form of a small state automaton.
The formal behavior of a given program is then obtained
by composition of the different state automata that describe
its elements. This method relies upon a detailed semantics
of ladder diagram and can be extended to programs written
in several languages, but it gives rise easily to state space
explosion, even for rather small examples. A more efficient
approach ([2], [6]) translates each program statement into a
SMV next function. Each PLC cycle is then modeled by a
sequence of states, the first and last states being characterized
respectively by the values of input-output variables at the
input reading and output updating steps, the intermediary
states by the values of these variables after execution of each
statement.

Figure 2 illustrates this method on a didactic example
written in ST. Thorough this paper, PLC programs examples
will be given in ST. ST is a a textual language, similar
to PASCAL, but tailor-made for automation engineers, for
it includes statements to invoke and to use the outputs of
Function Blocks (FB) such as RS (SR) - reset (set) dominant
memory -, RE (FE) - rising (falling) edge. This language
is advocated for the control systems of power plants that
are targeted in the project. Equivalent programs in other
sequentially executed languages, like programs written in IL
or LD, can be obtained without difficulty.

The program presented in Figure 2 includes four state-
ments: two assignments followed by one IF selection and
one assignment. From this program, it is possible to obtain
by using the previous method (translation of each statement
into a SMV next function) an execution trace whose part is
shown on Figure 2, assuming that the values of the variables
in the initial state (defined when setting up the controller)
and the values of the input variables at the inputs reading
steps of the first and second PLC cycles are respectively:

• Initial values of variables: I1 = 1, I2 = 0, I3 = 1,
I4 = 0, O1 = 0, O2 = 0, O3 = 0 and O4 = 1

• Input variables values at the beginning of the first PLC
cycle: I1 = 0, I2 = 0, I3 = 1 and I4 = 1

• Input variables values at the beginning of the second
PLC cycle: I1 = 1, I2 = 1, I3 = 0 and I4 = 1

It matters to highlight that the values of input variables
remain constant in all the states of one PLC cycle.

Fig. 2. A simple program and part of the resulting trace with the method
presented in [6]

In addition to the formal model of the controller, model-
checkers need a set of formal properties to prove. Two kinds
of properties are generally considered:

• Intrinsic properties, such as absence of infinite loop,
no deadlock, ..., which refer to the behavior of the
controller independently of its environment;

• Extrinsic properties which refer to the behavior of inputs
and outputs, e.g. commission of outputs for a given
combination of inputs, always forbidden combination
of outputs, allowed sequences of inputs-outputs,...

This paper focuses only on extrinsic properties. Referring
to outputs behavior, these properties impact indeed directly
safety and dependability of the controlled process and then
are more crucial. If one of them (or several) are not satisfied,
hazardous events may occur, leading to significant failures.

If focus is put on extrinsic properties verification, the
two approaches described above lead to state automata with
numerous states that are not meaningful. It can be seen
indeed on Figure 2 that the intermediary states defined for
each statement are not useful in that case; extrinsic properties

are related only to the values of input-output variables when
updating the outputs, i.e. at the end of the PLC cycle. A
similar reasoning may be done for the other method.

Hence efficient representation for formal verification will
include only the states describing the values of input-output
variables when updating outputs (shaded states in Figure 2).
This representation may be obtained directly from a PLC pro-
gram by applying the method whose principle is explained
in the next section.

III. METHOD PRINCIPLE

A. Assumptions

In what follows it is assumed that:
• PLC programs are executed sequentially;
• only Boolean variables are used;
• internal variables may be included in the program;
• only the Boolean operators defined in IEC 61131-3

standard (NOT, AND, OR, XOR) are allowed;
• only the following statements of ST language are al-

lowed: assignment, function and function block (FB)
control statements, IF and CASE selection statements;
iteration statements (FOR, WHILE, REPEAT) are for-
bidden;

• multiple assignments of the same variable are possible;
• Boolean FBs, such as set and reset dominant memories

defined in the standard or FBs that implement appli-
cation specific control rules, like actuators starting or
shutting down sequences, may be included in a program.

