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In Asplund spaces, approximately convex functions and regular functions are generically differentiable
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We prove that an approximately convex function on an open subset of an Asplund space is generically Fréchet differentiable, as are genuine convex functions. Thus, we give a positive answer to a question raised by S. Rolewicz. We also prove a more general result of that type for regular functions on an open subset of an Asplund space.

Introduction

It is a deep and famous result of Preiss [START_REF] Preiss | Differentiability of Lipschitz functions on Banach spaces[END_REF] that any locally Lipschitzian real-valued function on an Asplund space is Fréchet differentiable at the points of a dense subset. However, since it is not known whether this set is a countable intersection of open subsets, it is not possible to conclude for instance that given two Lipschitzian functions they have a common point of Fréchet differentiability. It is the purpose of the present article to give a positive answer to such a problem by making some additional assumptions corresponding to well established classes of functions.

The main class of functions we have in view is the class of regular functions in the sense of Clarke ([4,Def. 2.3.4]). For such a class the main concepts of nonsmooth analysis coincide and better calculus rules are available than for general locally Lipschitzian functions. For that reason, such a class is popular.

The proof of our main result being somewhat involved, we first present a simple proof for the more restricted class of approximately convex functions which has been recently

The terminology we use here is slightly different from the one used in [START_REF] Ngai | Approximate convex functions[END_REF]Prop. 3.1] and [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF] (but coincides with the one of [START_REF] Daniilidis | Approximate convexity and submonotonicity[END_REF]) since we stress the difference between the pointwise property (at x 0 ) and the local property (around x 0 ). As mentioned above, the class of approximately convex functions on U (i.e. at each point of U ) contains the class of paraconvex functions on U which plays an important role in various fields (Hamilton-Jacobi equations and optimal control [START_REF] Cannarsa | Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control[END_REF], duality [START_REF] Penot | On strongly convex and paraconvex dualities, in Generalized convexity and fractional programming with economic applications[END_REF], regularization [START_REF] Lasry | A remark on regularization in Hilbert spaces[END_REF]...). The class of approximately convex functions has been characterized in finite dimensions by a lower C 1 property in the sense of [START_REF] Rockafellar | Favorable classes of Lipschitz continuous functions in subgradient optimization[END_REF], [START_REF] Spingarn | Submonotone subdifferentials of Lipschitz functions[END_REF], i.e. as suprema of families of C 1 functions. This characterization is extended in [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF] (see also [START_REF] Georgiev | Submonotone mappings in Banach spaces and applications[END_REF], [START_REF] Penot | Favorable classes of mappings and multimappings in nonlinear analysis and optimization[END_REF] for variants). Another characterization uses a subdifferential of the function and an approximate monotonicity property; the locally Lipschitz case is given in [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF] and the case of a lower semicontinuous function is presented in [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF].

The class of approximately convex functions has interesting stability properties; see for instance [START_REF] Ngai | Approximate convex functions[END_REF]Prop. 3.1], [START_REF] Daniilidis | Integration of multivalued operators and cyclic submonotonicity[END_REF]Section 6], [START_REF] Aussel | Subsmooth sets: functional characterizations and related concepts[END_REF].

Proposition 2

The set of functions f : U → R which are approximately convex at x 0 ∈ X is a convex cone containing the functions which are strictly differentiable at x 0 . It is stable under finite suprema. Moreover, if f = h • g, where g : U → Y is strictly differentiable at x 0 and h : Y → R is approximately convex at g(x 0 ), then f is approximately convex at x 0 .

