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In Asplund spaces, approximately convex functions and

regular functions are generically differentiable

Huynh Van Ngai∗ and Jean-Paul Penot†

Abstract

We prove that an approximately convex function on an open subset of an Asplund

space is generically Fréchet differentiable, as are genuine convex functions. Thus, we

give a positive answer to a question raised by S. Rolewicz. We also prove a more

general result of that type for regular functions on an open subset of an Asplund

space.

Key words. Approximately convex function, Asplund space, differentiability,

Fréchet derivative, genericity.

Dedicated to Stefan Rolewicz on the occasion of his 70 th birthday.

1 Introduction

It is a deep and famous result of Preiss [21] that any locally Lipschitzian real-valued function
on an Asplund space is Fréchet differentiable at the points of a dense subset. However,
since it is not known whether this set is a countable intersection of open subsets, it is not
possible to conclude for instance that given two Lipschitzian functions they have a common
point of Fréchet differentiability. It is the purpose of the present article to give a positive
answer to such a problem by making some additional assumptions corresponding to well
established classes of functions.

The main class of functions we have in view is the class of regular functions in the sense
of Clarke ([4, Def. 2.3.4]). For such a class the main concepts of nonsmooth analysis coin-
cide and better calculus rules are available than for general locally Lipschitzian functions.
For that reason, such a class is popular.

The proof of our main result being somewhat involved, we first present a simple proof
for the more restricted class of approximately convex functions which has been recently
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introduced in [12, Prop. 3.1]. It has obtained immediately a great interest in view of its
simplicity and of its generality ([1], [7], [13], [15], [27]). It contains the class of paraconvex
functions which has been thoroughly studied by S. Rolewicz ([24], [25], [30], [31]). It also
contains the class of continuously differentiable functions. As recalled in Proposition 2 be-
low, it satisfies desirable stability properties which make the class large enough. This class
retains part of the properties of convex functions, but also of continuously differentiable
functions, so that our separate treatment is justified.

2 Preliminaries

Approximate convexity is defined as follows.

Definition 1 Given ε > 0 and a convex subset C of a Banach space X, a function f :
C → R is said to be ε-convex if for every x, y ∈ C and any t ∈ [0, 1] one has

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + εt(1 − t) ‖x − y‖ . (1)

A function f : U → R defined on an open subset U of X is said to be approximately convex
at x0 ∈ U if for any ε > 0 there exists δ > 0 such that f is ε-convex on the ball B(x0, δ). It
is approximately convex around x0 ∈ U if it is approximately convex at any point of some
neighborhood of x0.

The terminology we use here is slightly different from the one used in [12, Prop. 3.1]
and [13] (but coincides with the one of [5]) since we stress the difference between the
pointwise property (at x0) and the local property (around x0). As mentioned above, the
class of approximately convex functions on U (i.e. at each point of U) contains the class
of paraconvex functions on U which plays an important role in various fields (Hamilton-
Jacobi equations and optimal control [3], duality [19], regularization [10]...). The class
of approximately convex functions has been characterized in finite dimensions by a lower
C1 property in the sense of [23], [32], i.e. as suprema of families of C1 functions. This
characterization is extended in [13] (see also [7], [17] for variants). Another characterization
uses a subdifferential of the function and an approximate monotonicity property; the locally
Lipschitz case is given in [1] and the case of a lower semicontinuous function is presented
in [13].

The class of approximately convex functions has interesting stability properties; see for
instance [12, Prop. 3.1], [6, Section 6], [1].

Proposition 2 The set of functions f : U → R which are approximately convex at x0 ∈ X
is a convex cone containing the functions which are strictly differentiable at x0. It is stable
under finite suprema. Moreover, if f = h ◦ g, where g : U → Y is strictly differentiable at
x0 and h : Y → R is approximately convex at g(x0), then f is approximately convex at x0.
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As mentioned above, approximately convex functions retain some of the nice properties
of convex functions. In particular they are continuous on segments contained in their do-
mains ([12, Cor. 3.3]) and locally Lipschitzian on the interiors of their domains. Moreover,
they have radial derivatives ([12, Cor. 3.5]). Furthermore, the subdifferentials of approxi-
mately convex functions all coincide provided they are between the Fréchet subdifferential
∂− and the Clarke-Rockafellar subdifferential ∂↑. Recall that

x∗ ∈ ∂−f(x) ⇔ ∀ε > 0 ∃δ > 0 : ∀u ∈ B(x, δ) f(u) − f(x) − 〈x∗, u − x〉 ≥ −ε ‖u − x‖

and that, for a continuous function f,

x∗ ∈ ∂↑f(x) ⇔ ∀u ∈ X 〈x∗, u〉 ≤ f ↑(x, u),

where

f ↑(x, u) := sup
ε>0

lim sup
(t,w)→(0+,x)

inf
v∈B(u,ε)

