
HAL Id: hal-00175284
https://hal.science/hal-00175284

Submitted on 27 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correct your Text with Google
Stéphanie Jacquemont, François Jacquenet, Marc Sebban

To cite this version:
Stéphanie Jacquemont, François Jacquenet, Marc Sebban. Correct your Text with Google. IEEE
International Conference on Web Intelligence, Nov 2007, Fremont, United States. pp.xx-xx. �hal-
00175284�

https://hal.science/hal-00175284
https://hal.archives-ouvertes.fr


Correct your text with Google∗

Stéphanie Jacquemont, François Jacquenet, Marc Sebban
Laboratoire Hubert Curien (UMR CNRS 5516)

18 rue Benoı̂t Lauras - 42000 Saint-Etienne - France
{jacqstep,jacquene,sebbanma@univ-st-etienne.fr}

Abstract

With the increasing amount of text files that are produced
nowadays, spell checkers have become essential tools for
everyday tasks of millions of end users. Among the years,
several tools have been designed that show decent perfor-
mances. Of course, grammatical checkers may improve cor-
rections of texts, nevertheless, this requires large resources.
We think that basic spell checking may be improved (a step
towards) using the Web as a corpus and taking into ac-
count the context of words that are identified as potential
misspellings. We propose to use the Google search engine
and some machine learning techniques, in order to design a
flexible and dynamic spell checker that may evolve among
the time with new linguistic features.

1 Introduction

The idea behind this paper comes from some everyday
practices of text correction. Indeed, in our everyday life,
when one wants to find the correct spelling of words, many
people are used to ask some help from Google. Wondering
which of the various spellings of a word is the right one,
we apply with Google, the simple following heuristic: the
more pages containing the spelling, the best spelling. We
think this could be the basic idea of a more sophisticated
tool we decided to design trying to automate the manual
process we used to have every day. The problem with such
an approach is that while a human being asking some help
from Google knows the various spellings he wants to test, in
the case of a machine-based process, the various spellings
must be automatically provided to the machine.

At the moment, there are mainly three well known spell
checkers that can be used by end users to correct their texts:
Ispell, Aspell and Word.

Ispell, designed by GNU, or Word spell checker rely on
a very basic principle: when they detect a misspelling, they

∗This work has been supported by the Web Intelligence project of the
French Region Rhône-Alpes.

propose all the possible words that are at some edit distance
[21] from this misspelling. Aspell, also a GNU project, has
been designed to improve Ispell. The main contribution
of the checker is that it uses the metaphone algorithm of
Lawrence Phillips [13]. This algorithm is able to calculate
some suggestions based on soundslike similarity. Hence, it
converts the misspelled word to its soundslike equivalent.
It finds all words that have a soundslike at small edit dis-
tances from the original word’s soundslike. Then it finds
misspelled words that have a correctly spelled replacement
by the same previous criteria. Finally, Aspell scores the re-
sult list and returns the words with the lowest score (the
score is roughly the weighed average of the weighed edit
distance of the word to the misspelled word and the sound-
slike equivalent of the two words).

The performances of Ispell, Aspell and Word may be
compared using two main criteria. The first one, called Sug-
gestion Intelligence (SI), corresponds to the rate of good
suggestions proposed by the spell checker with respect to
all the misspellings of test file:

SI =
Total correct suggestions

Total misspellings
∗ 100.

The second criterion, called Suggestion Intelligence First
(SIF), represents the ability of the spell checker to find the
good suggestion at the first position of the list of all the
suggestions:

SIF =
Total correct suggestions found first on list

T otal misspellings
∗100.

We ran Aspell, Ispell and Word on a set of documents
containing 500 identified misspellings (cf section 4) and we
get the results of table 1.



Aspell Ispell Word
SI 79 78 78

SIF 58 39 65

Table 1. Comparative study of state of the art
spell checkers.