As mentioned above, approximately convex functions retain some of the nice properties of convex functions. In particular they are continuous on segments contained in their domains [START_REF] Ngai | Approximate convex functions[END_REF]Cor. 3.3]) and locally Lipschitzian on the interiors of their domains. Moreover, they have radial derivatives [START_REF] Ngai | Approximate convex functions[END_REF]Cor. 3.5]). Furthermore, the subdifferentials of approximately convex functions all coincide provided they are between the Fréchet subdifferential ∂ -and the Clarke-Rockafellar subdifferential ∂ ↑ . Recall that

x * ∈ ∂ -f (x) ⇔ ∀ε > 0 ∃δ > 0 : ∀u ∈ B(x, δ) f (u) -f (x) -x * , u -x ≥ -ε u -x
and that, for a continuous function f,

x * ∈ ∂ ↑ f (x) ⇔ ∀u ∈ X x * , u ≤ f ↑ (x, u), where f ↑ (x, u) := sup ε>0 lim sup (t,w)→(0 + ,x) inf v∈B(u,ε) 1 t (f (w + tv) -f (w)) .
Here a subdifferential is a map ∂ : R X × X → P(X * ), where R X is the set of extended-real valued functions on X, X * is the dual space of X and P(X * ) the space of subsets of X * , such that ∂f (x

) := ∂(f, x) is empty if f is not finite at x.
Recall that an Asplund space is a Banach space X such that the dual of every separable closed subspace of X is separable. Such spaces have been introduced for their characteristic property: a convex continuous function on a nonempty open convex subset U of an Asplund space is generically Fréchet differentiable, i.e. Fréchet differentiable on a dense G δ -subset of U. Here a subset D is said to be a G δ -subset of U if it is the intersection of a countable family of open subsets. It has also been shown by D. Preiss ( [21]) that any locally Lipschitz function f on an open subset U of an Asplund space is Fréchet differentiable on a dense subset. Here we make the supplementary assumption that f is approximately convex and we get generic differentiability, i.e. differentiability on a dense G δ -subset of U.

Recall that by a weak* slice of a nonempty set A ⊂ X * one means a subset of A of the form S(x, A, α) = {x * ∈ A : x * , x > σ A (x) -α}, where x ∈ X\{0}, α > 0 and

σ A (x) = sup{ x * , x : x * ∈ A}.
The following important characterization of Asplund spaces is well known. It will be used in the proof of the main result below.

Lemma 3 ([20]

) A Banach space X is an Asplund space if and only if its dual space X * has the Radon-Nikodým property, i.e. every nonempty bounded subset A of X * admits weak* slices of arbitrary small diameter.

Let us note the following results.

Lemma 4 Let U be an open subset of an Asplund space X and let f : U → R be a lower semicontinuous function. Let ∂ be a subdifferential such that

∂ -f (u) ⊂ ∂f (u) ⊂ ∂ ↑ f (u)
for all u ∈ U . Let x ∈ U be such that ∂f (x) is nonempty and such that for any ε > 0 there exists some δ > 0 for which B δ := B(x, δ) ⊂ U and diam(∂f (B δ )) < ε. Then f is (strictly) Fréchet differentiable at x : for every ε > 0 there exists δ > 0 such that B(x, δ) ⊂ U and for every u, v ∈ B(x, δ) one has

|f (v) -f (u) -x * , v -u | ≤ ε v -u .
Proof. Clearly, ∂f (x) is a singleton {x * }. Now, given ε > 0, let δ > 0 be such that B δ := B(x, δ) ⊂ U and diam(∂f (B δ )) < ε. Given u, v ∈ B(x, δ), the Mean Value Theorem ( [START_REF] Loewen | A mean value theorem for Fréchet subgradients[END_REF], [START_REF] Penot | Mean-value theorem with small subdifferentials[END_REF]) ensures that there exist w, z ∈ [u, v] and sequences (w

n ) → w, (z n ) → z, (w * n ), (z * n ) such that w * n ∈ ∂f (w n ), z * n ∈ ∂f (z n ) for all n ∈ N and f (v) -f (u) -x * , v -u ≤ lim inf n w * n -x * , v -u ≤ ε v -u , f (u) -f (v) -x * , u -v ≤ lim inf n z * n -x * , u -v ≤ ε v -u , so that f is strictly Fréchet differentiable at x.
Proposition 5 Let U be an open subset of a normed vector space X. The set of points at which a function f :

