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Introduction

The idea behind this paper comes from some everyday practices of text correction. Indeed, in our everyday life, when one wants to find the correct spelling of words, many people are used to ask some help from Google. Wondering which of the various spellings of a word is the right one, we apply with Google, the simple following heuristic: the more pages containing the spelling, the best spelling. We think this could be the basic idea of a more sophisticated tool we decided to design trying to automate the manual process we used to have every day. The problem with such an approach is that while a human being asking some help from Google knows the various spellings he wants to test, in the case of a machine-based process, the various spellings must be automatically provided to the machine.

At the moment, there are mainly three well known spell checkers that can be used by end users to correct their texts: Ispell, Aspell and Word.

Ispell, designed by GNU, or Word spell checker rely on a very basic principle: when they detect a misspelling, they propose all the possible words that are at some edit distance [START_REF] Wagner | The string-to-string correction problem[END_REF] from this misspelling. Aspell, also a GNU project, has been designed to improve Ispell. The main contribution of the checker is that it uses the metaphone algorithm of Lawrence Phillips [START_REF] Philips | Hanging on the metaphone[END_REF]. This algorithm is able to calculate some suggestions based on soundslike similarity. Hence, it converts the misspelled word to its soundslike equivalent. It finds all words that have a soundslike at small edit distances from the original word's soundslike. Then it finds misspelled words that have a correctly spelled replacement by the same previous criteria. Finally, Aspell scores the result list and returns the words with the lowest score (the score is roughly the weighed average of the weighed edit distance of the word to the misspelled word and the soundslike equivalent of the two words).

The performances of Ispell, Aspell and Word may be compared using two main criteria. The first one, called Suggestion Intelligence (SI), corresponds to the rate of good suggestions proposed by the spell checker with respect to all the misspellings of test file:

SI =

T otal correct suggestions T otal misspellings * 100.

The second criterion, called Suggestion Intelligence First (SIF), represents the ability of the spell checker to find the good suggestion at the first position of the list of all the suggestions:

SIF =

T otal correct suggestions f ound f irst on list T otal misspellings * 100.

We ran Aspell, Ispell and Word on a set of documents containing 500 identified misspellings (cf section 4) and we get the results of table Concerning Suggestion Intelligence, the three tools are quite equivalent at approximately 78%. This result shows the potential improvement we can achieve. Concerning the Suggestion Intelligence First criterion, Ispell is the worst checker, then Aspell is a little bit better and Word is the best of the three, but the scores remain quite low. One possible explanation is that these tools mainly focus on the misspellings and not on their contexts. Thus, to increase the Suggestion Intelligence and Suggestion Intelligence First scores, we think it would be interesting, while calculating some suggestions to correct a misspelling, to take into account the whole sentence (or at least some part of it) that contains this misspelling. That is the vision we are presenting now.

First, in the next section, we show that the Web has already been considered as a corpus by other researchers in various projects of various domains. In section 3, we present our system, its architecture, the way it works and the machine learning techniques it integrates. In section 4, we present some experiments we did with our system and compare its performance with Aspell, Ispell and Word in terms of Suggestion Intelligence and Suggestion Intelligence First. Finally, we conclude and propose some future explorations.

Using the Web as a Corpus

In this section, we first explain why the Web can be considered as a corpus and we describe several examples of applications where the Web has been used with that purpose.

Can we consider the Web as a corpus?

Since the beginning of the nineties and the advent of the Internet, the amount of documents that can be accessed on the Web has considerably increased and those ones are more and more diversified. These features make the Web an interesting tool for researchers. Indeed, at the same time, it has been more and more urgent to design linguistic corpora in the context of various researches such as natural language processing, machine translation, etc. To built such corpora, many people have focus on the Web. First, let us recall what is a corpus using the definition of McEnery and Wilson [START_REF] Mcenery | Corpus linguistics[END_REF]:

"Any collection of more than one text can be called a corpus, (corpus being Latin for "body", hence a corpus is any body of text). But the term "corpus" when used in the context of modern linguistics tends most frequently to have more specific connotations than this simple definition. The following list describes the four main characteristics of the modern corpus: sampling and representativeness, finite size, machine-readable form, a standard reference."

This definition gives us some basis to explain the reasons why it is possible to consider the Web as a linguistic corpus. Let us consider each previous features.

If we consider sampling, as the Web, while voluminous, is not an exhaustive representation of the various languages, it has to be considered as a sample of those ones. Moreover, as the various search engines only index a part of the whole Web, we usually use only a sample of it.

