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We prove that the lattice Eq Ω of all equivalence relations on an infinite set Ω contains, as a 0, 1-sublattice, the 0-coproduct of two copies of itself, thus answering a question by G. M. Bergman. Hence, by using methods initiated by de Bruijn and further developed by Bergman, we obtain that Eq Ω also contains, as a sublattice, the coproduct of 2 card Ω copies of itself.

Introduction

Whitman's Theorem [START_REF] Whitman | Lattices, equivalence relations, and subgroups[END_REF] states that every lattice L can be embedded into the lattice Eq Ω of all equivalence relations on some set Ω. The cardinality of Ω may be taken equal to card L + ℵ 0 . There is not much room for improvement of the cardinality bound, as for example, Eq Ω cannot be embedded into its dual lattice. (We believe the first printed occurrence of this result to be Proposition 6.2 in G. M. Bergman's recent preprint [START_REF] Bergman | Some results on embeddings of algebras[END_REF], although it may have already been known for some time.) Hence the question of embeddability into Eq Ω of lattices of large cardinality (typically, card(Eq Ω) = 2 card Ω ) is nontrivial.

In [START_REF] Bergman | Some results on embeddings of algebras[END_REF], Bergman also extends results of N. G. de Bruijn [START_REF] De Bruijn | Embedding theorems for infinite groups[END_REF][START_REF] De Bruijn | Addendum to"Embedding theorems for infinite groups[END_REF] by proving various embedding results of large powers or copowers of structures such as symmetric groups, endomorphism rings, and monoids of self-maps of an infinite set Ω, into those same structures. The nature of the underlying general argument is categorical. The problem whether the lattice Eq Ω contains a coproduct (sometimes called "free product" by universal algebraists) of two, or more, copies of itself, was stated as an open question in a preprint version of that paper. In the present note, we solve this problem in the affirmative.

The idea of our proof is the following. The lattice Eq Ω of all equivalence relations on Ω is naturally isomorphic to the ideal lattice Id K of the lattice K of all finitely generated equivalence relations, that is, those equivalence relations containing only finitely many non-diagonal pairs. Denote by K ∐ 0 K the coproduct (amalgamation) of two copies of K above the common ideal 0. As K ∐ 0 K has the same cardinality as Ω, it follows from Jónsson's proof of Whitman's Embedding Theorem that the lattice Id(K ∐ 0 K) embeds into Eq Ω. Finally, we prove that the ideal lattice functor preserves the coproduct ∐ 0 and one-one-ness (Theorem 5.2), in such a way that (Id K) ∐ 0 (Id K) embeds into Id(K ∐ 0 K). Then it is easy to extend this result to the usual coproduct (Id K) ∐ (Id K). We also present an example (Example 5.3) that shows that the result of Theorem 5.2 does not extend to amalgamation above a common (infinite) ideal. That is, for a common ideal A of lattices B and C, the canonical homomorphism from (Id B) ∐ Id A (Id C) to Id(B ∐ A C) may not be one-to-one.

Basic concepts

We refer to [START_REF] Grätzer | General Lattice Theory[END_REF] for unexplained lattice-theoretical notions. For any subsets Q and X in a poset (i.e., partially ordered set) P , we put

Q ↓ X = {p ∈ Q | (∃x ∈ X)(p ≤ x)} and Q ↑ X = {p ∈ Q | (∃x ∈ X)(p ≥ x)}. We also write Q ↓ x, resp. Q ↑ x in case X = {x}. A subset Q of P is a lower subset of P if Q = P ↓ Q. A map f : K → L between lattices is meet-complete if for each a ∈ K and each X ⊆ K, a = X in K implies that f (a) = f [X] in L.
(Observe that we do not require either K or L to be a complete lattice.) When this is required only for nonempty X, we say that f is nonempty-meet-complete. Join-completeness and nonempty-join-completeness of maps are defined dually. We say that f is complete (resp., nonempty-complete) if it is both meet-complete and join-complete (resp., both nonempty-meet-complete and nonempty-join-complete). We say that f is lower bounded if {x ∈ K | y ≤ f (x)} is either empty or has a least element for each y ∈ L. Upper bounded homomorphisms are defined dually. Lower bounded homomorphisms are nonempty-meet-complete and upper bounded homomorphisms are nonempty-join-complete.

