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EMBEDDING COPRODUCTS OF PARTITION LATTICES

FRIEDRICH WEHRUNG

Abstract. We prove that the lattice EqΩ of all equivalence relations on an
infinite set Ω contains, as a 0, 1-sublattice, the 0-coproduct of two copies of
itself, thus answering a question by G. M. Bergman. Hence, by using methods
initiated by de Bruijn and further developed by Bergman, we obtain that EqΩ
also contains, as a sublattice, the coproduct of 2card Ω copies of itself.

1. Introduction

Whitman’s Theorem [10] states that every lattice L can be embedded into the
lattice EqΩ of all equivalence relations on some set Ω. The cardinality of Ω may
be taken equal to cardL + ℵ0. There is not much room for improvement of the
cardinality bound, as for example, EqΩ cannot be embedded into its dual lattice.
(We believe the first printed occurrence of this result to be Proposition 6.2 in G. M.
Bergman’s recent preprint [2], although it may have already been known for some
time.) Hence the question of embeddability into EqΩ of lattices of large cardinality
(typically, card(Eq Ω) = 2card Ω) is nontrivial.

In [2], Bergman also extends results of N. G. de Bruijn [3, 4] by proving various
embedding results of large powers or copowers of structures such as symmetric
groups, endomorphism rings, and monoids of self-maps of an infinite set Ω, into
those same structures. The nature of the underlying general argument is categorical.
The problem whether the lattice Eq Ω contains a coproduct (i.e., “free product” in
the language of universal algebra) of two, or more, copies of itself, is left open in
that paper. In the present note, we solve this problem in the affirmative.

The idea of our proof is the following. The lattice EqΩ of all equivalence relations
on Ω is naturally isomorphic to the ideal lattice IdK of the lattice K of all finitely

generated equivalence relations, that is, those equivalence relations containing only
finitely many non-diagonal pairs. Denote by K∐0K the coproduct (amalgamation)
of two copies of K above the common ideal 0. As K ∐0 K has the same cardinality
as Ω, it follows from Jónsson’s proof of Whitman’s Embedding Theorem that the
lattice Id(K∐0K) embeds into Eq Ω. Finally, we prove that the ideal lattice functor
preserves the coproduct ∐0 and one-one-ness (Theorem 5.2), in such a way that
(Id K) ∐0 (Id K) embeds into Id(K ∐0 K). Then it is easy to extend this result to
the usual coproduct (IdK) ∐ (Id K).

We also present an example (Example 5.3) that shows that the result of Theo-
rem 5.2 does not extend to amalgamation above a common (infinite) ideal.
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2 F. WEHRUNG

2. Basic concepts

We refer to [7] for unexplained lattice-theoretical notions. For any subsets Q
and X in a poset (i.e., partially ordered set) P , we put

Q ↓ X = {p ∈ Q | (∃x ∈ X)(p ≤ x)} and Q ↑ X = {p ∈ Q | (∃x ∈ X)(p ≥ x)}.

We also write Q ↓x, resp. Q ↑x in case X = {x}. A subset Q of P is a lower subset

of P , if Q = P ↓ Q.
A map f : K → L between lattices is meet-complete, if for each a ∈ K and

each X ⊆ K, a =
∧

X in K implies that f(a) =
∧

f [X ] in L. (Observe that we
do not require either K or L to be a complete lattice.) When this is required only
for nonempty X , we say that f is nonempty-meet-complete. Join-completeness and
nonempty-join-completeness of maps are defined dually. We say that f is complete

(resp., nonempty-complete), if it is both meet-complete and join-complete (rersp.,
both nonempty-meet-complete and nonempty-join-complete). We say that f is
lower bounded, if {x ∈ K | y ≤ f(x)} is either empty or has a least element, for
each y ∈ L. Upper bounded homomorphisms are defined dually. Lower bounded
homomorphisms are nonempty-meet-complete and upper bounded homomorphisms
are nonempty-join-complete.