U → R is approximately convex is a G δ -set.
Proof. Let A ⊂ U be the set of points at which the function f is approximately convex. For n ∈ N\{0}, let A n be the set of points x for which there exists some δ > 0 such that

f is 1/n-convex on B(x, δ). Obviously, A n is open and ∩ ∞ n=1 A n = A.
The conclusion of the preceding proposition can be rephrased as: if f is densely approximately convex (i.e. approximately convex at all points of a dense subset), then the set of points at which f is approximately convex is a generic subset of U, i.e. it is a dense G δ -set. Let us note the following criterion ensuring that the set of points at which f is approximately convex is a generic subset of U. Here we say that a function is Clarke regular if it is locally Lipschitzian and directionally differentiable at each point, its directional derivative being equal to its Clarke-Rockafellar derivative.

Lemma 6 [5, Prop. 5] Every Clarke regular function on an Asplund space is generically approximately convex.

We will use the following subdifferential characterization of approximate convexity.

Proposition 7 [13, Theorem 10] Let X be an Asplund space, let f : X → R be lower semicontinuous, let x 0 ∈ dom f, and let ∂ be a subdifferential such that ∂ -f ⊂ ∂f ⊂ ∂ ↑ f. Then the following assertions are equivalent:

(a) f is approximately convex at x 0 ; (b) ∂f : X ⇒ X * is approximately monotone at x 0 in the following sense: for every ε > 0 there exists some ρ > 0 such that for all u, v ∈ B(x

0 , ρ), u * ∈ ∂f (u), v * ∈ ∂f (v) one has u * -v * , u -v ≥ -ε u -v .
An elementary differentiability result of independent interest will be used in the last part of the paper.

Proposition 8 Let W and X be normed vector spaces and let f :

W × X → R ∪ {+∞} be a convex function which is Fréchet (resp. Gâteaux) differentiable at some point (w, x) ∈ W × X. Let p : W → R be the performance function defined by p(w) = inf x∈X f (w, x). If p(w) = f (w, x), then p is Fréchet (resp. Gâteaux) differentiable at w.
In particular, if X is a vector subspace of W, if the norm on W is Fréchet (resp. Gâteaux) differentiable off 0 and if w ∈ W \X has a best approximation in X, then the distance function d X to X is Fréchet (resp. Gâteaux) differentiable at w.

Proof. Let r : R + → R + be a remainder, i.e. a function such that r(0) = 0 and r(t)/t → 0 as t → 0 + such that

|f (w + w, x + x) -f (w, x) -(w * , x * ), (w, x) | ≤ r( (w, x) )
for (w, x) small enough, where (w * , x * ) is the derivative of f at (w, x). Since f is continuous at (w, x), p is bounded above on a neighborhood of w, hence is subdifferentiable at w. Let z * ∈ ∂p(w). Then, for w small enough one has

0 ≤ p(w + w) -p(w) -z * , w ≤ f (w + w, x) -f (w, x) -(w * , x * ), (w, 0) + w * -z * , w ≤ r( w ) + w * -z * , w .
This shows that w * = z * and that p is differentiable at w.

The last assertion is obtained by taking f (w, x) := w -x for (w, x) ∈ W × X.

Generic differentiability of approximately convex functions

The main result of the present section will be deduced from the following statement which is not as striking. The interest of the refinement will appear in the last section.

Proposition 9 Let X be an Asplund space, let U be an open subset of X and let A be a dense subset of U. Suppose that f : U → R is lower semicontinuous on U and approximately convex around each point of A. Then f is (strictly) Fréchet differentiable on a dense G δsubset of U .

Proof. The proof is inspired by the one of Namioka-Kenderov-Phelps (see [START_REF] Phelps | Convex Functions, Monotone Operators and Differentiability[END_REF]Thm 2.30]). We set T = ∂ -f. For each n ∈ N, we introduce the set

G n := {x ∈ U : ∃δ > 0, B(x, δ) ⊂ U, diamT (B(x, δ)) < 1 n }.
Obviously,

G n is open since for all x ∈ G n we have B(x, δ) ⊂ G n whenever δ > 0 is such that B(x, δ) ⊂ U, diamT (B(x, δ)) < 1/n. Thus G := ∩ ∞ n=1 G n is a G δ -
set and, by Lemma 4, f is Fréchet differentiable at every x ∈ G. Thus, it suffices to prove that, for each n ∈ N, G n is dense in U.

