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Abstract

Given a convergent sequence of Hamiltonians (Hn) and a convergent sequence of initial
data (gn), we look for conditions ensuring that the sequences (un) and (vn) of Lax solutions
and Hopf solutions respectively converge. The convergences we deal with are variational
convergences. We take advantage of several recent results giving criteria for the continuity of
usual operations.

Key words: asymptotic function, bounded convergence, bounded-Hausdorff convergence,
convergence, epiconvergence, Hamilton–Jacobi equation, Mosco convergence, variational con-
vergence.

Mathematics Subject Classification 2000: 35F20, 49N25, 49N15, 54A20

1 Introduction

The question of stability of solutions to the Hamilton–Jacobi equations is treated in several
references (see [1], [15], [16], [17], [26]...), usually in the sense of local uniform convergence. It is
our purpose to study it from the point of view of variational convergences. The reason justifying
such an approach lies in the good behavior of these convergences with respect to minimization
and their increasing importance in analysis (see [23], [27], [28], [30], [35], [56]). In view of the
links of Hamilton–Jacobi equations with optimal control theory (see [15], [29], [31], [37], [40],
[42], [60] among many other references), such a reason is sensible. Also variational convergences
are compatible with important operations (under some qualification conditions) and are adapted
to extended real-valued functions. Recent studies allow such a generality ([1], [50] and their
references). We also make use of continuity results of the Legendre–Fenchel transform for these
convergences.

Given a Banach space X with dual X∗ and functions g : X → R∞ := R ∪ {+∞}, H : X∗ →
R∞, the Hamilton–Jacobi equation is

∀(x, t) ∈ X × R+
∂

∂t
u(x, t) + H(Du(x, t)) = 0, (1)

∀x ∈ X u(x, 0) = g(x), (2)

where u : X × R+ → R∞ is the unknown function (extended by ∞ := +∞ on X × (−P) where
P denotes the set of positive real numbers), and Du (resp. ∂

∂t
u) denotes the derivative of u with

respect to its first (resp. second) variable. Usually one considers the following question: if (gn)
and (Hn) converge to functions g and H respectively, does a sequence (un) of solutions to the
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Hamilton–Jacobi equations associated with (gn) and (Hn) converges to a solution of the Hamilton–
Jacobi equation associated with g and H? Other questions arise. For instance one may wonder
whether any solution u of the Hamilton–Jacobi equation associated with g and H is the limit
of a sequence (un) of solutions of the Hamilton–Jacobi equations associated with (gn) and (Hn).
These two different questions amount to the upper semicontinuity and the lower semicontinuity of
the solution multifunction (g, H) ⇒ S(g,H) respectively. Corresponding questions arise for the
subsolution and the supersolution multifunctions too. The involved convergence is often taken
to be the uniform convergence on compact subsets and the space X is supposed to be finite
dimensional ([13], [15], [16], [17], [57]...).

Here we tackle different questions. We look for conditions ensuring that the explicit Hopf–
Lax and Lax–Oleinik solutions converge to the corresponding explicit solutions associated with
g and H ([14], [38], [39], [41], [48], [49], [50], [58], [59]...). Recall that these solutions are defined
respectively by

v(x, t) := (g∗ + tH)∗ (x) for (x, t) ∈ X × R+, ∞ else,

u(x, t) := (g¤(tH)∗) (x) for (x, t) ∈ X × R+, ∞ else,

where f∗ (resp. h∗) denotes the (Legendre–Fenchel) conjugate of a function f (resp. h) on X
(resp. X∗):

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X}
(
resp. h∗(x) := sup{〈x∗, x〉 − h(x∗) : x∗ ∈ X∗}

)

and ¤ stands for the infimal convolution operation given by

(g¤h) (x) := inf{g(x − y) + h(y) : y ∈ X}.

In this paper the product 0H(x∗) is interpreted as 0 if H(x∗) < ∞, and ∞ if H(x∗) = ∞, i.e.
0H = ιdom H where domH := H−1(R) is the domain of H and ιS denotes the indicator function
of a subset S of some space Y , given by ιS(y) = 0 if y ∈ S, ∞ else.

The novelty of our approach lies in the fact that we use epiconvergence, Mosco convergence and
related convergences. These convergences, which are briefly described in the next section, have
proved to be of interest for variational inequalities, optimization problems and duality questions
(see [3], [8], [21], [30], [35], [56] for comprehensive treatments). Since here the Legendre–Fenchel
duality is involved, it is natural to use them. Moreover, since the data functions and the solutions
may take the value ∞, local uniform convergence is not appropriate, without speaking of the lack
of local compactness of X when we do not assume X is finite dimensional.

One of the interests of our results lies in the fact that it enables to use regularization processes.
It is known that, for a lower semicontinuous (for short l.s.c.) proper convex function f on a Hilbert
space, its Moreau–Yosida regularization fε is of class C1 and converges to f as ε → 0 for the Mosco
convergence and for the bounded convergence ([21, Th. 7.3.8]); using our stability results one can
approach the solution of the Hamilton–Jacobi equation by the solutions of the equations obtained
by regularizing g or H. That would not be possible without using variational convergences, unless
one requires stringent assumptions.

Throughout X is a Banach space; we endow a product of normed vector spaces (for short
n.v.s.) with the box norm except in the case it is a dual space, in which case we take the dual
norm. We denote by clA or A the closure of a subset A of X and by Γ(X) (resp. Γ∗(X∗)) the
set of l.s.c. proper convex functions on X (resp. X∗ which are weak∗ l.s.c.). Given a function
f and r ∈ R, we set [f ≤ r] := f−1 ([−∞, r]). The distance of x ∈ X to a subset E of X is
d(x,E) := inf{d(x, w) : w ∈ E}, with the usual convention that inf ∅ = ∞. The remoteness of
E is d(0, E). We denote by UX (resp. BX) the open (resp. closed) unit ball of X.
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2 Preliminaries: variational convergences

Since variational convergences will play a crucial role in the present article, let us recall some
basic facts; for more information, see [3], [10], [21], [32], [44], [45], [56]...

A sequence (Cn) of subsets of X is said to converge in the sense of Painlevé–Kuratowski to a
subset C if C = lim supn Cn = lim infn Cn. Here lim infn Cn is the set of limits of sequences (xn)
such that xn ∈ Cn for each n ∈ N large enough and lim supn Cn is the set of cluster points of
sequences (xk)k∈K such that xk ∈ Ck for k in an infinite subset K of N. The sequence (Cn) con-
verges in the sense of Mosco to C ⊂ X if C = w– lim supn Cn = lim infn Cn. Here w– lim supn Cn

is the set of weak cluster points of bounded sequences (xk)k∈K such that xk ∈ Ck for k in an
infinite subset K of N. If X is a dual space and if in the preceding definition the convergence
of (xk)k∈K is taken with respect to the weak∗ topology on X, we write w∗– lim supn Cn. When
the closed unit ball BX of X is w∗-sequentially compact (in particular when X is reflexive)
w∗– lim supn Cn coincides with the w∗-sequential limsup.

A sequence (fn) of functions on X (with values in R := R ∪ {−∞,∞}) is said to epiconverge
to some function f if (epi fn)n converges in the sense of Painlevé–Kuratowski to epi f , where the
epigraph of f is given by

epi f := {(x, r) ∈ X × R : r ≥ f(x)}.

Then, we write (fn)
e
→ f or f = e– limn fn. If (epi fn)n Mosco-converges to epi f , we write

(fn)
M
→ f . We write f = ew– lim infn fn (resp. f = ew∗– lim infn fn) to mean that epis f ⊂

T – lim supn(epi fn) ⊂ epi f where T is the weak topology (resp. T is the weak∗ topology on X
when X is a dual space) and epis f is the strict epigraph of f defined by

episf := {(x, r) ∈ X × R : r > f(x)};

e– lim supn fn stands for the function whose epigraph is lim infn(epi fn).
Other convergences are of interest, in particular for what concerns the continuity of usual

operations such as sums of sets or functions, intersections of sets... It is not our purpose to
review here the many possible variants. We just consider the main instances. Recall that for two
nonempty subsets A,B of X the excess of A over B is given by

e(A,B) := sup
a∈A

d(a,B), e(∅, B) = 0 and e(A, ∅) = ∞.

Then, for p ∈ P, we set

ep(A,B) := e(A ∩ pUX , B), dp(A,B) := max(ep(A,B), ep(B, A)).

We write symbolically A ⊂ b– lim infn An if (ep(A,An))n → 0 for each p ∈ P and A ⊃ b– lim supn An

if (ep(An, A))n → 0 for each p ∈ P. Let us note that A ⊂ lim infn An whenever A ⊂ b– lim infn An

and that A ⊃ lim supn An whenever A ⊃ b– lim supn An. If X is finite dimensional, the reverse

implications hold. We write (An)
b
→ A and we say that (An) boundedly converges to A, or that

(An) converges to A for the bounded Hausdorff topology, if b– lim infn An ⊃ A ⊃ b– lim supn An.
The choice of the open unit ball of X in what precedes, rather than the closed unit ball, enables
one to use the equalities

ep(A,B) = ep(A, B) = ep(A,B) = ep(A,B).