An ideal of a lattice L is a nonempty lower subset of L closed under finite
joins. We denote by IdL the lattice of all ideals of L. For a lattice homomorphism
f : K → L, the map Id f : Id K → Id L defined by

(Id f)(X) = L ↓ f [X ] , for each X ∈ Id L ,

is a join-complete lattice embedding. If L is a 0-lattice (i.e., a lattice with least
element), the canonical map L → Id L, x 7→ L ↓ x is a 0-lattice embedding. The
assignment that to every lattice associates its dual lattice Lop (i.e., the lattice with
the same underlying set as L but reverse ordering) is a category equivalence—and
even a category isomorphism—from the category of all lattices to itself, that sends
0-lattices to 1-lattices. For every lattice L, we denote by L◦ the lattice obtained by
adding a new zero element to L.

A lattice L is upper continuous, if for each a ∈ L and each upward directed subset
{xi | i ∈ I} of L admitting a join, the equality a∧

∨

i∈I xi =
∨

i∈I(a∧xi) holds. Any
algebraic lattice is upper continuous, so, for example, IdL is upper continuous, for
any 0-lattice L. The lattice EqΩ of all equivalence relations on a set Ω, partially
ordered by inclusion, is an algebraic lattice, thus it is upper continuous. Other
examples of upper continuous lattices that are not necessarily complete are given
in [1]. For example, it follows from [1, Corollary 2.2] that every finitely presented

lattice is upper continuous.
We denote by P(Ω) the powerset of a set Ω, and by ω the set of all natural

numbers.

3. The free lattice on a partial lattice

We recall Dean’s description of the free lattice on a partial lattice, see [5] or [6,
Section XI.9]. A partial lattice is a poset (P,≤) endowed with partial functions

∨

and
∧

from the nonempty finite subsets of P to P such that if p =
∨

X (resp.,
p =

∧

X), then p is the greatest lower bound (resp., least upper bound) of X in P .
An o-ideal of P is a lower subset A of P such that p =

∨

X and X ⊆ A implies

that p ∈ A, for each p ∈ P and each nonempty finite subset X of P . The set Id P
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of all o-ideals of P , partially ordered by inclusion, is an algebraic lattice. Observe
that Id P = (IdP ) ∪ {∅} in case P is a lattice. O-filters are defined dually; again,
the lattice Fil P of all o-filters of P , partially ordered by inclusion, is algebraic.
We denote by I(A) (resp., F(A)) the least o-ideal (resp., o-filter) of P containing a
subset A of P .

The free lattice FL(P ) on P is generated, as a lattice, by an isomorphic copy
of P , that we shall identify with P . (The subscript L in FL(P ) stands for the
variety of all lattices, as the “free lattice on P” construction can be carried out in
any other variety of lattices.) We define the complexity of an element x ∈ FL(P )
as the minimal length of all lattice terms with parameters from P representing x.
In particular, the elements of P are the elements of FL(P ) of complexity zero. For
each x ∈ FL(P ), the following subsets of P ,

I(x) = P ↓ x = {p ∈ P | p ≤ x} and F(x) = P ↑ x = {p ∈ P | x ≤ p}

are, respectively, an o-ideal and an o-filter of P , which can also be evaluated by the
following rules:

I(x ∨ y) = I(x) ∨ I(y) in Id P , F(x ∨ y) = F(x) ∩ F(y); (3.1)

I(x ∧ y) = I(x) ∩ I(y), F(x ∧ y) = F(x) ∨ F(y) in Fil P , (3.2)

for all x, y ∈ FL(P ). The natural partial ordering on FL(P ) satisfies the following
“Whitman-type” condition:

x0 ∧ x1 ≤ y0 ∨ y1 ⇐⇒ either (∃p ∈ P )(x0 ∧ x1 ≤ p ≤ y0 ∨ y1)

or there is i < 2 such that either xi ≤ y0 ∨ y1 or x0 ∧ x1 ≤ yi , (3.3)

which is also the basis of the inductive definition of that ordering.

4. The 0-coproduct of a family of lattices with zero

Our presentation of the 0-coproduct of a family of lattices with zero bears some
similarities with the presentation of coproducts (called there free products) given
in [7, Chapter VI]. Nevertheless, as we use the known results about the free lattice
on a partial lattice (outlined in Section 3), our presentation becomes significantly
shorter.

