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Abstract: We present real-time observations by confocal microscopy of the dynamic behavior of 

multilamellar vesicles (MLVs), composed of charged synthetic lipids, when put in contact with 

oppositely charged polyelectrolyte (PE) molecules. We find that the MLVs exhibit astonishing 

morphological transitions, which result from the discrete and progressive binding of the charged 

bilayers induced by a high PE concentration gradient. Our physical picture is confirmed by quantitative 

measurements of the fluorescence intensity as the bilayers bind to each other. The shape transitions lead 

eventually to the spontaneous formation of hollow capsules, whose thick walls are composed of lipid 

multilayers condensed with PE molecules. This class of objects may have some (bio)technological 

applications. 
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1 Introduction 

Liposomes are often studied as simplified models of biological membranes 1,2 and are extensively 

used in the industrial area ranging from pharmacology to bioengineering.3 The biomimetic properties of 

the membrane also make liposomes attractive as vessels for model systems in cellular biology.4,5 

Composite systems of lipid bilayer and polymers have received special attention due to their similarity 

with living systems such as plasma membrane and various organelle membrane, that mainly consist of 

complex polymers and lipids.6 Experimental investigations of vesicle/polymer mixed systems also aim 

at improving the stability and at controlling the permeability of liposomes for drug delivery or targeting, 

or for gene therapy.7-12 For example, stabilization is usually obtained by loose hydrophobic anchoring of 

water soluble chains that do not significantly perturb the bilayer organization, such as alkyl-modified 

Dextran or Pullulan with a low degree of substitution,13,14 long poly(ethylene glycol) capped with one or 

two lipid anchors per macromolecule, or poloxamers.15,16 It was shown recently7,17-20 that water-soluble 

polymers, upon binding to vesicles, can markedly affect the shape, curvature, stiffness, or stability of 

the bilayer. However, the mechanisms of these polymer-induced reorganizations of membranes remain 

sometimes conjectural, although it is clear that the hydrophobicity of the polymer plays an important 

role.  

On the other hand, interactions between surfactants and polymers in bulk solution are extensively 

investigated, due to their numerous applications from the daily life to the various industries (e.g. 

pharmaceutical, biomedical application, detergency, enhanced oil recovery, paints, food and mineral 

processing).21-25 Charged amphiphilic molecules, like lipids or surfactants, and oppositely charged 

polyelectrolytes (PE) spontaneously form stable complexes, which are very promising objects, because 

of their great variability in structures and properties.26-27 In this context, interactions of charged bilayers 

with oppositely charged PE are particularly regarding. For instance, in bioengineering, the interactions 

between lipids bilayers and DNA molecules are crucial for gene therapy.28-32 When charged bilayers 

interact with polyelectrolyte of opposite charge, it is generally accepted that electrostatic interactions 

induce the bridging of the lipid bilayers by the PE molecules.33-35 The resulting structure of the PE/lipid 
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complexes is a condensed lamellar phase, with PE strands intercalated between the lipids bilayers. 

However, although most studies provide a general picture for the PE/lipid structure, very few addressed 

the question of the mechanism of the formation of the complexes or the associated issue of dynamics 

and intermediate steps for the assemblage process. In addition to our previous work 36, two noticeable 

exceptions include the work of Kennedy et al. who found that the order of addition of DNA to cationic 

lipid or vice versa could affect the size and size distribution of the complexes 31 and that of Boffi et al. 

who showed that two distinct types of DNA/lipid complexes can be formed depending on the sample 

preparation procedure.32 Nevertheless, the determinants for the assembly and dynamics of complex 

formation remain poorly understood.  

Under certain conditions, lipids can self-assemble into giant vesicles, the size of living cells. These 

are very elegant objects that allow manipulation and real time observation with a light microscope 37-40 

and that have opened the way to a wealth of theoretical and experimental investigations.41 However, 

unlike experimental work on giant unilamellar vesicles, experimental reports on real-time observation 

of the effect of a chemical species on the stability and shape changes of a multilamellar vesicles are 

extremely scarce.42-46 Nevertheless, as it is demonstrated in this paper, when multilamellar vesicles are 

used, richer behaviours can be expected, since cooperative effects due to the dense packing of bilayers 

may play an important role. 

