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Radiant and coradiant dualities

Jean-Paul Penot
Laboratoire de Mathématiques appliquées, CNRS UMR 5142,

Faculté des Sciences, BP 1155 64013 PAU cedex France

Abstract

We associate a dual problem to a constrained optimization problem in which the ob-

jective is quasiconvex and either attains at 0 its global minimum or its global maximum.

The attractive features of such a duality are that it does not require an additional pa-

rameter to set the dual and that the dual problem has a form which is similar to the one

of the primal problem. We present conditions ensuring strong duality using separation

properties. We relate our approach to the Lagrangian theory.

Key words Coradiant set. Coradiant function, dual problem. Even convexity.

Lagrangian. Quasiconvexity. Radiant set. Radiant function.

1 Introduction

For several minimization problems over a feasible set F , the global minimizer of the objective
function f over the whole space X containing F is known. For instance, if X is a normed vector
space (n.v.s.) and if f is the norm of X, 0 is the global minimizer of f. Such a fact does not yield
any information about the location of solutions of the constrained problem over F . However,
this fact can be used under weaken convexity assumptions to get duality relationships which
are so important (see [29] for instance for a recent study from the algorithmic viewpoint).
The needs of relaxed convexity assumptions in several fields, in particular in mathematical
economics, incite to push further the results obtained so far in this direction. Quasiconcavity is
often considered as an admissible assumption when dealing with an utility function u because
the preference sets which are its superlevel sets have a concrete content while u itself is usually
out of reach.

In [25] P.T. Thach gets optimality conditions for constrained problems under even convexity
and quasiconvexity assumptions. The concept of even convexity introduced by Fenchel ([4])
has been studied by several authors ([2], [9], [11], [19], [20]....). A recent comprehensive study
has appeared in [6]. Here, we rather focus on more classical topological assumptions such as
closedness and semicontinuity. Thus, our results rely on classical separation theorems and
complete the ones in [25]. We take advantage of the viewpoint of abstract convexity, but our
methods are close to the ones of familiar convex programming, albeit the functions we deal
with are quasiconvex and not convex. Bringing the viewpoint of polarities enables to consider
a whole range of possible dual problems; we give a short account of these possibilities. We
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also reveal the case of radiant functions and sets which is not treated in [25]. We endeavour
to give a unified presentation and to relate these dualities to general duality schemes.

Recall that a subset C of X is said to be radiant if it is starshaped and convex, i.e. if it
is convex and 0 ∈ C (thus, our definition differs from the one in [23] and [31] in which C is
just starshaped). It is evenly radiant if it is the intersection of a family of open half-spaces
containing 0. A subset C of X is said to be coradiant if it is convex and costarshaped (or
starshaped at infinity) with 0 /∈ C, i.e. if it is convex, if 0 /∈ C and if for all x ∈ C, t > 1
one has tx ∈ C. It is evenly coradiant if it is the intersection of a family of open half-spaces
whose closures do not contain 0. The Hahn-Banach theorem shows that a closed coradiant
(resp. radiant) subset is evenly convex. A function f : X → R is said to be (quasi)radiant
if its sublevel sets are radiant, i.e. if for every x ∈ X one has f(tx) ≤ f(x) for all t ∈ [0, 1].
Equivalently, f is radiant if its strict sublevel sets are radiant. The function f is said to be
coradiant if its (strict) sublevel sets are coradiant, i.e. if f(0) = +∞ and if for every x ∈ X
one has f(tx) ≤ f(x) for all t ∈ [1, +∞). It is evenly coradiant if its strict sublevel sets are
evenly coradiant. Such functions are useful in mathematical economics (see [25, Section 4]
and the references in [16]).

A remarkable fact about these classes of functions is that conjugates can be defined on the
dual space X∗ of X. For general quasiconvex functions, conjugacies are not as simple as they
involve an extra parameter (see [9], [15], [20], [22] for instance).

2 An adapted framework

Given a function f : X → R∞ := R∪{+∞} and a nonempty convex subset F of X, let us
consider the constrained optimization problem

(P ) minimize f(x) x ∈ F.

In the sequel, for r ∈ R, we set S<
f (r) = {x ∈ X : f(x) < r} and α := inf(P ). Throughout we

suppose f assumes at least one finite value on the feasible set F, so that α < +∞.
We introduce the dual problems

(D⊼) maximize − f∧(x∗) x∗ ∈ F∇,

(D⊻) maximize − f∨(x∗) x∗ ∈ F∆

where

f∧(x∗) := − inf{f(x) : x ∈ X, 〈x, x∗〉 ≥ 1}, F∇ := {x∗ ∈ X∗ : ∀x ∈ F 〈x, x∗〉 ≥ 1},
f∨(x∗) := − inf{f(x) : x ∈ X, 〈x, x∗〉 ≤ 1}, F∆ := {x∗ ∈ X∗ : ∀x ∈ F 〈x, x∗〉 ≤ 1}.

