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Abstract

We study the possibility of defining tangent vectors to a metric space at a given point
and tangent maps to applications from a metric space into another metric space. Such
infinitesimal concepts may help analysis in situations in which no obvious differentiable
structure is at hand. Some examples are presented; our interest arises from hyperspaces
in particular. Our approach is simple and relies on the selection of appropriate curves.
Comparisons with other notions are briefly pointed out.
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1 Introduction

The essence of mathematics consists in dropping the numerous peculiarities of practical situations
in order to delineate simple models. The successes of such a method are numerous. They often
require some effort and some acceptance of abstraction. It is only after some various attempts
and some use that these abstract concepts become as natural as the notions of group or normed
vector space or differentiable manifold.

Many incentives have led mathematicians to study spaces which have no differentiable struc-
ture, but on which some calculus can be performed. Among the fields which required such
generalizations are the following topics: differential equations ([31]), duality ([50], [54]...), evo-
lution of domains ([5], [6], [57], [58]), geometry ([34]-[36]), image reconstruction ([29], [47], [49]),
mechanics ([42], [51]), morphogenesis ([5]), nonlinear analysis and optimization ([2], [18], [25],
[22]), shape optimization ([1], [5], [11], [13], [24], [37], [27], [28], [62]), stochastic problems ([45],
[56]), viability and invariance ([26], [59]). Several models exist: Cartesian squares, metric mea-
sure spaces ([2], [21], [38], [39], [40]...), mutational spaces ([5], [6], [26]-[28]...) and their variants
([19]...) with various purposes.

The sole metric structure on a set enables one to introduce some analysis concepts, in par-
ticular convexity notions. Whereas the analogies with what occurs on normed vector spaces is
alluring, in some cases the results are surprising. For instance, in the Heisenberg group endowed
with the so-called Carnot-Heisenberg distance, geodetically convex functions are constant ([46]).

Our aim here is to introduce a notion of tangent cone to a metric space and a notion of tangent
map to a map between metric spaces. Such notions enable one to obtain information about the
local behaviors of sets and maps. Our constructions are simple and not too restrictive; they
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rely on an appropriate selection of arcs. They do not require local compactness of the space, a
restriction which is not natural for differential calculus. They allow to state optimality conditions
and they open the way to the study of dynamical systems. We make a short comparison with
some other concepts, in particular with the notion of mutational space ([6]) which has been
our starting point. Our aim can be seen as an effort to get rid of uniform estimates while
concentrating on simpler conditions. As in [6], [57], [58], our main motivations are the studies
of the space C of bounded closed convex subsets of a normed vector space E and of the space K
of compact subsets of E, both endowed with the Pompeiu-Hausdorff distance. Such spaces can
serve as basic models for shape optimization and image reconstruction.

2 Concepts and examples

In the sequel, an arc of a metric space (X, d) is a (not necessarily continuous) map from an
interval I := [0, θ] of R (for some θ > 0) into X; without loss of generality, we can extend
it to R+ by taking it as constant on [θ, +∞[. The whole family of continuous arcs of X is
too large in general for calculus purposes (think of the Peano curve). Therefore we are led to
choose a selection of this family in requiring some conditions in order to detect arcs which are
regular enough. The condition we impose means that the triangular inequality along the arc is
approximately an equality, making it an approximate geodesic.

Definition 1 An arc c : R+ → X of a metric space (X, d) is said to be (initially) rhythmed if
the limit of t−1d(c(t), c(0)) exists as t → 0+. It is called a cadence if it is rhythmed and if for
any a ∈ R+ one has

lim
(s,t)→(a,0+)

1

t
d(c(st), c(t)) = |a− 1| lim

t→0+

1

t
d(c(t), c(0)). (1)

In this definition, it is enough to suppose a ∈ [0, 1], as easily seen.
Example. Let X be a subset of a normed vector space and let c : R+ → X be such that
the right derivative c′+(0) := limt→0+(1/t)(c(t) − c(0)) exists. Then c is a cadence: setting
q(t) := (1/t)(c(t)− c(0)) we have (1/t)d(c(t), c(0)) →

∥∥c′+(0)
∥∥ as t → 0+ and

1

t
‖c(st)− c(t)‖ = ‖sq(st)− q(t)‖ →

∥∥ac′+(0)− c′+(0)
∥∥ = |a− 1|

∥∥c′+(0)
∥∥ as (s, t) → (a, 0+).

