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Abstract. Topological dynamics of cellular automata (CA), inherited
from classical dynamical systems theory, has been essentially studied in
dimension 1. This paper focuses on 2D CA and aims at showing that
the situation is different and more complex. The main results are the
existence of non sensitive CA without equicontinuous points, the non-
recursivity of sensitivity constants and the existence of CA having only
non-recursive equicontinuous points. They all show a difference between
the 1D and the 2D case. Thanks to these new constructions, we also
extend undecidability results concerning topological classification previ-
ously obtained in the 1D case.

1 Introduction

Cellular automata were introduced by J. von Neumann as a simple formal model
of cellular growth and replication. They consist in a discrete lattice of finite-state
machines, called cells, which evolve uniformly and synchronously according to a
local rule depending only on a finite number of neighboring cells. A snapshot of
the states of the cells at some time of the evolution is called a configuration, and
a cellular automaton can be view as a global action on the set of configurations.

Despite the apparent simplicity of their definition, cellular automata can
have very complex behaviours. One way to try to understand this complexity
is to endow the space of configurations with a topology and consider cellular
automata as classical dynamical systems. With such a point of view, one can
use well-tried tools from dynamical system theory like the notion of sensitivity
to initial condition or the notion of equicontinuous point.

This approach has been followed essentially in the case of one-dimensional
cellular automata. P. Kůrka has shown in [1] that 1D cellular automata are
partitioned into two classes:

– Eq, the set of cellular automata with equicontinuous points,
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– S, the set of sensitive cellular automata.

We stress that this partition result is false in general for classical (continuous)
dynamical systems. Thus, it is natural to ask whether this result holds for the
model of CA in any dimension, or if it is a “miracle” or an “anomaly” of the
one-dimensional case due to the strong constraints on information propagation
in this particular setting. One of the main contributions of this paper is to show
that this is an anomaly of the 1D case (section 3): there exist a class N of 2D
CA which are neither in Eq nor in S.

Each of the sets Eq and S has an extremal sub-class: equicontinous and expan-
sive cellular automata (respectively). This allows to classify cellular automata
in four classes according to the degree of sensitivity to initial conditions. The
dynamical properties involved in this classification have been intensively studied
in the literature for 1D cellular automata (see for instance [1,2,3,4]). Moreover,
in [5], the undecidability of this classification is proven, except for the expansivity
class whose decidability remains an open problem.

In this paper, we focus on 2D CA and we are particularly interested in
differences from the 1D case. As said above, we will prove in section 3 that there is
a fundamental difference with respect to the topological dynamics classification,
but we will also adopt a computational complexity point of view and show that
some properties or parameters which are computable in 1D are non recursive in
2D (proposition 5 and 8 of section 4). To our knowledge, only few dimension-
sensitive undecidability results are known for CA ([6,7]). However, we believe
that such subtle differences are of great importance in a field where the common
belief is that everything interesting is undecidable.

Moreover, we establish in section 4 several complexity lower bounds on the
classes defined above and extend the undecidability result of [5] to dimension
2. Notably, we show that each of the class Eq, S and N is neither recursively
enumerable, nor co-recursively enumerable. This gives new examples of “natural”
properties of CA that are harder than the classical problems like reversibility,
surjectivity or nilpotency (which are all r.e. or co-r.e.).

2 Definitions

Let A be a finite set and M = Z (for the one-dimensional case) or Z
2 (for the

two-dimensional case). We consider AM, the configuration space of M-indexed
sequences in A. If A is endowed with the discrete topology, AM is compact,
perfect and totally disconnected in the product topology. Moreover one can define
a metric on AM compatible with this topology:

∀x, y ∈ AM, dC(x, y) = 2−min{‖i‖∞:xi 6=yi i∈M}.

Let U ⊂ M. For x ∈ AM, denote xU ∈ AU the restriction of x to U. Let
U ⊂M be a finite subset, Σ is a subshift of finite type of order U if there exists
F ⊂ AU such that x ∈ Σ ⇐⇒ xm+U ∈ F ∀m ∈ M. In other word, Σ can be
viewed as a tiling where the allowed patterns are in F .