An ideal of a lattice L is a nonempty lower subset of L closed under finite joins. We denote by Id L the lattice of all ideals of L. For a lattice homomorphism f : K → L, the map Id f : Id K → Id L defined by

(Id f )(X) = L ↓ f [X] , for each X ∈ Id L ,
is a nonempty-join-complete lattice embedding. If L is a 0-lattice (i.e., a lattice with least element), the canonical map L → Id L, x → L↓x is a 0-lattice embedding. The assignment that to every lattice associates its dual lattice L op (i.e., the lattice with the same underlying set as L but reverse ordering) is a category equivalence-and even a category isomorphism-from the category of all lattices to itself, that sends 0-lattices to 1-lattices. For every lattice L, we denote by L • the lattice obtained by adding a new zero element to L.

A lattice L is upper continuous if for each a ∈ L and each upward directed subset {x i | i ∈ I} of L admitting a join, the equality a ∧ i∈I x i = i∈I (a ∧ x i ) holds. We shall often use upper continuity in the following form: if I is an upward directed poset and both (x i | i ∈ I) and (y i | i ∈ I) are isotone families with respective joins x and y, then the family (

x i ∧ y i | i ∈ I) has join x ∧ y.
Every algebraic lattice is upper continuous, so, for example, Id L ∪ {∅} is upper continuous for any lattice L; hence Id L is also upper continuous. The lattice Eq Ω of all equivalence relations on a set Ω, partially ordered by inclusion, is an algebraic lattice, thus it is upper continuous. Other examples of upper continuous lattices that are not necessarily complete are given in [START_REF] Adaricheva | On continuous noncomplete lattices, The Viktor Aleksandrovich Gorbunov memorial issue[END_REF]. For example, it follows from [1, Corollary 2.2] that every finitely presented lattice is upper continuous.

We denote by P(Ω) the powerset of a set Ω, and by ω the set of all natural numbers.

The free lattice on a partial lattice

We recall Dean's description of the free lattice on a partial lattice, see [START_REF] Dean | Free lattices generated by partially ordered sets and preserving bounds[END_REF] or [START_REF] Freese | Free Lattices[END_REF]Section XI.9]. A partial lattice is a poset (P, ≤) endowed with partial functions and from the nonempty finite subsets of P to P such that if p = X (resp., p = X), then p is the greatest lower bound (resp., least upper bound) of X in P . An o-ideal of P is a lower subset A of P such that p = X and X ⊆ A implies that p ∈ A for each p ∈ P and each nonempty finite subset X of P . The set Id P of all o-ideals of P , partially ordered by inclusion, is an algebraic lattice. Observe that Id P = (Id P ) ∪ {∅} in case P is a lattice. O-filters are defined dually; again, the lattice Fil P of all o-filters of P , partially ordered by inclusion, is algebraic. We denote by I(A) (resp., F(A)) the least o-ideal (resp., o-filter) of P containing a subset A of P .

The free lattice F L (P ) on P is generated, as a lattice, by an isomorphic copy of P , that we shall identify with P . (The subscript L in F L (P ) stands for the variety of all lattices, as the "free lattice on P " construction can be carried out in any variety of lattices.) For each x ∈ F L (P ), the following subsets of P ,

I(x) = P ↓ x = {p ∈ P | p ≤ x} and F(x) = P ↑ x = {p ∈ P | x ≤ p}
are, respectively, an o-ideal and an o-filter of P , which can also be evaluated by the following rules:

I(x ∨ y) = I(x) ∨ I(y) in Id P , F(x ∨ y) = F(x) ∩ F(y); (3.1) 
I(x ∧ y) = I(x) ∩ I(y), F(x ∧ y) = F(x) ∨ F(y) in Fil P , (3.2) 
for all x, y ∈ F L (P ). The natural partial ordering on F L (P ) satisfies the following "Whitman-type" condition:

x 0 ∧ x 1 ≤ y 0 ∨ y 1 ⇐⇒ either (∃p ∈ P )(x 0 ∧ x 1 ≤ p ≤ y 0 ∨ y 1 )
or there is i < 2 such that either

x i ≤ y 0 ∨ y 1 or x 0 ∧ x 1 ≤ y i , (3.3)
which is also the basis of the inductive definition of that ordering.

