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Abstract. Motivated by the study of cellular automata algorithmics
and dynamics, we investigate an extension of ultimately periodic words
to two-dimensional infinite words: collisions. A natural composition op-
eration on tilings leads to a catenation operation on collisions. By exis-
tence of aperiodic tile sets, ultimately periodic tilings of the plane cannot
generate all possible tilings but exhibit some useful properties of their
one-dimensional counterparts: ultimately periodic tilings are recursive,
very regular, and tiling constraints are easy to preserve by catenation.
We show that, for a given catenation scheme of finitely many collisions,
the generated set of collisions is semi-linear.

Introduction

The theory of regular languages, sets of one-dimensional sequences of letters
sharing some regularities, has been well studied since the sixties. Finite state
machines [17], regular languages [13], computing devices with bounded mem-
ory, monadic second-order logic [4]: various point of views lead to a same ro-
bust notion of regular languages. The concept extends to infinite words and
various other one-dimensional structures. Unfortunately, when considering two-
dimensional words – partial mappings from the plane Z

2 to a finite alphabet –
such a robust common object fails to emerge: automata on the plane, picture
languages, second-order logic, all lead to different notions of regular languages
[8]. A first difficulty arises from the definition of a finite word: should it be any
partial mapping with a finite support? Should it be rectangles filled with letters?
Should it be any mapping with a connected support for some particular connex-
ity notion? A second difficulty arises from the complexity of two-dimensional
patterns: in the simplest case of uniform local constraints, i.e. tilings, knowing
whether a given finite pattern is a factor of a valid tiling (of the whole plane) is
already undecidable [1].

In the present paper, we investigate a particular family of recursive tilings
of the plane endowed with a catenation operation. Our definition of an ulti-
mately periodic tiling, a collision, is inspired by geometrical considerations on



one-dimensional cellular automata space-time diagrams and tilings. It can be
thought of as an extension of the notion of ultimately periodic biinfinite words
to two-dimensional words. As we will show in this paper, these objects provide
a convenient tool to describe synchronization problems in cellular automata al-
gorithmics.

One-dimensional cellular automata [12] are dynamical systems whose con-
figurations consist of biinfinite words on a given finite alphabet. The system
evolves by applying uniformly and synchronously a locally defined transition
rule. The value at each position, or cell, of a configuration only depends on the
values of the cells on its neighborhood at the previous time step. To discuss
the dynamics or to describe algorithmic constructions, it is often convenient to
consider space-time diagrams rather than configurations. A space-time diagram
is a drawing of a particular orbit of the system: configurations are depicted one
on top of the other, from bottom to top, by successively applying the transition
rule, as depicted on Fig. 1. This representation permits to draw away the time-
line and discuss the structure of emerging two-dimensional patterns. Formally,
this is equivalent to consider tilings of half the plane with a special kind of local
constraint, oriented by the timeline.

Time goes from bottom to top. Each letter is represented by a different color.

Fig. 1. space-time diagram of a one-dimensional cellular automaton

Let us give first an informal overview of what collisions are and where they
come from. An ultimately periodic configuration consists of two infinite peri-
odic words separated by a finite non-periodic word. As transitions of cellular
automata are locally defined, the image of an ultimately periodic configuration
is an ultimately periodic configuration such that: for each periodic part, the pe-
riod in the image divides the period in the preimage ; for the non-periodic part,
it can only grow by a finite size depending on the local rule. If, by iterating the
transition rule of the cellular automaton, the size of the non-periodic part of
the configurations remains bounded, then the orbit of the ultimately periodic
configuration is, up to a translation, ultimately periodic. When considering this
ultimately periodic behavior from the space-time diagram point of view, one can
see some kind of particle: a localized structure moving with a rational slope in
a periodic background environment, as depicted on Fig. 2a.

As particles are ultimately periodic configurations, one can construct more
complicated configurations by putting particles side by side, ensuring that the
non-periodic parts are far enough from each other, and that the periodic parts of
two particles put side by side are the same and well aligned. If the non-periodic
part of several particles (two or more) becomes near enough in the orbit, complex
interactions might occur. If the interaction is localized in both space and time,
as depicted on Fig. 2b, this interaction is called a collision.