Let u ∈ U be given. Given ρ > 0 such that B(u, ρ) ⊂ U, let us show that G n ∩ B(u, ρ) is nonempty. Since A is dense in U, we can find some a ∈ A ∩ B(u, ρ). Let δ ∈ (0, ρ -d(u, a)) be such that f is approximately convex on B(a, δ). Since an approximately convex function is locally Lipschitzian, shrinking δ if necessary, we may assume that f is Lipschitzian on B(a, δ). Thus T (B(a, δ)) is bounded and since

∂ -f (u) = ∂ ↑ f (u) for all u ∈ B(a, δ) by [12, Thm 3.6],
T has nonempty values on B(a, δ). We shall show that G n ∩ B(a, δ) is nonempty, what will imply that G n ∩ B(u, ρ) is nonempty too. According to Lemma 3, we can find α > 0, z ∈ S X , the unit sphere of X, such that the diameter of the weak* slice

S := S(z, T (B(a, δ)), α)] = {u * ∈ T [B(a, δ)] : u * , z > σ T (B(a,δ)) (z) -α} is less than 1 n . Let us take u ∈ B(a, δ), u * ∈ T (u) such that u * , z > σ T (B(a,δ)) (z) -α/2.
By the approximate monotonicity of T at u exhibited in Proposition 7, there exists ε ∈ (0, δ) such that

v * -u * , v -u ≥ - α 2 v -u , ∀v ∈ B(u, ε), ∀v * ∈ T (v). Taking t > 0 such that v := u + tz ∈ B(a, δ) ∩ B(u, ε), one has v * -u * , (u + tz) -u -(α/2)t, ∀v * ∈ T (v). Thus, v * , z u * , z -α/2 > σ T (B(a,δ)) (z) -α ∀v * ∈ T (v).
Since T is norm to weak* upper semicontinuous at v (because f is locally Lipschitz around v and T coincides with the Clarke subdifferential [4, Prop. 2.1.5]), there exists γ > 0 such that B(v, γ) ⊂ B(a, δ) and

w * , z σ T (B(a,δ)) (z) -α ∀w ∈ B(v, γ), w * ∈ T (w). That is T [B(v, γ)] ⊂ S. Hence diamT [B(v, γ)] < 1 n . That is v ∈ G n ∩ B(a, δ). The proof is complete.
The preceding result is close to Corollary 2.2 (ii) of [START_REF] Giles | Fréchet directional differentiability and Fréchet differentiability[END_REF]. There f is just lower semicontinuous and it is shown that the set of points where f is Fréchet subdifferentiable but not Fréchet directionally differentiable is of first category in U. However, the linearity of the derivative is not obtained on the complement of this set.

Taking for A the set U itself, we get the following consequence.

Theorem 10 Let f : U → R be a lower semicontinuous, approximately convex function on an open subset U of an Asplund space. Then f is Fréchet differentiable on a dense G δ -subset of U .

This theorem can be deduced from a delicate result of Zajícek [START_REF] Zajícek | Fréchet differentiability, strict differentiability and subdifferentiability[END_REF] asserting that a lower semicontinuous function f on an open subset U of an Asplund space X has the property that the set of points where f is Fréchet subdifferentiable but not Fréchet differentiable is first category in U. Here we avoid the use of such a result but we rely on characterizations of Asplund spaces which are not simple either but which can be considered as classical. In order to get the result via [START_REF] Zajícek | Fréchet differentiability, strict differentiability and subdifferentiability[END_REF], as above, one uses the facts that an approximately convex function on an open subset U of X is locally Lipschitzian and that its Fréchet subdifferential coincides with the Clarke subdifferential, hence is nonempty valued. Remark. It has been pointed out by an anonymous referee that the preceding theorem is in fact equivalent to Proposition 9. The argument given to us is as follows: when f satisfies the assumptions of Proposition 9, f is approximately convex on a dense open subset V of U. Then Theorem 10 ensures that f is Fréchet differentiable on a dense G δ -subset D of V ; then D is a dense G δ -subset of U. Remark. It has also been pointed out to us by another anonymous referee that a result similar to Theorem 10 has been obtained simultaneously by L. Zajícek in his KMA preprint http://www.karlin.mff.cuni.cz/rokyta/preprint/2006.php. 

