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Given a convergent sequence of Hamiltonians (H n ) and a convergent sequence of initial data (g n ), we look for conditions ensuring that the sequences (u n ) and (v n ) of Lax solutions and Hopf solutions respectively converge. The convergences we deal with are variational convergences. We take advantage of several recent results giving criteria for the continuity of usual operations.

Introduction

The question of stability of solutions to the Hamilton-Jacobi equations is treated in several references (see [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF], [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF], [START_REF] Briani | Convergence of Hamilton-Jacobi equations for sequences of optimal control problems[END_REF]...), usually in the sense of local uniform convergence. It is our purpose to study it from the point of view of variational convergences. The reason justifying such an approach lies in the good behavior of these convergences with respect to minimization and their increasing importance in analysis (see [START_REF] Beer | The epi-distance topology: continuity and stability results with applications to convex optimization problems[END_REF], [START_REF] Buttazzo | Semicontinuity, relaxation, and integral representation in the calculus of variations[END_REF], [START_REF] Buttazzo | Γ-convergence and optimal control problems[END_REF], [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF], [START_REF] Maso | An introduction to Γ-convergence[END_REF], [START_REF] Rockafellar | Variational Analysis[END_REF]). In view of the links of Hamilton-Jacobi equations with optimal control theory (see [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations and optimal control[END_REF], [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF], [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF], [START_REF] Lions | Generalized Solutions of Hamilton-Jacobi Equations[END_REF], [START_REF] Loreti | Semigroup approach for the approximation of a control problem with unbounded dynamics[END_REF], [START_REF] Vinter | Optimal Control[END_REF] among many other references), such a reason is sensible. Also variational convergences are compatible with important operations (under some qualification conditions) and are adapted to extended real-valued functions. Recent studies allow such a generality ( [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF], [START_REF] Penot | Duality methods for the study of Hamilton-Jacobi equations[END_REF] and their references). We also make use of continuity results of the Legendre-Fenchel transform for these convergences.

Given a Banach space X with dual X * and functions g : X → R ∞ := R ∪ {+∞}, H : X * → R ∞ , the Hamilton-Jacobi equation is

∀(x, t) ∈ X × R + ∂ ∂t u(x, t) + H(Du(x, t)) = 0, ( 1 
)
∀x ∈ X u(x, 0) = g(x), (2) 
where u : X × R + → R ∞ is the unknown function (extended by ∞ := +∞ on X × (-P) where P denotes the set of positive real numbers), and Du (resp. ∂ ∂t u) denotes the derivative of u with respect to its first (resp. second) variable. Usually one considers the following question: if (g n ) and (H n ) converge to functions g and H respectively, does a sequence (u n ) of solutions to the Hamilton-Jacobi equations associated with (g n ) and (H n ) converges to a solution of the Hamilton-Jacobi equation associated with g and H? Other questions arise. For instance one may wonder whether any solution u of the Hamilton-Jacobi equation associated with g and H is the limit of a sequence (u n ) of solutions of the Hamilton-Jacobi equations associated with (g n ) and (H n ). These two different questions amount to the upper semicontinuity and the lower semicontinuity of the solution multifunction (g, H) ⇒ S(g, H) respectively. Corresponding questions arise for the subsolution and the supersolution multifunctions too. The involved convergence is often taken to be the uniform convergence on compact subsets and the space X is supposed to be finite dimensional ( [START_REF] Ball | Weak convergence theorems for nonlinear partial differential equations of first and second order[END_REF], [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF], [START_REF] Roquejoffre | Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations[END_REF]...).

Here we tackle different questions. We look for conditions ensuring that the explicit Hopf-Lax and Lax-Oleinik solutions converge to the corresponding explicit solutions associated with g and H ( [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF], [START_REF] Imbert | On vectorial Hamilton-Jacobi equations[END_REF], [START_REF] Lions | Hopf formula and multitime Hamilton-Jacobi equations[END_REF], [START_REF] Penot | Explicit solutions of Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF], [START_REF] Penot | Duality methods for the study of Hamilton-Jacobi equations[END_REF], [START_REF] Penot | Duality methods for the study of Hamilton-Jacobi equations[END_REF], [START_REF] Strömberg | On viscosity solutions of the Hamilton-Jacobi equation[END_REF], [START_REF] Strömberg | The Hopf-Lax formula gives the unique viscosity solution[END_REF]...). Recall that these solutions are defined respectively by v(x, t) := (g * + tH) * (x) for (x, t) ∈ X × R + , ∞ else, u(x, t) := (g (tH) * ) (x) for (x, t) ∈ X × R + , ∞ else, where f * (resp. h * ) denotes the (Legendre-Fenchel) conjugate of a function f (resp. h) on X (resp. X * ):

f * (x * ) := sup{ x * , xf (x) : x ∈ X} resp. h * (x) := sup{ x * , xh(x * ) : x * ∈ X * } and stands for the infimal convolution operation given by (g h) (x) := inf{g(xy) + h(y) : y ∈ X}.