(a) particle (b) collision

Fig. 2. particles and collisions generated by ultimately periodic configurations

Particles and collisions provide a convenient tool in the study of cellular au-
tomata. When constructing two-dimensional cellular automata, like in historical
constructions of von Neumann [19] and Codd [5], particles are a convenient way
to convey quanta of information from place to place. The most well known ex-
ample of particle is certainly the glider of the Game of Life used by Conway et al
to embed computation inside the Game of Life [2] by using particular behavior
of glider collisions. When using one-dimensional cellular automata to recognize
languages or to compute functions, a classical tool is the notion of signal intro-
duced by Fischer [7] and later developed by Mazoyer and Terrier [15, 16]: signals
and their interactions are simple kinds of particles and collisions. Particles ap-
pears even in the classification of cellular automata dynamics: in its classification
[20], Wolfram identifies what he calls class 4 cellular automata where “(...) lo-
calized structures are produced which on their own are fairly simple, but these
structures move around and interact with each other in very complicated ways.
(...)” A first study of particles interaction was proposed by Boccara and al [3],
latter followed by Crutchfield and al [11]: these works focus on particles and
bounding the number of possible collisions they can produce. Finally, the proof
by Cook of the universality of rule 110 [6] is a typical construction involving a
huge number of particles and collisions: once the gadgets and the simulation are
described, the main part of the proof consists of proving that particles are well
synchronized and that collisions occur exactly as described in the simulation.

When dealing with space-time diagrams consisting of only particles and col-
lisions, a second object is often used: a planar map describing the collisions and
their interactions. When identifying particles and collisions in space-time dia-
grams, in the style of Boccara and al [3], one builds the planar map to give
a compact description of the diagram, as depicted on Fig. 3. When describing
algorithmic computation, in the style of Fischer [7], one describes a family of
planar maps as a scheme of the produced space-time diagrams.

In the present paper, we formally define particles and collisions, describe
how collisions can be catenated, introduce collisions schemes as planar maps
and discuss the construction of finite catenations from collisions schemes. All
the necessary material is defined in section 1 followed by basic catenation of
tilings in section 2. Collisions and their catenations are formally introduced in
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(a) space-time diagram (b) associated planar map

Fig. 3. From space-time diagram to planar map

section 3. Planar maps and the characterization of catenations they encode are
treated in section 4.

1 Definitions

In the remaining of this paper, every discussion occurs in the two-dimensional
plane Z

2 partially colored with the letters of a given finite alphabet Σ. A pattern
is a subset of Z

2. A cell c of a given pattern P is an element c ∈ P . A vector is
an element of the group

(

Z
2,+

)

of translations in the plane. A coloring C is a
partial map from Z

2 to Σ. The support of a coloring C is denoted by Sup(C), its
restriction to a pattern P is denoted by C|P .

The translation u ·C of a coloring C by a vector u is the coloring with support
Sup(C) + u such that, for all z ∈ Sup(C), it holds (u · C)(z + u) = C(z). The
disjoint union C ⊕ C′ of two colorings C and C′ is the coloring with support
Sup(C)∪ Sup(C′) such that, for all z ∈ Sup(C), it holds C ⊕ C′(z) = C(z) and for
all z ∈ Sup(C′), it holds C ⊕ C′(z) = C′(z). Colorings and their operations are
depicted on Fig. 4.
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Fig. 4. colorings, translations and disjoint unions

A tiling constraint is a pair (V, Υ ) where V is a finite pattern and Υ is a
subset of ΣV . A coloring C satisfies a tiling constraint (V, Υ ) if for each vec-
tor u ∈ Z

2 such that V subsets Sup(u · C), it holds (u · C)|V ∈ Υ . For now
on we fix a tiling constraint (V, Υ ). A tiling is a coloring with support Z

2 that
satisfies the tiling constraint. The neighborhood ∂P of a pattern P is the pat-
tern {z + v | z ∈ P, v ∈ V } of cells constraining P . Two colorings C and C′ are
undistinguishable on a pattern P if the equation C|∂P = C′

|∂P
holds.



In the following, for geometrical considerations, we will implicitly use varia-

tions of discrete forms of the Jordan curve theorem [14]. Two points
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A pattern P is 4-connected, resp. 8-connected, if for each pair of point z, z′ ∈ P ,
there exists a 4-connected, resp. 8-connected, path of points of P from z to z′.
The discrete Jordan curve theorem states that any non empty 4-connected closed
path separates the plane into two 8-connected patterns, the interior and exterior
of the path. More generally, a frontier is a 4-connected pattern separating the
plane into n 8-connected patterns, its borders.

