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Gap continuity of multimaps

Jean-Paul Penot∗

Abstract

We introduce a notion of continuity for multimaps (or set-valued maps) which is mild.
It encompasses both lower semicontinuity and upper semicontinuity. We give characteri-
zations and we consider some permanence properties. This notion can be used for various
purposes. In particular, it is used for continuity properties of subdifferentials and of value
functions in parametrized optimization problems. We also prove an approximate selection
theorem.
Mathematics Subject Classifications (2000): 47H04, 54C60, 54C65, 26B05.
Keywords: correspondence, gap-continuity, lower semicontinuity, multimap, multifunc-
tion, multimapping, set-valued map, subdifferential, semicontinuity, value function.

1 Introduction

It is the purpose of this note to present a notion of continuity for multimaps (or multimappings,
or multifunctions, or correspondences or set-valued maps) called gap continuity. It relies on
the notion of gap between two sets. It is rather coarse, but natural: roughly speaking, one has
that a multimap F : X ⇒ Y between a topological space and a metric space is gap-continuous
at some point x of X if F (x) and F (x) are not too far apart when x is sufficiently close to x.
Precise characterizations are presented in section 2. Because this notion is not as restrictive as
usual lower semicontinuity or upper semicontinuity, it is more likely to be satisfied by concrete
examples and it is more versatile. As an example, we note that a constraint qualification
condition is formulated in terms of gap in [6, Prop. 2.5].

In spite of its weakness, gap-continuity enjoys useful properties. Stability properties are
displayed in section 3. In particular, one obtains that if F : X ⇒ Y is upper semicontinuous
and G : X ⇒ Z is lower semicontinuous, then H := (F, G) : X ⇒ Y × Z is gap-continuous.
Section 4 is devoted to an application to parametrized optimization and to criteria ensuring gap
continuity of subdifferentials of convex functions. Such multimaps are not lower semicontinuous,
unless they are single-valued, as shown by Gossez ([10]). These criteria are used in [1].
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2 Definitions and characterizations

Our study relies on the following simple concept which has been used for some time, especially
for questions of convergence (see [4], [16], for instance). It is sometime called the distance
between the two sets and denoted by D(A,B) or d(A,B); these choices may be confusing since
this notion is not a metric ( the triangular inequality is not satisfied with this notion).

Definition 2.1 The gap between two subsets A, B of a metric space (Y, d) is given by

gap(A,B) = inf {d(a, b) : a ∈ A, b ∈ B} ,

with the usual convention: gap(A,B) = ∞ if A = ∅ or B = ∅.

This concept satisfies natural properties. In particular, if for i := 1, ..., m, Ai and Bi are
subsets of a metric space (Xi, di) then

gap(A1 × ... × Am, B1 × ... × Bm) = max
1≤i≤m

gap(Ai, Bi) (2.1)

when X := X1×...×Xm is endowed with the metric d∞ given by d∞((xi), (yi)) := max di(xi, yi),
while if X is endowed with the metric d given by d((xi), (yi)) := d1(x1, y1) + ... + dm(xm, ym)
one has

gap(A1 × ... × Am, B1 × ... × Bm) =
m

∑

i=1

gap(Ai, Bi),

as easily checked. Moreover, if X is a normed vector space and A, A′, B, B′, Ai, Bi (i = 1, ..., m)
are subsets of X one has

gap(A + A′, B + B′) ≤ gap(A, B) + gap(A′, B′). (2.2)

gap(
m
⋃

i=1

Ai),
m
⋃

i=1

Bi) ≤ min
i=1,...,m

gap(Ai, Bi), (2.3)

gap(co(
m
⋃

i=1

Ai), co(
m
⋃

i=1

Bi)) ≤ min
i=1,...,m

gap(Ai, Bi), (2.4)

where A + A′ := {a + a′ : a ∈ A, a′ ∈ A′} and co(A) stands for the convex hull of A.
The following statement shows the usefulness of the notion of gap in convex analysis.

Proposition 2.1 Let A and B be two nonempty convex subsets of a normed vector space X
such that gap(A, B) > 0. Then there exist c ∈ R and x∗ ∈ X∗\{0} such that

sup
a∈A

〈x∗, a〉 < c < inf
b∈B

〈x∗, b〉.
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Proof. Let r := gap(A,B). Then the open ball B(0, r) with center 0 and radius r does not
meet A − B := A + (−B) which is convex. Applying the Hahn-Banach theorem, we find some
x∗ ∈ X∗\{0} such that 〈x∗, a−b〉 ≤ inf{〈x∗, x〉 : x ∈ B(0, r)} = −r ‖x∗‖ < 0. The result follows
by taking c := sup{〈x∗, a〉 : a ∈ A} + r′ ‖x∗‖ with r′ ∈]0, r[. ¤

The following continuity condition is quite mild. Nonetheless, it plays a key role in the
companion paper [1]. It also deserves some attention for its independent interest, as we intend
to show below.