1

t
(f(w + tv) − f(w)) .

Here a subdifferential is a map ∂ : R
X ×X → P(X∗), where R

X
is the set of extended-real

valued functions on X, X∗ is the dual space of X and P(X∗) the space of subsets of X∗,
such that ∂f(x) := ∂(f, x) is empty if f is not finite at x.

Recall that an Asplund space is a Banach space X such that the dual of every separable
closed subspace of X is separable. Such spaces have been introduced for their characteristic
property: a convex continuous function on a nonempty open convex subset U of an Asplund
space is generically Fréchet differentiable, i.e. Fréchet differentiable on a dense Gδ-subset
of U. Here a subset D is said to be a Gδ-subset of U if it is the intersection of a countable
family of open subsets. It has also been shown by D. Preiss ( [21]) that any locally Lipschitz
function f on an open subset U of an Asplund space is Fréchet differentiable on a dense
subset. Here we make the supplementary assumption that f is approximately convex and
we get generic differentiability, i.e. differentiability on a dense Gδ-subset of U.

Recall that by a weak* slice of a nonempty set A ⊂ X∗ one means a subset of A of the
form

S(x,A, α) = {x∗ ∈ A : 〈x∗, x〉 > σA(x) − α},
where x ∈ X\{0}, α > 0 and

σA(x) = sup{〈x∗, x〉 : x∗ ∈ A}.

The following important characterization of Asplund spaces is well known. It will be used
in the proof of the main result below.

Lemma 3 ([20]) A Banach space X is an Asplund space if and only if its dual space X∗

has the Radon-Nikodým property, i.e. every nonempty bounded subset A of X∗ admits
weak* slices of arbitrary small diameter.

3



Let us note the following results.

Lemma 4 Let U be an open subset of an Asplund space X and let f : U → R be a lower
semicontinuous function. Let ∂ be a subdifferential such that ∂−f(u) ⊂ ∂f(u) ⊂ ∂↑f(u)
for all u ∈ U . Let x ∈ U be such that ∂f(x) is nonempty and such that for any ε > 0 there
exists some δ > 0 for which Bδ := B(x, δ) ⊂ U and diam(∂f(Bδ)) < ε. Then f is (strictly)
Fréchet differentiable at x : for every ε > 0 there exists δ > 0 such that B(x, δ) ⊂ U and
for every u, v ∈ B(x, δ) one has

|f(v) − f(u) − 〈x∗, v − u〉| ≤ ε ‖v − u‖ .

Proof. Clearly, ∂f(x) is a singleton {x∗}. Now, given ε > 0, let δ > 0 be such that
Bδ := B(x, δ) ⊂ U and diam(∂f(Bδ)) < ε. Given u, v ∈ B(x, δ), the Mean Value Theorem
([11], [18]) ensures that there exist w, z ∈ [u, v] and sequences (wn) → w, (zn) → z, (w∗

n),
(z∗n) such that w∗

n ∈ ∂f(wn), z∗n ∈ ∂f(zn) for all n ∈ N and

f(v) − f(u) − 〈x∗, v − u〉 ≤ lim inf
n

〈w∗
n − x∗, v − u〉 ≤ ε ‖v − u‖ ,

f(u) − f(v) − 〈x∗, u − v〉 ≤ lim inf
n

〈z∗n − x∗, u − v〉 ≤ ε ‖v − u‖ ,

so that f is strictly Fréchet differentiable at x. ¤

Proposition 5 Let U be an open subset of a normed vector space X. The set of points at
which a function f : U → R is approximately convex is a Gδ-set.