An extension to regular functions

U : U 1 ⊇ V 1 ⊇ U 2 ⊇ V 2 ⊇ • • • ⊇ U n ⊇ V n ⊇ • • •
, where (U n ) and (V n ) have been chosen by player A and by player B alternatively. Player B is said to be the winner if ∩ ∞ n=1 V n ⊆ G. We say that player B has a winning strategy if using it, B wins for any choice of A. Lemma 11 ([16], [START_REF] Phelps | Convex Functions, Monotone Operators and Differentiability[END_REF]Thm 4.23]) The player B has a winning strategy if and only if the objective set G contains a dense G δ -set.

The following technical lemma will be needed in the proof of the main result of this section.

Lemma 12 Let (p n ) n∈N be a sequence of equivalent norms on X such that there exist m, m ′ > 0 such that

m x ≤ p n (x) ≤ m ′ x , for all n ∈ N, x ∈ X.
Let (e n ) n∈N be a sequence of elements in X satisfying p n (e n ) = p n (e n-1 ) = 1 for every n ∈ N and such that there are x * ∈ X * and λ > 0 satisfying x * , e n > λ for all n ∈ N.

If ∞ n=0 d(e n+1 , Re n ) is finite then the sequence (e n ) n∈N is convergent. Proof. For each n ∈ N, let t n ∈ R be such that e n+1 -t n e n = d(e n+1 , Re n ). Set u n = e n+1 -t n e n . Then ∞ n=0 u n is finite. Hence u n → 0 as n → ∞.
Thus, from the relation

x * , e n+1 = t n x * , e n + x * , u n , and since x * , e n > λ for all n ∈ N, then t n > 0 when n is sufficiently large. We can assume that t n > 0 for all n. Since ∞ n=0 u n is finite, then

∞ n=0 p n+1 (u n ) is finite. Hence, ∞ n=0 |1 -t n | < +∞ by the following relation |1 -t n | = |p n+1 (e n+1 ) -t n p n+1 (e n )| ≤ p n+1 (e n+1 -t n e n ) = p n+1 (u n ). Thus ∞ n=0 e n+1 -e n ≤ ∞ n=0 e n |1 -t n | + ∞ n=0 u n ≤ m -1 ∞ n=0 |1 -t n | + ∞ n=0 u n < +∞.
This implies that (e n ) n∈N is convergent.

Let us say that a set-valued mapping T : U ⇒ X * is Fréchet continuous at x ∈ U if T (x) is a singleton and T is norm to norm upper semicontinuous at x, i.e., for every ε > 0 there exists a neighborhood V of x such that

T (V ) ⊆ T (x) + εB * .
Theorem 13 Suppose that X admits a Fréchet smooth equivalent norm and let U be an open subset of X. Suppose that f : U → R is lower semicontinuous on U and approximately convex at each point on a dense subset of U. Then f is (strictly) Fréchet differentiable on a dense G δ -subset of U .

Proof. Assume that the norm • is Fréchet smooth. Set T := ∂ ↑ f. By Lemma 4, it suffices to show that the set G of x ∈ U such that T is Fréchet continuous at x is a generic subset in U. To prove this, we use the Banach-Mazur game on U with the objective set G. Let A and B be two players in this Banach-Mazur game. By Lemma 11, it suffices to prove that B has a winning strategy. This means that for any choice (U n ) of A we will construct a choice (