Concerning Suggestion Intelligence, the three tools are
quite equivalent at approximately 78%. This result shows
the potential improvement we can achieve. Concerning the
Suggestion Intelligence First criterion, Ispell is the worst
checker, then Aspell is a little bit better and Word is the best
of the three, but the scores remain quite low. One possi-
ble explanation is that these tools mainly focus on the mis-
spellings and not on their contexts. Thus, to increase the
Suggestion Intelligence and Suggestion Intelligence First
scores, we think it would be interesting, while calculating
some suggestions to correct a misspelling, to take into ac-
count the whole sentence (or at least some part of it) that
contains this misspelling. That is the vision we are present-
ing now.

First, in the next section, we show that the Web has
already been considered as a corpus by other researchers
in various projects of various domains. In section 3, we
present our system, its architecture, the way it works and
the machine learning techniques it integrates. In section
4, we present some experiments we did with our system
and compare its performance with Aspell, Ispell and Word
in terms of Suggestion Intelligence and Suggestion Intelli-
gence First. Finally, we conclude and propose some future
explorations.

2 Using the Web as a Corpus

In this section, we first explain why the Web can be con-
sidered as a corpus and we describe several examples of ap-
plications where the Web has been used with that purpose.

2.1 Can we consider the Web as a corpus?

Since the beginning of the nineties and the advent of the
Internet, the amount of documents that can be accessed on
the Web has considerably increased and those ones are more
and more diversified. These features make the Web an inter-
esting tool for researchers. Indeed, at the same time, it has
been more and more urgent to design linguistic corpora in
the context of various researches such as natural language
processing, machine translation, etc. To built such corpora,
many people have focus on the Web. First, let us recall what
is a corpus using the definition of McEnery and Wilson [12]:

“Any collection of more than one text can be called a
corpus, (corpus being Latin for ”body”, hence a corpus

is any body of text). But the term ”corpus” when used in
the context of modern linguistics tends most frequently to
have more specific connotations than this simple definition.
The following list describes the four main characteristics of
the modern corpus: sampling and representativeness, finite
size, machine-readable form, a standard reference.”

This definition gives us some basis to explain the reasons
why it is possible to consider the Web as a linguistic corpus.
Let us consider each previous features.

If we consider sampling, as the Web, while voluminous,
is not an exhaustive representation of the various languages,
it has to be considered as a sample of those ones. Moreover,
as the various search engines only index a part of the whole
Web, we usually use only a sample of it.

Concerning representativeness of the Web as a corpus,
the main question is to know if the Web is enough repre-
sentative of natural languages. In other words, is the Web
representative enough to replace classic corpus?

[23, 6, 10] tried to answer this question studying the Web
in the context of learning the frequencies of trigrams, that
is, the probability estimate of three consecutive words, with
the objective to model natural languages. The objective was
to compare the probabilities of 3-grams calculated using a
corpus and those calculated from the Web. Several search
engines such as Google, AltaV ista, Lycos and Fast have
been used for that study. They have shown that 3-grams
calculated from the Web could improve the word error rate
with respect to frequencies calculated on the classic corpus,
such as the British National Corpus. The frequencies cal-
culated on the Web have been used in various applications
of various domains and it has been proved that the results
obtained using the Web were significantly better than those
obtained with the British National Corpus.

These studies show the evidence of the interest to replace
classical corpus by the Web or a sample of it. That leads us
to conclude the Web really has the characteristic of repre-
sentativeness.

It is obvious that the Web has a finite size, even if this
one is not constant. The number of words on the Web is
countable even if it evolves among the time. Grefenstette
and Nioche [3] for example have estimated the number of
words that can be accessed by some search engines.

The third characteristic of a corpus is to be machine read-
able. It is clear that, by definition, the documents on the
Web are electronic files, thus easily usable by computers
and their softwares.

Finally, concerning the fact that a corpus has to be a stan-
dard reference, it is difficult to say at the moment that it is
the case. Indeed, the various experiments that have been
done until now do not always use the same samples of the



web. Nevertheless, more and more researches have chosen
to use the Web as a corpus that cannot be ignored and we
can think it will become a standard in a few years.