In this paper the product 0H(x * ) is interpreted as 0 if H(x * ) < ∞, and ∞ if H(x * ) = ∞, i.e. 0H = ι dom H where dom H := H -1 (R) is the domain of H and ι S denotes the indicator function of a subset S of some space Y , given by ι S (y) = 0 if y ∈ S, ∞ else.

The novelty of our approach lies in the fact that we use epiconvergence, Mosco convergence and related convergences. These convergences, which are briefly described in the next section, have proved to be of interest for variational inequalities, optimization problems and duality questions (see [START_REF] Attouch | Variational convergence for functions and operators[END_REF], [START_REF] Aubin | Set-Valued Analysis[END_REF], [START_REF] Beer | Topologies on closed and closed convex sets[END_REF], [START_REF] Carbone | Unbounded functionals in the calculus of variations[END_REF], [START_REF] Maso | An introduction to Γ-convergence[END_REF], [START_REF] Rockafellar | Variational Analysis[END_REF] for comprehensive treatments). Since here the Legendre-Fenchel duality is involved, it is natural to use them. Moreover, since the data functions and the solutions may take the value ∞, local uniform convergence is not appropriate, without speaking of the lack of local compactness of X when we do not assume X is finite dimensional.

One of the interests of our results lies in the fact that it enables to use regularization processes. It is known that, for a lower semicontinuous (for short l.s.c.) proper convex function f on a Hilbert space, its Moreau-Yosida regularization f ε is of class C 1 and converges to f as ε → 0 for the Mosco convergence and for the bounded convergence ([21, Th. 7.3.8]); using our stability results one can approach the solution of the Hamilton-Jacobi equation by the solutions of the equations obtained by regularizing g or H. That would not be possible without using variational convergences, unless one requires stringent assumptions.

Throughout X is a Banach space; we endow a product of normed vector spaces (for short n.v.s.) with the box norm except in the case it is a dual space, in which case we take the dual norm. We denote by cl A or A the closure of a subset A of X and by Γ(X) (resp. Γ * (X * )) the set of l.s.c. proper convex functions on X (resp. X * which are weak * l.s.c.). Given a function

f and r ∈ R, we set [f ≤ r] := f -1 ([-∞, r]). The distance of x ∈ X to a subset E of X is d(x, E) := inf{d(x, w) : w ∈ E}, with the usual convention that inf ∅ = ∞.
The remoteness of E is d(0, E). We denote by U X (resp. B X ) the open (resp. closed) unit ball of X.

Preliminaries: variational convergences

Since variational convergences will play a crucial role in the present article, let us recall some basic facts; for more information, see [START_REF] Attouch | Variational convergence for functions and operators[END_REF], [START_REF] Azé | Operations on convergent families of sets and functions[END_REF], [START_REF] Beer | Topologies on closed and closed convex sets[END_REF], [START_REF] Contesse | Continuity of the Fenchel correspondence and continuity of polarities[END_REF], [START_REF] Penot | The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity[END_REF], [START_REF] Penot | Preservation of persistence and stability under intersections and operations. I. Persistence[END_REF], [START_REF] Rockafellar | Variational Analysis[END_REF]

... A sequence (C n ) of subsets of X is said to converge in the sense of Painlevé-Kuratowski to a subset C if C = lim sup n C n = lim inf n C n .
Here lim inf n C n is the set of limits of sequences (x n ) such that x n ∈ C n for each n ∈ N large enough and lim sup n C n is the set of cluster points of sequences (x k ) k∈K such that

x k ∈ C k for k in an infinite subset K of N. The sequence (C n ) con- verges in the sense of Mosco to C ⊂ X if C = w-lim sup n C n = lim inf n C n .
Here w-lim sup n C n is the set of weak cluster points of bounded sequences (x k ) k∈K such that x k ∈ C k for k in an infinite subset K of N. If X is a dual space and if in the preceding definition the convergence of (x k ) k∈K is taken with respect to the weak * topology on X, we write w * -lim sup n C n . When the closed unit ball B X of X is w * -sequentially compact (in particular when X is reflexive) w * -lim sup n C n coincides with the w * -sequential limsup.