The 0-coproduct of a family of lattices with zero

Our development of the 0-coproduct of a family of lattices with zero below bears some similarities with the development of coproducts (called there free products) given in [START_REF] Grätzer | General Lattice Theory[END_REF]Chapter VI]. Nevertheless, as we use the known results about the free lattice on a partial lattice (outlined in Section 3), our presentation becomes significantly shorter.

Let (L i | i ∈ I) be a family of lattices with zero. Modulo the harmless settheoretical assumption that L i ∩ L j = {0} for all distinct indices i, j ∈ I, the coproduct (often called free product by universal algebraists) of (L i | i ∈ I) can be easily described as F L (P ), where P is the partial lattice whose underlying set is the union i∈I L i , whose underlying partial ordering is the one generated by the partial orders on all the L i s, and whose partial lattice structure consists of all existing joins and meets of nonempty finite subsets in each "component" L i . We denote this lattice by L = 0 i∈I L i , the superscript 0 meaning that the coproduct of the L i s is evaluated in the category of all 0-lattices and 0-preserving homomorphisms, which we shall often emphasize by saying "0-coproduct" instead of just coproduct. We shall also identify each L i with its canonical copy in L. Of course, the coproduct of any family of lattices (L i | i ∈ I) in the variety of all lattices is the sublattice of 0 i∈I (L i ) • generated by the union of the images of the L i s. Now we shall analyze further the structure of the 0-coproduct L, in a fashion similar to the development in [START_REF] Grätzer | General Lattice Theory[END_REF]Chapter VI]. We add a new largest element, denoted by ∞, to L, and we set L i = L i ∪ {∞} for each i ∈ I. The following lemma is an analogue, for 0-coproducts instead of coproducts, of [7, Theorem VI.1.10].

Lemma 4.1. For each x ∈ L and each i ∈ I, there are a largest element of L i below x and a least element of L i above x with respect to the ordering of L ∪ {∞}. Furthermore, if we denote these elements by x (i) and x (i) , respectively, then the following formulas hold:

p (i) = p (i) = p, if p ∈ L i ; p (i) = 0 and p (i) = ∞, if p ∈ P \ L i ; (x ∨ y) (i) = x (i) ∨ y (i) and (x ∧ y) (i) = x (i) ∧ y (i) ; (x ∨ y) (i) = x (i) ∨ y (i) ; (x ∧ y) (i) = 0 , if x (j) ∧ y (j) = 0 for some j ∈ I, x (i) ∧ y (i) , otherwise, (4.1)
for each x, y ∈ L and each i ∈ I.

Proof. For an element x of L, abbreviate by "x (i) exists" (resp., "x (i) exists") the statement that L i ↓ x is a principal ideal in L i (resp., L i ↑ x is a principal filter in L i ), and then denote by x (i) (resp., x (i) ) the largest element of L i ↓ x (resp., the least element of L i ↑ x). Denote by K the set of all x ∈ L such that both x (i) and x (i) exist for each i ∈ I. It is clear that K contains P and that both p (i) and p (i) are given by the first two formulas of (4.1), for any p ∈ P . Furthermore, it follows immediately from the definition of K that

I(z) = i∈I (L i ↓ z (i) ), (4.2) 
F(z) = i∈I (L i ↑ z (i) ), (4.3) 
for each z ∈ K. We shall establish that K is a sublattice of L. So let x, y ∈ K, put u = x ∧ y and v = x ∨ y. It is straightforward that for each i ∈ I, both u (i) and v (i) exist, and

u (i) = x (i) ∧ y (i) , v (i) = x (i) ∨ y (i) .
(4.4) Now we shall prove that v (i) exists and is equal to x (i) ∨ y (i) . By the induction hypothesis, (4.2) holds at both x and y. So, as I(v) = I(x) ∨ I(y), in order to get the asserted existence and description of the elements v (i) , it suffices to prove that i∈I

(L i ↓ x (i) ) ∨ i∈I (L i ↓ y (i) ) = i∈I L i ↓ (x (i) ∨ y (i) ) . (4.5) 
The containment from left to right is obvious, and each x (i) ∨ y (i) is contained in any o-ideal of P containing {x (i) , y (i) }, so it suffices to prove that the right hand side of (4.5) is an o-ideal of P . As the join operation in P is internal to each L i , this set is closed under joins. As each L i is a lower subset of P , this set is also a lower subset of P . This establishes the desired result for the v (i) s.