Let (Li | i ∈ I) be a family of lattices with zero. Modulo the harmless set-
theoretical assumption that Li ∩ Lj = {0} for all distinct indices i, j ∈ I, the
coproduct (often called free product by universal algebraists) of (Li | i ∈ I) can be
easily described as FL(P ), where P is the partial lattice whose underlying set is the
union

⋃

i∈I Li, whose underlying partial ordering is the one generated by the partial
orders on all the Lis, and whose partial lattice structure consists of all existing joins
and meets of nonempty finite subsets in each “component” Li. We denote this
lattice by L =

∐0
i∈I Li, the superscript 0 meaning that the coproduct of the Lis is

evaluated in the category of all 0-lattices and 0-preserving homomorphisms, which
we shall often emphasize by saying “0-coproduct” instead of just coproduct. We
shall also identify each Li with its canonical copy in L. Of course, the coproduct

of (Li | i ∈ I) in the variety of all lattices is the sublattice of
∐0

i∈I (Li)
◦

generated
by the union of the images of the Lis.

Now we shall analyze further the structure of the 0-coproduct L, in a fashion
similar to the one presented in [7, Chapter VI]. We add a new largest element,
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denoted by ∞, to L, and we set Li = Li∪{∞}, for each i ∈ I. The following lemma
is an analogue, for 0-coproducts instead of coproducts, of [7, Theorem VI.1.10].

Lemma 4.1. For each x ∈ L and each i ∈ I, there are a largest element of Li

below x and a least element of Li above x with respect to the ordering of L ∪ {∞}.
Furthermore, if we denote these elements by x(i) and x(i), respectively, then the

following formulas hold:

p(i) = p(i) = p, if p ∈ Li;

p(i) = 0 and p(i) = ∞, if p ∈ P \ Li;

(x ∨ y)(i) = x(i) ∨ y(i) and (x ∧ y)(i) = x(i) ∧ y(i);

(x ∨ y)(i) = x(i) ∨ y(i);

(x ∧ y)(i) =

{

0 , if x(j) ∧ y(j) = 0 for some j ∈ I,

x(i) ∧ y(i) , otherwise,

(4.1)

for each x, y ∈ L and each i ∈ I.

Proof. For an element x of L, abbreviate by “x(i) exists” (resp., “x(i) exists”) the

statement that Li ↓ x is a principal ideal in Li (resp., Li ↑ x is a principal filter
in Li), and then denote by x(i) (resp., x(i)) the largest element of Li ↓ x (resp., the

least element of Li ↑ x). Denote by K the set of all x ∈ L such that both x(i) and

x(i) exist for each i ∈ I. It is clear that K contains P and that both p(i) and p(i)

are given by the first two formulas of (4.1), for any p ∈ P . Furthermore, it follows
immediately from the definition of K that

I(x) = P ↓ {x(i) | i ∈ I} and F(x) = P ↑ {x(i) | i ∈ I}, for each x ∈ K. (4.2)

We shall establish that K is a sublattice of L. So let x, y ∈ K, put u = x ∧ y and
v = x ∨ y. Fix i ∈ I. It is straightforward that both u(i) and v(i) exist, and

u(i) = x(i) ∧ y(i), v(i) = x(i) ∨ y(i). (4.3)

Now we shall prove that v(i) exists and is equal to x(i) ∨ y(i). As x(i) ∨ y(i) is a
lower bound of v belonging to Li, it suffices to verify that each p ∈ I(v) ∩ Li lies
below x(i) ∨ y(i). As the partial lattice operations on P are “internal” to each Lj,
the subset

U = P ↓ {x(j) ∨ y(j) | j ∈ I}

is an o-ideal of P . As, by (4.2), U contains both I(x) and I(y), it also contains
I(x) ∨ I(y) = I(v) (see (3.1)). In particular, p ∈ U , and so p ≤ x(j) ∨ y(j) for
some j ∈ I. If j 6= i, then, as p ∈ Li, we get p = 0; so, in any case, p ≤ x(i) ∨ y(i).
Hence we have proved that v(i) exists and

v(i) = x(i) ∨ y(i). (4.4)