Those considerations show us that the definition of a cor-
pus proposed by McEnery et Wilson [12] may be applied to
the Web. It is important to note that many other features are
attached to the Web such as its linguistic diversity, its evo-
lution, its accessibility, which are considerable advantages
with respect to classical corpus. This is for these reasons
that we have chosen to use the Web as a corpus in the con-
text of spell checking.

2.2 Various domains where the Web has
been used

Obviously there are many applications related to natural
language processing that rely on the Web [8].

In machine translation, several researches have used the
Web as a corpus. Classically, there are two ways to use
the Web. First, it can be used to choose the best transla-
tion among several candidate translations. Second, it can be
used as a database of translations.

Using the Web to choose the best translation has been
done for example by Way and Ghough [22] who developed
WEBMT, a tool that uses classical translation rules and then
submits the various possibilities to a search engine. Proba-
bilities are calculated thanks to the number of occurrences
returned by the engine. The chosen translation is the one
that has the greatest probability. Experiments show that in
the case of three different translation systems, the use of the
Web may increase their performance of 64%.

Using the Web as a database of translations has been
done by Resnik and Smith [17, 18] with the STRAND

project, that aims at building a parallel corpus, that is cou-
ples of texts that are exact translations of each others. Kraaij
et al. [9] also use the Web to build statistical translation
models.

The Web has also been used for the Word Sense Dis-
ambiguation task which is a difficult problem. In [19],
Santamaria et al. try to associate the meaning of words
to directories of thematic search engines such as Y ahoo.
Thanks to this work, some meanings have been discovered
and for some rather difficult words, good results have been
obtained. Some limitations have been shown for some too
general words such as adverbs. This study could be used to
complete Wordnet, thanks to the Web diversity.

Tanguy and Hathout have used the Web to complete the
french Verbaction lexicon [4] which is a very useful lexicon
for natural language processing in french. Language being
in constant evolution, it is necessary to be able to make this
lexicon evolve, thus they have chosen to base their system
on the Web to ensure that. Markert et al. have used the Web

to solve anaphora [11]. The basic idea of the system is to
search on the Web for some couple anaphora/antecedent to
validate the best antecedent. Ghani et al. [2] have used the
Web to build corpora of representative documents for mi-
nority languages. Radev et al. have designed a tool, called
PROFILE [15], able to collect on the Web some functional
descriptions of entities (i.e. part of sentences describing
something or someone) tagged lexically or syntactically.
These ones are then used to generate summaries of news.
In the domain of Question Answering systems, they also
designed the QASM (Question Answering using Statistical
Model) system [16] which is able to ask some questions
and provides some answers from search engines in natural
language. QASM translates questions in natural language in
requests for classical search engines. The idea is to learn,
using some machine learning techniques, the best sequences
of transformations from a natural language request to search
engine one.

We can say, at the end of this study, that using the Web
as a corpus is not really a new idea and has been at the
core of various successful projects. Thanks to its linguistic
diversity it makes it possible to perform efficient machine
translation, and to build other corpus even for minority lan-
guages. Its thematic diversity makes it possible to complete
well known corpus. More generally, its size allows it to be
used as a training sample for machine learning algorithms.

We are going to see now that the Web is also the core of
our new efficient spell checker.

3 The WebSpell system

If we consider a standard spell checker, its basic princi-
ple is quite simple. Let T1 . . . Tn the constitutive tokens
(or words) of a document. When the spell checker detects
a token Ti that is not in its associated dictionary, i.e. in fact
a misspelling, it searches in this dictionary for some tokens
CSij that could be suggested to the user in order to correct
this misspelling. Since each of these candidate suggestions
are more or less appropriate, a crucial task to achieve is to
rank them accurately. The next two sections aim at present-
ing the way we perform that.

3.1 Basic principle of the system

The basic principle of the WebSpell system is described
in figure 1.