2 Catenation of tilings

Let (V, Υ ) be a tiling constraint and C a set of colorings satisfying this constraint.
To generate tilings by catenating colorings in C, the idea is to construct a patch-
work of colorings by cutting portions of coloring and glue them together so that
tiling constraints are preserved. A simple patchwork of 2 tilings is depicted on
Fig. 5.

(a) coloring � (b) coloring � (c) blueprint (d) patchwork

Fig. 5. a patchwork

Definition 1. A patchwork is a tiling Tφ defined for each z ∈ Z
2 by Tφ(z) =

φ(z)(z) where φ : Z
2 → C is the blueprint of the patchwork such that:

1. ∀C ∈ C, ∂φ−1(C) ⊆ Sup(C);
2. ∀z ∈ Z

2,∀v ∈ V, φ(z)(z + v) = φ(z + v)(z + v).

Patchworks provide a convenient way to combinatorially generate tilings from
a set of valid colorings without knowing explicitly the tiling constraint: it is
sufficient to know a superset of the tiling neighborhood V and to cut colorings
on a big enough boundary containing the same letters.

Topology is a classical tool of symbolic dynamics [10], tilings being exactly the
shifts of finite type for two-dimensional words. The set of colorings is endowed
with the so called Cantor topology: the product of the discrete topology on
Σ ∪ {⊥} where ⊥ denotes undefined color. This topology is compatible with

the following distance on colorings: d(C, C′) = 2−min{|z|,C(z) 6=C′(z)}. Let OC be
the set of colorings C′ such that C′

|Sup(C) = C|Sup(C). The set of OC for colorings
C with a finite support is a base of clopen sets for the given compact perfect
topology.



Proposition 1. The set of patchworks over C is a compact set.

Proof. Let Ti be a sequence of patchworks over C converging to a limit tiling T .
Consider the blueprints φi of these patchworks. For each cell z ∈ Z

2, let vz be
the element (−z · T )|V of Υ . Let φ(z) be any φi(z) such that (−z ·φi(z))|V = vz

– such a φi(z) always exists by definition of patchworks as Ti converges to T .
The map φ is a blueprint for T . �

Proposition 2. The set of patchworks over C contains the tilings of the closure
of C.

Proof. Let Ci be a sequence of colorings in C converging to a limit tiling T .
For each Ci, let Pi be the largest pattern, for inclusion, such that Ci|Pi

= T|Pi
.

As the sequence Ci converges to T , the sequence Pi converges to Z
2. Without

loss of generality, consider that Pi is an increasing sequence of patterns. For
each i let δ(i) be the smallest j such that ∂Pi ⊆ Pj . Consider P ′

n = Pδn(1), an
increasing subsequence of Pi. Construct a blueprint φ as follows: for all z ∈ Z

2, let
φ(z) = P ′

min{n|z∈P ′

n
}. By construction, this blueprint is valid and its patchwork

is T . �

Corollary 1. Let Oi be a base of open sets of colorings and C be a set of col-
orings containing at least one element of each Oi. The set of patchworks over C
is the whole set of tilings. �

In particular, the set of tiling constraints Υ , viewed as colorings, generates the
whole set of tilings. The larger set of colorings with finite support generates the
whole set of tilings. But this approach is heterogeneous: we combine colorings
to obtain tilings. Can we restrict ourselves to combinations of tilings? More
precisely, given a tiling constraint, can we recursively construct a recursive family
of tilings T such that the set of patchworks over T is the whole family of tilings?

In the case of one-dimensional tilings, replacing Z
2 by Z, it is straightforward

that the set of ultimately periodic tilings generates the whole set of tilings: the
set of ultimately periodic tilings is a dense set – from any tiling T and any
finite pattern P , one can construct an ultimately periodic tiling T ′ such that
T|P = T ′

|P . In the case of two-dimensional tilings, due to the undecidability of

the tiling problem [1, 18], there exists no such family.

Proposition 3. There exists no recursive function that, given a tiling con-
straint, computes a recursive family of tilings T such that the set of patchworks
over T is the whole family of tilings.