Definition 2.2 A multimap F : X ⇒ Y between a topological space X and a metric space Y
is said to be gap-continuous at x ∈ X if

gap(F (x), F (x)) → 0 as x → x.

We supplement this definition with a variant which is slightly more demanding.

Definition 2.3 A multimap F : X ⇒ Y between a topological space and a metric space is said
to be circa-gap-continuous at x ∈ X if

gap(F (x), F (x′)) → 0 as x, x′ → x.

Clearly, when F is single-valued, gap continuity and circa-gap-continuity coincide with
continuity. Since the gap does not satisfy the triangular inequality, the preceding two notions
do not coincide.
Example 1. Let F : R ⇒ R be defined by F (0) := [−1, +1], F (x) := {|x|−1 x} for x ∈ R\{0}.
Then F is gap-continuous at 0, but it is not circa-gap-continuous at 0 since gap(F (x), F (x′)) = 2
for x > 0, x′ < 0.
Example 2. Let f : R → R and let F : R ⇒ R be defined by F (x) := f(x) − R+, F (x) :=
f(x)+R+ for x ∈ R\{x}. Then F is gap-continuous at x if, and only if f is upper semicontinuous
at x. A corresponding characterization of the lower semicontinuity of f can be given.

The following examples dealing with a classical notion in the geometry of Banach spaces
will be generalized in section 4.
Example 3. Let F : R

d⇒ R
d be the duality mapping associated with one of the usual norms

(‖·‖1 , ‖·‖p , ‖·‖∞) of R
d : it is given by F (x) := {y ∈ R

d : x.y = ‖x‖2 , ‖y‖ = ‖x‖} = 1
2
∂ ‖·‖2 (x).

Then, F is gap-continuous at each point of R
d (see also Proposition 4.1 below).

Example 4. More generally, let X be a Banach space whose dual X∗ satisfies the weak∗

Kadec-Klee property in the following sense: any bounded sequence (x∗
n) which has a weak∗

cluster point x∗ satisfying (‖x∗
n‖) → ‖x∗‖ has a subnet which converges in norm to x∗. Then

the duality mapping J : X ⇒ X∗ given by

J(x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 , ‖x∗‖ = ‖x‖}

is gap-continuous at each point x ∈ X. In fact, otherwise there exist α > 0 and a sequence
(xn) → x such that ‖x∗

n − x∗‖ ≥ α for every n ∈ N, x∗ ∈ J(x), x∗
n ∈ J(xn); then, since J has

nonempty values and is locally bounded, for any choice of a sequence (x∗
n) satisfying x∗

n ∈ J(xn)
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for all n, and for any weak∗ cluster point x∗ of (x∗
n), one has, for some subnet (xn(i), x

∗
n(i))i∈I of

(xn, x∗
n),

‖x∗‖ ≤ lim inf
n

‖x∗
n‖ , 〈x∗, x〉 = lim

i∈I
〈x∗

n(i), xn(i)〉 = lim
i∈I

∥

∥xn(i)

∥

∥

2
= ‖x‖2 ,

hence ‖x∗‖ = limn ‖x
∗
n‖ since ‖x∗

n‖ = ‖xn‖ = ‖x‖. Thus (x∗
n) has a subnet which norm

converges to x∗; since 〈x∗, x〉 = ‖x‖2 and ‖x∗‖ = ‖x‖, one has x∗ ∈ J(x), a contradiction with
‖x∗

n − x∗‖ ≥ α for every n ∈ N. Note that Hilbert spaces and Lp spaces satisfy the weak∗

Kadec-Klee property. Moreover, any Banach space with a separable dual space can be given
an equivalent norm satisfying the weak∗ Kadec-Klee property (see [12, p. 220]).

Let us compare these notions to familar continuity concepts. The proofs of these compar-
isons are immediate.

Lemma 2.1 Let F : X ⇒ Y be a multifunction between a topological space and a metric space.
(a) If F is lower semicontinuous (l.s.c.) at (x, y) ∈ graphF in the sense that d(y, F (x)) → 0

as x → x, then F is circa-gap-continuous at x, hence is gap-continuous at x. Conversely, if
F (x) is a singleton {y} and if F is gap-continuous at x, then F is l.s.c. at (x, y).

(b) If F is Hausdorff upper semicontinuous (H.u.s.c.) at x ∈ int domF in the sense that
sup{d(y, F (x)) : y ∈ F (x)} → 0 as x → x, in particular if F is upper semicontinuous (u.s.c.)
at x, then F is gap-continuous at x. The converse holds if for x 6= x close to x the set F (x) is
a singleton.