A sequence (f n ) of functions on X (with values in R := R ∪ {-∞, ∞}) is said to epiconverge to some function f if (epi f n ) n converges in the sense of Painlevé-Kuratowski to epi f , where the epigraph of f is given by epi

f := {(x, r) ∈ X × R : r ≥ f (x)}.
Then, we write

(f n ) e → f or f = e-lim n f n . If (epi f n ) n Mosco-converges to epi f , we write (f n ) M → f . We write f = e w -lim inf n f n (resp. f = e w * -lim inf n f n ) to mean that epi s f ⊂ T -lim sup n (epi f n ) ⊂ epi f
where T is the weak topology (resp. T is the weak * topology on X when X is a dual space) and epi s f is the strict epigraph of f defined by

epi s f := {(x, r) ∈ X × R : r > f (x)};
e-lim sup n f n stands for the function whose epigraph is lim inf n (epi f n ).

Other convergences are of interest, in particular for what concerns the continuity of usual operations such as sums of sets or functions, intersections of sets... It is not our purpose to review here the many possible variants. We just consider the main instances. Recall that for two nonempty subsets A, B of X the excess of A over B is given by e(A, B) := sup Again, one can pass from these convergences of sets to convergences of functions. Accordingly, for a sequence (f n ) of functions on X and a function f on X, we write

We write symbolically

A ⊂ b-lim inf n A n if (e p (A, A n )) n → 0 for each p ∈ P and A ⊃ b-lim sup n A n if (e p (A n , A)) n → 0 for each p ∈ P. Let us note that A ⊂ lim inf n A n whenever A ⊂ b-lim inf n A n and that A ⊃ lim sup n A n whenever A ⊃ b-lim sup n A n . If X is finite dimensional,
f ≥ b-lim sup n f n if epi f ⊂ b-lim inf n (epi f n ) and f ≤ b-lim inf n f n if epi f ⊃ b-lim sup n (epi f n ). Of course, writing (f n ) b → f when (epi f n ) b → epi f means that f ≤ b-lim inf n f n and f ≥ b-lim sup n f n .
This type of convergence we call bounded (or bounded-Hausdorff) convergence has been thoroughly studied in [START_REF] Attouch | Quantitative stability of variational systems: I. The epigraphical distance[END_REF], [START_REF] Azé | Operations on convergent families of sets and functions[END_REF] [21], [START_REF] Beer | Convex optimization and the epi-distance topology[END_REF], [START_REF] Penot | Bounded (Hausdorff) convergence: basic facts and applications[END_REF]; it is also called the Attouch-Wets convergence or the epidistance convergence. The terminology we use is motivated by the fact that for a family of linear continuous forms f, f n (n ∈ N) on X one has (f n ) b → f if and only if ( f nf ) → 0. Using these definitions in terms of epigraphs and the elementary observations made above (see also [51, Section 2]) we note the following implications:

f ≥ b-lim sup n f n =⇒ f ≥ e-lim sup n f n and, if f is weakly l.s.c., f ≤ b-lim inf n f n =⇒ f ≤ e w -lim inf n f n , f = b-lim n f n =⇒ f = M -lim n f n .

Continuity of the Fenchel transform

In the present section we gather some results which have been established elsewhere, in particular in [START_REF] Attouch | Variational convergence for functions and operators[END_REF], [START_REF] Aubin | Set-Valued Analysis[END_REF], [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF], [START_REF] Beer | Conjugate convex functions and the epi-distance topology[END_REF], [START_REF] Contesse | Continuity of the Fenchel correspondence and continuity of polarities[END_REF], [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF], [START_REF] Penot | Continuity of the Legendre-Fenchel transform for some variational convergences[END_REF], concerning continuity of the Legendre-Fenchel transform and continuity properties of operations such as the addition and the infimal convolution. A scheme like this has already been used for interpreting initial conditions (see [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF], [START_REF] Penot | Explicit solutions of Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF]).