In the present study, we employ a real-time approach to study the dynamics of the interactions 

between charged membranes and oppositely charged PE molecules, and monitored by light and 

confocal microscopy the behavior of multilamellar vesicles (MLVs) made of a synthetic lipid in a 

concentration gradient of PE. When the gradient is strong enough, the MLV undergoes spectacular 

morphological transitions, which enable us to visualize the progressive binding of charged bilayers 

induced by oppositely charged PE molecules. Specifically, these shape transitions lead eventually to the 

spontaneous formation of a hollow capsule with thick walls that are presumably composed of lipid 

multilayers condensed with PE molecules. This class of objects may have some potential 

(bio)technological applications47 and this contribution could have some significance in mimicking 
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bioprocess. We first present our experimental observations, then describe the mechanisms at play and 

provide quantitative measurements, based on the fluorescence intensity, which support our physical 

picture. Finally, we briefly conclude. 

 

 

2 Experimental Results  

 

We use vesicles made of didodecylammonium bromide (DDAB) as synthetic lipid, and an alternating 

copolymer of styrene and maleic acid in its sodium salt form, as anionic polyelectrolyte (PE). The 

DDAB bilayers are labeled with a fluorescent surfactant for confocal and fluorescence imaging. We 

follow by light and confocal microscopy the behavior of the DDAB vesicles when they are submitted to 

a PE concentration gradient. The Materials and Methods are described in the Supporting Information. 

 

2.1 Interaction between Giant Unilamellar Vesicles and Polyelectrolyte 

The time-dependent morphological changes of a giant unilamellar vesicle (GUV) are investigated 

when the GUV is exposed to a concentrated PE solution (30% W/W). The GUV is floppy and 

fluctuating before interacting with PE. Upon contact with the polyelectrolyte solution, the bilayer 

becomes tense and the vesicle immediately turns to perfectly spherical and taut. Some patches, that 

appear very intense in fluorescence, gradually formed on the surface of the GUV. The patches thicken 

with time (Figure 1). Concomitantly, the size of the GUV decreases. These processes lead ultimately to 

the collapse of the GUV, resulting in a single small lump made of a compact DDAB/PE complex. The 

duration of the whole process is of the order of several minutes. Analogous observations have been 

recently reported for the interaction of GUVs with small unilamellar vesicles48, with the matrix protein 

of a virus49, and with a flavonoid of green tea extracts50. 

 



 5

0

130.4s

4s 73.8s 100.8s

143.1s 143.2s137s

0

130.4s

4s 73.8s 100.8s

143.1s 143.2s137s

 

Figure 1. Evolution of the morphology of a giant unilamellar vesicle (GUV) upon contact with a concentrated PE 

solution (30% W/W). Timing is indicated in white text. The scale is the same for all pictures. Scale bar = 5 μm.  

 

2.2 Interaction between Multilamellar Vesicles and Polyelectrolyte 

2.2.1 Phase-diagram 

In sharp contrast to the case of GUVs, the interactions of charged multilamellar vesicles (MLVs) with 

polyelectrolyte molecules of opposite charge lead to unexpectedly rich phenomena. We interestingly 

notice that, depending on CPE, the PE concentration, completely different morphological transitions are 

observed. The “phase” diagram shown in Figure 2 summarizes our experimental findings for MLVs put 

into contact with different concentrations of PE. Successive peeling events are found when CPE < ~ 2 % 

as shown in Figure 2A, while concentrated PE (CPE>~10%) induces the appearance of spectacular 

morphological changes of the MLV (Figure 2B and 2C). We confirmed by differential interference 

contrast and phase contrast microscopy that non-fluorescent MLVs exhibit identical morphological 

changes, and that all dynamical processes reported below are preserved.  