The converses requiring strong assumptions, we see that gap-continuity is a weak notion
of semicontinuity. The following simple counterexamples show that gap-continuity is strictly
weaker than lower semicontinuity and upper semicontinuity.
Example 5. Given c : X → Y , where X is a topological space and Y is a normed vector
space, and r : X → R+, let F : X ⇒ Y be given by F (x) := c(x) + r(x)B, where B is the
closed unit ball of Y. If for some x ∈ X one has ‖c(x) − c(x)‖ ≤ r(x) + r(x) for x close to x,
then F is gap-continuous at x. If c or r are discontinuous at x, lower or upper semicontinuity
of F is not necessarily ensured.
Example 6. Let X = Y := R and let F : X ⇒ Y be given by F (x) := {0} for x < 0,
F (0) := (−1, 1), F (x) := {−1, 1} for x > 0. Then F is gap-continuous on X, but F is neither
lower semicontinuous nor upper semicontinuous at 0.
Example 7. Let X = Y := R and let F : X ⇒ Y be given by F (x) := {−1, 2} for x < 0,
F (0) := [−1, 1], F (x) := {1, 2} for x > 0. Then F is circa-gap-continuous on X, but F is neither
lower semicontinuous nor upper semicontinuous at 0.
Example 8. Let X be a topological space, let Y be a normed vector space with dual spaces Y ∗

and let f : X → Y ∗, r : X → R be continuous with f(x) 6= 0 for some x ∈ X. Then F : X ⇒ Y
given by F (x) := {y ∈ Y : 〈f(x), y〉 = r(x)} is gap continuous at x and graph closed, but it is
not upper semicontinuous.

Let us note the following obvious reformulation.

Lemma 2.2 For a multimap F : X ⇒ Y between a topological space X and a metric space Y
one has the implications (d)⇒(c)⇒(b)⇒(a) among the following assertions. If X is a metric
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space, or more generally, if x ∈ X has a countable base of neighborhoods or if there exists a
function h : X → R continuous at x with h(x) = 0, h(x) > 0 for x 6= x, these assertions are
equivalent:

(a) F is gap-continuous at x;
(b) for any ε > 0 there exists a neighborhood V of x such that for any v ∈ V one can find

y(v) ∈ F (v) such that d(y(v), F (x)) < ε;
(c) there exist a neighborhood U of x and f : U → Y such that f(u) ∈ F (u) for all u ∈ U

and d(f(u), F (x)) → 0 as u → x;
(d) there exist a neighborhood U of x and f : U → Y, g : U → Y such that f(u) ∈ F (u),

g(u) ∈ F (x) for all u ∈ U and d(f(u), g(u)) → 0 as u → x.

In particular, when Y is a n.v.s., F is gap-continuous at x iff

∀ε > 0 ∃δ > 0 : ∀x ∈ B(x, δ) F (x) ∩ (F (x) + εBY ) 6= ∅.

Proof. The implications (d)⇒(c)⇒(b)⇒(a) are obvious. Let us show that (a)⇒(d) when there
exists a function h : X → R continuous at x with h(x) = 0, h(x) > 0 for x 6= x. Setting

δ(x) := gap(F (x), F (x)),

let U be a neighborhood of x such that δ(x) < +∞ for x ∈ U. Then, for u ∈ U, the set F (u) is
nonempty (and thus F (x) is nonempty too) and we can find some yu ∈ F (u), yu ∈ F (x) such
that

d(yu, yu) ≤ δ(u) + h(u),

as easily seen by considering separately the case u = x and the case u ∈ U\{x}. Then, setting
f(u) := yu, g(u) := yu, we get d(f(u), g(u)) ≤ δ(u) + h(u) → 0 as u → x. When X is endowed
with a metric dX inducing its topology, we can define h by h(x) := dX(u, x), while when x has
a countable base of neighborhoods (Vn), we may suppose V0 := X, Vn+1 ⊂ Vn for all n and
define h by h(x) = 0, h(x) = 1/(n + 1) for x ∈ Vn\Vn+1, so that h(x) → 0 as x → x. ¤

The following corollary is also a consequence of the fact pointed out to us by C. Zalinescu
that, for any two subsets A, B of a normed vector space, gap(A,B) = d(0, A − B).

Corollary 2.1 If X is a topological space and if Y is a normed vector space, F : X ⇒ Y is
gap-continuous at x if, and only if, the multimap G : X ⇒ Y given by G(x) := F (x)− F (x) is
lower semicontinuous at (x, 0) in the sense that d(0, G(x)) → 0 as x → x.

Let us give a local version of Lemma 2.2 for circa-gap-continuity. It will lead to a global
result.