The first two assumptions are simple and can be made for
programs in ST, LD or IL. The third assumption means
that a program computes the values of internal and output
variables from those of input variables and of computed
(internal and output) variables; this allows us to consider
internal variables in the same way as outputs in what follows.
The fourth and fifth ones apply only to ST programs but
similar assumptions for LD or IL programs can be easily
drawn up. Iterations are forbidden because they can lead
to too long cycle times that do not comply with real-time
requirements. The sixth assumption may be puzzling, for
contrary to the usual programming rule that advocates that
each variable must be assigned only once. Even if this
programming rule is helpful when developing a software
module from scratch, this assumption must be introduced
to cope with industrial PLC programs in which it is quite
usual to find multiple assignments of the same variable.
Two reasons can be put forward to explain this situation.
First industrial PLC programs are often developed from
previous similar ones; then programs designers copy and
paste parts of previous programs in the new program. This
reuse practice may lead to assign one variable several times.
Second a ST program may contain both normal assignments
and assignments included within selection statements; this
is an other reason that explains multiple assignments. As
our objective is to proof properties on existing programs,
without modifying them prior to verification, this specific
feature must be taken into account. It will be shown below

that multiple assignments do not impede to construct efficient
representation.

Figure 3 outlines the translation method that has been
developed to obtain efficient representation of PLC programs.
As shown on this figure, this method includes two main steps:
static analysis of the program and generation of the NuSMV
model that describes formally the behavior of the program
with regards to its inputs-outputs.

Fig. 3. Method overview

B. Static analysis

Static analysis is aiming at deriving, from the PLC pro-
gram, dependency relations between variables. Starting from
the initial values of input and output variables that are fixed
during set up, for each PLC cycle, the values of output
variables are computed either only from values of input
variables or from values of input variables and values of other
output variables. In the first case, the value of each output
variable at the end of PLC cycle i+1 (i: positive integer) is
obtained merely from values of input variables for this cycle.
In the second case, computation of the value of one output
variable must use the values of output variables for this cycle
if the last assignment of these output variables is located
upstream in the program, or the values of output variables
at the previous PLC cycle (cycle i) if those variables are
assigned downstream; this computation will use obviously
the values of input variables for cycle i+1. Hence, the main
objective of static analysis is to determine, for each output
variable, whether the value of each variable involved in
computation of the value of this output variable at PLC cycle
i+1 is related to PLC cycle i+1 or to PLC cycle i.

Static analysis is exemplified on the program given in
Figure 4. This ST program computes the values of five output
variables (O1, ..., O5) from those of four input variables (I1,
..., I4) and includes only allowed statements. Some specific
features of this example are to be highlighted:

• the IF statement does not specify the value of O3 if the
condition following the IF is not true; this is allowed in
ST language and means that the value of O3 remains
the same when this condition is false;

• the assignment of O4 uses the output of a RS (reset
dominant memory) FB;

• one output variable (O1) is assigned twice.
Scanning sequentially the program from top to bottom,
statement by statement, static analysis yields dependency
relations represented graphically in Figure 5 a). In this figure,

an arrow from variable X to variable Y means that the value
of Y depends on the value of X (or that the value of X is used
to compute the value of Y). Each statement gives rise to one
dependency relation. For instance, the dependency relation
obtained from the first statement means that the value of O1

depends on the values of I1 and I2, the third relation that
the value of O3 is computed from the values of I3, I4, O1,
and O3 itself (in case of false condition), the fourth relation
that the value of O4 is computed from the values of I1, O5,
and O4 itself (if the two inputs of a memory are false, the
output stays in its previous state),.... From this first set of
relations, it is then possible to build an other set of more
detailed relations such as:

• there is only one dependency relation for each output
variable (multiple assignments are removed);

• dependency relations are developed, if possible;
• the value of each output variable Oj (j: positive integer)

at PLC cycle i+1, noted Oj,i+1, is obtained from values
of input variables for this cycle, noted Ik,i+1 (k: positive
integer), and from values of output variables for this
cycle (Oj,i+1) or for the previous one (Oj,i).