Proof. Let A ⊂ U be the set of points at which the function f is approximately convex.
For n ∈ N\{0}, let An be the set of points x for which there exists some δ > 0 such that
f is 1/n-convex on B(x, δ). Obviously, An is open and ∩∞

n=1An = A. ¤

The conclusion of the preceding proposition can be rephrased as: if f is densely ap-
proximately convex (i.e. approximately convex at all points of a dense subset), then the
set of points at which f is approximately convex is a generic subset of U, i.e. it is a dense
Gδ-set. Let us note the following criterion ensuring that the set of points at which f is
approximately convex is a generic subset of U. Here we say that a function is Clarke regu-
lar if it is locally Lipschitzian and directionally differentiable at each point, its directional
derivative being equal to its Clarke-Rockafellar derivative.

Lemma 6 [5, Prop. 5] Every Clarke regular function on an Asplund space is generically
approximately convex.

We will use the following subdifferential characterization of approximate convexity.
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Proposition 7 [13, Theorem 10] Let X be an Asplund space, let f : X → R be lower
semicontinuous, let x0 ∈ dom f, and let ∂ be a subdifferential such that ∂−f ⊂ ∂f ⊂ ∂↑f.
Then the following assertions are equivalent:

(a) f is approximately convex at x0;
(b) ∂f : X ⇒ X∗ is approximately monotone at x0 in the following sense: for every

ε > 0 there exists some ρ > 0 such that for all u, v ∈ B(x0, ρ), u∗ ∈ ∂f(u), v∗ ∈ ∂f(v) one
has

〈u∗ − v∗, u − v〉 ≥ −ε ‖u − v‖ .

An elementary differentiability result of independent interest will be used in the last
part of the paper.

Proposition 8 Let W and X be normed vector spaces and let f : W × X → R ∪ {+∞}
be a convex function which is Fréchet (resp. Gâteaux) differentiable at some point (w, x) ∈
W × X. Let p : W → R be the performance function defined by p(w) = infx∈X f(w, x). If
p(w) = f(w, x), then p is Fréchet (resp. Gâteaux) differentiable at w.

In particular, if X is a vector subspace of W, if the norm on W is Fréchet (resp.
Gâteaux) differentiable off 0 and if w ∈ W\X has a best approximation in X, then the
distance function dX to X is Fréchet (resp. Gâteaux) differentiable at w.

Proof. Let r : R+ → R+ be a remainder, i.e. a function such that r(0) = 0 and
r(t)/t → 0 as t → 0+ such that

|f(w + w, x + x) − f(w, x) − 〈(w∗, x∗), (w, x)〉| ≤ r(‖(w, x)‖)

for ‖(w, x)‖ small enough, where (w∗, x∗) is the derivative of f at (w, x). Since f is contin-
uous at (w, x), p is bounded above on a neighborhood of w, hence is subdifferentiable at
w. Let z∗ ∈ ∂p(w). Then, for ‖w‖ small enough one has

0 ≤ p(w + w) − p(w) − 〈z∗, w〉 ≤ f(w + w, x) − f(w, x) − 〈(w∗, x∗), (w, 0)〉 + 〈w∗ − z∗, w〉
≤ r(‖w‖) + 〈w∗ − z∗, w〉.

This shows that w∗ = z∗ and that p is differentiable at w.
The last assertion is obtained by taking f(w, x) := ‖w − x‖ for (w, x) ∈ W × X. ¤

3 Generic differentiability of approximately convex

functions

The main result of the present section will be deduced from the following statement which
is not as striking. The interest of the refinement will appear in the last section.
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Proposition 9 Let X be an Asplund space, let U be an open subset of X and let A be a
dense subset of U. Suppose that f : U → R is lower semicontinuous on U and approximately
convex around each point of A. Then f is (strictly) Fréchet differentiable on a dense Gδ-
subset of U .

Proof. The proof is inspired by the one of Namioka-Kenderov-Phelps (see [20, Thm
2.30]). We set T = ∂−f. For each n ∈ N, we introduce the set

Gn := {x ∈ U : ∃δ > 0, B(x, δ) ⊂ U, diamT (B(x, δ)) <
1

n
}.

Obviously, Gn is open since for all x ∈ Gn we have B(x, δ) ⊂ Gn whenever δ > 0 is such
that B(x, δ) ⊂ U, diamT (B(x, δ)) < 1/n. Thus G := ∩∞

n=1Gn is a Gδ-set and, by Lemma 4,
f is Fréchet differentiable at every x ∈ G. Thus, it suffices to prove that, for each n ∈ N,
Gn is dense in U.