Lemma 2.3 For a multimap F : X ⇒ Y between two metric spaces X and Y the following
assertions are equivalent:

(a) F is circa-gap-continuous at x;
(b) for every ε > 0 there exists a neighborhood V of x such that for any v, w ∈ V one can

find y(v, w) ∈ F (v) such that d(y(v, w), y(w, v)) < ε;
(c) there exist a neighborhood U of x and f : U × U → Y such that f(v, w) ∈ F (v) for all

v, w ∈ U and d(f(v, w), f(w, v)) → 0 as v, w → x.
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Proof. Again, the implications (c)⇒(b)⇒(a) are obvious. Thus, it suffices to show that
(a)⇒(c). For that purpose, using the gap-continuity of F at x, we pick a neighborhood U of x
such that for all v ∈ U, F (v) is nonempty, we pick f(v, v) arbitrary in F (v). We endow U with
a total order (using the axiom of choice) and we set

γ(v, w) := gap(F (v), F (w)).

Then, for (v, w) ∈ U2 with v < w we pick f(v, w) ∈ F (v), f(w, v) ∈ F (w) such that
d(f(v, w), f(w, v)) ≤ γ(v, w)+d(v, w). Since the order is total, for all (v, w) ∈ U2 we have either
v < w and the preceding inequality, or w < v and d(f(v, w), f(w, v)) = d(f(w, v), f(v, w)) ≤
γ(w, v) + d(v, w). In both cases we have d(f(v, w), f(w, v)) → 0 as v, w → x. ¤

A global version can be given.

Proposition 2.2 For a multimap F : X ⇒ Y between a metric space X and a normed vector
space Y, the following assertions are equivalent when F has convex images:

(a) F is circa-gap-continuous on X;
(b) for every x ∈ X and every ε > 0 there exists a neighborhood U of x such that for every

u, v ∈ U one can find y(u, v) ∈ F (u) such that d(y(u, v), y(v, u)) < ε;
(c) for every ε > 0 there exist a symmetric neighborhood Wε of the diagonal in X × X and

fε : Wε → Y such that fε(u, v) ∈ F (u) and d(fε(u, v), fε(v, u)) < ε for all (u, v) ∈ Wε;
(d) there exist a symmetric neighborhood W of the diagonal in X × X and f : W → Y

such that f(u, v) ∈ F (u) for all (u, v) ∈ U and for all x ∈ X, d(f(u, v), f(v, u)) → 0 as
(u, v) → (x, x).

Proof. Again, it suffices to prove the implication (a)⇒(d). We set γ(u, v) := gap(F (u), F (v))
and we take for W the set of (u, v) ∈ X2 such that γ(u, v) < +∞. Endowing X with a
total order, for (u, v) ∈ W with u < v, we pick f(u, v) ∈ F (u), f(v, u) ∈ F (v) such that
d(f(u, v), f(v, u)) ≤ γ(u, v) + d(u, v). For u = v, we take f(u, v) arbitrarily in F (u). Then, if
(u, v) ∈ W is such that v < u we get d(f(u, v), f(v, u)) = d(f(v, u), f(u, v)) ≤ γ(v, u)+d(v, u) =
γ(u, v) + d(u, v). In both cases we have d(f(u, v), f(v, u)) → 0 as (u, v) → (x, x). ¤

Now let us give a characterization of gap-continuity in terms of support functions. Recall
that the support function of a subset C of some n.v.s. Y is the function σC : Y ∗ → R :=
R ∪ {−∞, +∞} given by

σC(y∗) := σ(y∗, C) := sup{〈y∗, y〉 : y ∈ C}.

Proposition 2.3 Let F : X ⇒ Y be a multimap from a topological space to a n.v.s. with
nonempty closed convex values. Then F is gap-continuous at x ∈ X if, and only if,

lim inf
x→x

inf{σ(y∗, F (x)) + σ(−y∗, F (x)) : y∗ ∈ Y ∗, ‖y∗‖ = 1} ≥ 0. (2.5)

Proof. Let us first show that the condition is necessary. Assume on the contrary that F is
gap-continuous at x ∈ X and there exist some r > 0 and some net (xi)i∈I with limit x such
that for every i ∈ I one has

inf{σ(y∗, F (xi)) + σ(−y∗, F (x)) : y∗ ∈ Y ∗, ‖y∗‖ = 1} < −r.
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Then for every i ∈ I one can find some y∗
i ∈ Y ∗ such that σ(y∗

i , F (xi)) + σ(−y∗
i , F (x)) < −r,

‖y∗
i ‖ = 1. Thus, setting si := σ(y∗

i , F (xi)), for i ∈ I large enough we get that si is finite since
F (xi) is nonempty by the gap-continuity of F . For

Di := {y ∈ Y : 〈y∗
i , y〉 ≤ si}, Ei := {y ∈ Y : 〈y∗

i , y〉 ≥ si + r}

we have F (xi) ⊂ Di, F (x) ⊂ Ei, hence gap(F (xi), F (x)) ≥ gap(Di, Ei) ≥ r, and we get a
contradiction with the gap-continuity of F at x.