In the sequel, we will consider tile sets and ask whether they can tile the plane
or not. In our formalism, a tile set is a subshift of finite type: a set of states (the
tiles) given together with a set of allowed patterns (the tiling constraints). We
will restrict to 2 × 1 and 1 × 2 patterns (dominos) since it is sufficient to have
the undecidability results of Berger [8].

A cellular automaton (CA) is a pair (AM, F ) where F : AM → AM is defined
by F (x)m = f((xm+u)u∈U) for all x ∈ AM and m ∈M where U ⊂ Z is a finite set
named neighborhood and f : AU → A is a local rule. The radius of F is r(F ) =
max{‖u‖∞ : u ∈ U}. By Hedlund’s theorem [9], it is equivalent to say that F is
a continuous function which commutes with the shift (i.e. σm ◦ F = F ◦ σm for
all m ∈ M).

We recall here general definitions of topological dynamics used all along the
article. Let (X, d) be a metric space and F : X → X be a continuous function.
• x ∈ X is an equicontinuous point if for all ε > 0, there exists δ > 0, such

that for all y ∈ X , if d(x, y) < δ then d(Fn(x), Fn(y)) < ε for all n ∈ N.
• (X, F ) is sensitive if there exists ε > 0 such that for all δ > 0 and x ∈ X ,

there exists y ∈ X and n ∈ N such that d(x, y) < δ and d(Fn(x), Fn(y)) > ε.

3 Non Sensitive CA Without Any Equicontinuous Point

In this section, we will construct a 2D CA which has no equicontinuous point
and is not sensitive to initial conditions. This is in contrast with dimension 1
where any non-sensitive CA must have equicontinuous points as shown in [1].

The CA (denoted by F in the following) is made of two components:

– an obstacle component (almost static) for which only finite type conditions
are checked and corrections are made locally ;

– a particle component whose overall behaviour is to move left and to bypass
obstacles.

Formally, F has a Moore’s neighborhood of radius 2 (25 neighbors) and a
state set A with 12 elements : A =

{

U, D, 0, 1, ↓, ↑,←,→,ւ,ց,տ,ր
}

where
the subset AF = {1, ↓, ↑,←,→,ւ,ց,տ,ր} corresponds to the obstacle com-
ponent and {U, D, 0} to the particle component.

Let ΣF be the subshift of finite type of AZ
2

defined by the set of allowed
patterns constituted by all the 3 × 3 patterns appearing in the following set of
finite configurations:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ց ↓ ↓ ↓ ւ ∗ ∗

∗ ∗ ∗ → 1 1 1 ← ∗ ∗

∗ ∗ ∗ → 1 1 1 ← ∗ ∗

∗ ∗ ∗ → 1 1 1 ← ∗ ∗

∗ ∗ ∗ ր ↑ ↑ ↑ տ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



where ∗ stand for any state in A \ AF .
In the sequel, a configuration x is said to be finite if the set

{

z : x(z) 6= 0
}

is
finite. Moreover, in such a configuration, we call obstacle a maximal 4-connected
region of states from AF .

The following lemma (the proof is straightforward) states that finite configu-
rations from ΣF consist of rectangle obstacles inside a free A \AF background.
Moreover, obstacles are spaced enough to ensure that any position “sees” at
most one obstacle in its 3× 3 neighborhood.

Lemma 1. Let x ∈ ΣF be a finite configuration. For any z ∈ Z
2 we have the

following:

– either x(z) ∈ AF and z belongs to a rectangular obstacle;
– or x(z) 6∈ AF and the set of positions

{

z′ : x(z′) ∈ AF and ‖z′ − z‖∞ ≤ 1
}

is empty or belongs to the same obstacle.

The local transition function of F can be sketched as follows:

– states from AF are turned into 0’s if finite type conditions defining ΣF are
violated locally and left unchanged in any other case ;

– states U and D behave like a left-moving particle when U is just above D
in a background of 0’s, and they separate to bypass obstacles, U going over
and D going under, until they meet at the opposite position and recompose
a left-moving particle (see figure 1).

Fig. 1. A particle separating into two parts (U and D) to bypass an obstacle
(the black region).