 

CPE
Peeling ~ 2 % Layer by layer binding~ 10 %

A) B)

C)

CPE
Peeling ~ 2 % Layer by layer binding~ 10 %

A) B)

C)  

Figure 2. “Phase” diagram of MLV in contact with different PE concentrations, viewed by confocal imaging. Scale 

bars =10 μm. 

 

2.2.2 Weak Polyelectrolyte Gradient 
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When a MLV is exposed to a diluted PE concentration, the size of the MLV gradually decreases and 

concomitantly small aggregates formed in the vicinity of the MLV. The MLV is peeled progressively, 

layer after layer, one DDAB/PE complex being formed for each peeling event, while the interior of the 

MLV remains always intact. Peeling events proceed until the MLV is completely used up. The final 

state of the MLV is a pile of small aggregates of size ranging from 2 to 10 μm. The whole consumption 

of a MLV through the peeling mechanism is a slow process that lasts more than 10 minutes, each 

peeling events lasting about tens of seconds (Figure 3). We note that the effect of a weak polyelectrolyte 

gradient on a MLV has been reported previously.45 However, the novel confocal microscopy pictures 

given in Figure 3 show unambiguously a single event, which provides a compelling evidence for a 

peeling mechanism.  

 

0 9.18s 11.99s

21.54s19.58s17.69s

 

Figure 3. One peeling event of MLV induced by a diluted PE (0.5 % W/W). Timing is indicated in white text. The 

scale is the same for all pictures. Scale bar = 10 μm. 

 

2.2.3 Strong Polyelectrolyte Gradient 

In sharp contrast with our observations for a dilute polyelectrolyte solution, for CPE > ~10%, the 

morphological transitions of a MLV lead to a finite-size cellular object, with water encapsulated in the 

cells, and whose walls are very likely made of DDAB/PE complexes (Figure 4E). The angles between 

the thick walls measured in 2-dimentional picture are about 120°, similarly to the angle at which film 

meet in a three-dimensional dry foam.51 When the size of the initial MLV is sufficiently small, hollow 
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capsules are eventually obtained (Figures 4B-D), whose size is sensibly equal to that of the initial MLV. 

Although the large scale structure depends dramatically on the initial PE concentration, the microscopic 

structure in all cases is a condensed lamellar phase (Figure 4G), as checked by small-angle X-ray 

scattering (Figure 4F), whose periodicity is of the order of 3.0 nm, hence only slightly larger than the 

bilayer thickness (2.4 nm).52  
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Figure 4. (A, B) Differential Interference Contrast; (C) Fluorescence and (D, E) Confocal imaging of, (A) a MLV 

prior to interaction with PE, (B, C, D) hollow capsules and (E) a cellular object, after interaction with a strong PE 

gradient. In (E), by comparison of the intensity of a single bilayer to that of the thickest wall, it is evaluated that the 

thickest external wall contains ~ 20 bilayers. Scale bars = 10 μm; (F) X-ray spectrum of the DDAB/PE complexes. The 

arrows point the peaks at q0= 2.05 nm-1 and 2q0, which indicates a lamellar phase; (G) Scheme of the microscopic 

structure of the complexes, consisting of a condensed lamellar phase with PE molecules intercalated between the 

bilayers. 

 

The typical whole sequence of morphological transformation of a MLV when it is exposed to a 

concentrated PE solution is shown in the time series pictures of Figure 5. Before the MLV starts to 

deform significantly, the fluorescent intensity inside the vesicle becomes heterogeneous, the higher 

intensity being localized in the region with higher PE concentration. The surprising buds (Figure 2 B-C) 

composed of well-separated set of bilayers form subsequently. Interestingly, we note that the first 

striated buds form systematically where the PE concentration is lower. The interaction dynamics then 

speeds up and the MLV is found to experience rapid fluctuations, with the formations of protruding and 
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budding, while dynamical events can also be distinguished in the core of the vesicle. The initially “full” 

MLV appears finally essentially devoid in DDAB bilayers: the inside of the resulting object is 

essentially black with some thick fluorescent strands. This cellular soft object forms therefore a peculiar 

kind of biliquid foam53-55. As opposed to our observations for a weak polyelectrolyte gradient, the 

dynamics is here very fast: the whole sequence lasts less than 1 minute. 