Now assume that F is not gap-continuous at x : one can find some r > 0 and some net
(xi)i∈I with limit x such that for every i ∈ I one has gap(F (xi), F (x)) ≥ r. Let

C := {y ∈ Y : d(y, F (x)) < r},

so that C is open, convex and disjoint from F (xi). The Hahn-Banach theorem yields some
y∗

i ∈ Y ∗ with norm 1 and some ti ∈ R such that

sup
y∈C

〈y∗
i , y〉 ≤ ti ≤ inf

z∈F (xi)
〈y∗

i , z〉.

Since supy∈C〈y
∗
i , y〉 = σ(y∗

i , F (x)) + r and since infz∈F (xi)〈y
∗
i , z〉 = −σ(−y∗

i , F (xi)), we get a
contradiction with relation (2.5). ¤

Remark. An alternative proof has been pointed out to us by C. Zalinescu relying on the
equality gap(A, B) = d(0, A − B) and the following formula for the remoteness d(0, C) of a
nonempty convex subset C of a normed vector space Y :

d(0, C) = max{0, sup
y∗∈SY ∗

−σC(y∗)}.

3 Some properties

The following property is obvious, but useful. It uses the excess of a subset A over a subset B
of Y defined (with the usual convention e(∅, B) = 0 for any subset B and e(A, ∅) = ∞ for any
nonempty subset A) by

e(A,B) := sup{d(a,B) : a ∈ A}.

Lemma 3.1 If F : X ⇒ Y is gap-continuous at x and if G : X ⇒ Y is another multimap such
that e(F (x), G(x)) → 0 as x → x, in particular if F (x) ⊂ G(x) for every x close to x, then G
is gap-continuous at x.

Here, we have used the fact that F (x) is nonempty for x close to x, hence that G(x) is
nonempty too whenever e(F (x), G(x)) < +∞ and that gap(G(x), G(x)) ≤ gap(F (x), F (x)) +
2e(F (x), G(x)).

Now let us consider composition properties.
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Proposition 3.1 (a) If F : X ⇒ Y is gap-continuous at x and if g : Y → Z is uniformly
continuous around F (x), then H := g ◦ F is gap-continuous at x. In particular, if F is gap-
continuous at x, if F (x) is compact and if g is continuous at each point of F (x), then H := g◦F
is gap-continuous at x.

(b) If F : X ⇒ Y is l.s.c. at (x, y) ∈ graph(F ) and if G : Y ⇒ Z is gap-continuous at y,
then H = G ◦ F is gap-continuous at x.

Proof. (a) Our assumption on g means that for any given ε > 0 there exists γ > 0 such that
d(g(y), g(z)) < ε for all y ∈ Y, z ∈ F (x) satisfying d(y, z) < γ. It is clearly satisfied g is
uniformly continuous on some enlargement of F (x) or if F (x) is compact and if g is continuous
at each point of F (x). Since F is gap-continuous at x, there exists δ > 0 such that for all
x ∈ B(x, δ) there are y(x) ∈ F (x), z(x) ∈ F (x) such that d(y(x), z(x)) < γ. Thus, for every
x ∈ B(x, δ) one has gap(H(x), H(x)) < ε.

(b) Given ε > 0 let γ > 0 be such that gap(G(y), G(y)) < ε for y ∈ B(y, γ). Now since F
is l.s.c. at (x, y), one can find β > 0 such that d(y, F (x)) < γ for every x ∈ B(x, β). Thus, for
every x ∈ B(x, β) one can find y ∈ F (x)∩B(y, γ) and gap(H(x), H(x)) ≤ gap(G(y), G(y)) < ε.
¤

Proposition 3.2 Let X be a topological space, let Y1, ...Ym be metric spaces and let Y be a
normed vector space.

(a) Let Fi : X ⇒ Yi be gap-continuous at x ∈ X for i = 1, ..., m. Then F given by
F (x) := F1(x) × ... × Fm(x) is gap-continuous at x. In particular, the product of a l.s.c.
multimap with an u.s.c. multimap is gap-continuous.

(b) Let F, G : X ⇒ Y be gap-continuous at x ∈ X. Then H, K given by H(x) :=
F (x) + G(x), K(x) := F (x) ∪ G(x) are gap-continuous at x. In particular the sum of a l.s.c.
multifunction with an u.s.c. multifunction is gap-continuous.

(c) Let Fi : X ⇒ Y (i = 1, ..., n) be gap-continuous at x. Then F : X ⇒ Y given by
F (x) = co(F1(x) ∪ ... ∪ Fn(x)) is gap-continuous at x.

Proof. The result stems from relations (2.1), (2.2), (2.3) and (2.4). ¤

If X and Y are topological spaces, X being compact and if F : X ⇒ Y is an upper
semicontinuous multimap with compact values, then the image F (X) of F is compact. Such a
property is no more valid if F is just gap-continuous. In fact it is not always valid if F is lower
semicontinuous, as the following example shows.
Example 9. Let X := [0, 1], let Y := R and let F be given by F (0) := {0}, F (x) := {0, 1/x}
for x ∈ (0, 1]. Then F is lower semicontinuous, but F (X) = {0} ∪ [1,∞) which is not compact.