Concerning representativeness of the Web as a corpus, the main question is to know if the Web is enough representative of natural languages. In other words, is the Web representative enough to replace classic corpus? [START_REF] Zhu | Improving trigram language modeling with the world wide web[END_REF][START_REF] Keller | Using the web to obtain frequencies for unseen bigrams[END_REF][START_REF] Lapata | The web as a baseline: Evaluating the performance of unsupervised web-based models for a range of NLP tasks[END_REF]] tried to answer this question studying the Web in the context of learning the frequencies of trigrams, that is, the probability estimate of three consecutive words, with the objective to model natural languages. The objective was to compare the probabilities of 3-grams calculated using a corpus and those calculated from the Web. Several search engines such as Google, AltaV ista, Lycos and F ast have been used for that study. They have shown that 3-grams calculated from the Web could improve the word error rate with respect to frequencies calculated on the classic corpus, such as the British National Corpus. The frequencies calculated on the Web have been used in various applications of various domains and it has been proved that the results obtained using the Web were significantly better than those obtained with the British National Corpus.

These studies show the evidence of the interest to replace classical corpus by the Web or a sample of it. That leads us to conclude the Web really has the characteristic of representativeness.

It is obvious that the Web has a finite size, even if this one is not constant. The number of words on the Web is countable even if it evolves among the time. Grefenstette and Nioche [START_REF] Grefenstette | Estimation of english and non-english language use on the WWW[END_REF] for example have estimated the number of words that can be accessed by some search engines.

The third characteristic of a corpus is to be machine readable. It is clear that, by definition, the documents on the Web are electronic files, thus easily usable by computers and their softwares.

Finally, concerning the fact that a corpus has to be a standard reference, it is difficult to say at the moment that it is the case. Indeed, the various experiments that have been done until now do not always use the same samples of the web. Nevertheless, more and more researches have chosen to use the Web as a corpus that cannot be ignored and we can think it will become a standard in a few years. [START_REF] Mcenery | Corpus linguistics[END_REF] may be applied to the Web. It is important to note that many other features are attached to the Web such as its linguistic diversity, its evolution, its accessibility, which are considerable advantages with respect to classical corpus. This is for these reasons that we have chosen to use the Web as a corpus in the context of spell checking.

Those considerations show us that the definition of a corpus proposed by McEnery et Wilson

Various domains where the Web has been used

Obviously there are many applications related to natural language processing that rely on the Web [START_REF] Kilgarriff | Introduction to the special issue on the web as a corpus[END_REF].

In machine translation, several researches have used the Web as a corpus. Classically, there are two ways to use the Web. First, it can be used to choose the best translation among several candidate translations. Second, it can be used as a database of translations.

Using the Web to choose the best translation has been done for example by Way and Ghough [START_REF] Way | wEBMT: developing and validating an example-based machine translation system using the world wide web[END_REF] who developed WEBMT, a tool that uses classical translation rules and then submits the various possibilities to a search engine. Probabilities are calculated thanks to the number of occurrences returned by the engine. The chosen translation is the one that has the greatest probability. Experiments show that in the case of three different translation systems, the use of the Web may increase their performance of 64%.

Using the Web as a database of translations has been done by Resnik and Smith [START_REF] Resnik | Mining the web for bilingual text[END_REF][START_REF] Resnik | The web as a parallel corpus[END_REF] with the STRAND project, that aims at building a parallel corpus, that is couples of texts that are exact translations of each others. Kraaij et al. [START_REF] Kraaij | Embedding web-based statistical translation models in cross-language information retrieval[END_REF] also use the Web to build statistical translation models.

The Web has also been used for the Word Sense Disambiguation task which is a difficult problem. In [START_REF] Santamaria | Automatic association of web directories with word senses[END_REF], Santamaria et al. try to associate the meaning of words to directories of thematic search engines such as Y ahoo. Thanks to this work, some meanings have been discovered and for some rather difficult words, good results have been obtained. Some limitations have been shown for some too general words such as adverbs. This study could be used to complete Wordnet, thanks to the Web diversity.