Again, one can pass from these convergences of sets to convergences of functions. Accordingly,
for a sequence (fn) of functions on X and a function f on X, we write f ≥ b– lim supn fn if
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epi f ⊂ b– lim infn(epi fn) and f ≤ b– lim infn fn if epi f ⊃ b– lim supn(epi fn). Of course, writing

(fn)
b
→ f when (epi fn)

b
→ epi f means that f ≤ b– lim infn fn and f ≥ b– lim supn fn. This

type of convergence we call bounded (or bounded-Hausdorff) convergence has been thoroughly
studied in [7], [10] [21], [22], [54]; it is also called the Attouch–Wets convergence or the epi-
distance convergence. The terminology we use is motivated by the fact that for a family of linear

continuous forms f, fn (n ∈ N) on X one has (fn)
b
→ f if and only if (‖fn − f‖) → 0. Using

these definitions in terms of epigraphs and the elementary observations made above (see also [51,
Section 2]) we note the following implications:

f ≥ b– lim supn fn =⇒ f ≥ e– lim supn fn

and, if f is weakly l.s.c.,

f ≤ b– lim infn fn =⇒ f ≤ ew– lim infn fn,

f = b– limn fn =⇒ f = M– limn fn.

3 Continuity of the Fenchel transform

In the present section we gather some results which have been established elsewhere, in particular
in [3], [8], [11], [20], [32], [51], [52], concerning continuity of the Legendre–Fenchel transform and
continuity properties of operations such as the addition and the infimal convolution. A scheme
like this has already been used for interpreting initial conditions (see [17], [48]).

Giving assumptions ensuring a form of continuity of the Legendre–Fenchel transform will be
crucial for the sequel. Assertions (a) and (b) below are well known and elementary. Assertion (c)
and (d) are sequential versions of [52, Th. 2, Th. 3]. Assertion (e) is proved in [61] and [63, Prop.
9] for the slice convergence under the stronger assumption that there exists x ∈ X such that
(e– lim supn fn)(x) < ∞ but without the reflexivity hypothesis; here reflexivity allows to deduce
it from assertion (c). Assertion (f) is a classical result of Mosco [43].

Lemma 3.1 (a) For any sequence (fn) of functions on X one has (e– lim supn fn)∗ ≤ ew∗– lim infn f∗
n.

(b) For any sequence (gn) of functions on X∗ one has (e– lim supn gn)∗ ≤ ew– lim infn g∗n.
(c) Let (fn) be a sequence of Γ(X) such that (d((0, 0), epi f∗

n)) is bounded. Then e–lim supn fn =
(ew∗–lim infn f∗

n)∗.
(d) Let (fn) be a sequence of Γ(X). Assume that there exists x ∈ X such that (e– lim supn fn)(x)

and (e– lim inf fn)(x) are finite. Then e– lim supn fn = (ew∗– lim infn f∗
n)∗.

(e) Let f, fn (n ∈ N) in Γ(X), X being reflexive. Assume that (d((0, 0), epi fn)) is bounded.
If f ≤ ew– lim infn fn then e– lim supn f∗

n ≤ f∗.

(f) Let f, fn (n ∈ N) in Γ(X), X being reflexive. If (fn)
M
→ f , then (f∗

n)
M
→ f∗.

In the following statement, we recall the fact that the Fenchel transform is continuous for the
b–convergence ([5], [20], [21], [44], [52]). The assertions (a), (b), (c) are just the corresponding
assertions of [52, Th. 14],

Theorem 3.2 Let f, fn : X → R∞ (n ∈ N) be proper functions and let h, hn ∈ Γ∗(X∗) (n ∈ N).
(a) If f ≥ b– lim supn fn, and if f is convex, then one has f∗ ≤ b– lim infn f∗

n.
(b) If f ≤ b– lim infn fn, if fn is convex for every n and if (d((0, 0), epi fn)) is bounded, then

one has f∗ ≥ b– lim supn f∗
n.

(c) If (fn)
b
→ f , if fn is convex for every n, then one has (f∗

n)
b
→ f∗.

(d) If h ≤ b– lim infn hn, and (d((0, 0), epi hn)) is bounded, then one has h∗ ≥ b– lim supn h∗
n.
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Let us note that in assertion (b) the assumption that (d((0, 0), epi fn)) is bounded cannot be
dropped, as shown by the example fn = n, f arbitrary with nonempty domain. In assertion
(c) this condition is ensured by the convergence of (fn) to f and the assumption that f has a
nonempty domain.

Another continuity result can be obtained by replacing the convexity assumption by a coer-
civity assumption (see [52, Cor. 20]). Here we say that a function f : X → R∞ is hypercoercive
if f(x)/ ‖x‖ → ∞ when ‖x‖ → ∞ and we say that a family (fi)i∈I is equi-hypercoercive if
lim‖x‖→∞ fi(x)/ ‖x‖ = ∞ uniformly for i ∈ I.

Theorem 3.3 Let (fn) be a family of functions from X to R∞ which is equi-hypercoercive. Sup-

pose (fn)
b
→ f , where f is bounded below on bounded subsets. Then (f∗

n)
b
→ f∗. Moreover, f∗ is

bounded on bounded sets and (f∗
n) → f∗ uniformly on bounded sets.

4 Convergence of Lax–Oleinik solutions

We devote this section to convergence results of Lax–Oleinik solutions. Given g, H and sequences
(gn), (Hn), we look for conditions ensuring that the sequence (un) of Lax–Oleinik solutions un

associated with (gn,Hn) converges to the Lax–Oleinik solution u associated with (g, H) when
(gn,Hn) converges to (g,H). We deduce these results from the continuity results of the preceding
section and from general convergence properties for infimal convolutions. For the proofs of these
last properties, we refer to [51]. Here we use the (sequential) asymptotic function of a function
h : X → R with respect to a topology T on X, defined by

h∞(x) := inf{lim infn t−1
n h(tnxn) : (tn) → ∞, (xn)

T
→ x}.

We say that a set C is (sequentially) asymptotically compact for the topology T on X if for any
sequence (cn)n∈N in C with (‖cn‖) → ∞ there exists an infinite set P ⊂ N such that (cn/ ‖cn‖)n∈P

T -converges to some u 6= 0. We say that a function h is (sequentially) asymptotically compact
for the topology T if its epigraph is asymptotically compact.

In the sequel, we will take for T either the weak topology or the weak∗ topology. The following
example which refines [51, Example 3] will be used in a proof below; it shows that the notion of
asymptotic compactness is present in some interesting cases.

Example 1 Let X be a reflexive Banach space, let Y be a finite dimensional normed vector space
and let ϕ : X ×Y → R, a, b, c ∈ P be such that ϕ(x, y) ≥ a ‖x‖− b ‖y‖− c for any (x, y) ∈ X ×Y
with sufficiently large norm. Then E := epiϕ is weakly asymptotically compact. In fact, for any
sequence ((xn, yn, λn))n of epiϕ with (rn) → ∞ for rn := ‖(xn, yn, λn)‖ := max(‖xn‖ , ‖yn‖ , |λn|),
taking a subsequence, we may assume that (r−1

n (xn, yn, λn))n has a weak limit (u, v, µ). When
(v, µ) 6= (0, 0), the conclusion (u, v, µ) 6= (0, 0, 0) holds. When (v, µ) = (0, 0), we have rn = ‖xn‖
for n large enough and then λn ≥ arn−b ‖yn‖−c; dividing by rn and observing that (r−1

n ‖yn‖) →
0, we obtain a contradiction.

We first consider upper epilimits of solutions. We rely on a general result for infimal convolu-
tions; while for the usual upper epilimits the convergence result is simple and immediate, for the
b– lim sup a qualification condition is needed.

Lemma 4.1 ([51, Prop. 6, Example 4]) Let f, g, fn, gn : X → R (n ∈ N) be proper functions.
(a) If f ≥ e– lim supn fn and g ≥ e– lim supn gn, then f¤g ≥ e– lim supn(fn¤gn).
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(b) Assume that f ≥ b– lim supn fn and g ≥ b– lim supn gn. Then f¤g ≥ b– lim supn(fn¤gn)
whenever one of the following conditions holds:

(b1) for any sequences (wn), (xn) such that (wn) is bounded and (f(xn) + g(wn − xn)) is
majorized, the sequence (xn) is bounded, or, more generally,

∀p ∈ P, ∃q ∈ P, ∀w ∈ [f¤g < p] ∩ pUX : (f¤g) (w) = inf{f(x) + g(w − x) : x ∈ qUX}; (3)

(b2) X = X1 ×X2, f(x1, x2) ≥ a1 ‖x1‖+ a2 ‖x2‖+ c, g(x1, x2) ≥ b1 ‖x1‖+ b2 ‖x2‖+ d for all
x = (x1, x2) ∈ X, with ‖x‖ large enough, where a1, a2, b1, b2, c, d ∈ R with a1 +b1 > 0, a2 +b2 > 0;

(b3) X is reflexive, f∞(0) ≥ 0, g∞(0) ≥ 0, f∞(−u) > −g∞(u) for each u ∈ X \ {0}, the
asymptotic functions being taken with respect to the weak topology, and f is weakly asymptotically
compact.

An application of Lemma 3.1 and of these criteria to our problem yields the following result.
In the sequel we set, for (x, x∗, t) ∈ X × X∗ × R,

F (x∗, t) := ιepi H(x∗,−t), (4)

G(x, t) := g(x) + ι{0}(t), (5)

and we define Fn and Gn in a similar way by changing H and g into Hn and gn, respectively. It
has been observed in [38], [48] (and in a special case in [55]) that

F ∗(x, s) = (sH)∗(x) for (x, s) ∈ X × R+, F ∗(x, s) = ∞ otherwise,

and
u = F ∗

¤G.

Proposition 4.2 Let g, gn : X → R and let H, Hn ∈ Γ∗(X∗).
(a) Suppose g ≥ e– lim supn gn, H ≤ ew∗– lim infn Hn, and either X is reflexive and there

exists x∗ ∈ X∗ such that (e– lim supn Hn)(x∗) < ∞, or there exists x ∈ X such that

−∞ < (e– lim infn H∗
n)(x) ≤ (e– lim supn H∗

n)(x) < ∞. (6)

Then u ≥ e– lim supn un.
(b) Assume that

(
d((0, 0), epiHn)

)
is bounded, g ≥ b– lim supn gn and H ≤ b– lim infn Hn.