It is known that if F : X ⇒ Y is a lower semicontinuous or upper semicontinuous multimap
between topological spaces and if X is connected and the values of F are connected, then the
image F (X) of F is connected ([9]). With an additional assumption, such a property remains
valid for gap-continuity.

Proposition 3.3 Let X be a connected topological space, let Y be a metric space and let F :
X ⇒ Y be gap-continuous with nonempty, compact, connected values. Then F (X) is connected.
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Proof. With no loss of generality we may assume that Y = F (X). Let B, B′ be two open
subsets of Y which are disjoint and such that Y = B ∪ B′. Assuming they are both nonempty
we will obtain a contradiction. The sets A := F−1(B), A′ := F−1(B′), where

F−1(B) := {x ∈ X : F (x) ∩ B 6= ∅},

are nonempty. Since for all x ∈ X the value F (x) is a connected subset of Y, F (x) is contained
either in B or in B′; hence the sets A and A′ are disjoint. Let us prove that A and A′ are
open. Let a ∈ A, so that F (a) ⊂ B. Since F (a) is compact, there exists some α > 0 such
that F (a)α := {y ∈ Y : d(y, F (a)) < α} is contained in B. Since F is gap-continuous at a, one
can find a neighborhood V of a in X such that for all v ∈ V one has gap(F (v), F (a)) < α.
Thus, for all v ∈ V, there exists some y ∈ F (v) satisfying d(y, F (a)) < α. Then y ∈ B and, by
what precedes, we have F (v) ⊂ B, hence v ∈ A. Therefore A and A′ are open and we get a
contradiction with the connectedness of X. ¤

The following proposition is a generalization of a result of Cellina [5] about approximate
selections of upper semicontinuous multimaps.

Proposition 3.4 Let F : X ⇒ Y be a multimap from a metric space X to a normed vector
space Y with convex values. Suppose F is gap-continuous on X. Then, for every ε > 0 there
exists a locally Lipschitz map fε : X → Y such that for every x ∈ X, fε(x) ∈ co(F (X)) and
d(fε(x), F (x)) < ε.

Proof. Let ε > 0 be given. For every x ∈ X, F being gap-continuous at x, there is a
neighborhood Vx of x and maps y(·, x) : Vx → Y, z(·, x) : Vx → Y such that for all v ∈ Vx one
has y(v, x) ∈ F (v), z(v, x) ∈ F (x) and d(y(v, x), z(v, x)) < ε. Since X is paracompact there
exists a locally Lipschitz partition of unity (px)x∈X subordinated to the covering (Vx)x∈X of X.
That means that (px)x∈X is a family of nonnegative locally Lipschitz functions summing to 1,
that their supports form a locally finite family, and that the support of px is contained in Vx

for all x ∈ X. Let us set for v ∈ X

fε(v) :=
∑

x∈X

px(v)z(v, x).

Then fε is well defined, is locally Lipschitz and such that fε(v) ∈ co(F (X)) for all v ∈ X. Since
for all v ∈ X, by convexity of F (v), we have

∑

x∈X

px(v)y(v, x) ∈ F (v),

and since ‖z(v, x) − y(v, x)‖ < ε for all x ∈ X, v ∈ Vx, we get

d(fε(v), F (v)) ≤
∑

x∈X

px(v) ‖z(v, x) − y(v, x)‖ ≤ ε.

9



4 Applications

Given metric spaces X, Y, a multimap F : X ⇒ Y and a function f : X × Y → R, numerous
studies have been devoted to the study of regularity properties for the marginal function m
and the performance function p defined by

m(x) := sup{f(x, y) : y ∈ F (x)},

p(x) := inf{f(x, y) : y ∈ F (x)}.

Even semicontinuity properties of such value functions are not obvious (see [3], [14] for some
results and references). Here, assuming that the feasible multimap F is just gap continuous,
we get a coarse semicontinuity property. We suppose f is uniformly continuous at {x} × F (x)
in the following sense: for every ε > 0, there exists γ > 0 such that |f(x, y) − f(x, z)| ≤ ε for
every x ∈ B(x, γ), z ∈ F (x), y ∈ B(z, γ). When there exists a function g : Y → R such that
f(x, y) = g(y) for all (x, y) ∈ X × Y this condition is satisfied if, and only if, g is uniformly
continuous around F (x), as defined above.

Proposition 4.1 Suppose F is gap continuous at x ∈ X and f is uniformly continuous at
{x} × F (x). Then, for every ε > 0 there exists δ > 0 such that for all x ∈ B(x, δ) one has

p(x) ≤ m(x) + ε, m(x) ≥ p(x) − ε.

When f(x, ·) is constant on F (x), in particular when F (x) is a singleton, m is l.s.c. at x and
p is u.s.c. at x.