 

 0 6.23s 7.81s 9.40s 12.51s10.88s

14.04s 17.01s 21.41s18.49s 28.88s 36.30s

 0 6.23s 7.81s 9.40s 12.51s10.88s

14.04s 17.01s 21.41s18.49s 28.88s 36.30s

 

Figure 5. Time series showing the shape transformation of a MLV upon contact with a concentrated PE solution 

(30%W/W). The direction along which the polyelectrolyte molecules diffuse is shown with arrows. The whole process 

is shown, from the budding of the MLV, due to the layer by layer binding, to the formation of a cellular object. Timing 

is indicated in white text. The scale is the same for all pictures. Scale bar = 10 μm.  

 

We finally note that we have performed some additional tests. First, we have done experiments in 

salted water (with NaBr) instead of pure water. The main observations described above are preserved 

with a salt concentration of 10-3 M. With a NaBr concentration of 10-2 M, our experimental observation 

in pure water cannot be reproduced due to the lack of stability of the MLVs.56 Secondly, we have also 

investigated the interaction of MLV with other polymers, both neutral and charged (as listed in the 

Supporting Information), and found similar results as those described here only with the polystyrene-

sulfonate polyanions, thus confirming that attractive electrostatic interactions between the DDAB 

bilayers and the polymer molecules are a key ingredient for our observations.  
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3 Discussion  

Due primarily to the strong electrostatic interactions between charged bilayers and oppositely charged 

polyelectrolyte molecules, DDAB/PE complexes form, whose structure is a condensed lamellar 

phase.36,45 The confocal pictures of a GUV interacting with a PE solution (Figure 1) provide a dynamic 

observation for the formation of these complexes. In this part, we discuss the experimental findings on 

the formation of DDAB/PE complexes, when polyelectrolyte molecules interact with a MLV. As we 

showed in the experimental section, depending on the PE concentration, the polyelectrolyte molecules 

interact with a unique bilayer (when the PE gradient is weak), or with the entire stack of bilayers (when 

the PE gradient is strong). 

 

3.1 Interaction between PE and a unique bilayer  

Upon contact with a weak PE gradient, a MLV is peeled off gradually. Each peeling event implies 

firstly the formation of a pore, which expands until failure of the entire bilayer. We have previously 

visualized the expansion of a pore by light microscopy.45 Pore formation in unilamellar vesicles has 

been observed under different experimental conditions, including application of an electric field 57-58 

interaction with proteins 37,50 or with a water-soluble polymer with hydrophobic pendent groups,59 or 

attractive interactions with a patterned surface.60 In our case, pores form because of the adsorption of PE 

onto the DDAB bilayers due to a strong electrostatic attraction between the two species. In fact, because 

of these interactions, part of the surface area of the external bilayer may be used up to form PE/lipid 

complexes. This creates a tension in the bilayer which ruptures above a critical tension, leading to the 

formation of a pore. The peeling mechanism was previously discussed in details.45  

 

3.2 Interaction between PE and a stack of bilayers  

3.2.1 PE-induced binding of two bilayers as elementary mechanism 

We argue that the astonishing structures exhibited upon contact of a multilamellar vesicle with a 

strong gradient of PE concentration are due to a discrete and progressive binding of the bilayers induced 
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by the PE molecules as they diffuse within the multilayer material. The elementary initial event can be 

imaged in real-time and is shown in Figure 6. It consists of the budding starting from the outmost 

bilayer. This structure results from the expulsion of the water that is located between the outmost and 

the secondary outer bilayers as they rapidly bind to each other due to the bridging of the oppositely 

charged PE between them. The binding front can be followed by confocal imaging: with time, the 

binding quickly spreads and the water between the bilayers is driven into a small and spherical water 

pool. Such events typically last a few seconds, and are faster when the PE concentration gradient is 

higher. A scheme of the microscopic process is shown in Figure 6E. We note that a temperature-induced 

binding of bilayers has been observed by light microscopy, but the dynamics could not be followed.61 