Let u ∈ U be given. Given ρ > 0 such that B(u, ρ) ⊂ U, let us show that Gn∩B(u, ρ) is
nonempty. Since A is dense in U, we can find some a ∈ A∩B(u, ρ). Let δ ∈ (0, ρ− d(u, a))
be such that f is approximately convex on B(a, δ). Since an approximately convex function
is locally Lipschitzian, shrinking δ if necessary, we may assume that f is Lipschitzian on
B(a, δ). Thus T (B(a, δ)) is bounded and since ∂−f(u) = ∂↑f(u) for all u ∈ B(a, δ) by [12,
Thm 3.6], T has nonempty values on B(a, δ). We shall show that Gn∩B(a, δ) is nonempty,
what will imply that Gn ∩ B(u, ρ) is nonempty too. According to Lemma 3, we can find
α > 0, z ∈ SX , the unit sphere of X, such that the diameter of the weak* slice

S := S(z, T (B(a, δ)), α)] = {u∗ ∈ T [B(a, δ)] : 〈u∗, z〉 > σT (B(a,δ))(z) − α}

is less than
1

n
. Let us take u ∈ B(a, δ), u∗ ∈ T (u) such that

〈u∗, z〉 > σT (B(a,δ))(z) − α/2.

By the approximate monotonicity of T at u exhibited in Proposition 7, there exists ε ∈ (0, δ)
such that

〈v∗ − u∗, v − u〉 ≥ −α

2
‖v − u‖, ∀v ∈ B(u, ε), ∀v∗ ∈ T (v).

Taking t > 0 such that v := u + tz ∈ B(a, δ) ∩ B(u, ε), one has

〈v∗ − u∗, (u + tz) − u〉 > −(α/2)t, ∀v∗ ∈ T (v).

Thus,
〈v∗, z〉 > 〈u∗, z〉 − α/2 > σT (B(a,δ))(z) − α ∀v∗ ∈ T (v).
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Since T is norm to weak* upper semicontinuous at v (because f is locally Lipschitz around
v and T coincides with the Clarke subdifferential [4, Prop. 2.1.5]), there exists γ > 0 such
that B(v, γ) ⊂ B(a, δ) and

〈w∗, z〉 > σT (B(a,δ))(z) − α ∀w ∈ B(v, γ), w∗ ∈ T (w).

That is T [B(v, γ)] ⊂ S. Hence diamT [B(v, γ)] <
1

n
. That is v ∈ Gn ∩B(a, δ). The proof is

complete. ¤

The preceding result is close to Corollary 2.2 (ii) of [8]. There f is just lower semicon-
tinuous and it is shown that the set of points where f is Fréchet subdifferentiable but not
Fréchet directionally differentiable is of first category in U. However, the linearity of the
derivative is not obtained on the complement of this set.

Taking for A the set U itself, we get the following consequence.

Theorem 10 Let f : U → R be a lower semicontinuous, approximately convex function
on an open subset U of an Asplund space. Then f is Fréchet differentiable on a dense
Gδ-subset of U .

This theorem can be deduced from a delicate result of Zaj́ıcek [33] asserting that a lower
semicontinuous function f on an open subset U of an Asplund space X has the property
that the set of points where f is Fréchet subdifferentiable but not Fréchet differentiable is
first category in U. Here we avoid the use of such a result but we rely on characterizations
of Asplund spaces which are not simple either but which can be considered as classical.
In order to get the result via [33], as above, one uses the facts that an approximately
convex function on an open subset U of X is locally Lipschitzian and that its Fréchet
subdifferential coincides with the Clarke subdifferential, hence is nonempty valued.
Remark. It has been pointed out by an anonymous referee that the preceding theorem is
in fact equivalent to Proposition 9. The argument given to us is as follows: when f satisfies
the assumptions of Proposition 9, f is approximately convex on a dense open subset V of
U. Then Theorem 10 ensures that f is Fréchet differentiable on a dense Gδ-subset D of V ;
then D is a dense Gδ-subset of U.
Remark. It has also been pointed out to us by another anonymous referee that a result
similar to Theorem 10 has been obtained simultaneously by L. Zaj́ıcek in his KMA preprint
http://www.karlin.mff.cuni.cz/rokyta/preprint/2006.php.