Giving assumptions ensuring a form of continuity of the Legendre-Fenchel transform will be crucial for the sequel. Assertions (a) and (b) below are well known and elementary. Assertion (c) and (d) are sequential versions of [START_REF] Penot | Continuity of the Legendre-Fenchel transform for some variational convergences[END_REF]Th. 2,Th. 3]. Assertion (e) is proved in [START_REF] Wenczel | Slice convergence of parametrised sums of convex functions in non-reflexive spaces[END_REF] and [START_REF] Zȃlinescu | Slice convergence for some classes of convex functions[END_REF]Prop. 9] for the slice convergence under the stronger assumption that there exists x ∈ X such that (e-lim sup n f n )(x) < ∞ but without the reflexivity hypothesis; here reflexivity allows to deduce it from assertion (c). Assertion (f) is a classical result of Mosco [START_REF] Mosco | Convergence of convex sets and of solutions of variational inequalities[END_REF]. 

g n ) * ≤ e w -lim inf n g * n . (c) Let (f n ) be a sequence of Γ(X) such that (d((0, 0), epi f * n )) is bounded. Then e-lim sup n f n = (e w * -lim inf n f * n ) * . (d) Let (f n ) be a sequence of Γ(X). Assume that there exists x ∈ X such that (e-lim sup n f n )(x) and (e-lim inf f n )(x) are finite. Then e-lim sup n f n = (e w * -lim inf n f * n ) * . (e) Let f, f n (n ∈ N) in Γ(X), X being reflexive. Assume that (d((0, 0), epi f n )) is bounded. If f ≤ e w -lim inf n f n then e-lim sup n f * n ≤ f * . (f ) Let f, f n (n ∈ N) in Γ(X), X being reflexive. If (f n ) M → f , then (f * n ) M → f * .
In the following statement, we recall the fact that the Fenchel transform is continuous for the b-convergence ( [START_REF] Attouch | On some inverse stability problems for the epigraphical sum[END_REF], [START_REF] Beer | Conjugate convex functions and the epi-distance topology[END_REF], [START_REF] Beer | Topologies on closed and closed convex sets[END_REF], [START_REF] Penot | The cosmic Hausdorff topology, the bounded Hausdorff topology and continuity of polarity[END_REF], [START_REF] Penot | Continuity of the Legendre-Fenchel transform for some variational convergences[END_REF]). The assertions (a), (b), (c) are just the corresponding assertions of [START_REF] Penot | Continuity of the Legendre-Fenchel transform for some variational convergences[END_REF]Th. 14],

Theorem 3.2 Let f, f n : X → R ∞ (n ∈ N) be proper functions and let h, h n ∈ Γ * (X * ) (n ∈ N). (a) If f ≥ b-lim sup n f n , and if f is convex, then one has f * ≤ b-lim inf n f * n . (b) If f ≤ b-lim inf n f n , if f n is convex for every n and if (d((0, 0), epi f n )) is bounded, then one has f * ≥ b-lim sup n f * n . (c) If (f n ) b → f , if f n is convex for every n, then one has (f * n ) b → f * . (d) If h ≤ b-lim inf n h n , and (d((0, 0), epi h n )) is bounded, then one has h * ≥ b-lim sup n h * n .
Let us note that in assertion (b) the assumption that (d((0, 0), epi f n )) is bounded cannot be dropped, as shown by the example f n = n, f arbitrary with nonempty domain. In assertion (c) this condition is ensured by the convergence of (f n ) to f and the assumption that f has a nonempty domain.

Another continuity result can be obtained by replacing the convexity assumption by a coercivity assumption (see [START_REF] Penot | Continuity of the Legendre-Fenchel transform for some variational convergences[END_REF]Cor. 20]). Here we say that a function f : X → R ∞ is hypercoercive if f (x)/ x → ∞ when x → ∞ and we say that a family (f i ) i∈I is equi-hypercoercive if lim x →∞ f i (x)/ x = ∞ uniformly for i ∈ I.

Theorem 3.3 Let (f n ) be a family of functions from X to R ∞ which is equi-hypercoercive. Sup- pose (f n ) b → f , where f is bounded below on bounded subsets. Then (f * n ) b → f * . Moreover, f * is bounded on bounded sets and (f * n ) → f * uniformly on bounded sets.