Example. Let (X, d) be a metric space. Suppose c | [0, θ] is a metric segment, i.e. that
d(c(r), c(t)) = d(c(r), c(s)) + d(c(s), c(t)) for 0 ≤ r ≤ s ≤ t ≤ θ. Then, if it is rhythmed, it is a
cadence. In order to see that, let us denote by ` the limit of s−1d(c(s), c(0)) as s → 0+. Then,
for a ∈ (0, 1), we have, for s > 0 close enough to a

1

t
d(c(st), c(t)) =

1

t
d(c(0), c(t))− s

st
d(c(0), c(st)) → `− a`

as (s, t) → (a, 0+); for a = 0 relation (1) also holds. For a ≥ 1 we use the relation

1

t
d(c(st), c(t)) =

s

st
d(c(0), c(st))− 1

t
d(c(0), c(t)) → a`− `
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when s ≥ 1. Now if c is continuous it is rhythmed: setting ` := d(c(0), c(θ)), for any n ∈ N\{0}
and any r ∈ {2−nkθ : k ∈ N, k ≤ 2n} one has d(c(r), c(0)) = r`, so that, by density, this relation
also holds for r ∈ [0, θ]. �

The definition we have adopted keeps part of the properties of metric segments in order to
select not too wild arcs. More precisely, if c : [0, θ] → X is a cadence, then c is approximately
a metric segment in the sense that for any a ∈ (0, 1) there exists some function µ : R+ → R+

satisfying limt→0 µ(t) = 0 such that

d(c(0), c(t)) = d(c(0), c(at)) + d(c(at), c(t))− tµ(t)

for t ∈ [0, θ]. In fact, setting k := limt→0+ d(c(t), c(0))/t, one has d(c(at), c(t))/t → (1 − a)k as
t → 0+, hence

1

t
(d(c(0), c(at)) + d(c(at), c(t))) → ak + (1− a)k = lim

t→0+

1

t
d(c(0), c(t)),

so that one can take µ(t) := (1/t)[d(c(0), c(at)) + d(c(at), c(t))− d(c(0), c(t))].
Example. If c is a geodesic of a Riemannian manifold, then, for some θ > 0 small enough,
c | [0, θ] is a metric segment, hence is a cadence.
Example. Let (X, d) be a metric space which is also a topological manifold satisfying the
following condition: for every x ∈ X there exist a normed vector space E, an open neighborhood
U of 0 in E, an homeomorphism ϕ : U → V from U onto a neighborhood V of x such that for
any ε > 0 there exist ρ > 0 with B(0, ρ) ⊂ U for which

∀u, u′ ∈ B(0, ρ) (1− ε) ‖u− u′‖ ≤ d(ϕ(u), ϕ(u′)) ≤ (1 + ε) ‖u− u′‖ .

Then, one can check that for any e ∈ E the arc c : t 7→ ϕ(te) is a cadence issued from x.
Example. In exotic metric spaces, cadences may be scarce. In particular, if (X, d) is an
ultrametric space, i.e. a metric space such that for any x, x′, x′′ ∈ X one has d(x, x′′) ≤
max(d(x, x′), d(x′, x′′)), then every cadence c is almost constant in the sense that d(c(t), c(0)) =
tε(t) with ε(t) → 0 as t → 0. In fact, if α := lim supt→0+

ε(t) is positive, and if a ∈ (0, 1] one has
d(c(st), c(0)) < d(c(t), c(0)) for s, t > 0 small enough, so that, by a well know property of ultra-
metric spaces, d(c(st), c(t)) = d(c(t), c(0)) = tε(t) and condition (1) implies that α = |1− a|α,
a contradiction.
Example. Suppose there exists a family (hv)v∈V of semi-groups hv : R+ ×X → X on a metric
space (X, d), parametrized by a normed vector space (V, ‖·‖) in such a way that for some x ∈ X
one has

∀v ∈ V
1

t
d(hv(t, x), x) → ‖v‖ as t → 0+, (2)