V n ) of B such that ∩ ∞ n=0 V n ⊆ G. Choose a decreasing sequence of positive numbers (ε n ) such that ε 0 = 1, ∞ n=1 √ ε n < 1.
For each n, let us define D n as the set of x ∈ U for which there exists some δ > 0 such that B(x, δ) ⊂ U , T is bounded on B(x, δ) and

y * -x * , y -x > - ε 2 n 2 y -x ∀y ∈ B(x, δ), x * ∈ T (x), y * ∈ T (y).
By Proposition 3.2 in [START_REF] Ngai | Approximate convex functions[END_REF] and Theorem 10 in [START_REF] Ngai | Approximately convex functions and approximately monotone operators[END_REF], D n is a dense open subset in U. First, suppose that U 0 has been chosen by A.

Player B can choose an open set V 0 ⊆ U 0 ∩ D 0 such that T (V 0 ) is bounded (for example, V 0 := B(x, δ) with x ∈ U 0 ∩ D 0 and δ > 0 such that T is bounded on B(x, δ))
. Set e 0 := 0, p 0 := 0, p 1 := ε 0 d(•, Re 0 ) = • and denote by p * 1 the dual norm of p 1 on X * . For U 1 ⊆ V 0 chosen by A, set

s 1 := sup{p * 1 (x * ) : x * ∈ T (U 1 ∩ D 1 )} < +∞. Let x 1 ∈ U 1 ∩ D 1 , x * 1 ∈ T (x 1
) and e 1 ∈ X be such that

p 1 (e 1 ) = 1 and x * 1 , e 1 > s 1 -ε 2 1 /2.
Then player B can choose

V 1 := {x ∈ U 1 ∩ D 1 : x * , e 1 > s 1 -ε 2 1 ∀x * ∈ T (x)}. Indeed, since f is locally Lipschitzian at each point in D 1 , then T = ∂ ↑ f is norm to weak* upper semicontinuous at each point of D 1 . Hence V 1 is an open set. Let us prove that V 1 is nonempty. Since x 1 ∈ U 1 ∩ D 1 , there is some δ > 0 such that B(x 1 , δ) ⊆ U 1 and y * -x * 1 , y -x 1 > - ε 2 1 2 x 1 -y , for all y ∈ B(x 1 , δ), y * ∈ T (y), x * 1 ∈ T (x 1 ).
Taking y := x 1 + δe 1 /2 in this relation, one obtains

y * , e 1 > x * 1 , e 1 - ε 2 1 2 e 1 > s 1 -ε 2 1 for all y * ∈ T (y), x * 1 ∈ T (x 1 ).
Thus, since D 1 is dense in U and T = ∂ ↑ f is norm to weak* upper semicontinuous on D 1 , we can find z ∈ U 1 ∩ D 1 such that

z * , e 1 > s 1 -ε 2 1 for all z * ∈ T (z). That is, V 1 is nonempty. Suppose defined for k = 1, ..., n nonempty open subsets U k , V k , real numbers s k , norms p k on X, x k ∈ U k ∩ D k , x * k ∈ T (x k
) , e k ∈ X such that, for k = 1, ..., n, one has

p 2 k (x) := p 2 k-1 (x) + ε k-1 d 2 (x, Re k-1 ), (2) 
s k := sup{p * k (x * ) : x * ∈ T (U k ∩ D k )}, (3) 
p k (e k ) = 1, x * k , e k > s k -ε 2 k /2, (4) 
V k := {x ∈ U k ∩ D k : x * , e k > s k -ε 2 k ∀x * ∈ T (x)}. ( 5 
)
Given

U n+1 ⊂ V n , set p 2 n+1 (x) := p 2 n (x) + ε n d 2 (x, Re n ), s n+1 := sup{p * n+1 (x * ) : x * ∈ T (U n+1 ∩ D n+1 )}. Take x n+1 ∈ U n+1 ∩ D n+1 , x * n+1 ∈ T (x n+1
) and e n+1 ∈ X such that p n+1 (e n+1 ) = 1 and x * n+1 , e n+1 > s n+1 -ε 2 n+1 /2.