The conjugate f∨ is related to the conjugate fR considered in [25] by the equality f∨(x∗) =
fR(−x∗) for all x∗ ∈ X∗; the conjugate f∧ is not considered in [25].

In order to deal simultaneously with the two dual problems (D⊼) and (D∨), we introduce
the following notation. For > ∈ {∧,∇}, we set ε> := 1, while for > ∈ {∨, ∆}, we set ε> := −1.
Then, we can gather the two dual problems into the single one

(D>) maximize − f>(x∗) x∗ ∈ F >,
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where

F > := {x∗ ∈ X∗ : ∀x ∈ F 〈x, ε>x∗〉 ≥ ε>},
f>(x∗) := − inf{f(x) : x ∈ X, 〈x, ε>x∗〉 ≥ ε>}.

Note that we can rewrite (D>) as the equivalent adjoint problem

(P >) minimize f>(x∗) x∗ ∈ F >

which has a form similar to the one of (P ). The adjoint problem of (P >) is

(P >>) minimize f>>(x∗∗) x∗∗ ∈ F >>.

Its restriction to X ⊂ X∗∗ coincides with (P ) when > ∈ {∨, ∆}, F is closed and radiant and f
is evenly coradiant by [25, Thm 2.3] and the bipolar theorem. When > ∈ {∧,∇}, F is evenly
coradiant and f is lower semicontinuous and radiant, one can also show that the restriction
of (P >>) to X ⊂ X∗∗ coincides with (P ).

We first observe that we have the weak duality inequality

− inf(P >) = max(D>) ≤ inf(P )

since for all x∗ ∈ F >, we have F ⊂ [ε>x∗ ≥ ε>] := {x ∈ X : 〈ε>x∗, x〉 ≥ ε>}, hence
−f>(x∗) = inf f([ε>x∗ ≥ ε>]) ≤ inf f(F ).

Let us illustrate the preceding duality scheme with an example.
Example. Let X be some Euclidean space for a scalar product denoted by (· | ·). Let A
be a symmetric linear positive definite operator on X and let e ∈ X be an eigenvector of A
with norm 1 corresponding to an eigenvalue λ. Consider problem (P ) with f and F given by
f(x) := −‖x‖−2 for x ∈ X\{0}, f(0) = −∞ and

F := {x ∈ X : (Ax | x) ≥ (1 − (e | x))2}.

Then, identifying X∗ with X, one has f∧(y) = ‖y‖2 and F∇ = {e+z : z ∈ X, (A−1z | z) ≤ 1}.
Thus F∇ is compact and the dual problem (D⊼) has a solution. In fact, for x := (

√
λ + 1)−1e,

y = (
√

λ + 1)e one has x ∈ F, f(x) = −(
√

λ + 1)2, y ∈ F∇, −f∧(y) = −(
√

λ + 1)2, so that x
is a solution to (P ) and y is a solution to (D⊼).

3 Criteria for strong duality

Let us give conditions ensuring strong duality, i.e. that there is no duality gap and that (D>)
has solutions when α := inf(P ) is finite. As in [25, Thm 3.2] for the case of (D⊻), a separation
property entails such a result. We first prove a converse.

Proposition 1 Suppose α is finite, there is no duality gap between (P ) and (D>) and (D>)
has a solution x∗. Then the hyperplane [x∗ = 1] separates F and S<

f (α):

∀u ∈ F, x ∈ S<
f (α) 〈x, ε>x∗〉 < ε> ≤ 〈u, ε>x∗〉. (1)
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Proof. Since x∗ ∈ F >, we have ε> ≤ 〈u, ε>x∗〉 for all u ∈ F. Now α = −f>(x∗) since there
is no duality gap, so that α ≤ f(x) for all x ∈ X satisfying 〈x, ε>x∗〉 ≥ ε>. Equivalently, for
all x ∈ S<

f (α) we have 〈x, ε>x∗〉 < ε>. Note that since F is nonempty, the two inequalities of
the statement ensure that x∗ 6= 0. ¤

Proposition 2 Suppose that for some x∗
0 ∈ X∗, r > 0 the hyperplane [ε>x∗

0 = ε>r] separates
F and S<

f (α) in the sense that

∀u ∈ F, x ∈ S<
f (α) 〈x, ε>x∗

0〉 < ε>r ≤ 〈u, ε>x∗
0〉. (2)

Then there is no duality gap and x∗ := r−1x∗
0 is a solution to (D>).