4 An extension to regular functions

By using the Banach-Mazur game, a device inspired by the proof of the Preiss-Phelps-
Namioka Theorem in ([22, Thm 4.31]), we can prove a general version of Proposition 9 and
of its consequences. Let us recall that a Banach-Mazur game on a nonempty open set U
of X with objective a subset G of U is a decreasing sequence of nonempty open subsets of
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U : U1 ⊇ V1 ⊇ U2 ⊇ V2 ⊇ · · · ⊇ Un ⊇ Vn ⊇ · · · , where (Un) and (Vn) have been chosen by
player A and by player B alternatively. Player B is said to be the winner if ∩∞

n=1Vn ⊆ G.
We say that player B has a winning strategy if using it, B wins for any choice of A.

Lemma 11 ([16], [20, Thm 4.23]) The player B has a winning strategy if and only if the
objective set G contains a dense Gδ−set.

The following technical lemma will be needed in the proof of the main result of this
section.

Lemma 12 Let (pn)n∈N be a sequence of equivalent norms on X such that there exist
m,m′ > 0 such that

m‖x‖ ≤ pn(x) ≤ m′‖x‖, for all n ∈ N, x ∈ X.

Let (en)n∈N be a sequence of elements in X satisfying pn(en) = pn(en−1) = 1 for every
n ∈ N and such that there are x∗ ∈ X∗ and λ > 0 satisfying 〈x∗, en〉 > λ for all n ∈ N. If
∑∞

n=0 d(en+1, Ren) is finite then the sequence (en)n∈N is convergent.

Proof. For each n ∈ N, let tn ∈ R be such that ‖en+1 − tnen‖ = d(en+1, Ren). Set
un = en+1 − tnen. Then

∑∞

n=0 ‖un‖ is finite. Hence ‖un‖ → 0 as n → ∞. Thus, from the
relation

〈x∗, en+1〉 = tn〈x∗, en〉 + 〈x∗, un〉,
and since 〈x∗, en〉 > λ for all n ∈ N, then tn > 0 when n is sufficiently large. We can
assume that tn > 0 for all n. Since

∑∞

n=0 ‖un‖ is finite, then
∑∞

n=0 pn+1(un) is finite.
Hence,

∑∞

n=0 |1 − tn| < +∞ by the following relation

|1 − tn| = |pn+1(en+1) − tnpn+1(en)| ≤ pn+1(en+1 − tnen) = pn+1(un).

Thus

∞
∑

n=0

‖en+1 − en‖ ≤
∞

∑

n=0

‖en‖|1 − tn| +
∞

∑

n=0

‖un‖ ≤ m−1

∞
∑

n=0

|1 − tn| +
∞

∑

n=0

‖un‖ < +∞.

This implies that (en)n∈N is convergent. ¤

Let us say that a set-valued mapping T : U ⇒ X∗ is Fréchet continuous at x ∈ U if
T (x) is a singleton and T is norm to norm upper semicontinuous at x, i.e., for every ε > 0
there exists a neighborhood V of x such that

T (V ) ⊆ T (x) + εB∗.
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Theorem 13 Suppose that X admits a Fréchet smooth equivalent norm and let U be an
open subset of X. Suppose that f : U → R is lower semicontinuous on U and approximately
convex at each point on a dense subset of U. Then f is (strictly) Fréchet differentiable on
a dense Gδ-subset of U .

Proof. Assume that the norm ‖ · ‖ is Fréchet smooth. Set T := ∂↑f. By Lemma 4, it
suffices to show that the set G of x ∈ U such that T is Fréchet continuous at x is a generic
subset in U. To prove this, we use the Banach-Mazur game on U with the objective set
G. Let A and B be two players in this Banach-Mazur game. By Lemma 11, it suffices to
prove that B has a winning strategy. This means that for any choice (Un) of A we will
construct a choice (Vn) of B such that ∩∞

n=0Vn ⊆ G.
Choose a decreasing sequence of positive numbers (εn) such that ε0 = 1,

∑∞

n=1

√
εn < 1.