Finally, we shall prove that u(i) exists and is given by the last two lines of (4.1).
Suppose first that x(j) ∧ y(j) = 0 for some j ∈ I. As x ≤ x(j) and y ≤ y(j), we get
that u = x ∧ y = 0, thus u(i) = 0, as required. Now assume that x(j) ∧ y(j) 6= 0 for
all j ∈ I. As x(i) ∧ y(i) is an upper bound of u belonging to Li, it suffices to verify
that any p ∈ F(u)∩Li lies above x(i) ∧ y(i). Again as the partial lattice operations
on P are “internal” to each Lj , the subset

F = P ↑ {x(j) ∧ y(j) | j ∈ I}
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is an o-filter of P . As, by (4.2), F contains both F(x) and F(y), it also contains
F(x) ∨ F(y) = F(u) (see (3.2)). In particular, p ∈ F , so x(j) ∧ y(j) ≤ p for some
j ∈ I. As x(j) ∧ y(j) ∈ Lj \ {0} and p ∈ Li, it follows that i = j and x(i) ∧ y(i) ≤ p.

Hence we have verified that u(i) exists and

u(i) = x(i) ∧ y(i). (4.5)

This completes the proof that K = L. Furthermore, the formulas (4.1) follow from
(4.3), (4.4), and (4.5). �

We obtain immediately the following corollary, which is an analogue for
∐0

of
the well-known preservation of lattice embeddings by

∐

, see [7, Corollary VI.1.13].

Corollary 4.2. Let Ki be a 0-sublattice of a lattice Li, for each i ∈ I. Then the

canonical 0-lattice homomorphism f :
∐0

i∈I Ki →
∐0

i∈I Li is an embedding.

Proof. Put K =
∐0

i∈I Ki and L =
∐0

i∈I Li. An immediate application of (4.1)

shows that the set of all x ∈ K such that f(x)(i) = x(i) and f(x)(i) = x(i) holds for
all i ∈ I is a sublattice of K containing the union of the images of the Kis, hence
it is equal to K.

Now we prove by induction on the sum of the complexities of x and y that f(x) ≤
f(y) implies that x ≤ y, for each x, y ∈ K. The case where either x or y belongs
to the union of the images of the Kis is taken care of by the paragraph above. By
the induction hypothesis, the only nontrivial remaining case is where x is a proper
meet, y is a proper join, and there exists p ∈

⋃

i∈I Li such that f(x) ≤ p ≤ f(y).

Pick i ∈ I such that p ∈ Li. Then x(i) = f(x)(i) ≤ p in Li and p ≤ f(y)(i) = y(i)

in Li, thus x(i) ≤ y(i) in Ki, and thus x ≤ x(i) ≤ y(i) ≤ y in K. �

We shall call the adjoint maps αi : x 7→ x(i) and βi : x 7→ x(i) the canonical lower,

resp. upper adjoint of L onto Li, resp. Li. The following result is an immediate
consequence of well-known general properties of adjoint maps.

Corollary 4.3. The canonical embedding from Li into L is both lower bounded

and upper bounded, for each i ∈ I. In particular, it is a nonempty-complete lattice

homomorphism. Furthermore, the lower adjoint αi is meet-complete while the upper

adjoint βi is nonempty-join-complete.

In the following lemma, we shall represent the elements of L =
∐0

i∈I Li in the
form p(~a), where p is a lattice term with variables from I × ω and the “vector”
~a = (ai,n | (i, n) ∈ I ×ω) is an element of the cartesian product Π =

∏

(i,n)∈I×ω Li.

Define a support of p as a subset J of I such that p involves only variables from J×ω.
Obviously, p has a finite support. It is straightforward from (4.1) that p(~a)(i) = 0

and either p(~a) = 0 or p(~a)(i) = ∞, for each i outside a support of p.

Lemma 4.4. Let Λ be an upward directed poset, let (~aλ | λ ∈ Λ) be an isotone

family of elements of Π with supremum ~a in Π, and let p be a lattice term. If all

the lattices Li are upper continuous, then p(~a) =
∨

λ∈Λ p(~aλ) in L.