This second set of relations is presented in Figure 5b). Only
the relation coming from the latter assignment of O1 has
been kept. The first relation of the previous relations set has
nevertheless permitted to obtain the final dependency relation
of O3: the value of this variable at cycle i+1 is obtained from
the values of I1, I2, I3, I4 for cycle i+1 and the value of O3

at cycle i. The computation of the value of O4 at cycle i+1
uses the value of O5 at cycle i for this variable is assigned
after O4 in the program whilst the value of O5 at cycle i+1
is computed from the values of O2 and O4 at this same cycle
because these two variables have been assigned upstream in
the program.

This set of dependency relations involving the values of
output variables for two successive PLC cycles permits to
translate efficiently PLC programs into NuSMV models as
explained in the next section.

O1 := I1 OR I2;
O2 := I3 AND I4;
IF O1

THEN
O3 := I3 AND NOT (I4);

END IF ;
O4 := RS(O5, I1)
O5 := O2 AND O4;
O1 := NOT (I2 OR I4);

Fig. 4. PLC program example

IV. TRANSLATING ST PROGRAMS INTO NUSMV MODELS

It is assumed in this section that the reader has a basic
knowledge of the model-checker NuSMV; readers who want
to know more on this proof tool can refer to [13]. To check
a system, NuSMV takes as input a transition relation that
specify the behavior of a Finite State Machine (FSM) which
is assumed to represent this system. The transition relation of
the FSM is expressed by defining the values of variables in

Fig. 5. Dependency relations obtained by static analysis. a) ordered
intermediate relations; b) final relations

the next state (i.e. after each transition), given the values of
variables in the current state (i.e. before the transition) and is
described in a declarative form as a set of assignments. Each
assignment defines the next value of one variable from an
expression that includes operands that are values of variables
in the next or in the current state, and operators. As only
Boolean variables are used in this study, the only Boolean
operators NOT, AND, OR, noted respectively !,& ,| will be
employed below.

A. Translation algorithm

Each ST statement that gave rise to one of the final depen-
dency relations is translated into one NuSMV assignment;
then useless ST statements (assignments that are cancelled
by other upstream assignments) are not translated. The set
of useful statements is noted Pr in what follows. The values
of the variables within one assignment are obtained from the
corresponding dependency relation. If the value of a variable
in this relation is that at PLC cycle i+1, then the next value of
this variable will be introduced in the corresponding NuSMV
assignment, using the next function; if the dependency
relation mentions the value at cycle i, then the corresponding
NuSMV assignment will employ the current value of the
variable.

Given these translation rules, the translation algorithm
described Figure 6 has been developed. This algorithm yields
a NuSMV model from a set of statements Pr issued from a
PLC program.

BEGIN PLC prog TO NuSMV model(Pr)
FOR each statement Si of Pr:

IF Si is an assignment (Vi := expressioni)
THEN

FOR each variable Vk in expressioni:
Replace Vk by the variable pointed out in
the dependency graph (Vk,i or Vk,i+1)

ELIF Si is a conditional structure (if cond; then stmt1; else stmt2)
FOR each variable Vk in cond:

Replace Vk by the variable pointed out in
the dependency graph (Vk,i or Vk,i+1)

FOR each variable Vm assigned in Si :
Replace Vm assignment by:

”case
cond :≺assignment of Vm in

PLC prog TO NuSMV model(stmt1)�;
!cond : ≺assignment of Vm in

PLC prog TO NuSMV model(stmt2)�;
esac ; ”

Fig. 6. Translation algorithm

B. Taking into account Function Blocks

If a ST assignment includes an expression involving a
Boolean Function Block (FB), the behavior of this FB must
be detailed in the corresponding NuSMV assignment. Hence
a library of generic models describing in NuSMV syntax
the behavior of the usual FBs has been developed. When
translating ST assignments that include instances of FBs,
instances of these generic models will be introduced into the
NuSMV assignments. The RS (reset dominant memory) FB,
for instance, has two inputs, noted Set and Reset, and one
output Q. Its behavior is recalled below:

• If Reset is true, then Q is false;
• If Set is true and Reset false, then Q is true;
• If none of the inputs is true, then Q keeps its previous

value.
This FB can be translated into the generic following

NuSMV case...esac structure, sequentially executed.