A precise definition of the local transition function of F is the following:

1. if the neighborhood (5× 5 cells) forms a pattern forbidden in ΣF , then turn
into state 0 ;

2. else, apply (if possible) one of the transition rules depending only on the
3× 3 neighborhood detailed in figure 2

3. in any other case, turn into state 0.

The possibility to form arbitrarily large obstacles prevents F from being
sensitive to initial conditions.

Proposition 1. F is not sensitive to initial conditions.
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Fig. 2. Transition rule of F where x stands for any state in AF , ’∗’ means any
state in A \ AF (2 occurrences of ∗ are independent), and curved arrows mean
that the transition is the same for any rotation of the neighborhood pattern.

Proof. Let ε > 0. Let cε be the configuration everywhere equal to 0 except in
the square region of side 2

⌈

− log ε
⌉

around the centre where there is an obstacle.

∀y ∈ AZ
2

, if d(y, cε) ≤ ε/4 then ∀t ≥ 0, d
(

F t(cε), F
t(y)

)

≤ ε since a well-formed
obstacle (precisely, a partial configuration that would form a valid obstacle when
completed by 0 everywhere) is inalterable for F provided it is surrounded by
states in A\AF (see the 3 first transition rules of case 2 in the definition of the
local rule): this is guarantied for y by the condition d(y, cε) ≤ ε/4. ⊓⊔

The next lemma shows that ΣF attracts any finite configuration under the
action of F .

Lemma 2. For any finite configuration x, there exists t0 such that ∀t ≥ t0 :
F t(x) ∈ ΣF .

The following lemma establishes the key property of the dynamics of F : par-
ticles can reach any free position inside a finite field of obstacles from arbitrarily
far away from the field.

Lemma 3. Let x ∈ ΣF ∩
(

{0} ∪ AF

)Z
2

be a finite configuration. For any z0 ∈
Z

2 such that x(z0) = 0 there exists a path (zn) such that:

1. ‖zn‖∞ →∞
2. ∃n0, ∀n ≥ n0, if xn is the configuration obtained from x by adding a par-

ticle at position zn (precisely, xn(zn) = U and xn

(

zn + (0,−1)
)

= D) then
(

Fn(xn)
)

(z0) ∈ {U, D}.



Proof. First, since x ∈ ΣF and x(z0) = 0, then either x
(

z0 + (0, 1)
)

= 0 or

x
(

z0 + (0,−1)
)

= 0. We will consider only the first case since the proof for the
second one is similar. Let (zn) be the path starting from z0 defined as follows:

– If x
(

zn + (1, 0)
)

= 0 and x
(

zn + (1,−1)
)

= 0 then zn+1 = zn + (1, 0).
– Else, position zn + (1, 0) and/or position zn + (1,−1) belongs to an obsta-

cle P . Let a, b and c be the positions of the upper-left, upper-right and
lower-right outside corners of P and let p be its half perimeter. Then define
zn+1, . . . , zn+p+1 to be the sequence of positions made of (see figure 3):

Fig. 3. Definition of the (zn) path in the presence of obstacles.

• a (possibly empty) vertical segment from zn to a,
• the segment [a; b],
• a (possibly empty) vertical segment from b to zn+p+1 where zn+p+1 is

the point on [b; c] such that zna + bzn+p+1 = bc.

We claim that the path (zn) constructed above has the properties of the lemma.
Indeed, one can check that for each case of the inductive construction of a point
zm from a point zn we have:

– ‖zm‖∞ > ‖zn‖∞,
–

(

Fm−n(xm)
)

(zn) = U and
(

Fm−n(xm)
)

(zn + (0,−1)) = D (straightforward
from the definition of F ). ⊓⊔

Proposition 2. F has no equicontinuous points.

Proof. Assume F has an equicontinuous point, precisely a point x which verifies
∀ε > 0, ∃δ : ∀y, d(x, y) ≤ δ ⇒ ∀t, d

(

F t(x), F t(y)
)

≤ ε.