It remains to prove that u (i) exists and is equal to z i , where z i = x (i) ∧ y (i) if x (j) ∧ y (j) = 0 for all j, and z i = 0 otherwise. By the induction hypothesis, (4.3) holds at both x and y. So, as F(u) = F(x) ∨ F(y), in order to get the asserted existence and description of the elements u (i) , it suffices to prove that i∈I

(L i ↑ x (i) ) ∨ i∈I (L i ↑ y (i) ) = i∈I (L i ↑ z i ). (4.6)
The containment from left to right is obvious. If an o-filter U of P contains {x (i) , y (i) } for all i ∈ I, then it also contains all elements x (i) ∧ y (i) ; in particular, it is equal to P in case x (i) ∧ y (i) = 0 for some i. In any case, z i ∈ U for all i ∈ I. So it suffices to prove that the right hand side of (4.6) is an o-filter of P . This is trivial in case z i = 0 for some i, so suppose that z i = 0 for all i. As the meet operation in P is internal to each L i , the right hand side of (4.6) is closed under meets. As each L i \ {0} is an upper subset of P , this set is also an upper subset of P . This establishes the desired result for the u (i) s.

Lemma 4.2. Let K i be a 0-sublattice of a lattice L i , for each i ∈ I. Then the canonical 0-lattice homomorphism f :

0 i∈I K i → 0 i∈I L i is an embedding. Proof.
By the amalgamation property for lattices [7, Section V.4], the i-th coprojection from K i to K is an embedding, for each i ∈ I. Put L ′ i = K ∐ Ki L i for each i ∈ I. Comparing the universal properties, it is immediate that the 0coproduct L of (L i | i ∈ I) is also the coproduct of (L ′ i | i ∈ I) over K. Again by using the amalgamation property for lattices, all canonical maps from the L ′ i s to L are embeddings. So, in particular, the canonical map from their common sublattice K to L is an embedding.

We shall call the adjoint maps α i : x → x (i) and β i : x → x (i) the canonical lower, resp. upper adjoint of L onto L i , resp. L i . Observe that these maps may not be defined in the case of amalgamation of two lattices over a common sublattice, as Example 5.3 will show. (In that example, there is no largest element of B below b 0 ∨ c 0 .)

The following result is an immediate consequence of well-known general properties of adjoint maps.

Corollary 4.3. The canonical embedding from L i into L is both lower bounded and upper bounded, for each i ∈ I. In particular, it is a nonempty-complete lattice homomorphism. Furthermore, the lower adjoint α i is meet-complete while the upper adjoint β i is nonempty-join-complete.

In the following lemma, we shall represent the elements of L = 0 i∈I L i in the form p( a), where p is a lattice term with variables from I × ω and the "vector" a = (a i,n | (i, n) ∈ I × ω) is an element of the cartesian product Π = (i,n)∈I×ω L i . Define a support of p as a subset J of I such that p involves only variables from J×ω. Obviously, p has a finite support. It is straightforward from (4.1) that p( a) (i) = 0 and either p( a) = 0 or p( a) (i) = ∞, for each i outside a support of p. Lemma 4.4. Let Λ be an upward directed poset, let ( a λ | λ ∈ Λ) be an isotone family of elements of Π with supremum a in Π, and let p be a lattice term. If all the lattices L i are upper continuous, then p( a) = λ∈Λ p( a λ ) in L.

Again, Example 5.3 will show that Lemma 4.4 fails to extend to the amalgam of two lattices over a common ideal.