Proof. If such function would exist, it should return an empty family of tilings if
and only if the given tiling constraint does not tile the plane. The tiling problem
is undecidable. �

In the next section, we propose an extension of ultimately periodic tilings for
two-dimensional tilings with high regularity, focusing on the ease of catenation
as there is no hope to capture aperiodic tilings.



3 Ultimately periodic tilings

Biperiodic tilings are among the most regular ones and correspond to the idea of
a background for cellular automata: a tiling B with two non-colinear periodicity
vectors u and v such that B = u · B = v · B. As backgrounds are objects
of dimension 2, if one wants to mix several backgrounds in a same tiling, the
interface between two background is of dimension 1. The most regular kind of
interface corresponds to the idea of a particle: a tiling P with two non-colinear
vectors, the period u of the particle such that P = u · P and the period v of
its backgrounds such that for all position z ∈ Z

2, the extracted one-dimensional
word (P(z + vi))i∈Z

is ultimately periodic. Of course, several particles might
meet on the plane, leading to objects of dimension 0 that correspond to the idea
of a collision. In this paper, an ultimately periodic tiling of the plane is such a
collision.

Let ∢v(u, u′) denote the angular portion of the plane, on the right hand
side of u, starting in position v ∈ Z

2 and delimited by the vectors u, u′ ∈ Z
2.

Formally, one might geometrically define a collision as follows (and depicted on
Fig. 6):
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Fig. 6. defining collisions through vectors

Definition 2. A collision is a tiling C for which there exists an integer k and a

finite cyclic sequence of n vectors (ui) ∈
(

Z
2
)Zn

such that, for all i ∈ Zn, C is
ui-periodic in z, i.e. C(z) = C(z+ui), for all positions z inside ∢kui

(ui−1, ui+1).

While characterizing collisions, such a definition does not explicitly identify
the different periodic areas of the plane: the finite collision coloring, the uniperi-
odic particle colorings and the biperiodic background colorings. To manipulate
collisions and combine them using the properties of these regular areas, rep-
resentations are needed that capture these areas. Due to subtleties of discrete
geometry, the representation, albeit simple in principle as depicted on Fig. 7,
admits more complex definitions. Moreover, we take the tiling constraints into
account in the definitions to ensure tilability of any valid combination.

Definition 3. A background representation B is a tuple (C, u, v) where C is
a coloring with finite support, u, v ∈ Z

2 are non-colinear vector and B̄ =
⊕

i,j∈Z2(iu + jv) · C is the associated tiling.
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Fig. 7. principle of construction

Definition 4. A particle representation P is a tuple (B, C, u, B′) where B and
B′ are backgrounds, C is a coloring with finite support and u ∈ Z

2 a vector,
satisfying:

1. the support of I =
⊕

k∈Z
ku · C is a frontier with two borders: L, the left one

with respect to u, and R, the right one;
2. B|L ⊕ I ⊕ B′

|R is the tiling P̄ associated with P;

3. P̄ is undistinguishable from B over L and from B′ over R.

Definition 5. A collision representation C is a pair (C, L) where C is a finite
pattern, L is a finite sequence of n particles Pi = (Bi, Ci, ui,B

′
i), satisfying:

1. ∀i ∈ Zn, B′
i = Bi+1;

2. the support of I = C ⊕
⊕

i∈Zn,k∈N
kui · Ci is a frontier with n borders;

3. For all i ∈ Zn, the support of C ⊕
⊕

k∈N
(kui · Ci ⊕ kui+1 · Ci+1) if a frontier

with two borders: let Pi be the border on the right of Pi;
4. I ⊕

⊕

i Bi|Pi
is the tiling C̄ associated with C;

5. For all i ∈ Zn, the colorings C̄ and B′
i are undistinguishable over Pi;

6. For all i ∈ Zn, the colorings C̄ and P̄i are undistinguishable over kui · Ci.

In the following, for any particle P = (B, C, u, B′) inside a collision, the
support of the particle is

⊕

k∈N
(ku · C).

Proposition 4. The tiling associated with a background (resp. particle, colli-
sion) representation is a background (resp. particle, collision).

Proof. Let (C, u, v) be a background representation B. As u and v are not
collinear, B̄ is biperiodic: B̄ is a background.