Suppose that there is z0 such that x(z0) = 0 and let ε = 2−‖z0‖∞−1. We will
show that the hypothesis of x being an equicontinuous point is violated for
this particular choice of ε. Consider any δ > 0 and let y be the configuration
everywhere equal to 0 except in the central region of radius − log ⌈δ⌉ where it is
identical to x. Since y is finite, there exists t0 such that y+ = F t0(y) ∈ ΣF (by
lemma 2). Moreover, the proof of lemma 2 guaranties that for any positive integer
t,

(

F t(y+)
)

(z0) = x(z0) = 0. So we can apply lemma 3 on y+ and position z0



to get the existence of a path (zn) allowing particles placed arbitrarily far away
from z0 to reach the position z0 after a certain time. For any sufficiently large
n, we can construct a configuration y′ obtained from y by adding a particle at
position zn. By the property of (zn), we have:

(

Fn(y)
)

(z0) 6=
(

Fn(y′)
)

(z0) and

therefore d
(

Fn(y), Fn(y′)
)

> ε. Since, if n > − log ⌈δ⌉, both y and y′ are in the
ball of centre x and radius δ, we have the desired contradiction.

Assume now that ∀z, x(z) ∈ AF . There must exist some z0 such that x(z0) 6= 1
(since the uniform configuration everywhere equal to 1 is not an equicontinuous
point). It follows from the definition of ΣF that z0 belongs to a forbidden pattern
for ΣF . Therefore

(

F (x)
)

(z0) = 0 and we are brought back to the previous case
of this proof. ⊓⊔

4 Undecidability of Topological Classification Revisited

We will use simulations of Turing machines by tile sets in the classical way (orig-
inally suggested by Wang [10]): the tiling represents the space-time diagram of
the computation and the transition rule of the Turing machine are converted into
tiling constraints. Without loss of generality, we only consider Turing machines
working on a semi-infinite tape with a single final state. The ith machine of this
kind in a standard enumeration is denoted byMi. In the sequel we use the fol-
lowing notations. First, to eachMi we associate a tile set Ti whose constraints
ensure the simulation of Mi as mentioned above; Second, when constructing a
CA G, we denote by ΣG the subshift of its admissible obstacles, which plays the
same role as ΣF for F with some differences detailed below.

In [5], the authors give a recursive construction which produce either a 1D
sensitive CA or a 1D CA with equicontinuous points according to whether a
Turing machine halts on the empty input. By noticing that a 1D CA is sensitive
(resp. has equicontinuous points) in the 1D topology if and only if it is sensitive
(resp. has equicontinuous points) in the 2D topology when viewed as a 2D CA
(neighbors are aligned, e.g. horizontally), we get the following proposition.

Proposition 3. There is a recursive function Φ1 : N→ CA such that Φ1(i) ∈ Eq
if Mi halts on the empty input and Φ1(i) ∈ S otherwise.

However, this is not enough to establish the overall undecidability of the
topological classification of 2D CA. The main concern of this section is to com-
plete proposition 3 in order to prove a stronger and more complete undecidability
result summarized in the following theorem.

Theorem 1. Each of the class Eq, S and N is neither r.e. nor co-r.e. Moreover
any pair of them is recursively inseparable.

The proof of this theorem rely on different variants of the construction of
the automaton F above. Each time, the construction scheme is the same, and
the desired property is obtained by adding various contents inside obstacles and
slightly changing the rules of destruction of obstacles according to that content.



The next proposition can be established by using a mechanism to bound
or not the size of admissible obstacles according to whether a Turing machine
halts or not. The idea is to force the tiling representation of a computation on a
blank tape in each obstacle (using the lower left corner) and to forbid the final
state. The proof mechanism used for F can be applied if there is no bound on
admissible obstacles. Otherwise, we get a sensitive CA.

Proposition 4. There is a recursive function Φ2 : N→ CA such that Φ2(i) ∈ S
if Mi halts on the empty input and Φ2(i) ∈ N otherwise.

Before going on with the different constructions needed to prove theorem 1,
let us stress the dynamical consequence of the construction of proposition 4.
It is well-known that for any 1D sensitive CA of radius r, 2−2r is always the
maximal admissible sensitivity constant (see for instance [1]). Thanks to the
above construction it is easy to construct CA with tiny sensitivity constants as
shown by the following proposition.