Proof. As p( a) is clearly an upper bound for all elements p( a λ ), it suffices to prove that for each lattice term q on I × ω and each b ∈ Π such that p( a λ ) ≤ q( b) for all λ ∈ Λ, the inequality p( a) ≤ q( b) holds. We argue by induction on the sums of the lengths of p and q. The case where p is a projection follows immediately from the second sentence of Corollary 4.3. The case where either p is a join or q is a meet is straightforward. Now suppose that p = p 0 ∧ p 1 and q = q 0 ∨ q 1 . We shall make repeated uses of the following easily established principle, which uses only the assumption that Λ is upward directed:

For every positive integer n and every X 0 , . . . , X n-1 ⊆ Λ, if i<n X i is cofinal in Λ, then one of the X i s is cofinal in Λ. Now we use (3.3). If there exists a cofinal subset Λ ′ of Λ such that

(∀λ ∈ Λ ′ )(∃i < 2) either p i ( a λ ) ≤ q( b) or p( a λ ) ≤ q i ( b) ,
then there are i < 2 and a smaller cofinal subset Λ ′′ of Λ ′ such that either (∀λ

∈ Λ ′′ ) p i ( a λ ) ≤ q( b) or (∀λ ∈ Λ ′′ ) p( a λ ) ≤ q i ( b) .
In the first case, it follows from the induction hypothesis that p i ( a) ≤ q( b). In the second case, it follows from the induction hypothesis that p( a) ≤ q i ( b). In both cases, p( a) ≤ q( b). It remains to consider the case where there exists a cofinal subset Λ ′ of Λ such that (∀λ ∈ Λ ′ )(∃c λ ∈ P ) p( a λ ) ≤ c λ ≤ q( b) .

It follows from the induction hypothesis that

p ℓ ( a) = λ∈Λ ′ p ℓ ( a λ ) , for all ℓ < 2 . (4.7)
Fix a common finite support J of p 0 , p 1 , q 0 , q 1 . Each c λ belongs to L i , for some i in the given support J. By using the finiteness of J and by extracting a further cofinal subset of Λ ′ , we may assume that all those i are equal to the same index j ∈ J. Hence we have reduced the problem to the case where

(∀λ ∈ Λ ′ ) p( a λ ) ≤ c λ ≤ q( b) , where c λ = p( a λ ) (j) ∈ L j . (4.8) If p 0 ( a) (i) ∧ p 1 ( a) (i)
= 0 for some i ∈ I, then p( a) = 0 ≤ q( b) and we are done. Now suppose that p 0 ( a) (i) ∧ p 1 ( a) (i) = 0 for all i ∈ I. By using (4.7), the finiteness of J, and the upper continuity of L i , we obtain that there exists a cofinal subset Λ ′′ of Λ ′ such that

(∀λ ∈ Λ ′′ )(∀i ∈ J) p 0 ( a λ ) (i) ∧ p 1 ( a λ ) (i) = 0 .
In particular, both p 0 ( a λ ) and p 1 ( a λ ) are nonzero for each λ ∈ Λ ′′ . As J is a common support of p 0 and p 1 , the equality p 0 ( a λ ) (i) ∧ p 1 ( a λ ) (i) = ∞ holds for all λ ∈ Λ ′′ and all i ∈ I \ J, hence

(∀λ ∈ Λ ′′ )(∀i ∈ I) p 0 ( a λ ) (i) ∧ p 1 ( a λ ) (i) = 0 .
Thus it follows from (4.1) that c λ = p( a λ ) (j) = p 0 ( a λ ) (j) ∧p 1 ( a λ ) (j) for each λ ∈ Λ ′′ . Hence, by the upper continuity of L j (and thus of L j ), (4.7), and the previously observed fact that the upper adjoint β j is nonempty-join-complete, {c λ | λ ∈ Λ ′′ } has a join in L j , which is equal to p 0 ( a) (j) ∧p 1 ( a) (j) = p( a) (j) . Therefore, it follows from (4.8) that p( a) ≤ p( a) (j) ≤ q( b).