Proof. As p(~a) is clearly an upper bound for all elements p(~aλ), it suffices to prove

that for each lattice term q on I × ω and each ~b ∈ Π such that p(~aλ) ≤ q(~b) for

all λ ∈ Λ, the inequality p(~a) ≤ q(~b) holds. We argue by induction on the sums of
the lengths of p and q. The case where p is a projection follows immediately from
Corollary 4.3. The case where either p is a join or q is a meet is straightforward.
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Now suppose that p = p0 ∧p1 and q = q0 ∨q1. We shall make repeated uses of
the following easily established principle, which uses only the assumption that Λ is
upward directed:

For every positive integer n and every X0, . . . , Xn−1 ⊆ Λ, if
⋃

i<n Xi

is cofinal in Λ, then one of the Xis is cofinal in Λ.

Now we use (3.3). If there exists a cofinal subset Λ′ of Λ such that

(∀λ ∈ Λ′)(∃i < 2)
(

either pi(~a
λ) ≤ q(~b) or p(~aλ) ≤ qi(~b)

)

,

then there are i < 2 and an even smaller cofinal subset Λ′′ of Λ′ such that

either (∀λ ∈ Λ′′)
(

pi(~a
λ) ≤ q(~b)

)

or (∀λ ∈ Λ′′)
(

p(~aλ) ≤ qi(~b)
)

.

In the first case, it follows from the induction hypothesis that pi(~a) ≤ q(~b). In the

second case, it follows from the induction hypothesis that p(~a) ≤ qi(~b). In both

cases, p(~a) ≤ q(~b). There remains to consider the case where there exists a cofinal
subset Λ′ of Λ such that

(∀λ ∈ Λ′)(∃cλ ∈ P )
(

p(~aλ) ≤ cλ ≤ q(~b)
)

.

Fix a common finite support J of p0, p1, q0, q1. It follows from the induction
hypothesis that

pℓ(~a) =
∨

λ∈Λ′

pℓ(~a
λ) , for all ℓ < 2 . (4.6)

Each cλ belongs to Li, for some i in the given support J . By using the finiteness
of J and by extracting a further cofinal subset of Λ′, we may assume that all those i
are equal to the same index j ∈ J . Hence we have reduced the problem to the case
where

(∀λ ∈ Λ′)
(

p(~aλ) ≤ cλ ≤ q(~b)
)

, where cλ = p(~aλ)(j) ∈ Lj . (4.7)

If p0(~a)(i) ∧ p1(~a)(i) = 0 for some i ∈ I, then p(~a) = 0 ≤ q(~b) and we are done.
Now suppose that p0(~a)(i) ∧p1(~a)(i) 6= 0 for all i ∈ I. By using (4.6), the finiteness
of J , and the upper continuity of Li, we obtain that there exists a cofinal subset Λ′′

of Λ′ such that

(∀λ ∈ Λ′′)(∀i ∈ J)
(

p0(~a
λ)(i) ∧ p1(~a

λ)(i) 6= 0
)

.

In particular, both p0(~a
λ) and p1(~a

λ) are nonzero for each λ ∈ Λ′′. As J is a
common support of p0 and p1, the equality p0(~a

λ)(i) ∧ p1(~a
λ)(i) = ∞ holds for all

λ ∈ Λ′′ and all i ∈ I \ J , hence

(∀λ ∈ Λ′′)(∀i ∈ I)
(

p0(~a
λ)(i) ∧ p1(~a

λ)(i) 6= 0
)

.

Thus it follows from (4.1) that cλ = p(~aλ)(j) = p0(~a
λ)(j)∧p1(~a

λ)(j) for each λ ∈ Λ′′.
Hence, by the upper continuity of Lj (and thus of Lj), (4.6), and the previously
observed fact that the upper adjoint βj is nonempty-join-complete, {cλ | λ ∈ Λ′′}

has a join in Lj , which is equal to p0(~a)(j)∧p1(~a)(j) = p(~a)(j). Therefore, it follows

from (4.7) that p(~a) ≤ p(~a)(j) ≤ q(~b). �
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5. Ideal lattices and 0-coproducts

In this section we fix again a family (Li | i ∈ I) of lattices with zero pairwise

intersecting in {0}, and we form L =
∐0

i∈I Li. We denote by εi : Id Li →֒ Id L
the 0-lattice homomorphism induced by the canonical embedding Li →֒ L, for
each i ∈ I. By the universal property of the coproduct, there exists a unique 0-

lattice homomorphism ε :
∐0

i∈I Id Li → Id L such that εi = ε↾Id Li
for each i ∈ I.