Then B can choose

V n+1 := {x ∈ U n+1 ∩ D n+1 : x * , e n+1 > s n+1 -ε 2 n+1 ∀x * ∈ T (x)},
As above, one can show that V n+1 is a nonempty and open set. Thus, for any choice (U n ) of A, player B has a strategy to obtain a sequence (V n ) by constructing the sequences (s n ), (e n ) and the sequence of norms (p n ) as above. To complete the proof, we need to prove that

∩ ∞ n=1 V n ⊆ G. Set p 2 (x) = x 2 + ∞ n=1 ε n d 2 (x, Re n ).
Then p is an equivalent norm on X since x ≤ p(x) ≤ √ 2 x for all x ∈ X. Obviously, the sequence (p 2 n ) uniformly converges to p 2 on every bounded set of X. Hence p(e) = lim n→∞ p n (e n ) = 1.

By Proposition 8, p 2 n is Fréchet differentiable, too. By using the Weierstrass M -test, we can show that p ′ n is uniformly convergent on every bounded set of X. Hence, p 2 is Fréchet differentiable on X. Consequently, the norm p is Fréchet smooth.

On the other hand, by our construction, p * (y * ) ≤ p * n-1 (y * ) ≤ s n-1 for all y ∈ V n , y * ∈ T (y). Therefore, when n is sufficiently large, say, n > k, then p * (y * ) ≤ s + δ 2 /2 for all y ∈ V n , y * ∈ T (y).

Since p(e) = 1 and by the definition of p * , the inequalities ( 6), [START_REF] Georgiev | Submonotone mappings in Banach spaces and applications[END_REF] imply that for each y ∈ V n , y * ∈ T (y), one has

y * , u -e ≤ (s + δ 2 /2)(p(u) -p(e)) + δ 2 , for all u ∈ X. (8) 
For each n > k, y ∈ V n , y * ∈ T (y), let us consider the function f defined by

f (u) := (s + δ 2 /2)p(u) -y * , u , u ∈ X.
Then, by relation [START_REF] Giles | Fréchet directional differentiability and Fréchet differentiability[END_REF], f (e) ≤ inf u∈X f (u) + δ 2 . By the Ekeland variational principle, there exists z ∈ B(e, δ) such that

f (z) ≤ f (u) + δ u -z , for all u ∈ X.
Consequently,

y * ∈ (s + δ 2 /2)p ′ (z) + δB * ⊆ (s + δ 2 /2)p ′ (e) + ε/2B * + δB * ⊆ x * + εB * . Thus T (V n ) ⊆ T (x) + εB * .
That is, T is Fréchet continuous at x. The proof is complete.

By an analogous argument, we can obtain the following result for the case of the Gâteaux differentiability. The detailed proof is omitted.

Theorem 14 Suppose that X admits a Gâteaux smooth equivalent norm and let U be an open subset of X. Suppose that f : U → R is lower semicontinuous on U and approximately convex at each point on a dense subset of U. Then f is Gâteaux differentiable on a dense G δ -subset of U .

In order to extend the preceding results to regular functions, we will use the following lemmas due to Zajícek ([33], Lemma 1 and Lemma 2). Here X is an arbitrary normed vector space and S(X) denotes the family of closed separable subspaces of X.

Lemma 15 Let U be an open subset of X and let G be a generic subset of U. Then there exists a mapping S : S(X) → S(X) satisfying Z ⊂ S(Z) for all Z ∈ S(X) and such that the following assertion holds: if Y is a closed subspace of X for which the set B(Y

) := {Z : S(Z) ⊂ Y } is dense in Y, then the set G ∩ Y is dense in U ∩ Y.
Lemma 16 Let U be an open subset of X and let f : U → R be an arbitrary function. Then there exists a mapping T : S(X) → S(X) satisfying Z ⊂ T (Z) for all Z ∈ S(X) and such that the following assertion holds: if Y is a closed subspace of X for which the set C(Y ) := {Z : T (Z) ⊂ Y } is dense in Y, then f is strictly differentiable at each point of U ∩ Y at which f | U ∩Y is strictly Fréchet differentiable.