Proof. Let x∗ := r−1x∗
0. By assumption (2), for all u ∈ F we have 〈u, ε>x∗〉 ≥ ε>, so

that x∗ ∈ F
>

. Let us show that f(x) ≥ α for every x ∈ [ε>x∗ ≥ ε>]; that will ensure that
−f>(x∗) ≥ α and that x∗ is a solution to (D>). Suppose on the contrary that there exists
some x ∈ [ε>x∗ ≥ ε>] such that f(x) < α. Then x ∈ S<

f (α), hence, by the first inequality in
(2), 〈x, ε>x∗〉 < ε>, a contradiction. ¤

Corollary 3 Suppose f is radiant and upper semicontinuous and F is convex. If either α =
−∞ or α > inf f(X), then there is no duality gap and if α is finite (D⊼) has a solution.

Proof. The result is obvious when α = −∞. Thus we may suppose α is finite. Since S<
f (α)

is a nonempty open convex subset disjoint from F , the Hahn-Banach separation theorem
ensures that one can find x∗

0 ∈ X∗\{0}, r ∈ R such that S<
f (α) ⊂ [x∗

0 < r] and F ⊂ [x∗
0 ≥ r].

As f is radiant, S<
f (α) contains 0, so that we have r > 0. ¤

A variant of this result can be given when X is finite dimensional. Here we say that f
is upper semicontinuous along rays if its restriction to any line passing through 0 is upper
semicontinuous.

Corollary 4 Suppose X is finite dimensional, f is radiant and upper semicontinuous along
rays and F is convex. If α > inf f(X), then, there is no duality gap and if α is finite (D⊼)
has a solution.

Proof. Again, we have 0 ∈ S<
f (α) and since f is upper semicontinuous along rays at 0,

S<
f (α) is absorbent. Now 0 /∈ S<

f (α) − F which is convex. Since X is finite dimensional,
one can find some x∗

0 ∈ X∗\{0} such that r := sup x∗
0(S

<
f (α)) ≤ inf x∗

0(F ). Taking x0 ∈ X
such that x∗

0(x0) > 0 and using the fact that S<
f (α) is absorbent, we get r > 0. Now, for all

x ∈ S<
f (α), since f is upper semicontinuous along rays, we have f(tx) < α for some t > 1.

Thus x∗
0(tx) ≤ r and x∗

0(x) < r and we can apply the proposition with ε> = 1. ¤

Corollary 5 Suppose f is coradiant and upper semicontinuous and F is convex and absorbent.
Then there is no duality gap and if α is finite (D⊻) has a solution.

Proof. Again, the result is obvious when α = −∞. Thus we suppose α is finite and we
apply the Hahn-Banach separation theorem since S<

f (α) is an open convex subset disjoint from
F , so that one can find x∗

0 ∈ X∗\{0}, r ∈ R such that S<
f (α) ⊂ [x∗

0 > r] and F ⊂ [x∗
0 ≤ r]. As

F is absorbent, we have r > 0 and we can apply the proposition with ε> = −1. ¤

Combining the techniques of the proofs of the two preceding corollaries we get the following
variant.
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Corollary 6 Suppose X is finite dimensional, f is coradiant, upper semicontinuous along
rays and F is convex and absorbent. Then there is no duality gap and if α is finite (D⊻) has
a solution.

4 Optimality conditions and dualities

Let us also show that a sufficient optimality condition ensures strong duality. For such a
purpose, we introduce the normal cone to F at x ∈ F given by

N(F, x) := {x∗ ∈ X∗ : ∀x ∈ F 〈x∗, x − x〉 ≤ 0}

and the subdifferential ∂
>

by

∂
>

f(x) := {x∗ ∈ X∗ : 〈x, ε>x∗〉 ≥ ε>, f(x) ≥ f(x) ∀x ∈ [ε>x∗ ≥ ε>]}

which encompasses the subdifferentials ∂∧ and ∂∨ defined in [15] along a general line introduced
by Mart́ınez-Legaz and Singer [10] (see also [25] for a related definition). Note that when
〈x, ε>x∗〉 = 1, one has x∗ ∈ ∂>f(x) if, and only if, ε>x∗ belongs to the Greenberg-Pierskalla
subdifferential [5]. Denoting by ∂>

1 f(x) the set of x∗ ∈ ∂>f(x) such that 〈x, ε>x∗〉 = 1, one
also observes that, when > = ∨, so that ε> = 1, one has

∂>

1 f(x) ⊂ ∂>f(x) ⊂ [1, +∞)∂>

1 f(x).

The following result completes [25, Thm 3.3] as it also deals with the case of problem (D⊼);
moreover, here ∂>

1 f(x) is replaced with the larger set ∂>f(x). Since the Plastria subdifferential

∂<f(x) := {x∗ ∈ X∗ : ∀x ∈ Sf (f(x)) f(x) − f(x) ≥ 〈x − x, x∗〉}

is contained in ε>∂>

1 f(x), this result also implies [7, Prop. 5].