∀v ∈ V, ∀t ∈ R+, ∀x, x′ ∈ X d(hv(t, x), hv(t, x
′)) = d(x, x′). (3)

Recall that h : R+ × X → X is a semi-group if h(0, ·) is the identity mapping and if for any
r, s ∈ R+ one has h(s, h(r, ·)) = h(r + s, ·). Then, for each v ∈ V, the arc c : R+ → X given
by c(t) := hv(t, x) is a cadence. Assumption (2) ensures that c is rhythmed. Now, since hv is
a semigroup, and since by (3) hv(r, ·) preserves distances for every v ∈ V, r ∈ R+, we have for
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a ∈ [0, 1], s ∈ [0, 1), t ∈ R+,

1

t
d(c(t), c(st)) =

1

t
d(hv(st, hv(t− ts, x)), hv(st, x))

=
1− s

t− st
d(hv(t− ts, x)), x) → (1− a) ‖v‖ as (s, t) → (a, 0+).

In [15] some classical groups actions satisfying assumptions similar to (2), (3) (among others)
are studied, giving to some homogeneous spaces a structure of mutational space in the sense of
[6]. �

Now let us turn to an attempt to define a kind of tangent space. We first observe that if c1,
c2 are two arcs of X such that d(c1(s), c2(s))/s → 0 as s → 0+ and if c1 is rhythmed, then c2 is
rhythmed; if c1 is a cadence, then c2 is also a cadence: setting ε(s) := d(c1(s), c2(s))/s one has
(1/t)d(c2(t), c2(0)) → limt→0+(1/t)d(c1(t), c1(0)) and

|d(c2(st), c2(t))− d(c1(st), c1(t))| ≤ stε(st) + tε(t),

so that condition (1) is satisfied.

Definition 2 A (virtual) velocity, or (virtual) tangent vector, of a metric space (X, d) at x ∈ X
is an equivalence class of cadences c : R+ → X such that c(0) = x for the relation

c1 ' c2 iff d(c1(s), c2(s))/s → 0 as s → 0+.

A whizz at x of a metric space (X, d) is an equivalence class of rhythmed arcs issued from x.

We denote by V (X, x) or VxX the set of velocities of (X, d) at x ∈ X and by W (X, x) the
set of whizz of (X, d) at x ∈ X. If c : R+ → X is a cadence such that c(0) = x, we denote by vc

(or c′(0) if there is no risk of confusion) its class in the preceding relation.
The sets V (X, x) and W (X, x) can be given a cone structure by setting, for v ∈ W (X, x)

and λ ∈ R+,
λv := (cλ)

′(0)

where c : R+ → X is a representant of v (i.e. c′(0) = v) and cλ : R+ → X is given by
cλ(t) := c(λt). It is easy to check that λv does not depend on the choice of c in the class v. We
denote by 0 the class of the constant arc with value x which is clearly a cadence. Moreover, one
has

(λµ)v = λ(µv) ∀λ, µ ∈ R+, ∀v ∈ V (X, x).

We set

‖v‖ = lim
t→0+

1

t
d(c(t), c(0)),

where c is a representant of v; this definition does not depend on the choice of a representant.
Moreover, for v1, v2 ∈ W (X, x), we can set

dW (v1, v2) = lim sup
t→0+

1

t
d(c1(t), c2(t)),

where ci is a representant of vi for i = 1, 2, since the limsup does not depend on the choices of
such representants. The proof of the following result is easy.
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Lemma 3 For u, v, w ∈ W (X, x), λ ∈ R+ one has

‖v‖ = dW (v, 0),

dW (u, v) = 0 ⇐⇒ u = v,

dW (u, w) ≤ dW (u, v) + dW (v, w),

‖λv‖ = λ ‖v‖ .

Now let us turn to the study of maps between metric spaces.
In the following definition we say that a mapping f : X → Y between two metric spaces is

stable at x ∈ X (or is Stepanoff at x [30]) if there is some k ∈ R+ and a neighborhood V of x in
X such that dY (f(v), f(x)) ≤ kdX(v, x) for each v ∈ V. The infimum of such constants is called
the stability rate of f at x.

Definition 4 A mapping f : X → Y between two metric spaces is said to be rhythmed at x ∈ X
if it is stable at x and if for each rhythmed arc c : R+ → X such that c(0) = x the arc f ◦ c is
rhythmed.