Observe that in case I is finite, the lattice
∐0

i∈I Id Li has
∨

i∈I Li as a largest
element, and this element is sent by ε to L (because every element of L lies below
some join of elements of the Lis). Hence, if the index set I is finite, then the map ε
preserves the unit as well.

Lemma 5.1. Let p be a lattice term on I ×ω and let ~X = (Xi,n | (i, n) ∈ I ×ω) be

an element of
∏

(i,n)∈I×ω Id Li. We put ~ε ~X = (εi(Xi,n) | (i, n) ∈ I×ω) ∈ (Id L)I×ω.

Then the following equality holds.

p(~ε ~X) = L ↓ {p(~x) | ~x ~∈ ~X} ,

where “ ~x ~∈ ~X ” stands for (∀(i, n) ∈ I × ω)(xi,n ∈ Xi,n).

Proof. We argue by induction on the length of the term p. If p is a projection,
then the result follows immediately from the definition of the maps εi. If p is either
a join or a meet, then the result follows immediately from the expressions for the
join and the meet in the ideal lattice of L, in a fashion similar to the end of the
proof of [7, Lemma I.4.8]. �

Theorem 5.2. The canonical map ε :
∐0

i∈I Id Li → Id
(
∐0

i∈I Li

)

is a 0-lattice
embedding.

Proof. We put again L =
∐0

i∈I Li. Let p, q be lattice terms in I × ω and let
~X ∈

∏

(i,n)∈I×ω Id Li such that p(~ε ~X) ≤ q(~ε ~X) in IdL, we must prove that p( ~X) ≤

q( ~X) in
∐0

i∈I Id Li. For each ~x ~∈ ~X, the inequalities L ↓ p(~x) ≤ p(~ε ~X) ≤ q(~ε ~X)

hold in IdL, thus, by Lemma 5.1, there exists ~y ~∈ ~X such that L ↓ p(~x) ≤ L ↓ q(~y)
in IdL, that is, p(~x) ≤ q(~y) in L. Therefore, by applying the canonical map

from L =
∐0

i∈I Li to
∐0

i∈I Id Li and putting ~L ↓ ~x = (Li ↓ xi,n | (i, n) ∈ I × ω), we
obtain

p(~L ↓ ~x) ≤ q(~L ↓ ~y) ≤ q( ~X) in
∐0

i∈I
Id Li . (5.1)

As ~X is equal to the directed join
∨

~x~∈ ~X
(~L ↓ ~x) in

∏

(i,n)∈I×ω Id Li and each IdLi

is upper continuous, it follows from Lemma 4.4 that

p( ~X) =
∨

(

p(~L ↓ ~x) | ~x ~∈ ~X
)

in
∐0

i∈I
Id Li .

Therefore, it follows from (5.1) that

p( ~X) ≤ q( ~X) in
∐0

i∈I
Id Li . �

The following example shows that Theorem 5.2 does not extend to the pushout
of two lattices above a common ideal. The underlying idea can be traced back to
Grätzer and Schmidt in [8, Section 5].

Example 5.3. Lattices B and C with a common ideal A such that the canonical

lattice homomorphism f : (IdB) ∐Id A (Id C) → Id
(

B ∐A C
)

is not one-to-one.
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Proof. Denote by K the poset represented in Figure 1. We claim that the subsets A,
B, and C of K defined by

A = {an | n < ω} ∪ {pn | n < ω} ∪ {qn | n < ω} ,

B = A ∪ {bn | n < ω} ,

C = A ∪ {cn | n < ω} .

are as required. Observe that B and C are isomorphic lattices and that A is an
ideal of both B and C.

a0

a1

a2

a3

b0

p0 q0

c0

b1

p1 q1

c1

b2

p2 q2

c2

Figure 1. The poset K.

The map f is the unique lattice homomorphism that makes the diagram of
Figure 2 commute. Unlabeled arrows are the corresponding canonical maps.

Id B

''OOOOOOOOOOOO

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Id A

<<yyyyyyyyy

""EE
EE

EE
EE

E
(Id B) ∐Id A (Id C) f // Id

(

B ∐A C
)

Id C

77oooooooooooo

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Figure 2. The commutative diagram defining the homomorphism f .