Let (B, C, u, B′) be a particle representation P. As backgrounds are biperi-
odic, for all background T and for all vector u′ ∈ Z

2, there is a multiple ku′ of
u′ such that T is periodic in ku′. Thus, there exists a multiple ku of u such that
P̄ is periodic in ku and for any vector v not collinear with u, P̄ is ultimately
periodic on each one-dimensional word extracted using v. Thus, P̄ is a particle.

Let (C, (Pi)) where Pi = (Bi, Ci, ui,B
′
i) be a collision representation C.

Lets construct a collision with vector set (vi) and constant k as follows. For
the vectors (vi) take the (ui) sorted in indirect trigonometric order, eventually



adding new vectors to ensure that two consecutive vectors are not collinear. For
the constant k, take it large enough so that the support of C does not intersect
any ∢kvi

(vi−1, vi+1) and that for each particle Pj , such an intersection occurs
only in the case i = j: as consecutive (vj) are non-collinear, this is always
possible. In C̄, each ∢kvi

(vi−1, vi+1) is periodic in vi: C̄ is a collision. �

Proposition 5. The set of background (resp. particle, collision) representations
is recursive.

Proof. Representations being composed of finitely many recursive objects, one
only needs to prove that the conditions on these objects are recursively checkable.
The tiling constraints conditions are checked on periodic objects: only finitely
many tiling constraints need to be considered. The geometrical considerations
on frontiers concern sets of periodic patterns in the plane and thus can also be
checked by considering finitely many positions in Z

2. �

From now on, we will always consider objects alongside with representations
and for the sake of legibility avoid going back and forth from representations to
associated tilings.

4 Finite catenations

A random blueprint of finitely many collisions might produce a tiling which is
not a collision, however if the blueprint of the patchwork consists of finitely many
8-connected components, the patchwork is a collision. Using representations of
collisions, a more regular family of patchworks can be defined: a catenation
induces a patchwork combining collisions by binding pairs of similar particles as
depicted on Fig. 3.

Two particles are bindable if they share the same coloring, have opposite
vectors and are well aligned so that the colorings superpose well. Formally, two
particles P = (B, C, u, B′) and P̃ = (B̃, C̃, ũ, B̃′) are bindable, with n repetitions,
if ũ = −u, B̃ = (n− 1)u ·B′ , B̃′ = (n− 1)u ·B and C̃ = (n− 1)u · C. The tuple
(P, n, P̃) is a binding. The support of the binding is the pattern

⊕

0≤i≤(n−1) iu·C.
Intuitively, it corresponds to the support of the particle restricted to its number
of repetitions.

Definition 6. A catenation scheme is a connected planar map whose vertexes
are labeled by collisions, and edges (possibly half-infinite) are labeled by parti-
cle(s) compatible with adjacent collisions. Moreover, the adjacent particles of
a vertex have to correspond to the geometrically ordered set of particles of the
associated collision.

Since a catenation scheme is a planar map, its dual is well defined, and
introduces the notion of face: a face corresponds to a background area of the
tiling. Faces can be either finite or infinite. To transform a catenation scheme
into a tiling, one has to tag each finite edge with a binding and ensure that
binding informations are consistent.



Definition 7. A catenation is a catenation scheme where all vertices are tagged
with a translation vector and all finite edges are tagged by bindings compatible
with the particles on the edge and the translated collisions on both sides, so
that supports of bindings, finite colorings of translated collisions and translated
infinite particles are distinct.

A patchwork is associated to a catenation by constructing a blueprint as
follows. For each position z ∈ Z

2, if z is in the finite coloring of a translated
collision, map it to the translated collision, if z is in the support of a finite
binding, map it to the particle associated to the binding, if z is in the support
of an translated infinite particle, map it to the translated particle, and finally if
z is inside a face, map it to the associated background.

Proposition 6. The patchwork associated with a catenation is a well defined
tiling; if the catenation is finite it is a collision.

Proof. By construction, as all the supports are disjoint, the associated patchwork
is a valid embedding of the planar map into the plane. The tiling constraints are
valid in the patchwork because of the tiling constraints checking in the definition
of representations. If the catenation is finite, the obtained tiling is a collision:
its particles are the infinite particles of the catenation, the finite coloring cor-
responds to the finite part of the plane not filled by infinite particles and their
backgrounds. �

Catenation schemes provide a tool to combine collisions and program com-
plex behaviors in tilings. Catenations provide implementations of such schemes.
The main result of this paper states that the set of catenations associated to a
catenation scheme is both recursive and very regular.