Then u ≥ b– lim supun whenever one of the following conditions holds:
(b1) for any p ∈ P there exists q ∈ P such that for all (w, t) ∈ [u < p]∩ pUX×R with t ≥ 0 one

has
u(w, t) = inf{(tH)∗(x) + g(w − x) : x ∈ qUX};

(b2) there exist x∗ ∈ X∗, b, c ∈ R, r ∈ R+ with ‖x∗‖ < b + r such that g ≥ b ‖·‖+ c and H is
bounded above on x∗ + rBX∗;

(b3) X is reflexive, g∞(0) ≥ 0, g∞(−u) > −(ιdom H)∗(u) for each u ∈ X \ {0}, and H is
bounded above on a neighborhood of 0.

Let us observe that assumption (b2) is satisfied when g ≥ b ‖·‖ + c for some b, c ∈ R, and
either b > d(0, domH) or b ≤ 0 and H is bounded above on rUX∗ for some r > −b. In the first
case one takes r = 0 and one picks some x∗ ∈ domH such that ‖x∗‖ < b; in the second case one
takes x∗ = 0.

Proof. (a) Since epiG = {(x, 0, r) : (x, r) ∈ epi g} and a similar relation for Gn, one has G ≥
e– lim supn Gn and since w∗– lim supn(epiHn) ⊂ epi H one has ιepi H ≤ ew∗– lim infn ιepi Hn

. Let
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us first suppose X is reflexive and there exists x∗ ∈ X∗ such that e– lim supn Hn(x∗) < ∞. Then,
there exist r ∈ R and a sequence (x∗

n) → x∗ such that for all n one has (x∗
n, r) ∈ epi Hn, hence

Fn(x∗
n,−r) = 0 and e– lim supn Fn(x∗,−r) < ∞. By Lemma 3.1 (c), we have e– lim supn F ∗

n ≤ F ∗.
Let us get the same inequality when condition (6) holds. Let us consider f := F ∗ and

fn := Fn
∗ for n ∈ N, so that, for every x ∈ X one has

H∗(x) = sup
(x∗,r∗)∈epi H

〈(x,−1), (x∗, r∗)〉 = (ιepi H)∗(x,−1) = f(x, 1)

and, similarly, H∗
n(x) = fn(x, 1). Then there exist r, s ∈ R and a sequence (xn) → x such

that lim supn H∗
n(xn) ≤ s and for every sequence (xn) → x one has r ≤ lim infn H∗

n(xn). Thus
(e– lim supn fn)(x, 1) and (e– lim inf fn)(x, 1) are finite. Then, since f∗

n = Fn, and since for a se-
quence (En) of subsets of X∗×R one has ew∗– lim infn ιEn

= ιE for E := w∗−lim supn En, Lemma
3.1 (d), yields e– lim supn fn = (ew∗– lim infn Fn)∗ ≤ F ∗ or e– lim supn F ∗

n ≤ F ∗. Therefore, in
both cases, assertion (a) is a direct consequence of the corresponding assertion of the preceding
lemma: u = F ∗¤G ≥ e– lim supn F ∗

n¤Gn = e– lim supn un.
(b) It is clear that G ≥ b– lim supn Gn and F ≤ b– lim infn Fn (since epiH ⊃ b– lim supn(epiHn)).

Using Theorem 3.2 (d), we get b– lim supn F ∗
n ≤ F ∗.

(b1) Since (3) is obtained by transcribing the present condition in terms of F and G, we obtain
that

u = F ∗
¤G ≥ b– lim supn F ∗

n¤Gn = b– lim supn un.

(b2) We apply criterion (b2) of the preceding lemma with X1 = X, X2 = R. Let x∗ ∈
X∗, b, c ∈ R, m, r ∈ R+ be such that g ≥ b ‖·‖ + c, ‖x∗‖ < b + r and supH(x∗ + rBX∗) ≤ m.
Since F ∗(x, t) = ∞ for t < 0, let us consider (x, t) ∈ X × R+. Then we have

F ∗(x, t) ≥ sup{〈x∗, x〉 + 〈x∗, x〉 − tH(x∗ + x∗) : x∗ ∈ rBX∗} ≥ (r − ‖x∗‖) ‖x‖ − m |t| .

Since G(x, t) ≥ b ‖x‖+(m + 1) · |t|+c for every (x, t) ∈ X×R, the mentioned criterion is satisfied.
(b3) Since F ∗ is l.s.c. and sublinear, (F ∗)∞ = F ∗ > −∞, (F ∗)∞ (0) ≥ 0, G∞(u, t) = g∞(u) +

ι{0}(t) and F ∗(u, 0) = (ιdom H)∗(u) > −g∞(−u) for all u ∈ X \ {0}, the condition F ∗
∞(−u,−t) >

−G∞(u, t) for any (u, t) 6= (0, 0) is fulfilled. Since H is bounded above by some m ∈ R+ on some
ball rBX∗ with r > 0, we have F ∗(x, t) ≥ r ‖x‖ − m |t| for all (x, t) ∈ X × R, so that Example 1
above shows that F ∗ is weakly asymptotically compact. ¤

Now we turn to the lower epilimits of sequences of solutions. Again, we recall a general result
about infimal convolutions of functions.

Lemma 4.3 ([51, Prop. 17, Cor. 18]) Let f, g, fn, gn : X → R (n ∈ N) be proper functions.
(a) If X is reflexive, f ≤ ew– lim infn fn and g ≤ ew– lim infn gn, then f¤g ≤ ew– lim infn(fn¤gn)

whenever the following condition holds: for any infinite subset K of N, for any sequences (wk)k∈K ,
(xk)k∈K such that (wk)k∈K is bounded and (fk(xk) + gk(wk − xk))k∈K is majorized, the sequence
(xk)k∈K is bounded, or, more generally,

∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀w ∈ [fn¤gn < p] ∩ pUX :

(fn¤gn) (w) = inf{fn(x) + gn(w − x) : x ∈ qUX}. (7)

(b) Assume f ≤ b– lim infn fn, g ≤ b– lim infn gn and condition (7) holds. Then f¤g ≤
b– lim infn(fn¤gn).
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(c) If X = X1 × X2 with X1, X2 reflexive Banach spaces, f ≤ ew– lim infn fn and g ≤
ew– lim infn gn, then f¤g ≤ ew– lim infn(fn¤gn) whenever the following condition holds:

there exist a1, a2, b1, b2, c, d ∈ R with a1 + b1 > 0, a2 + b2 > 0 such that for all x = (x1, x2) ∈ X

infnfn(x1, x2) ≥ a1 ‖x1‖ + a2 ‖x2‖ + c, infngn(x1, x2) ≥ b1 ‖x1‖ + b2 ‖x2‖ + d. (8)

(d) Assume f ≤ b– lim infn fn and g ≤ b– lim infn gn and condition (8) holds. Then f¤g ≤
b– lim infn fn¤gn.

(e) If X is reflexive, f ≤ ew– lim infn fn and g ≤ ew– lim infn gn, then f¤g ≤ ew– lim infn fn¤gn

whenever the following condition holds:

there exist f̂ , ĝ : X → R with f̂ w-asymptotically compact such that

infn fn ≥ f̂ , infn gn ≥ ĝ, f̂∞(0) ≥ 0, ĝ∞(0) ≥ 0, f̂∞(−u) > −ĝ∞(u) for all u ∈ X \ {0}. (9)

(f) Assume f ≤ b– lim infn fn and g ≤ b– lim infn gn and condition (9) holds. Then f¤g ≤
b– lim infn fn¤gn.

Note that when f̂ := a ‖·‖ + c with a ≥ 0 or, more generally, when f̂ is bounded below by a
continuous affine function, in particular when f̂ ∈ Γ(X), the condition f̂∞(0) = 0 is automatically
satisfied.

An application of these criteria to Lax–Oleinik solutions yields the following result.

Proposition 4.4 (a) Suppose X is reflexive, g ≤ ew– lim infn gn and H ≥ e– lim supn Hn, where
H,Hn ∈ Γ∗(X∗) for every n ∈ N. Then u ≤ ew– lim infn un provided one of the following
conditions holds:

∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀(w, t) ∈ [un < p] ∩ pUX×R, t ≥ 0 :

un(w, t) = inf{(tHn)∗(x) + gn(w − x) : x ∈ qUX}; (10)

∃a, b, c ∈ R, ∀n ∈ N, ∃x∗
n ∈ X∗, ∃m, rn ∈ R+ : rn≥ ‖x∗

n‖ + a, a + b > 0,

infn gn ≥ b ‖·‖ + c and supn supHn(x∗
n + rnBX∗) ≤ m; (11)

∃r ∈ P, ∃ĝ : X → R, ∃Ĥ : X∗ → R : infn gn ≥ ĝ, supn Hn ≤ Ĥ,

sup Ĥ(rUX∗) < ∞, ĝ∞(0) ≥ 0, ĝ∞(−u) > −(ι
dom Ĥ

)∗(u) ∀u ∈ X \ {0}. (12)

(b) Assume that g ≤ b– lim infn gn, H ≥ b– lim supn Hn and H ∈ Γ∗(X∗). Then u ≤
b– lim infn un whenever one of the conditions (10), (11), (12) holds.