Put D = B ∐A C and identify B and C with their images in D. Further, we
endow Id B∪Id C with its natural structure of partial lattice, that is, the ordering is
the union of the orderings of IdB and IdC (remember that A = B∩C is an ideal of
both B and C) and the joins and meets are those taking place in either IdB or IdC.
Observe that IdA = Id B ∩ Id C and (Id B) ∐Id A (Id C) is the free lattice on the
partial lattice (IdB)∪ (Id C). As the latter is identified with its canonical image in
(Id B)∐Id A (Id C), the elements A, B ↓ b0, and C ↓ c0 belong to (IdB)∐Id A (Id C).
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We prove by induction that an ≤ b0 ∨ c0 in D, for all n < ω. This is trivial for
n = 0. Suppose that an ≤ b0∨c0. Then an∨b0 ≤ b0∨c0, but B is a sublattice of D
containing the subset {an, b0} with join bn, thus bn ≤ b0∨c0, and thus pn ≤ b0∨c0.
Similarly, qn ≤ b0 ∨ c0, but A is a sublattice of D containing the subset {pn, qn}
with join an+1, and thus an+1 ≤ b0 ∨ c0, which completes the induction step.

So we have established the inequality

f(A) ≤ f(B ↓ b0) ∨ f(C ↓ c0) in Id
(

B ∐A C
)

= Id D . (5.2)

Now observe that {B ↓x | x ∈ B}∪{C ↓y | y ∈ C} is an o-ideal of the partial lattice
(Id B)∪ (Id C), containing {B ↓ b0, C ↓ c0} and to which A does not belong. Hence,
A /∈ I({B↓b0, C↓c0}), which means that A � (B↓b0)∨(C↓c0) in (IdB)∐Id A (Id C).
Therefore, by (5.2), f is not an embedding. �

6. Embedding coproducts of infinite partition lattices

Whitman’s Embedding Theorem states that every lattice embeds into EqΩ, for
some set Ω. We shall use a proof of Whitman’s Theorem due to B. Jónsson [9], see
also [7, Section IV.4]. The following result is proved there.

Lemma 6.1. For every lattice L with zero, there are an infinite set Ω and a map

δ : Ω × Ω → L satisfying the following properties:

(1) δ(x, y) = 0 iff x = y, for all x, y ∈ Ω.

(2) δ(x, y) = δ(y, x), for all x, y ∈ Ω.

(3) δ(x, z) ≤ δ(x, y) ∨ δ(y, z), for all x, y, z ∈ L.

(4) For all x, y ∈ Ω and all a, b ∈ L such that δ(x, y) ≤ a ∨ b, there are

z1, z2, z3 ∈ Ω such that δ(x, z1) = a, δ(z1, z2) = b, δ(z2, z3) = a, and

δ(z3, y) = b.

Observe, in particular, that the map δ is surjective. Furthermore, a straight-
forward Löwenheim-Skolem type argument (“keeping only the necessary elements
in Ω”) shows that one may take cardΩ = cardL + ℵ0.

The following is the basis for Jónsson’s proof of Whitman’s Embedding Theorem.

Corollary 6.2. For every lattice L with zero and every set Ω such that cardΩ =
cardL + ℵ0, there exists a complete lattice embedding from Id L into EqΩ.

Proof. Any map δ as in Lemma 6.1 gives rise to a map ϕ : Id L → EqΩ defined by
the rule

ϕ(A) = {(x, y) ∈ Ω × Ω | δ(x, y) ∈ A} , for each A ∈ Id L , (6.1)

and conditions (1)–(4) above imply that ϕ is a complete lattice embedding. �

Theorem 6.3. Let Ω be an infinite set. Then there exists a 0, 1-lattice embedding

from (EqΩ) ∐0 (EqΩ) into EqΩ.

Proof. Denote by K the sublattice of EqΩ consisting of all compact equivalence
relations of Ω. Thus the elements of K are exactly the equivalence relations con-
taining only finitely many non-diagonal pairs. In particular, EqΩ is canonically
isomorphic to IdK.