Tanguy and Hathout have used the Web to complete the french Verbaction lexicon [START_REF] Hathout | Webaffix : a tool for finding and validating morphological links on the WWW[END_REF] which is a very useful lexicon for natural language processing in french. Language being in constant evolution, it is necessary to be able to make this lexicon evolve, thus they have chosen to base their system on the Web to ensure that. Markert et al. have used the Web to solve anaphora [START_REF] Markert | Using the web for nominal anaphora resolution[END_REF]. The basic idea of the system is to search on the Web for some couple anaphora/antecedent to validate the best antecedent. Ghani et al. [START_REF] Ghani | Using the web to create minority language corpora[END_REF] have used the Web to build corpora of representative documents for minority languages. Radev et al. have designed a tool, called PROFILE [START_REF] Radev | Building a generation knowledge source using internet-accessible newswire[END_REF], able to collect on the Web some functional descriptions of entities (i.e. part of sentences describing something or someone) tagged lexically or syntactically. These ones are then used to generate summaries of news. In the domain of Question Answering systems, they also designed the QASM (Question Answering using Statistical Model) system [START_REF] Radev | Mining the web for answers to natural language questions[END_REF] which is able to ask some questions and provides some answers from search engines in natural language. QASM translates questions in natural language in requests for classical search engines. The idea is to learn, using some machine learning techniques, the best sequences of transformations from a natural language request to search engine one.

We can say, at the end of this study, that using the Web as a corpus is not really a new idea and has been at the core of various successful projects. Thanks to its linguistic diversity it makes it possible to perform efficient machine translation, and to build other corpus even for minority languages. Its thematic diversity makes it possible to complete well known corpus. More generally, its size allows it to be used as a training sample for machine learning algorithms.

We are going to see now that the Web is also the core of our new efficient spell checker.

The WebSpell system

If we consider a standard spell checker, its basic principle is quite simple. Let T 1 . . . T n the constitutive tokens (or words) of a document. When the spell checker detects a token T i that is not in its associated dictionary, i.e. in fact a misspelling, it searches in this dictionary for some tokens CS ij that could be suggested to the user in order to correct this misspelling. Since each of these candidate suggestions are more or less appropriate, a crucial task to achieve is to rank them accurately. The next two sections aim at presenting the way we perform that.

Basic principle of the system

The basic principle of the WebSpell system is described in figure 1.

The candidate suggestions come from three different sources. First, WebSpell collects, from its dictionary, the tokens at an edit distance smaller than a fixed value (usually equal to 1) of the misspelling. Another class of candidate suggestions is made up of the frontier words [START_REF] Elmi | Spelling correction using context[END_REF] also calculated with the help of the dictionary. Frontier words are defined by the presence or absence of a space between two words. Suggestions that we will consider as frontier words are strings built by adding or deleting a space. For example, "below" is a frontier word because it is the concatenation of two existing words "be" and "low". The last category of candidate suggestions corresponds to the false misspellings, i.e. tokens not encountered in the dictionary while they belong to the language of the considered document. To find them, we search for a misspelling with Google. If the answer is "Did you mean: S" we consider the misspelling is really an error and S is added to the set of candidate suggestions, else we add the misspelling to this list. When the set of candidate suggestions CS i is built, we calculate, for each candidate suggestion CS ij (j = 1, . . . , |CS i |) of a misspelling T i a vector of values a kij corresponding to the features. Each candidate suggestion is then submitted to a decision tree (see below) that classifies it as a good or a bad candidate. Good candidate suggestions, which become suggestions from that time, are then ranked according to their distance to the separator hyperplane provided by the decision tree. That means we build a permutation p such that CS p(i1) . . . CS p(ik) is the ranked list of suggestions.

Features attached to suggestions

First, let us explain how such a decision tree can be built. From a corpus of learning documents, we carry out the spell check task by searching for the set of candidate suggestions.

Given a misspelling and its corresponding candidate suggestions, we are able to manually select the good candidate, which is then labelled as positive example, while the others are then automatically labelled as negative examples. Doing the same thing for all the documents, we can design a learning set LS composed of positive and negative examples. The C4.5 algorithm [START_REF] Quinlan | C4.5: programs for machine learning[END_REF] may then be used to build a decision tree from LS able to linearly separate the good candidates from the bad ones.

In order to learn this decision tree, we have to define a set of features associated with each candidate suggestion CS ij supposed to correct a misspelling T i . After many investigations for designing a relevant representation of a misspelling, we have chosen to define five features related to the Web and six other features not linked to the Web, resulting in a feature vector A = {a kij |k = 1, . . . , 11}.

Features that do not use the Web

Size: We have chosen to take into account the size, that is the number of letters, of the misspelling. This very simple feature is useful to take into account the distribution of natural language tokens with respect to this size. Indeed the more we consider long tokens, the less they exist in natural language. A short token will have more candidate suggestions for correction than a longer one.