Ideal lattices and 0-coproducts

In this section we fix again a family (L i | i ∈ I) of lattices with zero, pairwise intersecting in {0}, and we form L = 0 i∈I L i . We denote by ε i : Id L i ֒→ Id L the 0-lattice homomorphism induced by the canonical embedding L i ֒→ L, for each i ∈ I. By the universal property of the coproduct, there exists a unique 0lattice homomorphism ε :

0 i∈I Id L i → Id L such that ε i = ε↾ Id Li for each i ∈ I.
Observe that in case I is finite, the lattice 0 i∈I Id L i has i∈I L i as a largest element, and this element is sent by ε to L (because every element of L lies below some join of elements of the L i s). Hence, if the index set I is finite, then the map ε preserves the unit as well.

Lemma 5.1. Let p be a lattice term on I × ω and let

X = (X i,n | (i, n) ∈ I × ω) be an element of (i,n)∈I×ω Id L i . We put ε X = (ε i (X i,n ) | (i, n) ∈ I×ω) ∈ (Id L) I×ω .
Then the following equality holds.

p( ε X) = L ↓ {p( x) | x ∈ X} , where " x ∈ X " stands for (∀(i, n) ∈ I × ω)(x i,n ∈ X i,n ).
Proof. We argue by induction on the length of the term p. If p is a projection, then the result follows immediately from the definition of the maps ε i . If p is either a join or a meet, then the result follows immediately from the expressions for the join and the meet in the ideal lattice of L, in a fashion similar to the end of the proof of [START_REF] Grätzer | General Lattice Theory[END_REF]Lemma I.4.8].

Theorem 5.2. The canonical map ε :

0 i∈I Id L i → Id 0 i∈I L i is a 0-lattice embedding.
Proof. We put again L = 0 i∈I L i . Let p, q be lattice terms in I × ω and let X ∈ (i,n)∈I×ω Id L i such that p( ε X) ≤ q( ε X) in Id L. We must prove that p( X) ≤ q( X) in 0 i∈I Id L i . For each x ∈ X, the inequalities L ↓ p( x) ≤ p( ε X) ≤ q( ε X) hold in Id L, thus, by Lemma 5.1, there exists y ∈ X such that L ↓ p( x) ≤ L ↓ q( y) in Id L, that is, p( x) ≤ q( y) in L. Therefore, by applying the canonical map from L =

0 i∈I L i to 0 i∈I Id L i and putting L ↓ x = (L i ↓ x i,n | (i, n) ∈ I × ω), we obtain p( L ↓ x) ≤ q( L ↓ y) ≤ q( X) in 0 i∈I Id L i . (5.1)
As X is equal to the directed join x ∈ X ( L ↓ x) in (i,n)∈I×ω Id L i and each Id L i is upper continuous, it follows from Lemma 4.4 that

p( X) = p( L ↓ x) | x ∈ X in 0 i∈I Id L i .
Therefore, it follows from (5.1) that p( X) ≤ q( X) in

0 i∈I Id L i .
The following example shows that Theorem 5.2 does not extend to the amalgam B ∐ A C of two lattices B and C above a common ideal A. The underlying idea can be traced back to Grätzer and Schmidt in [8, Section 5]. Proof. Denote by K the poset represented in Figure 1. We claim that the subsets A, B, and C of K defined by

A = {a n | n < ω} ∪ {p n | n < ω} ∪ {q n | n < ω} , B = A ∪ {b n | n < ω} , C = A ∪ {c n | n < ω} .
are as required. Observe that B and C are isomorphic lattices and that A is an ideal of both B and C.

a 0 a 1 a 2 a 3 b 0 p 0 q 0 c 0 b 1 p 1 q 1 c 1 b 2 p 2 q 2 c 2 Figure 1. The poset K.
The map f is the unique lattice homomorphism that makes the diagram of Figure 2 commute. Unlabeled arrows are the corresponding canonical maps. We prove by induction that a n ≤ b 0 ∨ c 0 in D for all n < ω. This is trivial for n = 0. Suppose that a n ≤ b 0 ∨ c 0 . Then a n ∨ b 0 ≤ b 0 ∨ c 0 , but B is a sublattice of D containing the subset {a n , b 0 } with join b n , thus b n ≤ b 0 ∨ c 0 , and thus p n ≤ b 0 ∨ c 0 . Similarly, q n ≤ b 0 ∨ c 0 , but A is a sublattice of D containing the subset {p n , q n } with join a n+1 , and thus a n+1 ≤ b 0 ∨ c 0 , which completes the induction step.
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So we have established the inequality C). Therefore, by (5.2), f is not an embedding.