Proof. Given ε > 0, let γ > 0 be such that |f(x, y) − f(x, z)| ≤ ε for every x ∈ B(x, γ),
z ∈ F (x), y ∈ B(z, γ). Let δ ∈ (0, γ] be such that gap(F (x), F (x)) < γ for all x ∈ B(x, δ).
Then, for all x ∈ B(x, δ), we can find y ∈ F (x), z ∈ F (x) such that d(y, z) < γ, so that

m(x) ≥ f(x, y) ≥ f(x, z) − ε ≥ p(x) − ε,

p(x) ≤ f(x, y) ≤ f(x, z) + ε ≤ m(x) + ε.

When f(x, ·) is constant on F (x), one has m(x) = p(x), so that the preceding inequalities show
that m is l.s.c. at x and p is u.s.c. at x. ¤

For the purposes of minimization of d.c. functions (see [1]), it will be useful to detect
conditions ensuring that the Fenchel subdifferential of a convex function is gap-continuous.
Since the subdifferential operator of a convex function is maximal monotone, such a result will
be in sharp contrast with the fact proved by Gossez ([10]) that a monotone operator whose
values are not singletons is never lower semicontinuous. Recall that if f is a proper extended-
real valued function on a Banach space X, the Fenchel subdifferential of f at x ∈ domf :=
{x ∈ E : f(x) < ∞} is the subset ∂f(x) of the topological dual X∗ of X defined by

∂f(x) = {x∗ ∈ X∗ : f(x) ≥ f(x) + 〈x∗, x − x〉 ∀x ∈ X} .

We first make a useful observation.
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Lemma 4.1 If f is convex, if ∂f is gap-continuous at x, then f is continuous on a neighborhood
of x provided either ∂f(x) is bounded or X is complete and f is l.s.c.

Proof. When ∂f(x) is bounded and f is gap-continuous, one can find r > 0, such that for
each x ∈ B(x, r) one can find x∗ ∈ ∂f(x), x∗ ∈ ∂f(x) with ‖x∗ − x∗‖ ≤ 1, hence ‖x∗‖ ≤ s for
s := sup{‖x∗‖ : x∗ ∈ ∂f(x)} + 1. Then for all x ∈ B(x, r) one has

f(x) ≤ f(x) − 〈x∗, x − x〉 ≤ f(x) + rs.

It follows that f is continuous on B(x, r).
When X is complete, f is l.s.c. and ∂f is gap-continuous, we observe that x belongs to

int(dom ∂f) which is also the interior of the domain of f, so that f is continuous around x. ¤

Proposition 4.2 Let F : X ⇒ X∗ be given by F = ∂f , where f : X → R∪{+∞}. Then
(a) If X = R

d and f is convex and continuous at x, then F is gap-continuous at x.
(b) If f is convex and Fréchet differentiable at x, then F is gap-continuous at x.
(c) If f is a continuous sublinear function, then F is gap-continuous at 0.
(d) If f := h ◦ g, where g : X → R is continuous, convex with ∂g gap-continuous and

h : T→ R is convex and nondecreasing on some open interval T of R, with g(X) ⊂ T, then
F = ∂f is gap-continuous.

Proof. (a) It is well known that, when X is finite dimensional, the subdifferential map ∂f is
norm-to-norm (Hausdorff) upper continuous at x (see for instance [15], Proposition 2.5.). That
is, for each ε > 0 there is δ > 0 such that ∂f(x) ⊂ ∂f(x) + εB∗ for all x ∈ B(x, δ), where B∗ is
the closed unit ball of X∗. Since f is bounded above on some open neighborhood of x, we may
suppose f is subdifferentiable on B(x, δ) and we get ∂f(x) ∩ (∂f(x) + εB∗) = ∂f(x) 6= ∅ for
all x ∈ B(x, δ) and ∂f is gap continuous at x as in Lemma 2.1 (b).

(b) Since f is Fréchet differentiable at x, the map ∂f is norm-to-norm upper semicontinuous
at x (see [15] Lemma 2.6).

(c) If f is sublinear and continuous, for each x ∈ X one has ∂f(x) = ∂f(0) ∩ Hx, where
Hx := {x∗ ∈ X∗ : 〈x∗, x〉 = f(x)}. Since ∂f(x) is nonempty, one has gap(∂f(x), ∂f(0)) = 0.

(d) In view of [7], [8], [11], [13], for every x ∈ X we have

∂f(x) =
⋃

y∗∈∂h(g(x))

∂(y∗ ◦ g)(x).