Distance:

The second feature we considered is the distance between the candidate suggestion CS and the misspelling T . It is based on the classical edit distance [START_REF] Wagner | The string-to-string correction problem[END_REF], that is the number of operations (deletion, insertion, substitution of letters) used to change one token into another one. In order to normalize the results, we decided to divide the value calculated with the classical edit distance by the size of the token it is applied on. Indeed, it is more likely to make two misspellings in a long token rather than in a short one:

Distance(CS, T ) = edit distance(CS, T ) Size(T ) .
In fact, this feature is one of the most important and is used in every spell checker.

Position of error:

The third feature gives the position of the first error in the misspelling T with respect to the candidate suggestion CS. This feature is important because some studies have shown that errors was more frequent in some places of the tokens [START_REF] Kernighan | A spelling correction program based on a noisy channel model[END_REF]. Here again, we have chosen to normalize this value by the size of the misspelling:

P osition(T, CS) = position of error(T, CS) Size(T ) .

Punctuation tag: This tag indicates if the sentence we are considering contains some punctuation or not. It is useful during the correction in order to distinguish the sentences that have to be corrected.

Frontier tag: This feature is useful to determine if a suggestion is a frontier word or not.

Keyboard distance:

The value of this feature is calculated by taking into account the distance between keys on a keyboard. Here again, this value is normalized by the size of the misspelling. To compute this value, we have built a matrix containing the distance of all the keys of a keyboard. Due to space restriction, it is not possible to detail here the way this distance is calculated, the reader may refer to [START_REF] Jacquemont | Webspell, a machine learning approach to spell checking based on the web[END_REF].

Features that use the Web

We now propose five features whose values have to be calculated using the Web. Among them, the probability of n-grams allows us to take into account the context of the misspellings. We have decided to limit this context for algorithmic reasons because those probabilities are calculated using a lot of requests to the Google search engine.

We have chosen to introduce smoothing during the calculation of frequencies to avoid the problems of dividing by zero during the calculus of probabilities.

Frequency of a candidate suggestion:

The first feature we have considered is the frequency of the candidate suggestion on the Web. We search with Google, the number of times the candidate suggestion is indexed by this search engine.

Probability of 2-grams:

This feature corresponds to the probability of the 2-gram made up of the candidate suggestion CS and the preceding token T bef ore . To estimate this probability we use the classical Bayes formula: P 2gram (T bef ore CS) = P (CS/T bef ore ) × P (T bef ore ).

In fact P (T bef ore ) = #Occ(T bef ore ) #Occ( * )
where #Occ( * ) is the total number of tokens indexed by Google. The problem is that it is difficult to compute this number. To overcome this drawback, we decided to estimate P (T bef ore ) in that way:

P (T bef ore ) = #Occ(T bef ore CS)) #Occ( * CS)
where #Occ( * CS) is the number of occurrences of the candidate suggestion CS when it is preceded by another token, whatever it is.

To compute P (CS/T bef ore ), we use the conditional probabilities formula: P (CS/T bef ore ) = P (T bef ore ∩ CS) P (T bef ore ) = #Occ(T bef ore CS) #Occ(T bef ore ) .

So, we deduce that:

P 2gram (T bef ore CS) = #Occ(T bef ore CS) #Occ(T bef ore ) × #Occ(T bef ore CS) #Occ( * CS) .
Probability of left 3-grams: On the same principle as 2-gram, this feature represents the probability of 3-gram, noted P 3gram1 , made up of the candidate suggestion CS and the two preceding tokens T b1 and T b2 :

P 3gram1 (T b1 T b2 CS) = P (CS/T b1 T b2 ) × P (T b2 /T b1 ) × P (T b1 ).
Using the same reasoning steps as for the probability of 2-grams, we get:

P 3gram1 (T b1 T b2 CS) = #Occ(T b1 T b2 CS) #Occ(T b1 T b2 ) × #Occ(T b1 T b2 ) #Occ(T b1 ) × #Occ(T b1 T b2 CS) #Occ( * T b2 CS) .
Probability of centered 3-grams: The fourth feature, noted P 3gram2 , is the probability of the 3-gram made up of the candidate suggestion CS, the token T b before CS and the token T a after CS.

It is computed in the same way as the two previous probabilities:

P 3gram2 (T b CS T a ) = #Occ(T b CS T a ) #Occ(T b CS) × #Occ(T b T a ) #Occ(T b ) × #Occ(T b CS T a ) #Occ( * CST a ) .
Probability of co-occurrence: Finally, the last feature, noted Cooc, allows the system to measure if the couple of tokens (T, CS) made up of the misspelling T and a candidate suggestion CS, appears frequently or not in the same pages on the Web. Indeed, if such a couple appears frequently, we can suppose that the suggestion has good chance to be a good one. The value of this feature is processed in that way:

Cooc(T, CS) = #Occ2(T, CS) #Occ(CS)
where #Occ2(T, CS) is the number of pages, returned by Google, where T and CS appear simultaneously.