Proof. (a) In view of the constructions of F and G, we have G ≤ ew– lim infn Gn and ιepi H ≥
e– lim supn ιepi Hn

(since epiH ⊂ lim infn(epiHn)), hence F ≥ e– lim supn Fn. Using Lemma
3.1 (b), we get ew– lim infn F ∗

n ≥ F ∗.
Assume that condition (10) holds. After transcribing it we observe that condition (7) is

satisfied for fn := F ∗
n and gn := Gn; the conclusion is a consequence of assertion (a) of the

preceding lemma: u = F ∗¤G ≤ ew– lim infn F ∗
n¤Gn = ew– lim infn un.

Assume now that condition (11) holds. We use an argument similar to the one used in the
proof of Proposition 4.2 (b2). Let x∗

n ∈ X∗, b, c ∈ R, m, rn ∈ R+ be such that gn ≥ b ‖·‖ + c,
‖x∗

n‖ < b + rn and supHn(x∗
n + rnBX∗) ≤ m. Then, for any (x, t) ∈ X × R+, we have

F ∗
n(x, t) ≥ sup{〈x∗, x〉 + 〈x∗

n, x〉 − tHn(x∗
n + x∗) : x∗ ∈ rnBX∗}

≥ (rn − ‖x∗
n‖) ‖x‖ − m |t| ≥ a ‖x‖ − m |t| ,
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and so F ∗
n(x, t) ≥ a ‖x‖ − m |t|, Gn(x, t) ≥ b ‖x‖ + (m + 1) · |t| + c for all (x, t) ∈ X × R; hence

the criterion (c) of the preceding lemma with X1 = X, X2 = R can be applied.
Finally, assume that condition (12) holds. This time we apply criteria (e) of the preceding

lemma, observing that setting F̂ (x∗, t) := ι
epi Ĥ

(x∗,−t) for (x∗, t) ∈ X∗ × R, Ĝ(x, t) = ĝ(x) +

ι{0}(t), we have F ∗
n ≥ F̂ ∗ and Gn ≥ Ĝ for every n ∈ N with

(
F̂ ∗

)
∞

(0, 0) ≥ 0 (since F̂ ∗ is

the support function of a nonempty set), Ĝ∞(0) ≥ 0,
(
F̂ ∗

)
∞

(−u) > −Ĝ∞(u) for each u ∈

X × R \ {(0, 0)}, F̂ ∗ being w–asymptotically compact by Example 1.
(b) Clearly, G ≤ b– lim infn Gn and ιepi H ≥ b– lim supn ιepi Hn

(since epiH ⊂ b– lim infn(epiHn)).
Using Theorem 3.2 (a) and the fact that T is an isometry, we get b– lim infn F ∗

n ≥ F ∗.
In the proof of (a) we obtained that conditions (10), (11) and (12) imply the corresponding

assumptions of Lemma 4.3. Thus, Lemma 4.3 ensures that u = F ∗¤G ≤ b– lim infn F ∗
n¤Gn =

b– lim infn un. ¤

When Hn = H for all n ∈ N, the preceding conditions can be simplified. For simplicity, we
limit ourselves to condition (11).

Corollary 4.5 Assume that X is reflexive, g ≤ b– lim infn gn, Hn = H for all n, with H proper
and

∃b, c∈ R, ∃x∗ ∈ X∗, ∃m, r ∈ P : r > ‖x∗‖ − b, infngn≥ b ‖·‖ + c and supH(x∗ + rBX∗) ≤ m.
(13)

Then u ≤ b– lim infn un.

Proof. Since Hn = H for all n, we do not need to use Theorem 3.2 (a), so that we can drop
the convexity assumption on H. ¤

Gathering the assertions of Propositions 4.2 (a) and 4.4 (a) and observing that condition (6)

is satisfied when (H∗
n)

M
→ H∗, what is the case when (Hn)

M
→ H with Hn ∈ Γ∗(X∗) and X is

reflexive, we get the following result about Mosco convergence of Lax–Oleinik solutions.

Theorem 4.6 Suppose X is reflexive, (gn)
M
→ g, (Hn)

M
→ H, with H, Hn ∈ Γ∗(X∗), dom gn 6= ∅

for each n ∈ N. Suppose one of the conditions (10), (11), (12) holds. Then (un)
M
→ u.

Similarly, gathering the assertions of Propositions 4.2 (b), (d), (f) and 4.4 (b), and using
the following result about the b-convergence of infimal convolutions, we will get a b-convergence
result for Lax–Oleinik solutions.

Lemma 4.7 ([51, Prop. 19 (a)]) Suppose X is reflexive. Let f, g, fn, gn : X → R be proper

functions, f and g being w-l.s.c. If (fn)
b
→ f , (gn)

b
→ g and if condition (7) holds, then (fn¤gn)

b
→

f¤g.

Theorem 4.8 Suppose (gn)
b
→ g and (Hn)

b
→ H, with g, gn proper and H, Hn ∈ Γ∗(X∗) for each

n ∈ N. Then (un)
b
→ u whenever one of the following conditions holds

(a) (10) is satisfied, X is reflexive and g is weakly l.s.c.;
(b) (11) is satisfied;
(c) (12) is satisfied and X is reflexive.
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Proof. Defining F , Fn, G, Gn as in (4), (5) and using Theorem 3.2 (c), we have (F ∗
n)

b
→ F ∗

and, obviously, (Gn)
b
→ G. For each of the assertions (a), (b), (c) we have u ≤ b– lim infn un by

Proposition 4.4.
(a) Let us first assume (10). Then condition (7) is satisfied for the sequences (Gn) and (F ∗

n)
and the conclusion follows from the preceding lemma.

(b) Now let us assume (11) holds. Let us check the assumptions of assertion (b2) of Proposition
4.2. Let b, c ∈ R, m, r ∈ P, r > −b be as in (11). Since epi g ⊂ lim infn epi gn ⊂ epi ĝ with
ĝ := b ‖·‖+c we have g ≥ ĝ. When b > supn d(0, [Hn ≤ m]), taking b′ between these two numbers
we get a sequence (xn) ∈ b′UX such that (xn,m) ∈ epi Hn for each n. It follows that for n
large enough there exists (x′

n,m′
n) ∈ epiH with ‖x′

n − xn‖ < b − b′ and d(0,domH) < b. When
supn supHn(rUX∗) ≤ m we have

rUX∗ × {m} ⊂
⋂

n
epi Hn ⊂ lim supn (epiHn) ⊂ epi H,

so that supH(rUX∗) ≤ m.
(c) Finally let us assume (12) holds. Using the fact that the asymptotic function of a function

is equal to the asymptotic function of its l.s.c. hull (for the norm topology), we may assume
that ĝ is l.s.c. Then epi g ⊂ lim infn (epi gn) ⊂ epi ĝ, hence g ≥ ĝ. On the other hand, epi Ĥ ⊂⋂

n epi Hn ⊂ lim supn(epiHn) ⊂ epiH, hence H ≤ Ĥ. Thus, the assumptions of assertion (b3) of
Proposition 4.2 are satisfied. ¤

The preceding results have consequences on regularity issues. Recall that if X is a Hilbert

space, and if g ∈ Γ(X), then (g¤n ‖·‖2)
b
→ g and g¤n ‖·‖2 is continuously differentiable. Several

extensions can be given, either by taking for X a more general Banach space ([3, Th. 3.24], [25])
or by requiring that g just satisfies a quadratic minorization ([4], [25]). One can also take a
more general regularizing kernel ([9], [21, Th. 7.3.8], [25]). Here, we say that a family (jn) of

nonnegative convex functions (jn) is a regularizing kernel if (jn)
b
→ ι{0} and jn(0) = 0 for all n.

In [21, Def. 7.3.5] the functions jn are supposed to be lower semicontinuous and continuous at 0.

Let us show that we can obtain the convergence (g¤jn)
b
→ g for every g ∈ Γ(X) without these

additional assumptions made in ([21, Th. 7.3.8]).

Note that for a sequence (jn) of nonnegative functions null at 0 one has (jn)
b
→ ι{0} if and only

if for every bounded sequence ((xn, rn)) with (xn, rn) ∈ epi jn for large n one has that (xn) → 0.

Lemma 4.9 Let (jn) be a sequence of nonnegative convex functions null at 0 such that (jn)
b
→ ι{0}

and let g be a proper function for which there exist b, c ∈ R such that g ≥ b ‖·‖+c. Let gn := g¤jn.
Then

(a) for every c′ < c there exists some k ∈ N such that for all n ≥ k one has gn ≥ b ‖·‖ + c′;

(b) one has (gn)
b
→ g.

Proof. Since (jn)
b
→ ι{0}, given q > 1, we can find k := k(q) ∈ N such that eq(epi jn, epi ι{0}) <

q−1 for n ≥ k, hence jn(u) ≥ q for all n ≥ k, u ∈ X satisfying ‖u‖ = q−1 since if we had jn(u) < q
for such an u, we could find t ∈ R+ satisfying ‖(u, jn(u)) − (0, t)‖ < q−1, what is impossible. By
convexity, we get jn(v) ≥ q2 ‖v‖ for v ∈ X \ q−1UX , n ≥ k.

(a) Without loss of generality, we may assume that c′ := c − 1. Let q > |b| + 1 and let
n ≥ k := k(q). For w, x ∈ X with ‖w − x‖ ≥ q−1, we have, when b < 0,

g(w) + jn(x − w) ≥ b ‖w‖ + c + q2 ‖w − x‖ ≥ c − |b| ‖w‖ + |b| ‖w − x‖ ≥ c − |b| ‖x‖ = b ‖x‖ + c,
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while for b ≥ 0 we have

g(w) + jn(x − w) ≥ b ‖w‖ + c + q2 ‖w − x‖ ≥ b ‖x‖ + c.