Proposition 7 Let x ∈ F and x∗ ∈ X∗ be such that ε>x∗ ∈ ∂>f(x) ∩ (−N(F, x)). Then the
hyperplane {x : 〈x, ε>x∗〉 = ε>} separates F and S<

f (α), x is a solution of (P ), x∗ is a solution
of (D>) and there is no duality gap.

Proof. Since −ε>x∗ ∈ N(F, x), for all x ∈ F we have 〈x − x, ε>x∗〉 ≥ 0, hence 〈x, ε>x∗〉 ≥
〈x, ε>x∗〉 ≥ ε> by the first condition in the definition of ∂

>

f(x). Since F ⊂ [ε>x∗ ≥ ε>]
we have x∗ ∈ F >. The second condition yields f(x) ≥ f(x) for all x ∈ [ε>x∗ ≥ ε>], hence
for all x ∈ F and x is a solution of (P ). Since f(x) ≥ f(x) for all x ∈ [ε>x∗ ≥ ε>], we get
−f>(x∗) ≥ f(x). It follows that x∗ is a solution of (D>) and sup(D>) = inf(P ). ¤

This result shows the usefulness of having a solution of (D>) : to solve (P ) it suffices to
find a minimizer x of f on the half-space [ε>x∗ ≥ ε>] which is also a minimizer of −x∗ on F.
Both problems are simpler that the primal problem (P).

One may wonder about the relationships between this result and Proposition 1.

Proposition 8 Suppose that for some x∗ ∈ X∗\{0} the hyperplane [ε>x∗
0 = ε>r] separates F

and S<
f (α) in the sense of relation (1). If some solution x of (P ) is not a local minimizer of

f, then x∗ satisfies the optimality condition ε>x∗ ∈ ∂
>

f(x) ∩ (−N(F, x)). Moreover one has
〈x, ε>x∗〉 = ε>.
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Proof. Since x ∈ F, we have 〈x, ε>x∗〉 ≥ ε>. Since x is not a local minimizer of f, x
belongs to the closure of S<

f (α), hence 〈x, ε>x∗〉 = ε>. Since 〈u, ε>x∗〉 ≥ ε> for all u ∈ F,
we get −ε>x∗ ∈ N(F, x). It remains to show that f(x) ≥ f(x) for every x ∈ [ε>x∗ ≥ ε>] to
ensure that ε>x∗ ∈ ∂>f(x). Suppose there exists some x ∈ [ε>x∗ ≥ ε>] such that f(x) < f(x).
Then, since f(x) = α, we would have x ∈ S<

f (α), hence 〈x, ε>x∗〉 < ε>, a contradiction. Thus

x∗ ∈ ∂
>

f(x) and the conclusion follows from the preceding proposition. ¤

Corollary 9 Suppose f is radiant and upper semicontinuous and F is convex. Then, for
every solution x of (P ) which is not a local minimizer of f , there exists some solution x∗ of
(D⊼) which satisfies the optimality conditions x∗ ∈ ∂

∧

f(x)∩ (−N(F, x)), 〈x, x∗〉 = 1 and there
is no duality gap.

Proof. This follows from the Hahn-Banach separation theorem since S<
f (α) is an open

convex subset containing 0 and disjoint from F. ¤

A variant of this result can be given when X is finite dimensional.

Corollary 10 Suppose X is finite dimensional, f is radiant and upper semicontinuous along
rays at 0 and F is convex. Then, for every solution x of (P ) which is not a local minimizer
of f , there exists some solution x∗ of (D⊼) which satisfies the optimality conditions x∗ ∈
∂

∧

f(x) ∩ (−N(F, x)), 〈x, x∗〉 = 1.

Proof. Again, we have 0 ∈ S<
f (α) and f(0) < α since f(0) = inf f(X) < f(x), as x is not

a minimizer of f. Since f is upper semicontinuous along rays at 0, S<
f (α) is absorbing. Now

0 /∈ S<
f (α)−F which is convex. Since X is finite dimensional, one can find some x∗

0 ∈ X∗\{0}
such that r := sup x∗

0(S
<
f (α)) ≤ inf x∗

0(F ). Taking x0 ∈ X such that x∗
0(x0) > 0 and using the

fact that S<
f (α) is absorbing, we get r > 0. Since x is not a local minimizer of f, x is in the

closure of S<
f (α), so that r := 〈x, x∗

0〉. Let x∗ := r−1x∗
0, so that 〈x, x∗〉 = 1 and −x∗ ∈ N(F, x).