f (A) ≤ f (B ↓ b 0 ) ∨ f (C ↓ c 0 ) in Id B ∐ A C = Id D . ( 5 
As observed before, this example shows that Lemma 4.4 fails to extend to the amalgam of two lattices over a common ideal. Indeed, while A = n (A ↓ a n ) in Id B, the same equality fails in (Id B) ∐ Id A (Id C). The reason for this is that A ↓ a n ≤ (B ↓ b 0 ) ∨ (C ↓ c 0 ) for each n, while A (B ↓ b 0 ) ∨ (C ↓ c 0 ).

Embedding coproducts of infinite partition lattices

Whitman's Embedding Theorem states that every lattice embeds into Eq Ω, for some set Ω. We shall use a proof of Whitman's Theorem due to B. Jónsson [START_REF] Jónsson | On the representation of lattices[END_REF], see also [START_REF] Grätzer | General Lattice Theory[END_REF]Section IV.4]. The following result is proved there. Lemma 6.1. For every lattice L with zero, there are an infinite set Ω and a map δ : Ω × Ω → L satisfying the following properties:

(1) δ(x, y) = 0 iff x = y, for all x, y ∈ Ω.

(2) δ(x, y) = δ(y, x), for all x, y ∈ Ω.

(3) δ(x, z) ≤ δ(x, y) ∨ δ(y, z), for all x, y, z ∈ L.

(4) For all x, y ∈ Ω and all a, b ∈ L such that δ(x, y) ≤ a ∨ b, there are z 1 , z 2 , z 3 ∈ Ω such that δ(x, z 1 ) = a, δ(z 1 , z 2 ) = b, δ(z 2 , z 3 ) = a, and δ(z 3 , y) = b.

Observe, in particular, that the map δ is surjective. Furthermore, a straightforward Löwenheim-Skolem type argument ("keeping only the necessary elements in Ω") shows that one may take card Ω = card L + ℵ 0 .

The following is the basis for Jónsson's proof of Whitman's Embedding Theorem.

Corollary 6.2. For every lattice L with zero and every set Ω such that card Ω = card L + ℵ 0 , there exists a complete lattice embedding from Id L into Eq Ω.

Proof. Any map δ as in Lemma 6.1 gives rise to a map ϕ : Id L → Eq Ω defined by the rule ϕ(A) = {(x, y) ∈ Ω × Ω | δ(x, y) ∈ A} , for each A ∈ Id L , (6.1)

and conditions (1)-( 4) above imply that ϕ is a complete lattice embedding.

(2) P(Ω) Eq Ω has a lattice embedding into Eq Ω.

(3)

1 P(Ω) (Eq Ω) op has a 1-lattice embedding into (Eq Ω) op . (4) P(Ω) (Eq Ω) op has a lattice embedding into (Eq Ω) op . This raises the question whether (Eq Ω) ∐ 1 (Eq Ω) embeds into Eq Ω, which the methods of the present paper do not seem to settle in any obvious way. More generally, we do not know whether, for a sublattice A of Eq Ω, the amalgam (Eq Ω) ∐ A (Eq Ω) of two copies of Eq Ω over A embeds into Eq Ω.

Example 5 . 3 .

 53 Lattices B and C with a common ideal A such that the canonical lattice homomorphism f : (Id B) ∐ Id A (Id C) → Id B ∐ A C is not one-to-one.

Figure 2 .

 2 Figure 2. The commutative diagram defining the homomorphism f . Put D = B ∐ A C and identify B and C with their images in D. Further, we endow Id B ∪Id C with its natural structure of partial lattice, that is, the ordering is

. 2 )

 2 Now observe that {B ↓ x | x ∈ B} ∪ {C ↓ y | y ∈ C} is an o-ideal of the partial lattice (Id B) ∪ (Id C), containing {B ↓ b 0 , C ↓ c 0 } and to which A does not belong. Hence, A / ∈ I({B ↓b 0 , C ↓c 0 }), which means that A (B ↓b 0 )∨(C ↓c 0 ) in (Id B)∐ Id A (Id
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F. WEHRUNG Theorem 6.3. Let Ω be an infinite set. Then there exists a 0, 1-lattice embedding from (Eq Ω) ∐ 0 (Eq Ω) into Eq Ω.