Next(Q) :=case
Reset : 0;
Set : 1;
1 : Q;

esac;

C. Example

Next(I1) := {0, 1};
Next(I2) := {0, 1};
Next(I3) := {0, 1};
Next(I4) := {0, 1};
Next(O2) := Next(I3) & Next(I4);
Next(O3) :=case

Next(I1) | Next(I2) : Next(I3) & !(Next(I4));
!(Next(I1) | Next(I2)) : O3;

esac;
Next(O4) := case

Next(I1) : 0;
O5 : 1;
1 : O4;

esac;
Next(O5) := Next(O2) & Next(O4);
Next(O1) :=!(Next(I2) | Next(I4));

Fig. 7. NuSMV model of the program presented in Figure 4

Using the algorithm of Figure 6, the NuSMV model
presented in Figure 7 can be obtained from the program of
the previous section.

It matters to emphasize that the translation algorithm does
not introduce auxiliary variables, such as line counter, end
of cycle, unlike the method proposed in [6]. It remains
nevertheless to assess the efficiency of this representation.

V. ASSESSMENT OF THE REPRESENTATION EFFICIENCY

Several experiments have been carried out to assess ef-
ficiency of the representation proposed in this paper. To
facilitate these experiments, an automatic translation program
based on the method presented in the previous sections has
been developed.

A. First experiment

The objective of this experiment was to compare, on the
simple example of Figure 4, the sizes of the state spaces
of the NuSMV models obtained with the representation
proposed in [6], i.e. direct translation of each statement of
the PLC program into one NuSMV assignment, and with
that presented in this paper.

Reachable states System diameter
representation of [6] 314 out of 14336 22

proposed representation 21 out of 512 2

TABLE I
STATE SPACE SIZES OF THE PROGRAM PRESENTED IN FIGURE 4

The two NuSMV models have been first compared, using
behavioral equivalence techniques, so as to verify that they
behave in the same manner. This comparison gave a positive
result: the sequence of outputs generated by the two models
is the same whatever the sequence of inputs. Then the sizes
of their state spaces have been computed, using the NuSMV
forward check function, as shown in Table I. This table
contains, for each representation, the number of reachable
states among the possible states, e.g. 314 among 14336
means that 314 states are really reachable among the 14336
possible, as well as the system diameter: minimum number of
iterations of the NuSMV model to obtain all the reachable
states. These results shows clearly that, even for a simple
example, the proposed representation reduces the size of the
state space by roughly one order of magnitude.

B. Second experiment

The second experiment was aiming at assessing the gains
in time and in memory size, if any, due to the new rep-
resentation when proving properties. This experiment has
been performed using the test-bed example presented in [6]:
controller of a Fischertechnik system, for which numerical
results were already available. Once again two models have
been developed and the same properties have been checked
on both. Table II gives duration and memory consumption of
the checking process for two properties. These results were
obtained by using NuSMV, version 2.3.1, on a PC P4 3.2
GHz, with 1 GB of RAM, under Windows XP.

representation of [6] proposed representation
liveness property 5h / 526MB 2s / 8MB
safety property 20min / 200MB 2s / 8MB

TABLE II
TIME AND MEMORY REQUIRED FOR PROPERTIES VERIFICATION

This experiment shows that the proposed representation
reduces significantly the verification time and the mem-
ory consumption. The ratio between the verification times
obtained with the two representations, for instance, varies
between 9000 and 600, depending on the property. Similar
results are obtained with the other properties.

C. Third experiment

This third experiment has been performed with industrial
programs developed for the control of a thermal power plant.
The control system of this plant comprises 175 PLCs con-
nected by networks. All the programs running on these PLCs
have been translated as explained previously. The objective of
this experiment was merely to assess the maximum, medium
and minimum sizes of the state spaces of the models obtained
from this set of industrial programs when using the proposed
representation. These values are given on the fourth line of
Table III. Even if the sizes of the state spaces are very
different, this experiment shows clearly the possibility of
translating real PLC programs without combinatory explo-
sion. Moreover these state spaces can be explored by the
model-checker in a reasonable time, a mandatory condition
for checking properties; only 8 seconds are necessary indeed
to explore all the state spaces of these programs. A secondary
result is given at the last line of this table; the translation
time, time necessary to obtain from the set of programs a set
of NuSMV models in the presented representation complies
with engineering constraints; translation of one PLC program
into one NuSMV model will not slow down PLC program
design process.