Now since h is nondecreasing, we easily get that y∗ ∈ R+ for all y∗ ∈ ∂h(g(x)), hence ∂(y∗ ◦
g)(x) = y∗∂g(x). Moreover, given x ∈ X, since g and h are continuous at x and g(x) respectively,
the multimaps ∂g and ∂h are locally bounded around x and y := g(x) respectively and we can
find r, s, t > 0 such that for all x ∈ B(x, r), x∗ ∈ ∂g(x), y∗ ∈ ∂h(g(x)) we have ‖x∗‖ ≤ s, |y∗| ≤ t.
If moreover x∗ ∈ ∂g(x), y∗ ∈ ∂h(y) we have

‖y∗ ◦ x∗ − y∗ ◦ x∗‖ ≤ |y∗| . ‖x∗ − x∗‖ + |y∗ − y∗| . ‖x∗‖ ≤ t ‖x∗ − x∗‖ + s |y∗ − y∗| .

It follows that

gap(∂f(x), ∂f(x)) ≤ tgap(∂g(x), ∂g(x)) + sgap(∂h(g(x)), ∂h(g(x))) → 0 as x → x.
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The preceding result can be combined with the following one which gives another stability
by composition of gap-continuity for subdifferentials.

Proposition 4.3 Let A : X → Y be a linear continuous map between two Banach spaces and
let g : Y → R∪{+∞} be convex l.s.c.. If R+(dom g − A(X)) is a closed linear subspace of Y
and if ∂g is gap-continuous on A(X) at A(x), then, for f := g ◦ A, ∂f is gap-continuous at x.

Proof. Under our qualification condition, it is known that for each x ∈ dom f one has
∂f(x) = AT (∂g(A(x))). Since the transpose mapping AT is uniformly continuous, the result is
a consequence of Proposition 3.1. ¤

Now let us deal with stability of gap continuity of subdifferentials under usual operations
on the functions.

Proposition 4.4 Let h1, ..., hm be a finite family of convex functions on X such that ∂h1, ..., ∂hm

are gap-continuous at x.
(a) If h := max(h1, ..., hm), and if hi is continuous at x for i = 1, ..., m, then F := ∂h is

gap-continuous at x.
(b) If h := h1 ⊕ ... ⊕ hm is given by h(x1, ..., xm) = h1(x1) + ... + hm(xm), then F := ∂h is

gap-continuous at x.
(c) If h := h1 + ... + hm, then F := ∂h is gap-continuous at x provided ∂hi(x) is bounded

for i = 1, ..., m, or X is complete and hi is l.s.c. for i = 1, ..., m.

Proof. (a) For x ∈ X, let I(x) := {i : hi(x) = h(x)}. For x close enough to x, one has
I(x) ⊂ I(x), hence,

co(
⋃

i∈I(x)

∂hi(x)) ⊂ co(
⋃

i∈I(x)

∂hi(x)) = ∂h(x),

gap(∂h(x), ∂h(x)) ≤ gap



co(
⋃

i∈I(x)

∂hi(x)), co(
⋃

i∈I(x)

∂hi(x))





≤ max
i∈I(x)

gap(∂hi(x), ∂hi(x)) ≤ max
i∈I(x)

gap(∂hi(x), ∂hi(x)) → 0 as x → x.

(b) The result stems from Proposition 3.2 and the obvious relation

∂h(x1, ..., xm) = ∂h1(x1) × ... × ∂hm(xm).

(c) In both cases, hi is continuous around x by Lemma 4.1. Thus ∂h(x) = ∂h1(x)+ ...+∂hm(x)
and the result is a consequence relation (2.2). When X is complete and for all i, the function
hi is l.s.c. one can also apply assertion (b) and the preceding proposition with Y := Xm,
A(x) := (x, ..., x) since x belongs to the interiors of the domains of hi. ¤

Now, let us turn to the nonconvex case. Recall that the Fréchet subdifferential of a function
f : X → R∪{+∞} at a point x ∈ domf is defined by
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∂F f(x) =

{

x∗ ∈ E∗ : lim inf
‖v‖→0

f(x + v) − f(x) − 〈x∗, v〉

‖v‖
≥ 0

}

(4.6)

and ∂F f(x) = ∅ if x /∈domf .

Proposition 4.5 Let h := k ◦ j, where j : X → Y is of class C1 around x and k : Y → R

is such that ∂F k is gap-continuous at y := j(x) and ∂F k(y) is bounded. Then ∂F h is gap-
continuous at x.

Proof. The result stems from the inclusion ∂F k(j(x)) ◦ j′(x) ⊂ ∂F h(x) and from the fact that
there exist maps y∗, y∗ defined on a neighborhood V of y such that y∗(v) ∈ ∂F k(v), y∗(v) ∈
∂F k(y) for all v ∈ V and ‖y∗(v) − y∗(v)‖ → 0 as v → y, so that, y∗(j(x)) ◦ j′(x) ∈ ∂F h(x),
y∗(j(x)) ◦ j′(x) ∈ ∂F h(x) and

‖y∗(j(x)) ◦ j′(x) − y∗(j(x)) ◦ j′(x)‖

≤ ‖(y∗(j(x)) − y∗(j(x))) ◦ j′(x)‖ + ‖y∗(j(x)) ◦ (j′(x) − j′(x))‖ → 0 as x → x.

¤
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