The mapping f is said to be cadenced at x ∈ X if it is stable at x and if for each cadence
c : R+ → X such that c(0) = x the arc f ◦ c is a cadence and if f ◦ c1 ' f ◦ c2 whenever c1 and
c2 are two cadences such that c1 ' c2 and c1(0) = c2(0). Then the cadence-derivative of f at x
is the map f ′x : V (X, x) → V (Y, f(x)) given by v 7→ (f ◦ c)′(0) where c is a representant of v.

In such a case, one has ‖f ′x(v)‖ ≤ k ‖v‖ , where k is a stability rate of f around x. Note
that the condition f ◦ c1 ' f ◦ c2 whenever c1 and c2 are two cadences such that c1 ' c2 and
c1(0) = c2(0) is automatically satisfied when f is locally Lipschitzian around x.
Remark. The proof of Proposition 8 below shows that when X is an open subset of some
Euclidean space, an arc c : R+ → X is a cadence if, and only if, the right derivative of c at
zero exists. It follows that the preceding definition is compatible with Definition 1: an arc
f : R+ → Y of a metric space is a cadence if, and only if, it is cadenced in the sense of the
preceding definition.

Similarly, a function f : X → R is cadenced at x ∈ X if, and only if, it is stable at x and
such that for each cadence c of X with c(0) = x, the function f ◦ c is right differentiable at 0,
its right derivative being independent of the choice of c in its class. �

The following proposition is an obvious consequence of the definitions.

Proposition 5 Let f : X → Y and g : Y → Z be mappings between metric spaces. Suppose
f is rhythmed (resp. cadenced) at x ∈ X and g is rhythmed (resp. cadenced) at f(x). Then
h := g ◦ f is rhythmed (resp. cadenced) at x and

h′x = g′f(x) ◦ f ′x.

The preceding notions enable to give an optimality condition.

Proposition 6 (Fermat’s rule) Suppose f : X → R is rhythmed (resp. cadenced) at x ∈ X and
attains a local minimum at x. Then, for any whizz w ∈ W (X, x) (resp. velocity v ∈ V (X, x))
one has f ′x(w) ≥ 0 (resp. f ′x(v) ≥ 0).
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Proof. Given w ∈ W (X, x) and a rhythmed arc c with whizz w := wc, one has f(c(t)) ≥ f(x)
for t > 0 small enough since c(t) → x as t → 0. It follows that (f ◦ c)′(0) ≥ 0. Thus f ′x(w) =
(f ◦ c)′(0) ≥ 0. �

When X is a subset of a normed vector space E, the preceding result is better than the
classical Fermat’s rule ([7, Thm 6.1.9]) since W (X, x) (or even V (X, x)) may be larger than the
incident tangent cone to X at x (see Lemma 7 below).
Example. Let E be an arbitrary normed vector space of infinite dimension. Given a sequence
(en) of unit vectors of E without any cluster points, let f : E → R be given by f(en/n) = −1/n,
f(x) = 0 for x ∈ X\{en/n : n ≥ 1}. The arc c : [0, 1] → E given by c(0) = 0, c(t) = en+1/(n+1)
for t ∈ (1/(n + 1), 1/n] is easily seen to be rhythmed and if w is its whizz, one has f ′x(w) = −1,
so that 0 is not a local minimizer of f. Such a fact cannot be detected by using tangent vectors
to E at 0 as in the classical Fermat’s rule.

3 Some basic constructions

Let us consider now some familiar constructions for metric spaces and we examine their infinites-
imal counterparts.

First, if d′ is a metric deduced from a metric d on X by d′ := j ◦ d, where j : R+ → R+ is an
increasing subadditive map satisfying j(0) = 0 and if j has a non null derivative at 0, then an
arc c of (X, d) is rythmed (resp. is a cadence) if, and only if, it is rythmed (resp. a cadence) in
(X, d′). Thus, taking j(t) := min(t, 1) or j(t) = t/(t + 1), one can reduce the study to bounded
metric spaces. Clearly, the tangent sets to (X, d) and (X, d′) at any point coincide.