The candidate suggestions come from three different
sources. First, WebSpell collects, from its dictionary, the
tokens at an edit distance smaller than a fixed value (usually
equal to 1) of the misspelling. Another class of candidate
suggestions is made up of the frontier words [1] also cal-
culated with the help of the dictionary. Frontier words are



T1 T2 ... Ti ... Tn

Dictionary

GOOGLE

Tokens of the sentence
to be checked

Ti CSi1 CSi2 CSik...

GOOGLE

Ti CSi1 CSi2 CSim...

a1i1 a1i2 a1im...

...

...

.
.
.

.
.
.

.
.
.

aki1 aki2 akim

Ti CSp(i1) CSp(i2) CSp(im)...

Documents containing
identified misspellings
and good/bad suggestions

C4.5

Decision tree
that classifies good
and bad suggestions

Misspelling and its
associated ranked

candidate suggestions

Misspelling Ti and its
associated candidate
suggestions

Features calculated
for each candidate

suggestion

Figure 1. Principle of the WebSpell system

defined by the presence or absence of a space between two
words. Suggestions that we will consider as frontier words
are strings built by adding or deleting a space. For example,
“below” is a frontier word because it is the concatenation
of two existing words “be” and “low”. The last category of
candidate suggestions corresponds to the false misspellings,
i.e. tokens not encountered in the dictionary while they be-
long to the language of the considered document. To find
them, we search for a misspelling with Google. If the an-
swer is “Did you mean: S” we consider the misspelling is
really an error and S is added to the set of candidate sug-
gestions, else we add the misspelling to this list. When the
set of candidate suggestions CSi is built, we calculate, for
each candidate suggestion CSij (j = 1, . . . , |CSi|) of a
misspelling Ti a vector of values akij corresponding to the
features. Each candidate suggestion is then submitted to a
decision tree (see below) that classifies it as a good or a bad
candidate. Good candidate suggestions, which become sug-
gestions from that time, are then ranked according to their
distance to the separator hyperplane provided by the deci-
sion tree. That means we build a permutation p such that
CSp(i1) . . . CSp(ik) is the ranked list of suggestions.

3.2 Features attached to suggestions

First, let us explain how such a decision tree can be built.
From a corpus of learning documents, we carry out the spell
check task by searching for the set of candidate suggestions.

Given a misspelling and its corresponding candidate sug-
gestions, we are able to manually select the good candidate,
which is then labelled as positive example, while the others
are then automatically labelled as negative examples. Do-
ing the same thing for all the documents, we can design a
learning set LS composed of positive and negative exam-
ples. The C4.5 algorithm [14] may then be used to build
a decision tree from LS able to linearly separate the good
candidates from the bad ones.

In order to learn this decision tree, we have to define a set
of features associated with each candidate suggestion CSij

supposed to correct a misspelling Ti. After many inves-
tigations for designing a relevant representation of a mis-
spelling, we have chosen to define five features related to
the Web and six other features not linked to the Web, result-
ing in a feature vector A = {akij |k = 1, . . . , 11}.

3.2.1 Features that do not use the Web

Size: We have chosen to take into account the size, that
is the number of letters, of the misspelling. This very sim-
ple feature is useful to take into account the distribution of
natural language tokens with respect to this size. Indeed the
more we consider long tokens, the less they exist in natural
language. A short token will have more candidate sugges-
tions for correction than a longer one.



Distance: The second feature we considered is the dis-
tance between the candidate suggestion CS and the mis-
spelling T . It is based on the classical edit distance [21],
that is the number of operations (deletion, insertion, substi-
tution of letters) used to change one token into another one.
In order to normalize the results, we decided to divide the
value calculated with the classical edit distance by the size
of the token it is applied on. Indeed, it is more likely to
make two misspellings in a long token rather than in a short
one:

Distance(CS, T ) =
edit distance(CS, T )

Size(T )
.

In fact, this feature is one of the most important and is used
in every spell checker.

Position of error: The third feature gives the position of
the first error in the misspelling T with respect to the can-
didate suggestion CS. This feature is important because
some studies have shown that errors was more frequent in
some places of the tokens [7]. Here again, we have chosen
to normalize this value by the size of the misspelling:

Position(T, CS) =
position of error(T, CS)

Size(T )
.