When ‖w − x‖ < q−1 we have for b < 0

g(w) + jn(x − w) ≥ c − |b| ‖w‖ ≥ c − |b| q−1 − |b| ‖x‖ ≥ b ‖x‖ + c − 1,

while for b ≥ 0 we have

g(w) + jn(x − w) ≥ b ‖w‖ + c ≥ b ‖x‖ − bq−1 + c ≥ b ‖x‖ + c − 1.

Taking the infimum over w ∈ X, we get gn(x) ≥ b ‖x‖ + c − 1.
(b) Let a := max(|b| , |c|), so that g(x) ≥ −a(‖x‖ + 1) for all x ∈ X. Since jn(0) = 0, we

have gn ≤ g, hence b–lim supn gn ≤ g. Let p ∈ P and let ((xn, tn)) be a sequence of pUX×R with
(xn, tn) ∈ epi gn for all n. Let us show that (d ((xn, tn), epi g)) → 0. Given ε ∈ (0, 1), let us take
q > max(1, a + ε−1(p + 1)(a + 1)). Let us pick wn ∈ X such that

g(wn) + jn(xn − wn) < gn(xn) + ε.

If for some n ≥ k := k(q) we had ‖xn − wn‖ ≥ ε (hence ‖xn − wn‖ > q−1), as q2 ‖xn − wn‖ ≤
jn(xn − wn) by the first part of the proof, we would get

−a(‖wn‖ + 1) + q2 ‖xn − wn‖ < gn(xn) + ε < p + 1,

(q − a)ε ≤ (q2 − a) ‖xn − wn‖ < p + 1 + a(‖xn‖ + 1) ≤ (a + 1)(p + 1),

a contradiction with the choice of q. Thus ‖xn − wn‖ < ε. Since g(wn) < gn(xn) + ε ≤ tn + ε, for
n ≥ k we have

d((xn, tn), epi g) ≤ ‖(xn, tn) − (wn, tn + ε)‖ ≤ ε.

That shows that (ep(epi gn, epi g)) → 0, i.e. g ≤ b– lim infn gn and so (gn)
b
→ g. ¤

Corollary 4.10 Assume that X is reflexive, g, H are proper and (jn) is a family of regular-
izing kernels. Suppose there exist x∗ ∈ X∗, b, c ∈ R, r > 0 such that r ≥ ‖x∗‖ + a, a + b > 0,
g ≥ b ‖·‖ + c and supH(x∗ + rUX∗) < ∞. Let gn := g¤jn and let un be the Lax–Oleinik solution

associated with gn and H. Then (un)
b
→ u.

Proof. The preceding lemma yields some k ∈ N such that for n ≥ k one has gn ≥ b ‖·‖+ c− 1.

Moreover (gn)
b
→ g. Corollary 4.5 ensures that u ≤ b– lim infn un. Now, since gn ≤ g for all n, we

have un ≤ u, hence b– lim supn un ≤ u. Thus (un)
b
→ u. ¤

Remark 4.1 In the preceding corollary one has un = F ∗¤Gn, where F is given by (4) and
Gn(x, t) := gn(x)+ι{0}(t) = (G¤Kn)(x, t) with Kn(x, t) := jn(x)+ι{0}(t). By the associativity of
the infimal convolution, we have un = (F ∗¤G)¤Kn = u¤Kn; un can be seen as the regularization
of u by the regularizing kernel Kn. For the smoothing of u, a more standard regularizing kernel
is given by Jn(x, t) := jn(x) + nt2. In order to obtain the convergence of

wn := u¤Jn = (F ∗
¤G)¤Jn = F ∗

¤(G¤Jn)

to u we need to check the assumptions of Lemma 4.9 with g replaced by u. Let us assume
again that there exist x∗ ∈ X∗, b, c,m ∈ R, r > 0 such that r > ‖x∗‖ − b, g ≥ b ‖·‖ + c and
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supH(x∗ + rUX∗) < m. As in the proof of Proposition 4.2 (b2), taking a > −b with r > ‖x∗‖ + a,
we have F ∗(y, s) ≥ −b ‖y‖−m |s| for all (y, s) ∈ X ×R and G(z, t) ≥ b ‖z‖+ (m + 1) · |t|+ c, for
all (z, t) ∈ X × R. Thus, for (x, q) ∈ X × R,

(F ∗
¤G)(x, q) ≥ − |b| ‖x‖ − m |q| + c

and the preceding lemma shows that (wn)
b
→ u. However, for (x, t) ∈ X×R, one has (G¤Jn) (x, t) =

(g¤jn) (x) + nt2. Thus, in general, wn = (F ∗¤G)¤Jn 6= un.

5 Convergence of Hopf–Lax solutions

Let gn,Hn (n ∈ N), g, H be given functions and let vn (resp. v) be the Hopf solution associated
with (gn,Hn) (resp. (g,H)). In order to establish convergence results for the Hopf solutions vn,
v associated with those pairs, we recall from [38], [39], that

v(x, t) = (F + G∗)∗(x, t),

with F , G given by (4), (5) provided that

dom g∗ ∩ domH 6= ∅. (14)

Throughout this section this assumption will be in force as will be the similar one with (gn,Hn).
We recall that when H is in Γ∗(X∗), the Fenchel conjugate v∗ of v is given by

v∗(x∗, t∗) = F (x∗, t∗) + G∗(x∗, t∗) = ιepi H(x∗,−t∗) + g∗(x∗).

The main feature of the following convergence result is that no convexity assumption is required
on the Hamiltonians. However, the convergence of the sequence (Hn) is not of the types we have
used previously. It is a one-sided form of continuous convergence. We recall (or make precise, as
the case of extended real-valued functions is not classical) that a sequence (Hn) of functions from
a topological space Y to R converges continuously to H if, for any y ∈ H−1(R) and any sequence
(yn) → y, the sequence (Hn(yn)) converges to H(y). For a continuous function H with finite
values, continuous convergence of (Hn) to H is equivalent to uniform convergence on compact
subsets of X∗. We say that (Hn) converges upper continuously if, for any y ∈ H−1(R) and
any sequence (yn) → y, we have lim supn Hn(yn) ≤ H(y). This property is obviously satisfied
when H is finite, upper semicontinuous and (Hn) → H locally uniformly. It is also satisfied
when the family (Hn) is equicontinuous at any y ∈ H−1(R) and (Hn) → H pointwise (or even
e– lim supn Hn ≤ H). Let us note that, when H is proper, (Hn) converges upper continuously to
H if, and only if −H ≤ e– lim infn(−Hn).

Proposition 5.1 Let g, gn ∈ Γ(X) (n ∈ N), and let H, Hn (n ∈ N) be proper. Suppose X
is reflexive, g ≤ ew– lim infn gn, there exists x ∈ X such that e– lim supn gn(x) < ∞ and (Hn)
converges upper continuously to H. Then, one has v ≤ ew– lim infn vn.

Proof. Let us show that F + G∗ ≥ e–lim supn(Fn + G∗
n). Then Lemma 3.1 (a) will yield

v ≤ ew– lim infn vn. Let (x∗, t∗, r) ∈ epi(F + G∗). Thus (x∗,−t∗) ∈ epiH and (x∗, r) ∈ epi g∗. By
Lemma 3.1 (e) we have g∗ ≥ e– lim supn g∗n; hence, there exists ((x∗

n, rn)) → (x∗, r) with (x∗
n, rn) ∈

epi g∗n for all n. Since (Hn) converges upper continuously to H, we have lim supn Hn(x∗
n) ≤ H(x∗).

Setting t∗n := min(t∗,−Hn(x∗
n)), we have t∗n > −∞, (x∗

n, t∗n, rn) ∈ epi(Fn+G∗
n) and ((x∗

n, t∗n, rn)) →
(x∗, t∗, r). This shows that F + G∗ ≥ e– lim supn(Fn + G∗

n). ¤

Let us turn to e– lim supn vn; here a convexity assumption is made on the family (Hn). The
proof relies on the following lemma of independent interest.
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Lemma 5.2 Let hn, kn be functions on X∗ such that (hn) and (kn) are equi-bounded from below
on bounded subsets. Then

ew∗– lim infn hn + ew∗– lim infn kn ≤ ew∗– lim infn(hn + kn).

A similar result holds when hn and kn are functions on X.

Proof. Let (x∗, r) be a w∗−cluster point of a bounded sequence ((x∗
n, rn))n∈K with rn ≥

(hn + kn) (x∗
n) for each n in an infinite subset K of N. Let ϕ : I → K be a filtering map from a

directed set I to K such that (x∗, r) = limi∈I(x
∗
ϕ(i), rϕ(i)). Since (x∗

n) is bounded and (hn) and

(kn) are equi-bounded from below on bounded subsets, there exists some c ∈ R with hn(x∗
n) ≥ c,

kn(x∗
n) ≥ c for each n ∈ K. As hn(x∗

n) + kn(x∗
n) ≤ rn for n ∈ K, the sequences (hn(x∗

n))n∈K ,
(kn(x∗

n))n∈K are bounded. Then, we can find a subnet of (x∗
ϕ(i), hϕ(i)(x

∗
ϕ(i)), kϕ(i)(x

∗
ϕ(i)))i∈I which

weak∗ converges to some (u∗, s, t). Then we have u∗ = x∗ and s + t ≤ r. Then

r ≥ s + t ≥ ew∗– lim infn hn(x∗) + ew∗– lim infn kn(x∗).

Since (x∗, r) has been taken arbitrarily in w∗–lim supn epi(hn + kn), we get the result. ¤

Proposition 5.3 Let g, gn ∈ Γ(X), H, Hn ∈ Γ∗(X∗) (n ∈ N). Suppose X is reflexive, g ≥
e– lim supn gn, H ≤ ew∗– lim infn Hn and there exist a bounded sequence (xn) in X and a con-
verging sequence (x∗

n) in X∗ such that (gn(xn)), (g∗n(x∗
n)) and (Hn(x∗

n)) are bounded above. Then
one has v ≥ e– lim supn vn.