The succession of such events, i.e. binding of the secondary outer with the ternary outer bilayers, then 

binding of the ternary outer with the quaternary outer bilayers, … leads to the striated structures shown 

Figures 2B,C and 7. These structures originate from the successive formation of water pools, while the 

core of the MLV remains intact. The further interaction with PE leads to the binding of bilayers in the 

core of the MLV: the initially homogeneous contrast inside the MLV (Figures 2A, 4A) becomes 

progressively extremely heterogeneous as bilayers bind to each other and leave large portions free of 

bilayers. This is simultaneously accompanied by more important and erratic shape transformation, 

which leads ultimately to the formation of a cellular biliquid foam or hollow capsule (Figures 4 and 5).  

More quantitatively, the volumes measured by image analysis can be compared with the volumes 

evaluated from the simple model (scheme, Figure 6E). We take for the water thickness between DDAB 

bilayers, 80 nm, the maximum swelling of the lamellar phase (prior to interaction with PE) 52 and 

calculate, for the MLV of Figure 6 (radius 10.7 μm), the volume of the water pool after binding of the 

outmost and secondary outer bilayer, Vc. We find Vc=130 μm3. We compare Vc to the volume Vm, for the 

water pockets evaluated from Figures 6C and D. We find Vm,6C = 400 μm3 ≈ 3Vc and Vm,6D = 530 

μm3≈ 4Vc, respectively, as expected since 3 and 4 elementary events have occurred respectively in C 

and D (as clearly distinguished in a movie of the process, movie S1 in SI). Similarly, we measure that 

the total water volume for 10 bilayers (white circle, Figure 2C) is about 4300 μm3, while we calculate 
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that the volume resulting from the binding of two bilayers is about 470 μm3, hence roughly 10 times 

smaller, as expected. The very good agreement between the numerical values confirms the mechanism 

we propose, and suggests that there is no water release during this process. 

0 101.58s 116.44s 128.56s

A) B) C) D) E)

0 101.58s 116.44s 128.56s

A) B) C) D) E)  

Figure 6. (A-D) Series of the morphological transformation of a MLV as it interacts with PE. The PE diffuses from 

top to bottom and CPE = 30%. The pictures show a succession of elementary events as schematized in (E). Timing is 

indicated in white text. Scale bar =10 μm 

 

3.2.2 Quantification of the discrete binding of the bilayers 

We follow the binding of individual surfactant bilayers into the thick bundles with confocal 

microscopy (Figure 7), and analyze the fluorescence intensity distribution with Image J. In Figure 8A, 

we show that the intensity profile, perpendicular to a bilayer, is homogeneous along the bilayer. We 

define I, the integrated intensity, as the surface area of the peak of the intensity profile. We found that I 

is constant for all individual bilayers (labeled a to h). The empty symbols in Figure 8C show I along the 

thick bundle P1-P2 (marked by the crosses). We measure that the intensity increases along the thick 

bundle from P1 to P2, which precisely reveals a discrete and continuous increase of I as more and more 

bilayers bind. To quantify this, we add to the intensity (along P1-P2) between bilayers n and n+1 the 

intensities of all bilayers with labels ranging from n+1 and h (h is the last bilayer). The calculated values 

are reported as full symbols in Figure 8C. Interestingly, we find that, at any step, these calculated 

intensities are a very good evaluation of the intensity (full hexagons) for the thickest part of the bundle 

(closed to P2). In fact, all full symbols Figures 8C are located on a same horizontal line. This provides a 

further and conclusive evidence of a discrete and progressive binding of bilayers.  