Proof. Denote by K the sublattice of Eq Ω consisting of all compact equivalence relations of Ω. Thus the elements of K are exactly the equivalence relations containing only finitely many non-diagonal pairs. In particular, Eq Ω is canonically isomorphic to Id K. Now we apply Corollary 6.2 to L = K ∐ 0 K. As card L = card Ω, we obtain a complete lattice embedding ϕ : Id L ֒→ Eq Ω. However, Id L = Id(K ∐ 0 K) contains, by Theorem 5.2 and the last sentence of the first paragraph of Section 5, a 0, 1-sublattice isomorphic to (Id K) ∐ 0 (Id K), thus to (Eq Ω) ∐ 0 (Eq Ω).

For any nonempty set Ω, form Ω = Ω ∪ {∞} for an outside point ∞. As there exists a retraction ρ : Ω ։ Ω (pick p ∈ Ω and send ∞ to p), we can form a meetcomplete, nonempty-join-complete lattice embedding η : Eq Ω ֒→ Eq Ω by setting

and η sends the zero element of Eq Ω to a nonzero element of Eq Ω. Hence, in case Ω is infinite, (Eq Ω)

• completely embeds into Eq Ω. As (Eq Ω) ∐ (Eq Ω) is the sublattice of (Eq Ω)

• ∐ 0 (Eq Ω)

• generated by the union of the images of Eq Ω under the two canonical coprojections, it follows from Theorem 6.3 and Lemma 4.2 that (Eq Ω) ∐ (Eq Ω) has a 1-lattice embedding into Eq Ω. If we denote by θ the image of zero under this embedding, then (Eq Ω) ∐ (Eq Ω) has a 0, 1-lattice embedding into Eq(Ω/θ), and thus, as card(Ω/θ) ≤ card Ω, into Eq Ω. Hence we obtain Theorem 6.4. Let Ω be an infinite set. Then there exists a 0, 1-lattice embedding from (Eq Ω) ∐ (Eq Ω) into Eq Ω.

By applying the category equivalence L → L op to Theorems 6.3 and 6.4 and denoting by ∐ 1 the coproduct of 1-lattices, we obtain the following result. Theorem 6.5. Let Ω be an infinite set. Then there are 0, 1-lattice embeddings from (Eq Ω) op ∐ 1 (Eq Ω) op into (Eq Ω) op and from (Eq Ω) op ∐ (Eq Ω) op into (Eq Ω) op .

By using the results of [START_REF] Bergman | Some results on embeddings of algebras[END_REF], we can now fit the copower of the optimal number of copies of L = Eq Ω into itself. The variety V to which we apply those results is, of course, the variety of all lattices with zero. The functor to be considered sends every set I to F (I) = 0 I L, the 0-coproduct of I copies of L. If we denote by e I i : L ֒→ F (I) the i-th coprojection, then, for any map f :

for all i ∈ I. Observe that even in case both I and J are finite, F (f ) does not preserve the unit unless f is surjective. The condition labeled (9) in [2, Section 3], stating that every element of F (I) belongs to the range of F (a) for some a : n → I, for some positive integer n, is obviously satisfied. Hence, by [2, Theorem 3.1], F (P(Ω)) has a 0-lattice embedding into F (ω) Ω . Furthermore, it follows from [2, Lemma 3.3] that F (ω) has a 0-lattice embedding into 1≤n<ω F (n). By Lemma 4.2 and Theorem 6.3, each F (n) has a 0, 1-lattice embedding into L. As, by the final paragraph of [2, Section 2], L Ω has a 0-lattice embedding into L, we obtain the following theorem.

Theorem 6.6. Let Ω be an infinite set. Then the following statements hold:

(1) 0 P(Ω) Eq Ω has a 0-lattice embedding into Eq Ω.