Punctuation tag: This tag indicates if the sentence we are
considering contains some punctuation or not. It is useful
during the correction in order to distinguish the sentences
that have to be corrected.

Frontier tag: This feature is useful to determine if a sug-
gestion is a frontier word or not.

Keyboard distance: The value of this feature is calcu-
lated by taking into account the distance between keys on a
keyboard. Here again, this value is normalized by the size
of the misspelling. To compute this value, we have built a
matrix containing the distance of all the keys of a keyboard.
Due to space restriction, it is not possible to detail here the
way this distance is calculated, the reader may refer to [5].

3.2.2 Features that use the Web

We now propose five features whose values have to be cal-
culated using the Web. Among them, the probability of
n-grams allows us to take into account the context of the
misspellings. We have decided to limit this context for al-
gorithmic reasons because those probabilities are calculated
using a lot of requests to the Google search engine.

We have chosen to introduce smoothing during the cal-
culation of frequencies to avoid the problems of dividing by
zero during the calculus of probabilities.

Frequency of a candidate suggestion: The first feature
we have considered is the frequency of the candidate sug-
gestion on the Web. We search with Google, the number
of times the candidate suggestion is indexed by this search
engine.

Probability of 2-grams: This feature corresponds to the
probability of the 2-gram made up of the candidate sugges-
tion CS and the preceding token Tbefore. To estimate this
probability we use the classical Bayes formula:

P2gram(Tbefore CS) = P (CS/Tbefore) × P (Tbefore).

In fact P (Tbefore) = #Occ(Tbefore)
#Occ(∗) where #Occ(∗) is

the total number of tokens indexed by Google. The problem
is that it is difficult to compute this number. To overcome
this drawback, we decided to estimate P (Tbefore) in that
way:

P (Tbefore) =
#Occ(Tbefore CS))

#Occ(∗ CS)

where #Occ(∗ CS) is the number of occurrences of the
candidate suggestion CS when it is preceded by another
token, whatever it is.

To compute P (CS/Tbefore), we use the conditional
probabilities formula:

P (CS/Tbefore) =
P (Tbefore ∩ CS)

P (Tbefore)

=
#Occ(Tbefore CS)

#Occ(Tbefore)
.

So, we deduce that:

P2gram(Tbefore CS) =
#Occ(Tbefore CS)

#Occ(Tbefore)
×#Occ(Tbefore CS)

#Occ(∗ CS)
.

Probability of left 3-grams: On the same principle as
2-gram, this feature represents the probability of 3-gram,
noted P3gram1, made up of the candidate suggestion CS
and the two preceding tokens Tb1 and Tb2:

P3gram1(Tb1 Tb2 CS) = P (CS/Tb1 Tb2)
× P (Tb2/Tb1)
× P (Tb1).

Using the same reasoning steps as for the probability of
2-grams, we get:



P3gram1(Tb1 Tb2 CS) =
#Occ(Tb1 Tb2 CS)

#Occ(Tb1 Tb2)

× #Occ(Tb1 Tb2)
#Occ(Tb1)

× #Occ(Tb1 Tb2 CS)
#Occ(∗ Tb2 CS)

.

Probability of centered 3-grams: The fourth feature,
noted P3gram2, is the probability of the 3-gram made up
of the candidate suggestion CS, the token Tb before CS
and the token Ta after CS.

It is computed in the same way as the two previous prob-
abilities:

P3gram2(Tb CS Ta) =
#Occ(Tb CS Ta)
#Occ(Tb CS)

× #Occ(Tb Ta)
#Occ(Tb)

× #Occ(Tb CS Ta)
#Occ(∗ CSTa)

.

Probability of co-occurrence: Finally, the last feature,
noted Cooc, allows the system to measure if the couple
of tokens (T, CS) made up of the misspelling T and a
candidate suggestion CS, appears frequently or not in the
same pages on the Web. Indeed, if such a couple appears
frequently, we can suppose that the suggestion has good
chance to be a good one. The value of this feature is pro-
cessed in that way:

Cooc(T, CS) =
#Occ2(T, CS)

#Occ(CS)

where #Occ2(T, CS) is the number of pages, returned by
Google, where T and CS appear simultaneously.