If X is a subset of a metric space (W, dW ), and if X is endowed with the induced metric d,
then it is clear that an arc c of X is rhythmed (resp. a cadence) if and only if it is rhythmed
(resp. a cadence) in (W, dW ). Thus, the tangent set to X at any x ∈ X can be considered as
a subset of the tangent set to W at x and the canonical injection j of X into W is cadenced
at each point. If x is an interior point to W, then j′x is a bijection between the tangent spaces
V (X, x) and V (W, x).

If X is a quotient of a metric space (W, dW ), and if the equivalent classes are closed and
such that for any u, v in the same class and any class C of W one has dW (u, C) = dW (v, C),
where dW (u, C) := inf{dW (u, w) : w ∈ C}, then X can be endowed with a metric d by setting
d(x, x′) := dW (w,C ′), where w ∈ p−1(x), C ′ := p−1(x′), p : W → X being the canonical
projection. Then, if c is an arc of (X, d) which is rythmed, one can find an arc b of (W, dW )
which is rythmed and such that c = p ◦ b. However, if c is a cadence, the existence of a cadence
b of (W, dW ) is not guaranteed in general.

Now suppose X is the product of two metric spaces (V, dV ) and (W, dW ) and that its metric
is given by d = γ ◦ (dV , dW ), where γ : R2

+ → R is a map null at (0, 0) and such that for any
(r, s) ∈ R2

+ the directional derivative

γ′((0, 0); (r, s)) := lim
(t,r′,s′)→(0+,r,s)

γ(tr′, ts′)/t

exists. Such assumptions are satisfied in the classical cases

γ1(r, s) := r + s, γp(r, s) := (rp + sp)1/p, γ∞(r, s) := max(r, s).
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Then if a and b are rythmed arcs (resp. cadences) in (V, dV ) and (W, dW ) respectively, it is easy
to show that the arc c := (a, b) is rythmed (resp. a cadence) in (X, dX). Thus, the tangent set
to (X, d) at x := (v, w) contains the product of the tangent sets to (V, dV ) and (W, dW ) at v and
w respectively.

Let us return to the case of embeddings. In the following lemma, assuming that X is a subset
of a normed vector space E, we compare V (X, x) with the cone T i(X, x) of incident vectors (or
adjacent vectors in the terminology of [7]) to X at x. Recall that T i(X, x) is the set of vectors
v ∈ E such that d(x + tv, X)/t → 0 as t → 0+.

Lemma 7 Suppose X is a subset of some normed vector space (E, ‖·‖) and is endowed with the
induced metric. Then, for each x ∈ X, there exists an injection jx of the set T i(X, x) of incident
vectors to X at x into V (X, x). It is even an isometric embedding.

Proof. For any v ∈ T i(X, x) one can find an arc c : [0, 1] → X such that c(0) = x,
(1/t)(c(t) − c(0)) → v as t → 0+ : it suffices to pick c(t) ∈ B(x + tv, d(t) + t2), where d(t) :=
d(x+tv, X). By an observation made above, t 7→ x+tv being a cadence of E, c is a cadence of E,
hence a cadence of X. If c : [0, 1] → X is another arc such that c(0) = x, c′(0) = v, we obviously
have c ' c, so that we have a well defined map jx : T i(X, x) → V (X, x). In order to prove that
jx is injective it suffices to show that it is an isometric embedding. Let v1, v2 ∈ T i(X, x). There
exist arcs c1, c2 : [0, 1] → X such that ci(0) = x, c′i(0) = vi for i = 1, 2. Then

‖v1 − v2‖ =

∥∥∥∥ lim
s→0+

s−1(c1(s)− x)− lim
s→0+

s−1(c2(s)− x)

∥∥∥∥
= lim

s→0+

s−1 ‖c1(s)− c2(s)‖ = dV (jx(v1), jx(v2)).

�

Proposition 8 Let X be a subset of some Euclidean space E. Then the embedding of the set
T i(X, x) of incident vectors to X at x into V (X, x) is an isometric embedding onto V (X, x).