Furthermore, our calculations demonstrate that the number of individual bilayers that compose a 

bundle can be evaluated from the fluorescent intensity of the bundle. For instance, by comparison of the 
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intensity of a single bilayer to that of the thickest wall, we evaluate that for the cellular composite 

material (Figure 4E) the thickest external wall contains ~ 20 bilayers. 

7.15s 15.4s 25.18s0 35.27s

 

Figure 7. Pictures showing individual bilayers binding into a thick bundle. Scale bar =10 μm. Timing is indicated in 

white text. 
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Figure 8. (A) Intensity profiles, performed at several positions along the bilayer f. (B) Binding of individual bilayers 

into a bundle (time series shown in Figure 7). Scale bar =10 μm. (C) Empty symbols: integrated intensity, I, along 

bundle P1-P2; full symbols: the sum of I the intensity along the bundle measured between the bilayers n and n+1 plus 

the intensities of all bilayers with labels ranging from n+1 and h, is very close to the final intensity (full hexagons), 

(closed to P2). The shaded area marks the locus where I cannot be measured because of the junction with an additional 

bilayer. 

 

3.2.3 Kinetics is a key parameter for our observations  

Importantly, we have noted that the events are polarized, the “budding” always occurring in the point 

diametrically opposed to the point where PE concentration is higher. This indicates that the binding 

always starts where PE concentration is higher and that the process is sensitive to the PE concentration 

gradient. In addition, the formation of buds indicates that the binding kinetics is faster than the diffusion 

of water across the compact bilayers. These experimental observations are consistent with the fact that 

the key parameter for this novel observation is to expose MLV to a strong gradient of PE. In addition, 

the hollow capsules formed have more or less the same size as the initial MLV when the initial MLV is 

not too large. This supports the fact that the water release, if any, is weak during the whole process, 

which is in full agreement with a binding kinetics faster than the diffusion of water across the bilayers. 
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In addition, our observations imply that the PE molecules penetrate inside the MLV. Very generally, 

the entry of the PE molecules into a MLV is driven by three forces: electrostatic interactions (between 

the surfactant headgroups and the maleic acid units of the PE), hydrophobic interactions (between the 

surfactant tails and the styrene units of the PE) and osmotic pressure (due to the high concentration of 

PE outside the MLV). Microscopically, the PE molecules may deform the bilayer, weaken the cohesion 

among the organized DDAB molecules, and create defects; hence membrane subunits may temporally 

be separated, allowing the passage of PE molecules (as observed with lipid vesicles in presence of 

surfactant) 62-64. We finally note that the penetration of a polymer across a lipid bilayer has been recently 

observed experimentally,65-66 in concordance with our experimental findings. 

 

4 Conclusions 

In summary, we have provided experimental data on the kinetics of formation of synthetic charged 

lipids/polyelectrolyte complexes. By using multilamellar vesicles and a high polyelectrolyte 

concentration gradient, we were able to visualize by confocal imaging the progressive binding of the 

charged bilayers as they interact with oppositely charged polyelectrolyte. Although PE/lipid interactions 

have previously been visualized on the nanometer scale by atomic force microscopy 67-69, our 

experiments constitute, to the best of our knowledge, one of the first observations on the micrometer 

scale. We have described the microscopic mechanisms at play and have provided quantitative 

measurements, which support our physical picture. The key parameter for this novel observation is to 

expose MLV to a strong gradient of PE. We indeed have demonstrated that a weak gradient induced 

radically different morphological transitions. Our description of a gradual binding process of charged 

bilayers induced by oppositely charged polyelectrolyte may shed some light for understanding the more 

complicated cell membrane behaviors induced by different kinds of charged proteins. Finally, we have 

also shown that a strong gradient induced eventually the spontaneous evolution of a MLV towards a 

hollow capsule. Our simple approach may be useful in designing a class of soft composite 

polyelectrolyte/lipid shell for applications for drug delivery or controlled drug release. 
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