Number of programs 175
Output variables max:47 min:1 sum:1822
Input variables max:50 min:2 sum:2329

State space size of each program max:8.1028 min: 105 mean:5.1026

Strutation time of all state spaces 8 sec
Whole time for translation 50 sec

TABLE III
RESULTS FOR A SET OF INDUSTRIAL PROGRAMS

Even if it is not possible to obtain from these three
experiments definitive numerical conclusions, such as state
space reduction rate, verification time improvement ratio, ...
they have allowed to illustrate the benefits of the proposed
representation on a large concrete example, coming from
industry.

VI. CONCLUSION

The representation of PLC programs proposed in this pa-
per can contribute to favor dissemination of model-checking

techniques, for it enables to lessen strongly state space
explosion problems and to reduce verification time. The
examples given in the paper were written in ST language.
Nevertheless programs written in LD or in IL languages
can be represented in the same manner; the principle of the
translation method is the same, only the translation rules of
statements are to be modified.

Ongoing works concern an extension of this representation
to take into account integer variables and the development
of a similar representation for timed model-checking.

REFERENCES

[1] I. Moon, “Modeling programmable logic controllers for logic verifica-
tion,” in Control Systems Magazine, IEEE. IEEE Comp. Soc. Press,
1994, pp. 53–59.

[2] M. Rausch and B. Krogh, “Formal verification of PLC programs,” in
Proc. of American Control Conference, June 1998, pp. 234–238.

[3] R. Huuck, B. Lukoschus, and N. Bauer, “A model-checking approach
to safe SFCs,” in Proc. of CESA 2003, July 2003.

[4] B. Zoubek, “Automatic verification of temporal and timed properties
of control programs,” Ph.D. dissertation, University of Birmingham,
2004.

[5] G. Frey and L. Litz, “Formal methods in PLC programming,” in Proc.
of the IEEE SMC 2000, October 2000, pp. 2431–2436.

[6] O. de Smet and O. Rossi, “Verification of a controller for a flexible
manufacturing line written in ladder diagram via model-checking,” in
American Control Conference, ACC’02, May 2002, pp. 4147–4152.

[7] H. Bel Mokadem, B. Bérard, V. Gourcuff, J.-M. Roussel, and
O. de Smet, “Verification of a timed multitask system with Uppaal,” in
Proc. of ETFA’05. Catania, Italy: IEEE Industrial Electronics Society,
Sept. 2005, pp. 347–354.

[8] F. Jiménez-Fraustro and É. Rutten, “A synchronous model of
IEC 61131 PLC languages in SIGNAL.” in ECRTS, 2001, pp. 135–
142.

[9] IEC Standard 61131-3 : Programmable controllers - Part 3, IEC
(International Electrotechnical Commission), 1993.

[10] K. L. McMillan, The SMV Language, Cadence Berkeley Labs,
http://www-cad.eecs.berkeley.edu/˜kenmcmil/language.ps.

[11] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UP-
PAAL – a tool suite for automatic verification of real-time systems,”
in Proc. Workshop Hybrid Systems III: Verification and Control, New
Brunswick, NJ, USA, Oct. 1995, ser. Lecture Notes in Computer
Science, vol. 1066. Springer, 1996, pp. 232–243.

[12] M. R. Lucas and D. M. Tilbury, “A study of current logic design
practices in the automotive manufacturing industry,” Int. J. Hum.-
Comput. Stud., vol. 59, no. 5, pp. 725–753, 2003.

[13] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), ser.
LNCS, vol. 2004. Copenhagen, Denmark: Springer, July 2002.

[14] O. Rossi, “Validation formelle de programmes ladder diagram pour
automates programmables industriels (formal verification of PLC pro-
gram written in ladder diagram),” Ph.D. dissertation, ENS de Cachan,
2003.