Proposition 5. The (maximal admissible) sensitivity constant of sensitive 2D
CA cannot be recursively (lower-)bounded in the number of states and the neigh-
borhood size.

Proof. It is straightforward to check that for each CA Φ2(i) whereMi halts after
n steps on the empty input, the maximal admissible obstacle is of height O(n)
and of width at least O(log(n)). The proposition follows since the sensitivity
constant of any CA Φ2(i) ∈ S is precisely 2−l/2+1 where l is the minimum
between the largest height and the largest width of admissible obstacles. ⊓⊔

Back to the path towards theorem 1, the following proposition uses the same
ideas as proposition 4 but it exchanges the role of halting and non-halting com-
putations.

Proposition 6. There is a recursive function Φ3 : N→ CA such that Φ3(i) ∈ N
if Mi halts on the empty input and Φ3(i) ∈ S otherwise.

The properties of the CA F and the other constructions above rely on the fact
that obstacles able to stop or deviate particles cannot be fit together to form
larger obstacles. Thus, F and other CA have no equicontinuous point. In the
following, we will use a new kind of obstacles: they are protected from particles
by a boundary as the classical obstacles of F , but they are made only of successive
boundaries like onion skins. With this new construction it is not difficult to build
an equicontinuous point provided there are arbitrarily large valid obstacles. The
next proposition use this idea to reduce existence of equicontinuous point to a
tiling problem.

Proposition 7. There is a recursive function Φ4 which associate with any tile
set T a CA Φ4(T ) which is in class Eq if T tiles the plane and in class N
otherwise.



Proof (sketch). Given a tile set T , the CA Φ4(T ) is identical to F , except that it
has a second kind of obstacles, called T -obstacles. T -obstacles are square patterns
of states from the set E = T ×X with X = {↓, ↑,←,→,ւ,ց,տ,ր,−} and
where the T component is a valid tiling and the X component is made from the
set of 2× 2 patterns appearing in the following finite configuration:

↓ ↓

ց ↓ ↓ ↓ ւ

→ → ց ↓ ւ ← ←

→ → → − ← ← ←

→ ր ↑ տ ←

ր ↑ ↑ ↑ տ

↑ ↑ ↑ ↑ ↑

↑ ↑

The X component is used to give everywhere in T -obstacles a local notion of
inside and outside as depicted by figure 4 (up to π/2 rotations): roughly speak-
ing, arrows point to the inside region. Other constraints concerning T -obstacles
are checked locally:

– any pair of obstacles must be at least 2 cells away from each other;
– their shape must be a square and this is ensured by requiring that any cell

of a T -obstacle can have {0, U, D} neighbors only in its outside region;
– the behaviour of particles with T -obstacles is the same as with classical

obstacles (they can not cross them and states U and D separate to bypass
them).

� � �

↓

� � �

� ց

�

−

Fig. 4. Inside (white) and outside (black) positions for states of X .

The overall dynamics of Φ4(T ) is similar to that of F with the following ex-
ception, which is the key point of the construction: destruction of non-valid
T -obstacles is done progressively to preserve as much as possible valid zones
inside non-valid obstacles. More precisely any cell in a state from E remains un-
changed unless one of the following conditions is verified in which case it turns
into state 0:

– if there is an error in the inside neighborhood;
– if there is a position in the outside neighborhood such that the pattern

formed by that position together with the cell itself is forbidden;
– if there is a state from E in the 5× 5 neighborhood which is not connected

to the cell by states from E.

One can check that proposition 1 is still true. Moreover proposition 2 is true if and
only if their is a bound on the size of valid T -obstacle. Indeed, lemma 2 and 3 are



always true and the only point which can be eventually false with the CA Φ4(T )
is the last case in the proof of proposition 2. Precisely, if a valid configuration
x such that ∀z, x(z) ∈ E can be constructed, then it is an equicontinuous point.
Otherwise, if such a x is not valid, then it contains an error somewhere and the
proof scheme of proposition 2 can be applied to Φ4(T ). The proposition follows
since such a valid x can be constructed if and only if T can tile the plane. ⊓⊔

The previous propositions give a set of reductions from Turing machines or
tile sets to CA and one can easily check that the main theorem follows using
Berger’s theorem [8] and classical results of the set of halting Turing machines.