For each n, let us define Dn as the set of x ∈ U for which there exists some δ > 0 such
that B(x, δ) ⊂ U , T is bounded on B(x, δ) and

〈y∗ − x∗, y − x〉 > −ε2
n

2
‖y − x‖ ∀y ∈ B(x, δ), x∗ ∈ T (x), y∗ ∈ T (y).

By Proposition 3.2 in [12] and Theorem 10 in [13], Dn is a dense open subset in U. First,
suppose that U0 has been chosen by A. Player B can choose an open set V0 ⊆ U0∩D0 such
that T (V0) is bounded (for example, V0 := B(x, δ) with x ∈ U0 ∩ D0 and δ > 0 such that
T is bounded on B(x, δ)). Set e0 := 0, p0 := 0, p1 := ε0d(·, Re0) = ‖ · ‖ and denote by p∗1
the dual norm of p1 on X∗. For U1 ⊆ V0 chosen by A, set

s1 := sup{p∗1(x∗) : x∗ ∈ T (U1 ∩ D1)} < +∞.

Let x1 ∈ U1 ∩ D1, x∗
1 ∈ T (x1) and e1 ∈ X be such that

p1(e1) = 1 and 〈x∗
1, e1〉 > s1 − ε2

1/2.

Then player B can choose

V1 := {x ∈ U1 ∩ D1 : 〈x∗, e1〉 > s1 − ε2
1 ∀x∗ ∈ T (x)}.

Indeed, since f is locally Lipschitzian at each point in D1, then T = ∂↑f is norm to weak*
upper semicontinuous at each point of D1. Hence V1 is an open set. Let us prove that V1

is nonempty. Since x1 ∈ U1 ∩ D1, there is some δ > 0 such that B(x1, δ) ⊆ U1 and

〈y∗ − x∗
1, y − x1〉 > −ε2

1

2
‖x1 − y‖, for all y ∈ B(x1, δ), y∗ ∈ T (y), x∗

1 ∈ T (x1).

Taking y := x1 + δe1/2 in this relation, one obtains

〈y∗, e1〉 > 〈x∗
1, e1〉 −

ε2
1

2
‖e1‖ > s1 − ε2

1 for all y∗ ∈ T (y), x∗
1 ∈ T (x1).
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Thus, since D1 is dense in U and T = ∂↑f is norm to weak* upper semicontinuous on D1,
we can find z ∈ U1 ∩ D1 such that

〈z∗, e1〉 > s1 − ε2
1 for all z∗ ∈ T (z).

That is, V1 is nonempty.
Suppose defined for k = 1, ..., n nonempty open subsets Uk, Vk, real numbers sk, norms

pk on X, xk ∈ Uk ∩ Dk, x∗
k ∈ T (xk) , ek ∈ X such that, for k = 1, ..., n, one has

p2
k(x) := p2

k−1(x) + εk−1d
2(x, Rek−1), (2)

sk := sup{p∗k(x∗) : x∗ ∈ T (Uk ∩ Dk)}, (3)

pk(ek) = 1, 〈x∗
k, ek〉 > sk − ε2

k/2, (4)

Vk := {x ∈ Uk ∩ Dk : 〈x∗, ek〉 > sk − ε2
k ∀x∗ ∈ T (x)}. (5)

Given Un+1 ⊂ Vn, set

p2
n+1(x) := p2

n(x) + εnd
2(x, Ren),

sn+1 := sup{p∗n+1(x
∗) : x∗ ∈ T (Un+1 ∩ Dn+1)}.

Take xn+1 ∈ Un+1 ∩ Dn+1, x∗
n+1 ∈ T (xn+1) and en+1 ∈ X such that

pn+1(en+1) = 1 and 〈x∗
n+1, en+1〉 > sn+1 − ε2

n+1/2.

Then B can choose

Vn+1 := {x ∈ Un+1 ∩ Dn+1 : 〈x∗, en+1〉 > sn+1 − ε2
n+1 ∀x∗ ∈ T (x)},

As above, one can show that Vn+1 is a nonempty and open set. Thus, for any choice (Un)
of A, player B has a strategy to obtain a sequence (Vn) by constructing the sequences (sn),
(en) and the sequence of norms (pn) as above. To complete the proof, we need to prove
that ∩∞

n=1Vn ⊆ G.
Set

p2(x) = ‖x‖2 +
∞

∑

n=1

εnd2(x, Ren).