Theorem 1. Given a finite catenation scheme, the set of corresponding catena-
tions, defined up to translations, is a recursive semi-linear set.

Proof. To prove this theorem, we will show how to recursively construct open
formulae of Presburger arithmetic: first-order arithmetic over integers with ad-
dition and order. These formulaes exactly encode the semi-linear set of integers
[9]: finite unions of linear sets of integers.

Consider a catenation scheme: we are essentially searching the number of
repetitions inside each binding. These numbers will be the unknown of the for-
mula. We split the formula in a conjunction of finitely many subformulae: one
for each face. The catenation is valid if and only if each of its face is valid.

For a face, the formula is the conjuction of two formulae: one saying that
going around the border of the face returns back to the starting point. This
property can be summarised in an equation of the form

∑

i uini +
∑

j dj = 0
where ni are the unknown, ui are the (constant) vectors of particles, and dj are
(constant) translation induced between two consecutive particles by collisions.
The second part of the formula expresses the fact that supports of elements
are disjoints. For collisions, since the support of finite coloration is finite, it is
sufficient to make a (finite) conjunction. For bindings or particles, the number of



points in the support is potentially infinite but consists of only a finite number
of equivalence classes modulo the repetition vector. Thus all those point can
be described with an universal quantification on the number of repetitions and
conjunctions on the classes. Moreover, using order, it is possible to bound the
number of repetitions. �

5 Extensions and open problems

The objects presented here extend to higher dimensions. Of course, the number
of objects increases but the approach seems to extend well. The main difficulty to
deal with objects in higher dimensions is the embedding of the whole complexity
of dimension n in dimension n + 1. Another point is to confront the extension
with algorithmics of the literature.

In cellular automata algorithmics, constructions might involve infinite cate-
nations. Whereas infinite catenation schemes and associated catenations are well
defined, Presburger arithmetic cannot help in the case of infinitely many vari-
ables and equations. We need tools to capture constructions involving regular
infinite catenation schemes.
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A Appendix

In this appendix, we provide the referee with two examples. The first section
illustrates how Theorem 1 might be applied on a catenation scheme. The sec-
ond section is a complete example using the tools of this paper to describe the
synchronization details of a cellular automaton construction.

A.1 An example of face resolution

In this section, we give an example of decision procedure for a face in a catena-
tion scheme. Our example uses the simplest alphabet: Σ = { , }. The tiling
constraint considered is the whole set of elements on V = {(0,−1), (0, 0), (0, 1)}
(i.e. (V,ΣV )).

We choose a set of three collisions depicted in Fig. 8c with corresponding
particles (Fig. 8b) and backgrounds (Fig. 8a). Relative positions of particles in
collisions are indicated with a circle.
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(b) Particles : the circle indicates reference point
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(c) Collisions : circle indicates positions for reference point of particles
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(d) Simple catenation scheme

Fig. 8. A simple catenation scheme

Let us now study the catenation scheme given in Fig 8d. This scheme has two
faces (one interior and one exterior). Let us restrict ourselves to the interior face
and find all possible catenations. To do this, we must introduce the number of
repetition for each binding: let us call n1 (resp. n2, n3) the number of repetition
of the particle P1 (resp. P2, P3).

The formula is divided in two parts. The first part ensure that going around
the face take us back to the starting point. This is ensured by adding the trans-
lations due to particles in binding and the translation to go from one particle to



an other (due to collision) and saying the result must be null. In our case, the
resulting equation is :

(n1 − 1)

(

0

1

)

+

(

3

0

)

+ (n2 − 1)

(

1

−1

)

+

(

−2

−5

)

+ (n3 − 1)

(

−2

−2

)

+

(

−3

0

)

=

(

0

0

)

The second part of the formula concerns non-overlapping of supports. This is
obtained by ensuring that all their points are distinct. The form of the formula
differs according to the element (binding, particle or collision) whose support is
considered. Let us first give an example for support of collisions. To say that
collisions C1 = (C1, L1) and C3 = (C3, L3) are disjoint. Since the number of
points in each support of non periodic coloring is finite, it is possible to make
the conjunction of all pair of points being distinct. This is written:

∧

z∈Sup(C1)

∧

z′∈Sup(C3)

z 6=

(

z′ + (n1 − 1)

(

0

1

))

The (n1 − 1)
(

0
1

)

corresponds to the translation induced between C1 and C3 by
the binding. One other possible case involves binding. In this case, the size of the
support is no longer finite. However, the points are at regular coordinates (due to
the repetition axe). Let us take the example of supports of P1 = (B, C,

(

0
1

)

,B′)
and C2 = (C2, L2). Non overlap of those supports can be expressed with the
formula :

∀i,
∧

z∈Sup(C)

∧

z′∈Sup(C2)

0 ≤ i < (n1 − 1) ⇒

(

z + i

(

0

1

)

6= z′ + (n3 − 1)

(

2

2

))

The same method also applies for particles that are not part of bindings.
Making the conjunction of all those formulae gives a unique formula on Pres-

burger arithmetic whose solution correspond to catenation. In this example, we
can find that the first part gives solutions on the form: n1 = 4k + 7, n2 =
2k + 2, n3 = k, k ∈ N. Moreover, the second part adds the condition k > 2
(checking the support of P1 and C2).

A.2 A complete example of synchronisation

This section is dedicated to give a simple but complete example using the cate-
nation of collisions to solve synchronisation problems in cellular automata. For
this, we construct a cellular automaton with 15 states which is able to “calculate”
the Syracuse sequence.

This automaton is based on particles and collisions. First the Syracuse se-
quence is a integer sequence satisfying the successor of n if calculated with
the function f such that f(n) = n/2 if n is even, and f(n) = 3n + 1 if n is
odd. The automaton neighbourhood implies a support of the tiling constraint
V = {(−1, 0), (0, 0), (1, 0), (0, 1)}. Since the automaton is deterministic, for ev-
ery triplet l, c, r there is exactly one element z such that (l, c, r, z) ∈ Υ (z is the
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Fig. 9. Elements of the automaton



element in position (1, 0)). The set of constraint (i.e. the local transition rule) is
defined in Fig. 9(a).

As for the previous example, we take a set of collisions depicted in Fig.9c
along with included particles (Fig.9b). Backgrounds are not depicted since they
consist only the uniformly white one (i.e

(

,
(

0
1

)

,
(

1
0

))

. The desired behaviors are
depicted in Fig. 10. Faces present in those behaviors are depicted in Fig 9d. Let
us study those faces. As for the previous example, conditions on faces can be
divided into two parts: in our example, we focus only on the first equation. Due
to the form of patterns in collisions and particles, the second part does not bring
any supplementary conditions. The equation for faces are explicited below.
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From these equations, we can extract a set of solutions for each face.

– F1 : n1 = x, n2 = 2x, n3 = 4x + 1
– F2 : n1 = 2x + 1, n2 = 2x + 2, n3 = x + 1
– F3 : n1 = 2x + 6, n2 = x + 2, n3 = x
– F4 : n1 = y, n2 = 2x + 6, n3 = y + x + 2, n4 = x
– F ′

1 : n1 = x, n2 = 2x, n3 = 4x + 4
– F ′

2 : n1 = 2x, n2 = 2x + 1, n3 = x + 1
– F ′

5 : n1 = 4x + 11, n2 = x, n3 = x + 2
– F ′

6 : n1 = x, n2 = x, n3 = 2x

It is possible to group those solutions together in order to construct a solution
for the whole scheme. In our case, it is possible to find solutions for both schemes
as depicted in Fig. 10. To conclude one can make the link between the number
of repetitions and the spacing between the two consecutive vertical particles in
the scheme. For the odd (resp. even) case, the input of x repetitions correspond
to a spacing of 2x + 3 (resp. 2x + 4) and the output of 6x + 4 (resp. x − 2)
correspond to a spacing of 6x + 10(= 3(2x + 3) + 1) (resp. x + 2(= (2x + 4)/2)).
Thus, those scheme correspond to space-time diagram with the wanted behavior
(some examples can be seen in Fig.11. As the automaton is deterministic, this
behavior is the only possible.

In this example, some non-trivial problems of synchronisation (influencing
for example the occurence of collision β/β′ or δ/δ′) are easily dealt with when
combining solutions of faces.
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