4 Experiments

In this section, we are going to make some experiments
in order to compare our WebSpell system with state of the
art spell checkers using the Suggestion Intelligence and Sug-
gestion Intelligence First criteria.

4.1 Experimental protocol

We used various English corpora found on the Web in or-
der to get a good diversity in the linguistic style and origins
of the documents that have been considered.

Those corpora led us to build a file containing 700 pos-
itive examples, i.e. good candidate suggestions constituted
by vectors of eleven feature values. As we always get more
bad suggestions than good ones, those corpora led us to gen-
erate 30,000 negative examples, i.e. bad suggestions consti-
tuted by vectors of eleven feature values. Thus, the resulting
set of positive and negative examples is unbalanced, that is
known to be a difficulty for C4.5 to make it learn an efficient
decision tree. To overcome this drawback, we ran some
prototype selection techniques based on those proposed by
Sebban et al. in [20] resulting in a final learning set of 1100
examples.

We ran C4.51 on this learning set and get a decision tree
modelling good and bad candidate suggestions.

Using this decision tree, we ran WebSpell on a test set
made up of new sentences containing 500 identified mis-
spellings. This set has also been built using English texts
found on the Web. Hence, WebSpell can count, for each
misspelling, the number of times the good suggestion ap-
pears in the list of suggestions whatever its position (which
provides the Suggestion Intelligence score) and at the first
position (which provides the Suggestion Intelligence First
score).

4.2 Comparison with state of the art spell
checkers

Table 2 summarizes the results obtained by the various
spell checkers on the test corpus we built in the context of
this experiment. To assess the relevance of Web-based fea-
tures of our system, we run WebSpell using either all the
eleven features (WebSpell v1), or only those not issued from
the Web (WebSpell v2).

Spell Checker SI SIF
Ispell 78 39
Aspell 79 58
Word 78 65

WebSpell v1 91 72
WebSpell v2 87 54

Table 2. Comparative study of WebSpell with
state of the art spell checkers

We can see that WebSpell significantly outperforms
other spell checkers in terms of Suggestion Intelligence us-
ing the features based on the Web or not. Concerning Sug-
gestion Intelligence First, without the Web, our system per-
forms badly compared with Aspell and Word, but we can
see that Web-based features have a significant impact on the
efficiency of the system. This was expected at the beginning

1We used the weka library at http://www.cs.waikato.ac.nz/ml/weka/



of our investigations and we may see it has been verified by
the experiments.

5 Conclusion

In this paper, we have presented the WebSpell system
which is able to spell check a document thanks to the help
of the Web and more precisely the Google search engine.
Our experiments have shown that WebSpell outperforms Is-
pell, Aspell and Word on the two classical criteria Sugges-
tion Intelligence and Suggestion Intelligence First. In fact,
thanks to the Web, WebSpell is able to take into account the
context of the candidate suggestions in order to efficiently
choose the good ones using a learned decision tree and rank-
ing them according to their distance to the separator hyper-
plane. WebSpell is easy to train and one of its major is-
sues is that it may evolve in the same way the Web evolves.
That means the system may linguistically evolves because
the evolution of the content of millions of Web pages re-
flects linguistic evolutions among the time. WebSpell works
whatever the language we use provided that it is sufficiently
represented on the Web.

One new way of research we want to explore now is the
construction of a corpus of contexts of tokens on the Web.
Such a corpus, which will obviously be huge, would be re-
ally valuable to be able to take into account even more the
context of tokens while correcting a text. Indeed, as Of-
fice2007 is beginning to do, non misspelling tokens could
be pointed out by the system as non correct tokens thanks
to their contexts. In fact, that will lead us to built a kind of
semantic error checker.