Proof. Since (e– lim supn Gn) (x, t) = (e– lim supn gn) (x)+ι{0}(t) we have G ≥ e– lim supn Gn,
hence, by Lemma 3.1 (a), G∗ ≤ ew∗– lim infn G∗

n. Let us show that F ≤ ew∗– lim infn Fn. Let
(x∗, t, r) be a w∗−cluster point of a bounded sequence ((x∗

n, tn, rn))n∈K with (x∗
n, tn, rn) ∈ epiFn

for each n in an infinite subset K of N, i.e. rn ≥ 0 and (x∗
n,−tn) ∈ epi Hn for n ∈ K. Since

H ≤ ew∗– lim infn Hn we get (x∗,−t) ∈ epiH, i.e. F (x∗, t) = 0 ≤ r, hence (x∗, t, r) ∈ epiF . Now
let B be a bounded subset of X∗ × R and let m := supn g(xn). Then, for each n ∈ N and each
(x∗, t∗) ∈ B we have

G∗
n(x∗, t∗) = g∗n(x∗) ≥ 〈x∗, xn〉 − gn(xn) ≥ −

(
supx∗∈B ‖x∗‖

)(
supn ‖xn‖

)
− m.

Since Fn ≥ 0, the preceding lemma yields

F + G∗ ≤ ew∗– lim infn Fn + ew∗– lim infn G∗
n ≤ ew∗– lim infn(Fn + G∗

n).

Since Fn, G∗
n ∈ Γ∗(X∗) and dom(Fn+G∗

n) is nonempty by our standing assumption corresponding
to (14), we have Fn + G∗

n ∈ Γ∗(X∗); applying Lemma 3.1 (c), with the help of our assumption
about the sequence (x∗

n) we obtain

(F + G∗)∗ ≥ e– lim supn(Fn + G∗
n)∗,

or v ≥ e– lim supn vn. ¤

Theorem 5.4 Let g, gn ∈ Γ(X), H,Hn ∈ Γ∗(X∗) (n ∈ N), X being reflexive. Suppose (gn)
M
→ g,

(Hn)
M
→ H and −H ≤ e– lim infn(−Hn). Then one has (vn)

M
→ v.

Proof. The result is a consequence of the preceding two propositions, since for any x∗ ∈
dom g∗ ∩ domH one can find a sequence (x∗

n) → x∗ with (g∗n(x∗
n)) bounded from above and from

the upper continuous convergence of (Hn) one gets that Hn(x∗
n) ≤ H(x∗) + 1 for n large enough.

¤

A convergence result for the Hopf–Lax solutions can be deduced from a convergence result
for the Lax–Oleinik solution.
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Theorem 5.5 Suppose X is reflexive, (gn)
M
→ g, (Hn)

M
→ H, with g, gn convex, H, Hn ∈ Γ∗(X∗),

dom gn 6= ∅ for each n ∈ N. Suppose one of the conditions (10), (11), (12) holds. Then (vn)
M
→ v.

Proof. Under our assumptions, we have v = u∗∗ = u, vn = u∗∗
n = un, the l.s.c. hulls of u and

un respectively. Since (un)
M
→ u by Theorem 4.6, we get that (vn) = (un)

M
→ u = v. ¤

Under reinforced assumptions, we can obtain a stronger conclusion.

Theorem 5.6 Let g, gn ∈ Γ(X), H,Hn ∈ Γ∗(X∗) (n ∈ N), X being reflexive. Suppose (gn)
M
→ g,

(Hn)
M
→ H and −H ≤ e– lim infn(−Hn). If u = v, then one has (un)

M
→ u and (vn)

M
→ v.

Proof. Since (gn)
M
→ g, the assumptions g ≤ ew– lim infn gn and e– lim supn gn(x) < ∞ for

some x ∈ X (in fact any x ∈ dom g) of Proposition 5.1 are satisfied, so that v ≤ ew– lim infn vn.
Now, given x∗ ∈ domH we have

−H (x∗) ≤ (e–lim infn(−Hn)) (x∗) ≤ −lim supnHn (x∗) ≤ − (e–lim supnHn) (x∗) ,

so that the assumptions of Proposition 4.2 (a) are satisfied, hence e– lim supn un ≤ u. Since u = v
and since vn ≤ un for every n ∈ N, the conclusion follows. ¤

In the next results we turn to b-convergence.

Proposition 5.7 Let g, gn ∈ Γ(X), H, Hn ∈ Γ∗(X∗) (n ∈ N). Suppose g ≤ b– lim infn gn,
H ≥ b– lim supn Hn and X∗ = R+(dom g∗ − domH). Suppose

(
d((0, 0), epi gn)

)
n

is bounded.
Then, one has v ≤ b– lim infn vn.

Proof. Clearly, we have F ≥ b– lim supn Fn, G ≤ b– lim infn Gn and X∗ × R = R+(domG∗ −
domF ). Since (Gn(xn, 0)) is bounded above, we have G∗ ≥ b– lim supn G∗

n by Theorem 3.2 (b).
Using [51, Th. 30 (b)] we get G∗ + F ≥ b– lim supn(G∗

n + Fn). Taking into account Theorem
3.2 (a), we get (G∗ + F )∗ ≤ b– lim infn(G∗

n + Fn)∗. ¤

In order to give a result with b– lim supn vn, we need auxiliary results of independent interest.
They have to replace Proposition 27 (d) and Theorem 30 (d) in [51], respectively.

Lemma 5.8 Let A,B,An, Bn be nonempty subsets of a Banach space X, the sets A,B being
closed convex and such that X = R+(A − B). Suppose b– lim supn An ⊂ A, b– lim supn Bn ⊂ B.
Then b– lim supn (An ∩ Bn) ⊂ A ∩ B.

Proof. Corollary 25 in [51] asserts that if L : X → Y is a continuous linear map and if
D, Dn (n ∈ N) are nonempty subsets of Y with D closed convex, b– lim supn Dn ⊂ D and if
Y = R+(L(X) − D), then b– lim supn L−1(Dn) ⊂ L−1(D). Taking Y = X × X, L(x) := (x, x)
and D := A × B, Dn := An × Bn, using [51, Lem. 21 (d)], we get the result, the relation
Y = R+(L(X)−D) being an easy consequence of the assumption X = R+(A−B) (see the proof
of [51, Prop. 27]). ¤

Lemma 5.9 Let f, g, fn, gn be functions on a Banach space X, with f, g ∈ Γ(X). Suppose that
f ≤ b– lim infn fn, g ≤ b– lim infn gn and X = R+(dom f −dom g). Then f + g ≤ b– lim infn(fn +
gn).

Proof. We follow the line of the proof of [51, Th. 30]. Again, we introduce B, C, Bn, Cn, E,
En as the epigraphs of f , g, fn, gn, f + g, fn + gn respectively and we set

D := {(x, r, x, s) | x ∈ X, r, s ∈ R}.
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We observe that the epigraph E of f + g is obtained as E = T (A) with A := (B ×C)∩D, where
T : W := (X × R)2 → V := X×R is given by T (x, r, y, s) = (x, r+s). The epigraph En of fn+gn

is also given by En = T (An) with An := (Bn × Cn) ∩ D. The relation X = R+(dom f − dom g)
yields X × R × X × R = R+(B × C − D). By Lemma 5.8 we get b– lim supn An ⊂ A. Then we
apply Proposition [51, Prop. 8 (d)] by checking its condition (15):

∀p > 0, ∃q > 0, ∃m ∈ N, ∀n ≥ m : T (An) ∩ pUV ⊂ T (An ∩ qUW ).

Given p > 0, we use [51, Lem. 29] and the fact that f and g are bounded below on bounded
sets (they are bounded below by continuous affine functions) f ≤ b– lim infn fn, g ≤ b– lim infn gn

to get ℓ > 0 and m ∈ N such that −ℓ ≤ inf fn(pUX), −ℓ ≤ inf gn(pUX) for n ≥ m. Taking
q := p + ℓ we obtain the desired condition. Thus, we get b– lim supn En ⊂ E, i.e. the conclusion
f + g ≤ b– lim infn(fn + gn). ¤

We are now in a position to state and prove a result about b– lim supn vn.

Proposition 5.10 Let g ∈ Γ(X), H,Hn ∈ Γ∗(X∗) (n ∈ N). Suppose g ≥ b– lim supn gn, H ≤
b– lim infn Hn and X∗ = R+(dom g∗ − domH). Suppose there exists a bounded sequence (x∗

n) in
X∗ such that (g∗n(x∗

n)) and (Hn(x∗
n)) are bounded above. Then, one has v ≥ b– lim supn vn.

Proof. Since g ≥ b– lim supn gn, we have G ≥ b– lim supn Gn and by Theorem 3.2 (a), G being
convex, we get G∗ ≤ b– lim infn G∗

n. Now, since H ≤ b– lim infn Hn we have F ≤ b– lim infn Fn.
The condition X∗×R = R+(domG∗− domF ) being again satisfied, Lemma 5.9 yields F + G∗ ≤
b– lim infn(Fn +G∗

n). Our assumptions guarantee that Fn +G∗
n is convex and (d(0, epi(Fn + G∗

n)))
is bounded. Thus, Theorem 3.2 (d) entails that v ≥ b– lim supn vn. ¤

The following theorem is our main result.

Theorem 5.11 Let g, gn ∈ Γ(X), H, Hn ∈ Γ∗(X∗) (n ∈ N). Suppose (gn)
b
→ g, (Hn)

b
→ H and

X∗ = R+(dom g∗ − domH). Then (vn)
b
→ v.