Corollary 17 Let X be an Asplund space and let U be an open subset of X. Suppose that f : U → R is a continuous function which is approximately convex at each point of a dense subset A of U. Then f is (strictly) Fréchet differentiable at each point of a dense G δ -subset of U .

Proof. Note that the set F of points at which f is strictly Fréchet differentiable is a G δ -set ([33, Thm A]). Thus, it suffices to show that F is dense in U. Let u ∈ U and ε > 0 be given. We use the mappings S, T : S(X) → S(X) of Lemmas 15, 16 to construct an increasing sequence (Z n ) of S(X) with Z 0 := Ru by setting Z n+1 := S(Z n ) + T (Z n ). Let Y be the closure of the union of the Z n 's. Then B(Y ) and C(Y ) are dense in Y since for all n ∈ N we have S(Z n ) ⊂ Z n+1 ⊂ Y, T (Z n ) ⊂ Z n+1 ⊂ Y. Since by Proposition 5 and our assumption the set G at which f is approximately convex is a dense G δ set, Lemma 15 ensures that G ∩ Y is dense in U ∩ Y. Now, since X is an Asplund space, the closed separable subspace Y of X has a separable dual. Hence Y admits a Fréchet smooth renorm ([2, Thm 4.13]). According to Theorem 13, the partial function f | U ∩Y is strictly Fréchet differentiable at each point of a dense G δ -subset of U ∩ Y. By Lemma 16, f itself is strictly differentiable at each such point. Hence, there exists a point y ∈ B(u, ε) at which f is strictly Fréchet differentiable.

Corollary 18 Let U be an open subset of an Asplund space X and let f : U → R be a locally Lipschitzian regular function. Then f is Fréchet differentiable at each point of a dense G δ -subset of U . Proof. By [START_REF] Daniilidis | Approximate convexity and submonotonicity[END_REF]Prop. 5] f is approximately convex at each point of a dense subset of U, so that the preceding corollary applies.

  By using the Banach-Mazur game, a device inspired by the proof of the Preiss-Phelps-Namioka Theorem in ([22, Thm 4.31]), we can prove a general version of Proposition 9 and of its consequences. Let us recall that a Banach-Mazur game on a nonempty open set U of X with objective a subset G of U is a decreasing sequence of nonempty open subsets of

Acknowledgement. The authors are grateful to the referees for their remarks and criticisms which incited the authors to give improvements involving arguments taken from an unpublished preceding manuscript of the authors.

Since (p n ) is an increasing sequence, the sequence (p * n ) is decreasing. Therefore, the sequence (s n ) is a decreasing sequence of nonnegative numbers. Thus it is convergent, say, to s ≥ 0. Let us consider the following two cases. Case 1. s = 0. Obviously, for any x ∈ ∩ ∞ n=1 V n (if it is nonempty), we have T (x) = {0} by (3) and the equivalence of p n+1 with p 1 and T is norm to norm upper semicontinuous at

. By our construction, for each n, one has

Since

) and, by (4) with k := n + 1,

Consequently,

Therefore, d(e n+1 , Re n ) ≤ 3/s √ ε n , which implies ∞ n=1 d(e n+1 , Re n ) < +∞. According to Lemma 12, the sequence (e n ) converges to some e ∈ X.

From the relations

by letting n → ∞, one obtains x * , e = s = p * (x * ) or x * /s, e = 1 = p * (x * /s), p(e) = 1. Thus x * /s = p ′ (e) and since p is Fréchet smooth, then T (x) is a singleton. It remains to show that T is Fréchet continuous at x. Let ε > 0 be given. Take δ ∈ (0, 1) such that δ 2 p ′ (e) + 2δB * ⊆ εB * and that

for all u ∈ B(e, δ).

For every n ≥ 2, one has

for all y ∈ V n , y * ∈ T (y).

Hence there exists an index k such that for all n > k, one has y * , e > s -δ 2 /2 for all y ∈ V n , y * ∈ T (y). [START_REF] Daniilidis | Integration of multivalued operators and cyclic submonotonicity[END_REF]