Proof. Let c be a cadence of X such that c(0) = x and let vc be its class. Let us prove that
(1/t)(c(t)− c(0)) has a limit as t → 0+. Then this limit v is an element of T i(X, x) and its image
by jx in V (X, x) will be vc by definition of jx. Let r := limt→0+ d(c(t), c(0))/t. Since the sphere
S(0, r) := {u ∈ E : ‖u‖ = r} is compact, it is enough to show that if v and w are two cluster
points of (1/t)(c(t) − c(0)) as t → 0+, then v = w. Let (sn) and (tn) be two sequences with
limit 0 such that (c(sn)/sn) → v and (c(tn)/tn) → w. Taking subsequences if necessary, we may
suppose (an) := (sn/tn) has a limit a ∈ R+ ∪ {∞}. Interchanging the roles of (sn) and (tn), we
may suppose a ∈ [0, 1]. Then, by (1), we have

‖av − w‖ = lim
n

∥∥∥∥sn

tn

c(sn)− c(0)

sn

− c(tn)− c(0)

tn

∥∥∥∥ = lim
n

1

tn
‖c(antn)− c(tn)‖

= (1− a) lim
t→0+

1

t
d(c(t), c(0)) = (1− a)r.

Thus ‖av − w‖2 = (1−2a+a2)r2 while an expansion using the scalar product gives ‖av − w‖2 =
a2 ‖v‖2 − 2a(v | w) + ‖w‖2 = a2r2 − 2a(v | w) + r2. It follows that (v | w) = r2, hence w = v
since ‖v‖ = ‖w‖ = r. �
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4 Spaces of subsets

The following concrete example is part of our motivations.
Let E be a normed vector space (n.v.s.) and let X be the set C of nonempty bounded closed

convex subsets of E equipped with the Pompeiu-Hausdorff distance d defined by

d(A, B) := max(e(A, B), e(B, A)) for A, B ∈ X , where

e(A, B) := sup
a∈A

d(a, B).

For a subset F of E, let hF be the support function of F given by

hF (u∗) := sup{〈u∗, x〉 : x ∈ F} u∗ ∈ U∗,

where U∗ is the closed unit ball of the dual E∗ of E. Given A, B ∈ X , let C : [0, 1] → X be
given by

C(t) := (1− t)A + tB.

Since the Hörmander’s theorem ([20, Thm II-18]) asserts that for any A, B ∈ X one has

d(A, B) = sup
u∗∈U∗

|hA(u∗)− hB(u∗)| ,

and since hC(t) = (1− t)hA + thB, for s ∈ (0, 1) and s = 0, we get that

d(C(st), C(t)) = sup
u∗∈U∗

|(1− st)hA(u∗) + sthB(u∗)− (1− t)hA(u∗)− thB(u∗)|

= |1− s| t sup
u∗∈U∗

|hA(u∗)− hB(u∗)| = |1− s| td(A, B),

d(C(0), C(t)) = td(A, B).

Thus, d(C(st), C(t)) = |1− s| d(C(0), C(t)) and C is a cadence. In fact, since the Hörmander
mapping h : F 7→ hF maps isometrically X into the space H of positively homogeneous con-
tinuous functions on the unit ball of the dual space E∗ endowed with the norm of uniform
convergence, and since t 7→ hC(t) is an affine segment, we see that C is a metric segment.

Lemma 7 shows that the velocity V (X , A) is rich enough since it contains the image of the
set T i(h(X ), h(A)) in H. The latter contains the set {hB − hA : B ∈ X} which are the initial
velocities of the curves t 7→ h(1−t)A+tB.

Now, let X be the set K of nonempty compact subsets of E endowed with the Hausdorff-
Pompeiu metric. Let BC(E, R) be the set of bounded continuous functions on E endowed with
the norm of uniform convergence. The map j : K → BC(E, R) given by j(A)(e) = dA(e)− ‖e‖
being an embedding of K, it may give rise to a set of velocities which is rich enough. Another
means to get velocities consists in assuming that A is regular enough to admit deformations
ht : A → X for t ∈ [0, 1] such that h0 = IA, the identity mapping of A, and that for each a ∈ A
the derivative v(a) = lim(t,x)→(0+,a)(1/t)(ht(x) − x) exists, is a continuous function of a and is
normal to A at a. In such a case, for each a ∈ A one has dA(ht(a)) = t(‖v(a)‖ + εa(t)) with
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εa(t) → 0 as t → 0. Setting C(t) := ht(A) we obtain a rhythmed arc of K. In fact, for any

lim inf
t→0+

1

t
d(C(t), C(0)) ≥ lim inf

t→0+

sup
a∈A

1

t
d(ht(a), A)

≥ sup
a∈A

sup
τ>0

inf
t∈(0,τ)

1

t
d(ht(a), A)

= sup
a∈A

‖v(a)‖ .