Moreover, if X is reflexive, one has v = u and vn = un for n large enough.

Proof. Since (gn)
b
→ g we can find a converging sequence (xn) such that (gn(xn)) is bounded

above, so that v ≤ b– lim infn vn by Proposition 5.7. Since X∗ = R+(dom g∗ − domH) and since

(Fn)
b
→ F , (G∗

n)
b
→ G∗, by the Robinson–Ursescu theorem and the cancelation lemma, there exist

r, p > 0 such that
rUX∗×R ⊂ [Fn ≤ p] ∩ pUX∗×R − [G∗

n ≤ p] ∩ pUX∗×R (15)

for n large enough ([10], [12, Rem. 1 b)], [53, Lem. 3.5]). Thus, there exists a bounded sequence
(x∗

n) in X∗ such that (g∗n(x∗
n)) and (Hn(x∗

n)) are bounded above. Hence, by Proposition 5.10,
v ≥ b–lim supn vn, and so the first assertion holds.

Let us prove the second part, assuming X is reflexive. Again we have X∗×R = R+(domG∗−
domF ). Thus, the Attouch–Brézis theorem ([6], [62]) ensures that v = (G∗ + F )∗ = G∗∗¤F ∗ =

G¤F ∗ = u. On the other hand, since (G∗
n)

b
→ G∗ and (Fn)

b
→ F , we have X∗×R = R+(domG∗

n−
domFn) for n large enough ([10], [12, Rem. 1 b)], [53, Lem. 3.5]). Thus, as above, we get vn = un

for n large enough. ¤

Let us compare the qualification condition of the preceding theorem with condition (10). For
such a purpose we need the following statement of independent interest.
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Proposition 5.12 (a) Let W , X be n.v.s., let Φ : W ×X → R be such that for some α, β, γ > 0,
for every w ∈ αBW one can find x ∈ βBX with Φ(w, x) ≤ γ. Then, for all w∗ ∈ W ∗, x∗ ∈ X∗,
one has

Φ∗(w∗, x∗) ≥ α ‖w∗‖ − β ‖x∗‖ − γ. (16)

(b) In particular, if W , X are Banach spaces and if Φ ∈ Γ(W × X) is such that W =
R+ PrW (domΦ), then the preceding estimate holds.

(c) Let f, g ∈ Γ(X) be such X = R+(dom f − dom g). If X is complete then there exist
α, β, γ > 0 such that for all x∗, y∗ ∈ X∗

f∗(x∗) + g∗(y∗) ≥ α(‖x∗‖ + ‖y∗‖) − β ‖x∗ + y∗‖ − γ.

Proof. (a) Given w∗ ∈ W ∗, x∗ ∈ X∗, setting p(w) := inf{Φ(w, x) − 〈x∗, x〉 : x ∈ X} for
w ∈ W , one gets

p(w) ≤ inf{Φ(w, x) − 〈x∗, x〉 : x ∈ βBX} ≤ γ + β ‖x∗‖ + ιαBW
(w).

Therefore

Φ∗(w∗, x∗) = p∗(w∗) ≥ sup
w∈W

(〈w∗, w〉 − γ − β ‖x∗‖ − ιαBW
(w)) = α ‖w∗‖ − β ‖x∗‖ − γ.

(b) The existence of constants α, β, γ > 0 satisfying the assumption of (a) follows from the
hypothesis and the Robinson–Ursescu theorem (see [62, Prop. 2.7.2]).

(c) Let us take W = X, and set Φ(w, x) = f(x) + g(w + x). Then Φ ∈ Γ(W × X) and, as
easily seen,

Φ∗(w∗, v∗) = f∗(v∗ − w∗) + g∗(w∗).

Moreover PrW (domΦ) = dom g − dom f , so that the assumptions of (b) are satisfied. Thus, one
can find some positive constants α′, β′, γ′ > 0 such that, for all x∗, y∗ ∈ X∗, taking v∗ := x∗ +y∗,
w∗ := y∗ we get

f∗(x∗) + g∗(y∗) = Φ∗(y∗, x∗ + y∗) ≥ α′ ‖y∗‖ − β′ ‖x∗ + y∗‖ − γ′.

Interchanging the roles of f and g, we can find some constants α′′, β′′, γ′′ > 0 such that for all
x∗, y∗ ∈ X∗

g∗(y∗) + f∗(x∗) ≥ α′′ ‖x∗‖ − β′′ ‖x∗ + y∗‖ − γ′′.

Adding side by side these two relations we get the conclusion with α := 1
2 min(α′, α′′), β :=

1
2(β′ + β′′), γ := 1

2(γ′ + γ′′). ¤

Now let us show that (10) is a consequence of the relation X∗ = R+(dom g∗ − domH) when

g, gn ∈ Γ(X), H, Hn ∈ Γ∗(X∗) (n ∈ N) are such that (gn)
b
→ g, (Hn)

b
→ H. Let F, Fn and G,Gn

be as in relations (4), (5). Then (Fn)
b
→ F , (G∗

n)
b
→ G∗. We first observe that the Robinson–

Ursescu theorem and these convergences yield m ∈ N and constants α, β, γ > 0 such that for
every n ≥ m, (w∗, s∗) ∈ αBX∗×R one can find (x∗, t∗) ∈ βBX∗×R with Φn((w∗, s∗), (x∗, t∗)) :=
Fn(x∗, t∗) + G∗

n(w∗ + x∗, s∗ + t∗) ≤ γ. The preceding proposition ensures that

F ∗
n(x, t) + Gn(y, s) ≥ α(‖(x, t)‖ + ‖(y, s)‖) − β ‖(x + y, s + t)‖ − γ

for all n ≥ m, (x, t), (y, s) ∈ X ×R. Taking t ≥ 0, s = 0, we get for all n ≥ m, w, x ∈ X, t ∈ R+

(tHn)∗(x) + gn(w − x) ≥ α(‖(x, t)‖ + ‖(w − x, 0)‖) − β ‖(w, t)‖ − γ.

Then, setting q := α−1(βp + p + γ), for every n ≥ m, (w, t) ∈ [un < p] ∩ pUX×R, t ≥ 0 for
x ∈ X \ qUX one has (tHn)∗(x) + gn(w − x) ≥ p. Therefore condition (10) is satisfied.

16



6 Convergence for fixed t > 0

Because our proofs involve auxiliary functions F , G, Fn, Gn, the reader may wonder whether one
would get simpler results when considering the convergence of (un(·, t)) and (vn(·, t)) to u(·, t)
and v(·, t) respectively for fixed t > 0. Let us first observe that, for f, fn : X × R → R, one has

ew–lim infnfn ≥ f =⇒
[
∀t ∈ R : ew–lim infnfn(·, t) ≥ f(·, t)

]
, (17)

[
∀t ∈ R : e–lim supnfn(·, t) ≤ f(·, t)

]
=⇒ e–lim supnfn ≤ f. (18)

Thus Mosco convergence of (fn) and Mosco convergence for (fn(·, t)) for all t are a priori inde-
pendent properties.

However, a direct analysis shows that convergence results for (un(·, t)) and (vn(·, t)) for all
t ∈ P are not very different from the results above for (un) and (vn), at least for epiconvergence
and Mosco convergence. Let us give details for the convenience of the reader. For the sake of
simplicity, here we use assumptions bearing on the sequence (H∗

n) rather than assumptions on the
sequence (Hn). We could also use condition (11) or (12). In view of implication (17) it is only in
the case of assumption (20) below that the analysis for fixed t provides a new result. Moreover,
since implication (17) with b−convergence instead of epiconvergence is not known to us, in this
case one has to devise direct proofs which follow the same type of arguments.

Proposition 6.1 Let g, gn : X → R, let H, Hn : X → R and let t ∈ P.
(a) Suppose g ≥ e– lim supn gn and H∗ ≥ e– lim supn H∗

n. Then u(·, t) ≥ e– lim supn un(·, t).
(b) Suppose g ≥ b– lim supn gn and H∗ ≥ b– lim supn H∗

n. Then u(·, t) ≥ b– lim supn un(·, t)
provided the following condition holds:

∀p∈ P, ∃q ∈ P, ∀x ∈ [u(·, t) < p] ∩ pUX : u(x, t) = inf{(tH)∗(w) + g(x − w) : w ∈ qUX}. (19)

(c) Suppose g ≤ ew–lim infn gn, H∗ ≤ ew–lim infn H∗
n and X is reflexive. Then u(·, t) ≤ ew–

lim infn un(·, t) provided the following condition holds:

∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀x ∈ [un(·, t) < p] ∩ pUX :

un(x, t) = inf{gn(x − z) + (tHn)∗(z) : z ∈ qUX}. (20)

(d) Suppose g ≤ b–lim infn gn and H∗ ≤ b–lim infn H∗
n. Then u(·, t) ≤ b–lim infn un(·, t)

provided the preceding condition holds.

Proof. (a) Let x ∈ X and r > u(x, t). There exists some w ∈ X such that g(x − w) +
(tH)∗(w) < r. Since g ≥ e– lim supn gn, H∗ ≥ e– lim supn H∗

n, we can find sequences (wn) → w,
(zn) → x − w such that lim supn gn(zn) ≤ g(x − w) and lim supn H∗

n(t−1wn) ≤ H∗(t−1w). Then
(xn) := (wn + zn) → x and

lim supnun(xn, t) ≤ lim supn

(
gn(zn) + tH∗

n(t−1wn)
)
≤ g(x − w) + (tH)∗(w) < r.