Experiments

In this section, we are going to make some experiments in order to compare our WebSpell system with state of the art spell checkers using the Suggestion Intelligence and Suggestion Intelligence First criteria.

Experimental protocol

We used various English corpora found on the Web in order to get a good diversity in the linguistic style and origins of the documents that have been considered.

Those corpora led us to build a file containing 700 positive examples, i.e. good candidate suggestions constituted by vectors of eleven feature values. As we always get more bad suggestions than good ones, those corpora led us to generate 30,000 negative examples, i.e. bad suggestions constituted by vectors of eleven feature values. Thus, the resulting set of positive and negative examples is unbalanced, that is known to be a difficulty for C4.5 to make it learn an efficient decision tree. To overcome this drawback, we ran some prototype selection techniques based on those proposed by Sebban et al. in [START_REF] Sebban | Combining feature and prototype pruning by uncertainty minimization[END_REF] resulting in a final learning set of 1100 examples.

We ran C4.51 on this learning set and get a decision tree modelling good and bad candidate suggestions.

Using this decision tree, we ran WebSpell on a test set made up of new sentences containing 500 identified misspellings. This set has also been built using English texts found on the Web. Hence, WebSpell can count, for each misspelling, the number of times the good suggestion appears in the list of suggestions whatever its position (which provides the Suggestion Intelligence score) and at the first position (which provides the Suggestion Intelligence First score).

Comparison with state of the art spell checkers

Table 2 summarizes the results obtained by the various spell checkers on the test corpus we built in the context of this experiment. To assess the relevance of Web-based features of our system, we run WebSpell using either all the eleven features (WebSpell v1), or only those not issued from the Web (WebSpell v2 We can see that WebSpell significantly outperforms other spell checkers in terms of Suggestion Intelligence using the features based on the Web or not. Concerning Suggestion Intelligence First, without the Web, our system performs badly compared with Aspell and Word, but we can see that Web-based features have a significant impact on the efficiency of the system. This was expected at the beginning of our investigations and we may see it has been verified by the experiments.

Conclusion

In this paper, we have presented the WebSpell system which is able to spell check a document thanks to the help of the Web and more precisely the Google search engine. Our experiments have shown that WebSpell outperforms Ispell, Aspell and Word on the two classical criteria Suggestion Intelligence and Suggestion Intelligence First. In fact, thanks to the Web, WebSpell is able to take into account the context of the candidate suggestions in order to efficiently choose the good ones using a learned decision tree and ranking them according to their distance to the separator hyperplane. WebSpell is easy to train and one of its major issues is that it may evolve in the same way the Web evolves. That means the system may linguistically evolves because the evolution of the content of millions of Web pages reflects linguistic evolutions among the time. WebSpell works whatever the language we use provided that it is sufficiently represented on the Web.

One new way of research we want to explore now is the construction of a corpus of contexts of tokens on the Web. Such a corpus, which will obviously be huge, would be really valuable to be able to take into account even more the context of tokens while correcting a text. Indeed, as Of-fice2007 is beginning to do, non misspelling tokens could be pointed out by the system as non correct tokens thanks to their contexts. In fact, that will lead us to built a kind of semantic error checker.

Figure 1 .

 1 Figure 1. Principle of the WebSpell system

Table 1 . Comparative study of state of the art spell checkers.

 1 1. 

		Aspell Ispell Word
	SI	79	78	78
	SIF	58	39	65

  T1 T2 ... Ti ... Tn

		GOOGLE					GOOGLE
		Ti CSi1 CSi2	...	CSik	Ti CSi1 CSi2	...	CSim
	Tokens of the sentence	Misspelling Ti and its		
	to be checked	associated candidate		a1i1 a1i2	...	a1im
		suggestions			
				Features calculated	...	...	...	...
				for each candidate	
		Dictionary			suggestion	aki1 aki2	...	akim
	C4.5					
					Ti CSp(i1) CSp(i2)	...	CSp(im)
					Misspelling and its
	Documents containing identified misspellings	that classifies good Decision tree			associated ranked candidate suggestions
	and good/bad suggestions	and bad suggestions				

Table 2 . Comparative study of WebSpell with state of the art spell checkers

 2 ).

	Spell Checker SI SIF
	Ispell	78 39
	Aspell	79 58
	Word	78 65
	WebSpell v1 91 72
	WebSpell v2 87 54

We used the weka library at http://www.cs.waikato.ac.nz/ml/weka/
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