Since f is upper semicontinuous along rays, for every x ∈ S<
f (α) we have tx ∈ S<

f (α) for some
t > 1, hence 〈x, x∗〉 < 1. Thus we can apply the proposition. ¤

The assumption that X is finite dimensional can be eliminated, but the substituted as-
sumption is more difficult to check. We keep the preceding notation and we say that a subset
C of X is evenly convex if it is the intersection of a family of open half-spaces. Obviously,
open or closed convex subsets of a normed vector space are evenly convex, but the class of
evenly convex subsets is larger than the union of these two subclasses.

Corollary 11 Suppose f is radiant and upper semicontinuous along rays and S<
f (α) − F

is evenly convex. Then, for every solution x of (P ) which is not a local minimizer of f ,
there exists some solution x∗ of (D⊼) which satisfies the optimality conditions x∗ ∈ ∂

∧

f(x) ∩
(−N(F, x)), 〈x, x∗〉 = 1.

The proof is similar to the preceding one after using the fact that, since 0 /∈ S<
f (α)−F, one

can find some x∗
0 ∈ X∗ such that 〈x − u, x∗

0〉 < 0 for all x ∈ S<
f (α), u ∈ F. Since 0 ∈ S<

f (α),
we have r := 〈x, x∗

0〉 > 0 and for x∗ := r−1x∗
0 we get 〈x, x∗〉 < 〈x, x∗〉 = 1 for all x ∈ S<

f (α). ¤

Now let us turn to the coradiant case.
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Corollary 12 Suppose f is coradiant and upper semicontinuous and F is convex. Then, for
every solution x of (P ) which is not a local minimizer of f , there exists some solution x∗ of
(D⊻) which satisfies the optimality conditions −x∗ ∈ ∂

∨

f(x) ∩ (−N(F, x)), 〈x, x∗〉 = 1 and
there is no duality gap.

Proof. Since F and S<
f (α) are convex and disjoint, and S<

f (α) is open, there exist x∗
0 ∈ X∗

and r ∈ R such that

∀u ∈ F, ∀x ∈ S<
f (α) 〈x, x∗

0〉 > r ≥ 〈u, x∗
0〉.

Taking ε> = −1 in Proposition 2 we get that relation (2) is satisfied, hence ε>x∗ := r−1ε>x∗
0 ∈

∂∨f(x) ∩ (−N(F, x)), 〈x, ε>x∗〉 = ε>, so that x∗ is a solution of (D⊻) and there is no duality
gap. ¤

Corollary 13 Suppose f is coradiant and upper semicontinuous along rays and F is convex
and contains 0 in its interior. Then, for every solution x of (P ) which is not a local minimizer
of f , there exists some solution x∗ of (D⊻) which satisfies the optimality conditions −x∗ ∈
∂

∨

f(x) ∩ (−N(F, x)), 〈x, x∗〉 = 1 and there is no duality gap.

Proof. Since intF and S<
f (α) are convex and disjoint, there exist x∗

0 ∈ X∗ and r ∈ R such
that

∀u ∈ intF, x ∈ S<
f (α) 〈x, x∗

0〉 ≥ r > 〈u, x∗
0〉.

Since 0 ∈intF, we have r > 0. Since F is contained in the closure of intF , for all u ∈ F, we
have 〈u, x∗

0〉 ≤ r. Since x is not a local minimizer of f, x is in the closure of S<
f (α). Thus

〈x, x∗
0〉 = r. Let x∗ := r−1x∗

0. Then 〈x, x∗〉 = 1 ≥ 〈u, x∗〉 for all u ∈ F , hence x∗ ∈ N(F, x).
Moreover, if x ∈ S<

f (α), we have 〈x, x∗〉 ≥ 1. Since f is upper semicontinuous along rays, we

have tx ∈ S<
f (α) for t < 1 close enough to 1; thus we have 〈x, x∗〉 > 1. Therefore −x∗ ∈ ∂

∨

f(x).
¤

5 Links with polarities

The conjugates we considered are particular instances of conjugates associated with a polarity.
Recall that a polarity between two sets X, Y is a map P : 2X → 2Y between the power sets of
X and Y which satisfies the relation

P (
⋃

i∈I

Ai) =
⋂

i∈I

P (Ai)

for every family (Ai)i∈I of subsets of X. We also denote P (A) by AP for A ⊂ X. The preceding
relation yields, for any A ⊂ X

P (A) =
⋂

a∈A

P ({a}) = {y ∈ Y : A ⊂ D(y)},

where D(y) := P−1(y) := {x ∈ X : y ∈ P ({x})}. Conversely, given a family (D(y))y∈Y of
subsets of X, one gets a polarity by setting, for A ⊂ X, P (A) = {y ∈ Y : A ⊂ D(y)}. When
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X and Y are topological vector spaces in duality, it is natural to take for family (D(y))y∈Y a
family of half-spaces. In [13] we detected four families of such half-spaces of special interest.
They give rise to four polar sets:

A∆ := {y ∈ Y : A ⊂ [y ≤ 1]}, A∧ := {y ∈ Y : A ⊂ [y < 1]},
A∇ := {y ∈ Y : A ⊂ [y ≥ 1]}, A∨ := {y ∈ Y : A ⊂ [y > 1]};

here we change the notation for the first one, which is the usual polar set often denoted by A0;
we do that in order to remind that one passes from A∧ to A∆ by adding a bar to the symbol
<, changing it into ≤ .