Since r can be taken arbitrarily close to u(x, t), this shows that u(·, t) ≥ e– lim supn un(·, t).
(b) The proof is similar, replacing (x, r) by a bounded sequence ((xn, rn)) such that rn >

u(xn, t).
(c) Let (x, r) be the weak limit of a bounded sequence ((xn, rn)) such that (xn, rn) ∈ epiun(·, t)

for each n in an infinite subset K of N. Condition (20) yields a bounded sequence (zn) of X such
that gn(xn − zn) + (tHn)∗(zn) < rn + 2−n for all n ∈ K. Taking a subsequence if necessary,
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we may assume that (zn) weakly converges to some z ∈ X which is reflexive. Then (xn − zn)
converges to x − z, hence

r ≥ lim infngn(xn − zn) + lim infntH∗
n(t−1zn) ≥ g(x − z) + tH(t−1z) ≥ u(x, t)

and the conclusion holds.
(d) The proof is similar, avoiding weak convergence and reflexivity. ¤

Corollary 6.2 (a) Suppose (gn)
M
→ g and (Hn)

M
→ H. If X is reflexive and if condition (20)

holds, then, for all t ∈ P one has (un(·, t))
M
→ u(·, t).

(b) Suppose (gn)
b
→ g and (Hn)

b
→ H. If conditions (19) and (20) hold, then, for all t ∈ P

one has (un(·, t))
b
→ u(·, t).

Let us turn to Hopf–Lax solutions. For Propositions 5.1 and 5.7, the same assumptions give
v(·, t) ≤ e– lim infn vn(·, t) and v(·, t) ≤ b–lim infn vn(·, t) for all t ∈ P, respectively (with similar
proofs). Taking into account (17), one expects to have to strengthen the hypotheses of Proposition
5.3 in order to obtain v(·, t) ≥ e–lim supn vn(·, t) for t ∈ P. Indeed, to obtain this conclusion,
besides the hypotheses of Proposition 5.3 we have to assume that (Hn) is equi-bounded from
below on bounded sets. On the other hand, under the assumptions of Proposition 5.10, we obtain
also that v(·, t) ≥ b–lim supn vn(·, t) for every t ∈ P. The same hypotheses as in Theorem 5.4

yield vn(·, t)
M
→ v(·, t) for t ∈ P. Indeed, because (Hn)

M
→ H we have that (Hn) is equi-bounded

from below on bounded sets.

7 Convergence properties of arbitrary solutions

In this section, we deal with sequences of arbitrary solutions in the sense of viscosity ([33], [34]).
For simplicity, we suppose throughout that X is reflexive and we limit ourselves to some cases
which may give the flavor of further developments. We will use two comparison results taken
from [46], [48] (see also [1], [38] for related results).

Part of our analysis can be given for the equations

J
(
x, t, u(x, t), Du(x, t),

∂

∂t
u(x, t)

)
= 0, (21)

Jn

(
x, t, u(x, t), Du(x, t),

∂

∂t
u(x, t)

)
= 0, (22)

where J, Jn : X × R
2 × X∗ × R → R are given functions. Such equations obviously include (1).

In order to get some flexibility, we formulate notions of solution which involve a general concept
of subdifferential. Such an approach can be considered as an enlargement of the notion of viscosity
solution, which, in Asplund spaces corresponds to the choice of the Fréchet subdifferential. By a
subdifferential on a class F(Z) of functions on a n.v.s. Z we mean a set-valued map ∂ : F(Z)×Z ⇒

Z∗ which assigns to a pair (f, z) ∈ F(Z) × Z a subset ∂f(z) of Z∗ which is empty if f(z) is not
finite. Moreover we require the following condition:

(C) if f is a convex function finite at z, then ∂f(z) = {z∗ ∈ Z∗ : f(·) ≥ z∗(·)− z∗(z) + f(z)}.

In the next statement we also use the following condition which is satisfied by most subdifferen-
tials:

(C’) if f is concave, finite at z and if z∗ ∈ ∂f(z), then −z∗ ∈ ∂(−f)(z).
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Given a subdifferential ∂ one says that u is a supersolution (resp. subsolution) to (21) if for all
(x, t) ∈ X×P and all (p, q) ∈ ∂u(x, t) (resp. (p, q) ∈ −∂(−u)(x, t)) one has J(x, t, u(x, t), p, q) ≥ 0
(resp. J(x, t, u(x, t), p, q) ≤ 0). We say that u is a lower solution (resp. upper solution) to
(21) if for all (x, t) ∈ X × P and all (p, q) ∈ ∂u(x, t) (resp. (p, q) ∈ −∂(−u)(x, t)) one has
J(x, t, u(x, t), p, q) ≤ 0 (resp. J(x, t, u(x, t), p, q) ≥ 0). A supersolution which is also a subsolution
is called a viscosity solution (for ∂). A first comparison between these concepts is inspired by
[18], [19]. Its assumption on J is satisfied when J(x, t, r, p, q) = q +H(p) with H convex and l.s.c.

Proposition 7.1 Let ∂ be the Fréchet subdifferential and let X be reflexive. Suppose there exists
a l.s.c. and quasiconvex function K such that J(x, t, r, p, q) = K(x, t, p, q) for all (x, t, r, p, q).
Then a continuous function u is a lower solution to (21), if, and only if, it is a subsolution to
(21).

Proof. Let u be a lower solution. By [24, Thm 3.6.5], given (x, t) ∈ X × P and (p, q) ∈
−∂(−u)(x, t) and taking a sequence (εn) → 0+, we can find (pn, qn) ∈ B((p, q), εn) which belongs
to the convex hull of the set ∂u(B((x, t), εn)) := {(p′, q′) ∈ ∂u(x′, t′) : (x′, t′) ∈ B((x, t), εn)}.
For any (p′, q′) ∈ ∂u(x′, t′) with (x′, t′) ∈ B((x, t), εn) we have K(x′, t′, p′, q′) ≤ 0 since u is
a lower solution. Taking a convex combination, we can find (xn, tn) ∈ B((x, t), εn) such that
K(xn, tn, pn, qn) ≤ 0. Passing to the limit, we get K(x, t, p, q) ≤ lim infn K(xn, tn, pn, qn) ≤ 0.
Thus u is a subsolution.

The converse is similar, using [24, Thm 3.6.6]. ¤

When u is convex, another comparison can be made between these concepts.

Proposition 7.2 Suppose ∂ satisfies (C’). Let u : X × R → R be a convex function.
(a) If u is a lower solution to (21), then u is a subsolution to (21).
(b) If u is an supersolution to (21), then u is an upper solution to (21).

Proof. Let (p, q) ∈ −∂(−u)(x, t). Then u(x, t) is finite and by (C’), one has (p, q) ∈ ∂u(x, t),
so that J(x, t, u(x, t), p, q) ≤ 0. This shows that u is a subsolution to (21). The proof of assertion
(b) is similar. ¤

Theorem 7.3 Suppose X is finite dimensional and ∂ satisfies (C) and (C’). Let J, Jn : X×R
2×

X∗ × R → R and let wn : X × R → R (n ∈ N) be l.s.c. and proper.
(a) Suppose J ≤ e– lim infn Jn and, for all n ∈ N, wn is a convex lower solution to equation

(22). Then (wn) has a subsequence which epiconverges to a lower solution to (21).
(b) Suppose −J ≤ e– lim infn(−Jn) and, for all n ∈ N, wn is a convex supersolution to

equation (22). Then (wn) has a subsequence which epiconverges to a supersolution to (21).
(c) Suppose J ≤ e– lim infn Jn and, for all n ∈ N, wn is a convex lower solution of equation

(22). Then (wn) has a subsequence which epiconverges to a lower solution to (21) which is also
a subsolution to (21).

(d) Suppose J ≤ e– lim infn Jn and −J ≤ e– lim infn(−Jn). If (wn) is a sequence of convex
viscosity solutions to (22), then (wn) has a subsequence which epiconverges to a viscosity solution
to (21).

Proof. (a) Transposing to functions the Zarankiewicz theorem ([3, Th. 2.22], [8, Th. 1.1.7]),
for any subsequence of (wn) we can find a further subsequence (wk(n)) which epiconverges to
some l.s.c. function w. Since w is convex, either it is proper or does not take a finite value. In
the later case, there is nothing to prove, so that we may suppose w is proper. Let (x, t) ∈ domw
and let (p, q) ∈ ∂w(x, t). The Attouch theorem ([2], [3]) provides a sequence ((xn, tn, pn, qn)) →
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(x, t, p, q) such that (wn(xn, tn)) → w(x, t) and (pn, qn) ∈ ∂wk(n)(xn, tn) for all n ∈ N. Since
J ≤ e– lim infn Jn and since wn is a lower solution of (22), we have

J(x, t, w(x, t), p, q) ≤ lim infnJk(n)(xn, tn, wn(xn, tn), pn, qn) ≤ 0

so that w is a lower solution.
(b) The proof is similar to that in (a), changing J into −J .
(c) Let (wk(n)) be a subsequence of (wn) which epiconverges to some l.s.c. function w. Then,

w being convex and a lower solution to (21), it is also a subsolution to (21) by the preceding
proposition.

(d) We can apply (b) and (c) to a subsequence (wk(n)) which epiconverges. ¤

When w satisfies a boundary condition, and when some uniqueness property holds, assertion
(d) can produce a convergence result for the whole sequence. See [1], [15], [16], [40], [58] for a
sample of uniqueness results.
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[4] H. Attouch and D. Azé, Approximation and regularization of arbitrary functions in Hilbert
spaces by the Lasry-Lions method, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 10 (1993),
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Toulouse, 1990.

[56] R.T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1997.

[57] J.-M. Roquejoffre, Convergence to steady states or periodic solutions in a class of Hamilton–
Jacobi equations, J. Math. Pures Appl., IX. Sér. 80 (2001), 85–104.
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