On the other hand, if (tn), (an) are sequences of (0, 1] and A respectively such that

lim sup
t→0+

1

t
d(C(t), C(0)) = lim

n

1

tn
d(htn(an), A),

taking a subsequence of (an) which converges to some a ∈ A, and relabelling it, we deduce from
our assumptions that

lim sup
t→0+

1

t
d(C(t), C(0)) = lim

n

1

tn
d(htn(an), A) = lim

n

1

tn
‖htn(an)− an‖ = ‖v(a)‖ ,

so that

lim sup
t→0+

1

t
d(C(t), C(0)) ≤ sup

a∈A
‖v(a)‖

and (1/t)d(C(t), C(0)) has a limit. Another possible means to get rhythmed arcs of K is to take
enlargements, as in [55]. The enlargements of a subset A of X are defined by Ar := {x ∈ X :
dA(x) ≤ r} for r ∈ R+. The intermediate value theorem ensures that d(Ar, A) = r, so that
C : R+ → X for X = C or X = K is rhythmed. Moreover, since d(C(st), C(t)) = t− st by [55,
Lemma 29 (b)], we see that C is a cadence. On the other hand, the ε-regularization A(ε) of A
as defined in [44] is a curve of X which may satisfy d(A(ε), A) = 0 or d(A(ε), A) = +∞.

5 Comparisons and open questions

An important stream of results has recently appeared with the study of measure-theoretic defi-
nitions of a tangent space. In particular, a tangent space to a locally compact doubling metric
space can be defined as a limit in the Gromov-Hausdorff distance of a parametrized family of
metric spaces (see [4], [36], [39, 2.12] and the references therein). Such a tangent space is not
unique. A comparison with our set of velocities is not obvious because here we do not assume
local compactness nor the existence of a doubling measure. A junction of the two approaches
would be of interest.

The main drawback of the preceding notions consists in the impossibility to compare or relate
the sets of velocities to X at different points. When using an isometric embedding e : X → E of
X into a Banach space E, one gets subsets T i(e(X), e(x)) of E which can be related. However,
without additional assumptions, it is not clear that one has invariance under different embeddings
of X into a Banach space of the incident cones to the images. Thus, one is led to look for canonical
embeddings. Besides especial embeddings such as the ones we have considered in the section
devoted to power sets, the Banach, the Fréchet and the Urysohn embeddings which are limited
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to separable metric spaces, there is a general class of embeddings, known as the Kuratowski
class, which can be used. In order to describe this class, for y ∈ X, let us denote by dy the
function d(·, y) and let us introduce the space E := BC(X) of bounded continuous functions on
X, which is a Banach space when endowed with the norm ‖·‖∞ of uniform convergence. Given
y ∈ X, let ey : X → E be the mapping given by

ey(x)(·) := dx(·)− dy(·).

It is easy to show that the mapping ey : x 7→ ey(x) is an isometric embedding of (X, d) into
(E, ‖·‖∞). Given two points y, z of X, the mapping ez is obtained from the mapping ey by a
translation:

ez(x)(w) = ey(x)(w) + dy(w)− dz(w) w, x ∈ X,

or ez(x) = ey(x) + hy,z for x ∈ X, where hy,z := dy − dz is an element of E independent of x. It
follows that ez(X) = ey(X) + hy,z

T i(ez(X), ez(x)) = T i(ey(X), ey(x)) ∀x ∈ X.

In the sequel we fix z ∈ X and we consider T i(ex(X), 0) = T i(ex(X), ex(x)) = T i(ez(X), ez(x))
as a subset of V (X, x) using the isometric embedding of Lemma 7.