Then p is an equivalent norm on X since ‖x‖ ≤ p(x) ≤
√

2‖x‖ for all x ∈ X. Obviously,
the sequence (p2

n) uniformly converges to p2 on every bounded set of X. Hence p(e) =
limn→∞ pn(en) = 1.

By Proposition 8, p2
n is Fréchet differentiable, too. By using the Weierstrass M−test,

we can show that p′n is uniformly convergent on every bounded set of X. Hence, p2 is
Fréchet differentiable on X. Consequently, the norm p is Fréchet smooth.
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Since (pn) is an increasing sequence, the sequence (p∗n) is decreasing. Therefore, the
sequence (sn) is a decreasing sequence of nonnegative numbers. Thus it is convergent, say,
to s ≥ 0. Let us consider the following two cases.

Case 1. s = 0. Obviously, for any x ∈ ∩∞
n=1Vn (if it is nonempty), we have T (x) = {0} by

(3) and the equivalence of pn+1 with p1 and T is norm to norm upper semicontinuous at
x. That is, ∩∞

n=1Vn ⊆ G.

Case 2. s > 0. Let x ∈ ∩∞
n=1Vn, x∗ ∈ T (x). By our construction, for each n, one has

pn+1(en+1) = pn+1(en) = 1 and 〈x∗, en〉 > sn − ε2
n > s/2 when n is sufficiently large.

Moreover, since pn+1(en) = 1

sn+1 ≥ p∗n+1(x
∗) ≥ 〈x∗, en〉 > sn − ε2

n.

Since sn := sup p∗n(T (Un ∩ Dn)) and x∗
n+1 ∈ T (Un ∩ Dn), we have sn ≥ p∗n(x∗

n+1) and, by
(4) with k := n + 1,

pn(en+1) ≥ pn(en+1)p
∗
n(x∗

n+1)/sn ≥ 〈x∗
n+1, en+1〉/sn >

> sn+1/sn − ε2
n+1/2sn > 1 − ε2

n/sn − ε2
n+1/2sn > 1 − 3ε2

n/2s.

Consequently,

d2(en+1, Ren) = ε−1
n (1 − p2

n(en+1)) ≤ ε−1
n (1 − (1 − 3ε2

n/2s)
2) ≤ 3εn/s.

Therefore, d(en+1, Ren) ≤
√

3/s
√

εn, which implies
∑∞

n=1 d(en+1, Ren) < +∞. According
to Lemma 12, the sequence (en) converges to some e ∈ X.

From the relations

sn ≥ p∗n(x∗) ≥ p∗(x∗) ≥ 〈x∗, en〉 ≥ sn − ε2
n,

by letting n → ∞, one obtains 〈x∗, e〉 = s = p∗(x∗) or 〈x∗/s, e〉 = 1 = p∗(x∗/s), p(e) = 1.
Thus x∗/s = p′(e) and since p is Fréchet smooth, then T (x) is a singleton.

It remains to show that T is Fréchet continuous at x. Let ε > 0 be given. Take δ ∈ (0, 1)
such that δ2p′(e) + 2δB∗ ⊆ εB∗ and that

‖p′(u) − p′(e)‖ ≤ ε

2(s + 1)
for all u ∈ B(e, δ).

For every n ≥ 2, one has

〈y∗, en−1〉 > sn−1 − ε2
n−1 for all y ∈ Vn, y∗ ∈ T (y).

Hence there exists an index k such that for all n > k, one has

〈y∗, e〉 > s − δ2/2 for all y ∈ Vn, y∗ ∈ T (y). (6)
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On the other hand, by our construction, p∗(y∗) ≤ p∗n−1(y
∗) ≤ sn−1 for all y ∈ Vn, y∗ ∈ T (y).

Therefore, when n is sufficiently large, say, n > k, then

p∗(y∗) ≤ s + δ2/2 for all y ∈ Vn, y∗ ∈ T (y). (7)

Since p(e) = 1 and by the definition of p∗, the inequalities (6), (7) imply that for each
y ∈ Vn, y∗ ∈ T (y), one has

〈y∗, u − e〉 ≤ (s + δ2/2)(p(u) − p(e)) + δ2, for all u ∈ X. (8)

For each n > k, y ∈ Vn, y∗ ∈ T (y), let us consider the function f defined by

f(u) := (s + δ2/2)p(u) − 〈y∗, u〉, u ∈ X.