References

[1] M. A. Elmi and M. Evens. Spelling correction using con-
text. In Proceedings of the International Conference on
Computational Linguistics, pages 360–364. Morgan Kauf-
mann, 1998.

[2] R. Ghani, R. Jones, and D. Mladenic. Using the web to cre-
ate minority language corpora. In Proceedings of the Inter-
national Conference on Information and Knowledge Man-
agement, pages 279–286. ACM Press, 2002.

[3] G. Grefenstette and J. Nioche. Estimation of english and
non-english language use on the WWW. In Proceedings of
the RIAO International Conference, pages 237–246, 2000.

[4] N. Hathout and L. Tanguy. Webaffix : a tool for finding and
validating morphological links on the WWW. Proceedings
of the International Conference on Linguistic Resources and
Evaluation, May 2002.

[5] S. Jacquemont, F. Jacquenet, and M. Sebban. Webspell, a
machine learning approach to spell checking based on the
web. Technical report, Univ. of Saint-Etienne, France, 2006.

[6] F. Keller and M. Lapata. Using the web to obtain frequencies
for unseen bigrams. Computational Linguistics, 29:459–
484, 2003.

[7] M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling
correction program based on a noisy channel model. In Pro-
ceedings of the International Conference on Computational
Linguistics, pages 205–210, 1990.

[8] A. Kilgarriff and G. Grefenstette. Introduction to the special
issue on the web as a corpus. Computational Linguistics,
29:333–347, 2003.

[9] W. Kraaij, J. Nie, and M. Simard. Embedding web-based
statistical translation models in cross-language information
retrieval. Computational Linguistics, 29:381–419, 2003.

[10] M. Lapata and F. Keller. The web as a baseline: Evaluating
the performance of unsupervised web-based models for a
range of NLP tasks. In Proceedings of the Conference of the
Association for Computational Linguistics, pages 121–128,
2004.

[11] K. Markert, N. Malvinam, and N. Modjeska. Using the web
for nominal anaphora resolution. In Proceedings of the Eu-
ropean Assocation of Computational Linguistics Workshop
on the Computational Treatment of Anaphora, pages 39–46,
2003.

[12] T. McEnery and A. Wilson. Corpus linguistics. Edinburgh
University Press, 1996.

[13] L. Philips. Hanging on the metaphone. Computer Language,
7(12):39–43, dec 1990.

[14] J. R. Quinlan. C4.5: programs for machine learning. Mor-
gan Kaufmann, 1993.

[15] D. R. Radev and K. R. McKeown. Building a genera-
tion knowledge source using internet-accessible newswire.
In Proceedings of the Conference on Applied Natural Lan-
guage Processing, 1997.

[16] D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn,
Z. Zhang, W. Fan, and J. Prager. Mining the web for answers
to natural language questions. In Proceedings of the Inter-
national Conference on Information and Knowledge Man-
agement. ACM Press, 2001.

[17] P. Resnik. Mining the web for bilingual text. In Proceedings
of the Annual Meeting of the Association for Computational
Linguistics, pages 527–534, Maryland, USA, 1999.

[18] P. Resnik and N. A. Smith. The web as a parallel corpus.
Computational Linguistics, 29:349 – 380, 2002.

[19] C. Santamaria, J. Gonzalo, and F. Verdejo. Automatic asso-
ciation of web directories with word senses. Computational
Linguistics, 29:485–502, 2003.

[20] M. Sebban and R. Nock. Combining feature and proto-
type pruning by uncertainty minimization. In Proceedings
of the Sixteenth Conference on Uncertainty in Artificial In-
telligence, pages 533–540. Morgan Kaufmann, 2000.

[21] R. A. Wagner and M. J. Fischer. The string-to-string correc-
tion problem. Journal of the ACM, 21(1):168–173, 1974.

[22] A. Way and N. Gough. wEBMT: developing and validat-
ing an example-based machine translation system using the
world wide web. Computational Linguistics, 29:421–457,
2003.

[23] X. Zhu and R. Rosenfeld. Improving trigram language mod-
eling with the world wide web. In Proceedings of Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 2001.