Proposition 9 Let w be a vector field on a complete metric space X, i.e. the data for each x ∈ X
of an element w(x) of V (X, x). Suppose that for each x ∈ X one has w(x) ∈ T i(ez(X), ez(x))
and that w is locally Lipschitzian from X into E. Then, for any x0 ∈ X, there exists a cadence
c of X satisfying c(0) = x0 and c′+(t) = w(c(t)).

More precisely, one can asserts the existence of an arc c : [0, θ) → X such that for each
t ∈ [0, θ) the arc ct : [0, θ− t) → X given by ct(s) := c(s + t) is a cadence and (ct)

′(0) = w(c(t)).
The abuse of notation used in the last equality of the statement is justified by the fact that c
can be considered as an arc of ez(X) which is right differentiable and whose right derivative c′(t)
at t corresponds to w(c(t)) when embedding T i(ez(X), ez(c(t))) into V (X, c(t)).

Proof. We may identify X with ez(X). Then we apply the classical Nagumo-Brezis invariance
theorem for vector fields which are tangent to a closed subset. �

Another means to relate the sets of velocities to a metric space (X, d) at different points is
to select a class of homotopies of X, i.e. a class of continuous maps h : X× [0, 1] → X such that
h(x, 0) = x for each x ∈ X. Such an approach is adopted in [5], [6], [19] and in the works using
mutational spaces. Let us note however that in such contributions the arcs t 7→ h(x, t) are not
supposed to be cadences (nor even rhythmed); on the other hand, strong uniform estimates are
required. It would be interesting to look whether some compromises between the two frameworks
would bring new results.

Finally, let us make a step towards one of the earliest devices to get calculus results in metric
spaces.

Definition 10 Let (X, d) be a metric space and let f : X → R be cadenced at x ∈ X. Then the
slope of f at x in the direction v ∈ V (X, x) is |∇v| (f) := max(−f ′x(v), 0).

The directional slope of f at x is |∇| (f)(x) := sup{|∇v| (f) : v ∈ V (X, x), ‖v‖ = 1}.
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Recall that the (strong) slope of f at x is defined by

‖∇‖ (f)(x) := lim sup
x′( 6=x)→x

max(f(x)− f(x′), 0)

d(x, x′)
.

Such a notion has been used with much success for dealing with existence of curves satisfying
decrease properties, error bounds estimates and metric regularity (see [8]-[10], [22], [23] and their
references). The following comparison is easy.

Proposition 11 Let (X, d) be a metric space and let f : X → R be cadenced at x ∈ X. Then
the directional slope of f at x is majorized by the slope of f at x :

|∇| (f)(x) ≤ ‖∇‖ (f)(x).

Proof. Given v ∈ V (X, x), ‖v‖ = 1 and a representant c of v, we have d(c(t), c(0))/t → 1 as
t → 0+. Therefore

|∇v| (f) = max(− lim
t→0+

f(c(t))− f(c(0))

t
, 0) = lim

t→0+

1

t
max(f(x)− f(c(t)), 0)

≤ lim sup
x′( 6=x)→x

max(f(x)− f(x′), 0)

d(x, x′)
= ‖∇‖ (f)(x).

Taking the supremum over v ∈ V (X, x) satisfying ‖v‖ = 1, we get the result. �
A consequence of the preceding inequality is that decrease results and metric regularity results

can be obtained with the help of the notion of directional slope. In particular we dispose of the
following Decrease Principle and Error Bound Property.

Theorem 12 (Decrease Principle) Let f : X → R+ ∪ {+∞} be a nonnegative l.s.c. proper
function on a complete metric space X and let S := {x ∈ X : f(x) = 0}. Suppose there are
x ∈ domf , c > 0 and r ∈ R+ ∪ {+∞} with f(x) < cr such that |∇| (f)(u) ≥ c for any
u ∈ B(x, r)\S. Then S is nonempty and

d(x, S) ≤ c−1f(x).

In particular, if for some positive number c one has |∇| (f)(u) ≥ c for every u ∈ X\S, then S
is nonempty and for each x ∈ X one has

d(x, S) ≤ c−1f(x). (4)

Proof. Since |∇| (f)(·) ≤ ‖∇‖ (f)(·), the assumption ensures that |∇| (f)(u) ≥ c for any
u ∈ B(x, r)\S. Then the conclusion follows from the Decrease Principle using the strong slope.
�
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