Then, by relation (8), f(e) ≤ infu∈X f(u) + δ2. By the Ekeland variational principle, there
exists z ∈ B(e, δ) such that

f(z) ≤ f(u) + δ‖u − z‖, for all u ∈ X.

Consequently,

y∗ ∈ (s + δ2/2)p′(z) + δB∗ ⊆ (s + δ2/2)p′(e) + ε/2B∗ + δB∗ ⊆ x∗ + εB∗.

Thus T (Vn) ⊆ T (x) + εB∗. That is, T is Fréchet continuous at x. The proof is complete.¤

By an analogous argument, we can obtain the following result for the case of the
Gâteaux differentiability. The detailed proof is omitted.

Theorem 14 Suppose that X admits a Gâteaux smooth equivalent norm and let U be an
open subset of X. Suppose that f : U → R is lower semicontinuous on U and approximately
convex at each point on a dense subset of U. Then f is Gâteaux differentiable on a dense
Gδ-subset of U .

In order to extend the preceding results to regular functions, we will use the following
lemmas due to Zaj́ıcek ([33], Lemma 1 and Lemma 2). Here X is an arbitrary normed
vector space and S(X) denotes the family of closed separable subspaces of X.

Lemma 15 Let U be an open subset of X and let G be a generic subset of U. Then
there exists a mapping S : S(X) → S(X) satisfying Z ⊂ S(Z) for all Z ∈ S(X) and
such that the following assertion holds: if Y is a closed subspace of X for which the set

B(Y ) :=
⋃

{Z : S(Z) ⊂ Y } is dense in Y, then the set G ∩ Y is dense in U ∩ Y.

12



Lemma 16 Let U be an open subset of X and let f : U → R be an arbitrary function.
Then there exists a mapping T : S(X) → S(X) satisfying Z ⊂ T (Z) for all Z ∈ S(X) and
such that the following assertion holds: if Y is a closed subspace of X for which the set

C(Y ) :=
⋃

{Z : T (Z) ⊂ Y } is dense in Y, then f is strictly differentiable at each point of

U ∩ Y at which f |U∩Y is strictly Fréchet differentiable.

Corollary 17 Let X be an Asplund space and let U be an open subset of X. Suppose that
f : U → R is a continuous function which is approximately convex at each point of a dense
subset A of U. Then f is (strictly) Fréchet differentiable at each point of a dense Gδ-subset
of U .

Proof. Note that the set F of points at which f is strictly Fréchet differentiable is a
Gδ-set ([33, Thm A]). Thus, it suffices to show that F is dense in U. Let u ∈ U and ε > 0
be given. We use the mappings S, T : S(X) → S(X) of Lemmas 15, 16 to construct an
increasing sequence (Zn) of S(X) with Z0 := Ru by setting Zn+1 := S(Zn) + T (Zn). Let
Y be the closure of the union of the Zn’s. Then B(Y ) and C(Y ) are dense in Y since for
all n ∈ N we have S(Zn) ⊂ Zn+1 ⊂ Y, T (Zn) ⊂ Zn+1 ⊂ Y. Since by Proposition 5 and
our assumption the set G at which f is approximately convex is a dense Gδ set, Lemma
15 ensures that G ∩ Y is dense in U ∩ Y. Now, since X is an Asplund space, the closed
separable subspace Y of X has a separable dual. Hence Y admits a Fréchet smooth renorm
([2, Thm 4.13]). According to Theorem 13, the partial function f |U∩Y is strictly Fréchet
differentiable at each point of a dense Gδ-subset of U ∩ Y. By Lemma 16, f itself is strictly
differentiable at each such point. Hence, there exists a point y ∈ B(u, ε) at which f is
strictly Fréchet differentiable. ¤

Corollary 18 Let U be an open subset of an Asplund space X and let f : U → R be a
locally Lipschitzian regular function. Then f is Fréchet differentiable at each point of a
dense Gδ-subset of U .

Proof. By [5, Prop. 5] f is approximately convex at each point of a dense subset of U,
so that the preceding corollary applies. ¤
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