To finish this section, we will discuss another difference between 1D and
2D concerning the complexity of equicontinuous points. Let us first recall that
equicontinuous point in 1D CA can be generated by finite words often called
“blocking” words. Precisely, for any F with equicontinuous points, there exists
a finite word u such that ∞u∞ is an equicontinuous point for F (proof in [1]).
The previous construction can be used with the tile set of Myers [11] which can
produce only non-recursive tilings of the plane. Therefore the situation is more
complex in 2D, and we have the following proposition.

Proposition 8. There exists a 2D CA having equicontinuous points, but only
nonrecursive ones.

5 Open problems

It is well-known that equicontinuous CA are exactly ultimately periodic CA (if
they are also bijective, they are periodic). The proof techniques developed by
Kari in [6] allow to prove that there is no recursive lower-bound on the pre-
period and period of 2D equicontinuous CA. An interesting open question in the
continuation of this paper is to determine whether periods of 1D equicontinuous
CA (bijective or not) can be recursively bounded or not. The only known result
in 1D is that pre-periods are not recursively bounded (this is essentially the
nilpotency problem).

It is interesting to notice that for 1D CA, classes S and Eq are easily definable
in first-order arithmetic. This is due to the characterisation by blocking words
mentioned above: the existential quantification over configurations can be re-
placed by a quantification over finite words in the definition of Eq. Proposition 8
shows that first-order definability of S, Eq or N for 2D CA is more challenging.
We believe they are but at a higher level in the arithmetical hierarchy.
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A Proof of lemma 2

Proof. First, the set
{

z : x(z) ∈ AF } is finite and decreasing under the action of
F . Moreover, U and D states can only move left, or move vertically or disappear.
Since the total amount of vertical moves for U and D states is bounded by the
cardinal of

{

z : x(z) ∈ AF }, there is a time t after which no U or D state is a
neighbor of a state of AF , and each U is above a D in a 0 background (the UD
particle is on the left of the finite non-0 region). From this time on, the evolution
of cells in a state of AF is governed only by the first case of the definition of F .
Therefore, after a certain time, finite type conditions defining ΣF are verified
everywhere. To conclude, it is easy to check that ΣF is stable under the action
of F . ⊓⊔

B Proof of proposition 4

Proof (sketch). The CA Φ2(i) is constructed from F by replacing the state 1 by
the tile set Ti and by defining the obstacle subshift ΣΦ2(i) through the set of all
3× 3 patterns satisfying the following conditions:

– constraints used in the simulation ofMi by Ti apply;
– when replacing states of Ti by 1, the resulting pattern must be an admissible

pattern for ΣF ;
– the only allowed state as upper-right neighbor ofր is q0, the initial state in

the simulation ofMi by Ti;
– the only allowed state above ↑ is the blank tape symbol of the simulation of
Mi by Ti when ր is not in the neighborhood;

– no final state of the simulation ofMi by Ti is allowed anywhere.

It is clear from these conditions, that any admissible obstacle of ΣΦ2(i) contains
the beginning of the computation of Mi on the empty tape. Since any field of
obstacles allowed in ΣΦ2(i) is also allowed in ΣF (when mapping Ti to 1), the
proof of proposition 2 is still valid and Φ2(i) is therefore either in class S or in
class N . Moreover, as shown in the proof of proposition 1, the fact that Φ2(i)
is sensitive or not depends only on the existence of arbitrarily large admissible
obstacle. So, by construction, Φ2(i) ∈ S if and only if Mi halts on the empty
input. ⊓⊔

C Proof of proposition 6

Proof (sketch). Following the proof of proposition 4, ΣΦ3(i) is the same as ΣΦ2(i)

with the following differences:

– the final state qf in the simulation ofMi by Ti is allowed;
– the only states allowed at the right and above an occurrence of qf are qf , ↓

and ←;
– the only state allowed as a lower-left neighbor of ւ is qf .



It follows directly that an admissible obstacle must contain the final state. More-
over, if Mi halts on the empty input, admissible obstacles can be arbitrarily
large. The proposition follows by a straightforward adaptation of the proofs of
propositions 1 and 2. ⊓⊔