We note the following observation which is an immediate consequence of the definitions.

Lemma 14 For any subset A of X, the sets A∧ and A∆ are radiant; A∆ is weak∗ closed and
A∧ is evenly convex. For any nonempty subset A of X, the sets A∨ and A∇ are coradiant; A∇

is weak∗ closed and A∨ is evenly convex.

Now, for any function f on X, one can define a conjugate function fP associated with a
polarity P by setting:

fP (y) := sup{−f(x) : x ∈ X\D(y)},
where D(y) := P−1(y). Taking for P one of the preceding four polarities, we get the following
result in which

f∆(y) := − inf{f(x) : x ∈ X, 〈x, y〉 > 1}, f∇(y) := − inf{f(x) : x ∈ X, 〈x, y〉 < 1}.

Some properties of these conjugacies are presented in [13] and [14]. Here we note the
following ones for our needs.

Lemma 15 For any function f on X, the functions f∧ and f∆ are radiant and the functions
f∨ and f∇ are coradiant. Moreover, f∆ and f∇ are lower semicontinuous while f∧ and f∨

are evenly quasiconvex. Furthermore, f∧(0) = f∆(0) = −∞ and f∨(0) = f∇(0) = − inf f(Y ).

Proof. These assertions are consequence of the preceding lemma and of the following
relation, valid for every r ∈ R, any function f and any polarity P :

[

fP ≤ r
]

= [f < −r]P .

This relation, established in [30], [16] follows from the equivalences:

(

y ∈
[

fP ≤ r
])

⇔ (−r ≤ f(z) ∀z ∈ X\D(y))

⇔ (−r > f(z) ⇒ z ∈ D(y))

⇔ ([f < −r] ⊂ D(y)) ⇔
(

y ∈ [f < −r]P
)

.

¤
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6 Some variants

Since we have four different sorts of polar sets and four different sort of conjugate functions,
it is tempting to study other combinations. Such a temptation is increased by the fact that
the combinations we have selected above are mixed.

The inequalities f∧ ≥ f∆, f∨ ≥ f∇ and the inclusions F∧ ⊂ F∆, F∨ ⊂ F∇ entail the
obvious relationships

sup(D∧
∨) := sup−f∧(F∨) ≤ sup−f∧(F∇) =: sup(D⊼) ≤ sup(D∆

∇) := sup−f∆(F∇),

sup(D∨
∧) := sup−f∨(F∧) ≤ sup−f∨(F∆) =: sup(D⊻) ≤ sup(D∇

∆) := sup−f∇(F∆),

Although the estimates provided by the dual problems (D∧
∨) and (D∨

∧) may be useful, the
duality gaps between these problems and the primal one (P ) are always larger than the duality
gaps for the dual problems we have chosen. Thus, strong duality would be more difficult to get
with the dual problems (D∧

∨) and (D∨
∧). The following examples show that the problems (D∆

∇)
and (D∇

∆) do not satisfy the weak duality property in general and thus should be excluded,
although they involve closed subsets and lower semicontinuous functions.

Example. Let X := R, F := (−∞, 1], f(r) := 1 for r ∈ (−∞, 1), f(r) = 0 for r ∈ [1, +∞).
Then F∆ = [0, 1] and −f∇(1) = 1. Thus sup(D∇

∆) ≥ 1 > 0 = inf(P ).
Example. Let X := R, F := [1, +∞), f(r) := 1 for r ∈ (1, +∞), f(r) = 0 for r ∈ (−∞, 1].

Then F∇ = [1, +∞) and −f∆(1) = 1. Thus sup(D∆
∇) ≥ 1 > 0 = inf(P ).

These facts explain why we focus our attention on the dual problems (D⊼) and (D⊻) rather
than on (D∆

∇) and (D∇
∆) or (D∧

∨) and (D∨
∧). Under some semicontinuity assumptions, equalities

hold in the inequalities sup(D⊼) ≤ sup(D∆
∇) and sup(D⊻) ≤ sup(D∇

∆) in view of the following
result.