Now we apply Corollary 6.2 to L = K ∐0 K. As cardL = cardΩ, we obtain
a complete lattice embedding ϕ : Id L →֒ EqΩ. However, IdL = Id(K ∐0 K)
contains, by Theorem 5.2, a 0, 1-sublattice isomorphic to (IdK) ∐0 (Id K), thus
to (Eq Ω) ∐0 (Eq Ω). �
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For any nonempty set Ω, form Ω = Ω ∪ {∞} for an outside point ∞. As there
exists a retraction ρ : Ω ։ Ω (pick p ∈ Ω and send ∞ to p), we can form a complete
lattice embedding η : EqΩ →֒ Eq Ω by setting

η(θ) = {(x, y) ∈ Ω × Ω | (ρ(x), ρ(y)) ∈ θ} , for each θ ∈ EqΩ ,

and η sends the zero element of EqΩ to a nonzero element of EqΩ. Hence, in
case Ω is infinite, (EqΩ)

◦
completely embeds into EqΩ. As (EqΩ) ∐ (Eq Ω) is the

sublattice of (Eq Ω)◦∐0 (EqΩ)◦ generated by the union of the images of EqΩ under
the two canonical coprojections, it follows from Theorem 6.3 and Corollary 4.2 that
(EqΩ) ∐ (Eq Ω) has a 1-lattice embedding into EqΩ. If we denote by θ the image
of zero under this embedding, then (Eq Ω) ∐ (EqΩ) has a 0, 1-lattice embedding
into Eq(Ω/θ), and thus, as card(Ω/θ) ≤ cardΩ, into Eq Ω. Hence we obtain

Theorem 6.4. Let Ω be an infinite set. Then there exists a 0, 1-lattice embedding

from (EqΩ) ∐ (EqΩ) into EqΩ.

By applying the category equivalence L 7→ Lop to Theorems 6.3 and 6.4 and
denoting by ∐1 the coproduct of 1-lattices, we obtain the following result.

Theorem 6.5. Let Ω be an infinite set. Then there are 0, 1-lattice embeddings from

(EqΩ)op ∐1 (EqΩ)op into (EqΩ)op and from (EqΩ)op ∐ (Eq Ω)op into (EqΩ)op.

By using the results of [2], we can now fit the optimal number of copowers
of L = EqΩ into itself. The variety V under question is, of course, the variety of all

lattices with zero. The functor to be considered sends every set I to F (I) =
∐0

I L,
the 0-coproduct of I copies of L. If we denote by eI

i : L →֒ F (I) the canonical i-th
coprojection, then, for any map f : I → J , F (f) is the unique 0-lattice homomor-
phism from F (I) to F (J) such that F (f)◦eI

i = eJ
f(i) for all i ∈ I. Observe that even

in case both I and J are finite, F (f) does not preserve the unit unless f is surjec-
tive. The condition labeled (9) in [2, Section 3], stating that every element of F (I)
belongs to the range of F (a) for some a : n → I, for some positive integer n, is
obviously satisfied. Hence, by [2, Theorem 3.1], F (P(Ω)) has a 0-lattice embedding
into F (ω)Ω. Furthermore, it follows from [2, Lemma 3.3] that F (ω) has a 0-lattice
embedding into

∏

1≤n<ω F (n). By Corollary 4.2 and Theorem 6.3, each F (n) has

a 0, 1-lattice embedding into L. As, by the final result of [2, Section 2], LΩ has a
0-lattice embedding into L, we obtain the following theorem.

Theorem 6.6. Let Ω be an infinite set. Then the following statements hold:

(1)
∐0

P(Ω) Eq Ω has a 0-lattice embedding into EqΩ.

(2)
∐

P(Ω) Eq Ω has a lattice embedding into EqΩ.

(3)
∐1

P(Ω)(EqΩ)op has a 1-lattice embedding into (EqΩ)op.

(4)
∐

P(Ω)(EqΩ)op has a lattice embedding into (Eq Ω)op.

This raises the question whether (EqΩ) ∐1 (EqΩ) embeds into EqΩ, that the
methods of the present paper do not seem to settle in any obvious way. More
generally, we do not know whether, for a sublattice A of EqΩ, the amalgam
(EqΩ) ∐A (EqΩ) of two copies of EqΩ over A embeds into EqΩ.
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