Proposition 16 If f is upper semicontinuous along rays, then f∆ = f∧ and f∇ = f∨ so that
f∧ and f∨ are lower semicontinuous. Then, for all subsets F one has sup(D⊼) = sup(D∆

∇)
and sup(D⊻) = sup(D∇

∇).

Proof. Since f∧ ≥ f∆, to prove that f∆ = f∧, it suffices to show that for every x∗ ∈ X∗

and every r ∈ R with r ≥ f∆(x∗) we have r ≥ −f(x) for all x ∈ [x∗ ≥ 1]. The inequality
r ≥ −f(x) holding when x ∈ [x∗ > 1], we may suppose 〈x, x∗〉 = 1. Then, for all t > 1, we
have tx ∈ [x∗ > 1], hence −f(tx) ≤ r. Since f is upper semicontinuous along rays, we get
f(z) ≥ lim supt→1 f(tz) ≥ −r. The proof of the equality f∇ = f∨ is similar.

Proposition 17 Let F be an arbitrary nonempty subset of X. If f∧ is upper semicontin-
uous along rays, then sup(D⊼) = sup(D∧

∨). If f∨ is upper semicontinuous along rays, then
sup(D⊻) = sup(D∨

∧).

Proof. It suffices to show that sup−f∧(F∨) ≥ sup−f∧(F∇). Given r < sup−f∧(F∇)
one can find some x∗ ∈ F∇ such that r < −f∧(x∗). For t ∈ (1, +∞) one has tx∗ ∈ F∨

and since f∧ is u.s.c. along rays, for t close enough to 1, one gets −r > f∧(tx∗). Thus
sup−f∧(F∧) ≥ −f∧(tx∗) > r and, as r can be arbitrarily close to sup−f∧(F∇), we get the
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expected inequality. The proof of the second assertion is similar, using the fact that tF∆ ⊂ F∨

for t ∈ (0, 1). ¤

The following criteria are taken from [13, Prop. 4.8] in the case of f∧; the proof for f∨ is
similar.

Proposition 18 If f is inf-compact for the weak topology, then f∧ and f∨ are upper semi-
continuous.

If f is such that limx→0 f(x) = −∞, then f∆ is inf-compact for the weak∗ topology on X∗.

Corollary 19 If f is such that limx→0 f(x) = −∞, then (D∆
∇) has a solution. If moreover f

is upper semicontinuous along rays, then (D⊼) has a solution.

Proof. The first assertion is consequence of the fact that the inf-compact function f∆

attains its infimum over the weak* closed convex set F∇. The second assertion follows from
the equality f∆ = f∧ when f is upper semicontinuous along rays. ¤

Now let us tackle the question of existence of solutions for the dual problem (D∇
∆). Since

the sublevel sets of f∇ are coradiant, f∇ cannot be inf-compact unless it is identically +∞.

Proposition 20 Under each of the following assumptions the problem (D∇
∆) has a solution:

(a) 0 is in the interior of F ;
(b) X is finite dimensional and R+F − R+S<

f (α) is dense in X.

If moreover f is upper semicontinuous along rays, then (D⊻) has a solution.

Proof. (a) The sublevel sets of the function f∇ being weak∗ closed convex, f∇ is weak∗

lower semicontinuous. Now, since F contains the closed ball B with center 0 and radius r for
some r > 0, F∆ is contained in B∆ which is the closed ball with center 0 and radius 1/r. Thus
F∆ is weak∗ compact and f∇ attains its infimum on F∆.

(b) Let us first observe that if A and B are two closed convex subsets of a finite dimensional
Banach space X and if 0+A ∩ 0+B = {0}, then A ∩ B is bounded because 0+(A ∩ B) ⊂
0+A ∩ 0+B; here, for a subset C of X, we denote by 0+C := {v ∈ X : V + C ⊂ C} the
recession cone of C. Now we have

0+(F∆) = F 0 := {y ∈ Y : ∀x ∈ F 〈x, y〉 ≤ 0},

as easily checked. Let G := S<
f (α). Since G∇ = [f∇ ≤ −α], we have

0+([f∇ ≤ −α]) = 0+(G∇) = (−G)0.

Since R+F − R+G is dense in X, its polar cone is {0}, hence

0+(F∆) ∩ 0+([f∇ ≤ −α]) = F 0 ∩ (−G)0 = (R+F − R+G)0 = {0}.

Thus [f∇ ≤ −α] ∩ F∆ is bounded, hence weak∗ compact and since f∇ is weak∗ lower semi-
continuous, −f∇ attains its infimum over F∆ : (D∇

∆) has a solution. The last assertion is a
consequence of the equality f∇ = f∨ when f is upper semicontinuous along rays. ¤
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7 Mathematical programming problems

Now, let us try to answer to the natural question: does the preceding results enter a general
theory of duality? In fact, we even consider a more general problem written under the form
of a mathematical programming problem.

Suppose Z is another Banach space, g : X → Z is a map, C is a closed convex subset of
W, and Y is the dual space of Z. Let F := {x ∈ X : g(x) ∈ C}. Then problem (P ) turns into
the problem

(M) minimize f(x) : x ∈ X, g(x) ∈ C.

which can be rewritten as the minimization of f(·)+ιC(g(·)), where ιC is the indicator function
of C given by ιC(z) := 0 if z ∈ C, ιC(z) = +∞ otherwise.

We can introduce the perturbation P : X × Z → R∪{+∞} given by

P (x, z) := f(x) + ιC(g(x) + z)

and its associated performance function p given by

p(z) := inf{f(x) : x ∈ X, g(x) + z ∈ C}.

We observe that Y and Z can be coupled with the coupling function c∨ : Y ×Z → R given by

c∨(y, z) = −ι[y≤1](z).

Since c∨(y, 0) = 0 for all y ∈ Y, the perturbational dual problem of (M) is the problem

(D∨) maximize − p∨(y) y ∈ Y,

where p∨ is the conjugate of p for the coupling function c∨ :

p∨(y) := − inf{p(z) − c∨(y, z) : z ∈ Z}
:= − inf{p(z) : z ∈ Z, 〈y, z〉 ≤ 1}.

However, this process cannot be applied with the coupling function c∧ given by c∧(y, z) =
−ι[y≥1](z) nor with the coupling function c∆ given by c∆(y, z) = −ι[y>1](z). Thus, we take a
direct Lagrangian approach rather than a perturbational approach.

We use the simple observation that since C is included in C∆∆ := (C∆)∆ (and in the three
other bipolar sets of C), we have ιC ≥ ιC∆∆ . Now

ιC∆∆ = sup
y∈C∆

ι[y≤1],

as easily checked. It follows that we can introduce the sub-Lagrangian function L⊻ given by

L⊻(x, y) := f(x) + ι[y≤1](g(x)) for y ∈ C∆,

L⊻(x, y) := −∞ for y ∈ Y \C∆.
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Here we use the terminology of [17] which means that

f(x) + ιC(g(x)) ≥ sup
y∈Y

L⊻(x, y) for all x ∈ X,

L⊻ being called a Lagrangian when equality holds for all x ∈ X (which is the case when C is
closed and radiant). The Lagrangian dual function d⊻ is given by

d⊻(y) := inf
x∈X

L⊻(x, y).

In order to express it, we introduce the function fg : Z → R given by

fg(z) := inf{f(x) : x ∈ g−1(z)},

with the usual convention that fg(z) := +∞ when g−1(z) is empty. Then

d⊻(y) = inf
z∈Z

(fg(z) + ι[y≤1](z)) = −(fg)
∨(y) for y ∈ C∆, d⊻(y) = −∞ for y ∈ Y \C∆.

Thus, the dual problem can be written

(D⊻) maximize − (fg)
∨(y) for y ∈ C∆.

When Z = X and g is the identity mapping IX , we recover the dual problem we have considered
in section 2. A similar approach can be given for the dual problem (D⊼). We also notice that
using the inclusions C ⊂ C∧∧ and C ⊂ C∨∨ we can obtain new dual problems. These problems
provide new estimates as weak duality holds; but strong duality results are not at hand.

When C is a closed convex cone, we have C∆ = C0 := {y ∈ Y : ∀z ∈ C 〈y, z〉 ≤ 0}, the
usual polar cone. Then, for y ∈ C∆, we have

L⊻(x, y) := f(x) + ι[y≤1](g(x)) ≤ L<(x, y) := f(x) + ι[y≤0](g(x))

where L< is the surrogate Lagrangian considered in [7], [21]. Thus, if y ∈ C∆ is a multiplier
for the Lagrangian L⊻, it is also a multiplier for the Lagrangian L<.

The advantage of strong duality is reminded in the following statement which relies on [17,
Prop. 1.2] and uses the fact that L⊻(x, y) := f(x) when 〈g(x), y〉 ≤ 1 and L⊻(x, y) := +∞
otherwise.

Proposition 21 Let y be a multiplier for the Lagrangian L⊻, i.e. a solution to the dual
problem (D⊻) such that (fg)

∨(y) = α. Then x is a solution to (P ) if, and only if, x is a
solution to the simplified problem

(Qy) minimize f(x) subject to the constraint 〈g(x), y〉 ≤ 1.

When g is a continuous linear map, in particular, when Z = X and g = IX , the feasible
set of (Qy) is simply a half-space. Clearly, one has a similar result for the Lagrangian L⊼.
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