Convergence of Lax-Oleinik solutions

We devote this section to convergence results of Lax-Oleinik solutions. Given g, H and sequences (g n ), (H n ), we look for conditions ensuring that the sequence (u n ) of Lax-Oleinik solutions u n associated with (g n , H n ) converges to the Lax-Oleinik solution u associated with (g, H) when (g n , H n ) converges to (g, H). We deduce these results from the continuity results of the preceding section and from general convergence properties for infimal convolutions. For the proofs of these last properties, we refer to [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF]. Here we use the (sequential) asymptotic function of a function h : X → R with respect to a topology T on X, defined by

h ∞ (x) := inf{lim inf n t -1 n h(t n x n ) : (t n ) → ∞, (x n ) T → x}.
We say that a set C is (sequentially) asymptotically compact for the topology T on X if for any sequence (c n ) n∈N in C with ( c n ) → ∞ there exists an infinite set P ⊂ N such that (c n / c n ) n∈P T -converges to some u = 0. We say that a function h is (sequentially) asymptotically compact for the topology T if its epigraph is asymptotically compact.

In the sequel, we will take for T either the weak topology or the weak * topology. The following example which refines [51, Example 3] will be used in a proof below; it shows that the notion of asymptotic compactness is present in some interesting cases.

Example 1 Let X be a reflexive Banach space, let Y be a finite dimensional normed vector space and let ϕ : X × Y → R, a, b, c ∈ P be such that ϕ(x, y) ≥ a xb yc for any (x, y) ∈ X × Y with sufficiently large norm. Then E := epi ϕ is weakly asymptotically compact. In fact, for any sequence ((

x n , y n , λ n )) n of epi ϕ with (r n ) → ∞ for r n := (x n , y n , λ n ) := max( x n , y n , |λ n |),
taking a subsequence, we may assume that (r -1 n (x n , y n , λ n )) n has a weak limit (u, v, µ). When (v, µ) = (0, 0), the conclusion (u, v, µ) = (0, 0, 0) holds. When (v, µ) = (0, 0), we have r n = x n for n large enough and then λ n ≥ ar n -b y n -c; dividing by r n and observing that (r -1 n y n ) → 0, we obtain a contradiction.

We first consider upper epilimits of solutions. We rely on a general result for infimal convolutions; while for the usual upper epilimits the convergence result is simple and immediate, for the b-lim sup a qualification condition is needed.

Lemma 4.1 ([51, Prop. 6, Example 4]) Let f, g, f n , g n : X → R (n ∈ N) be proper functions. (a) If f ≥ e-lim sup n f n and g ≥ e-lim sup n g n , then f g ≥ e-lim sup n (f n g n ).
(b) Assume that f ≥ b-lim sup n f n and g ≥ b-lim sup n g n . Then f g ≥ b-lim sup n (f n g n ) whenever one of the following conditions holds:

(b 1 ) for any sequences

(w n ), (x n ) such that (w n ) is bounded and (f (x n ) + g(w n -x n )) is majorized, the sequence (x n ) is bounded, or, more generally, ∀p ∈ P, ∃q ∈ P, ∀w ∈ [f g < p] ∩ pU X : (f g) (w) = inf{f (x) + g(w -x) : x ∈ qU X }; (3) (b 2 ) X = X 1 × X 2 , f (x 1 , x 2 ) ≥ a 1 x 1 + a 2 x 2 + c, g(x 1 , x 2 ) ≥ b 1 x 1 + b 2 x 2 + d for all x = (x 1 , x 2 ) ∈ X, with x large enough, where a 1 , a 2 , b 1 , b 2 , c, d ∈ R with a 1 + b 1 > 0, a 2 + b 2 > 0; (b 3 ) X is reflexive, f ∞ (0) ≥ 0, g ∞ (0) ≥ 0, f ∞ (-u) > -g ∞ (u) for each u ∈ X \ {0}
, the asymptotic functions being taken with respect to the weak topology, and f is weakly asymptotically compact.

An application of Lemma 3.1 and of these criteria to our problem yields the following result. In the sequel we set, for (x,

x * , t) ∈ X × X * × R, F (x * , t) := ι epi H (x * , -t), (4) 
G(x, t) := g(x) + ι {0} (t), (5) 
and we define F n and G n in a similar way by changing H and g into H n and g n , respectively. It has been observed in [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF], [START_REF] Penot | Explicit solutions of Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF] (and in a special case in [START_REF] Plazanet | Contributions à l'analyse des fonctions convexes et des différences de fonctions convexes. Application à l'optimisation et à la théorie des[END_REF]) that

F * (x, s) = (sH) * (x) for (x, s) ∈ X × R + , F * (x, s) = ∞ otherwise, and u = F * G. Proposition 4.2 Let g, g n : X → R and let H, H n ∈ Γ * (X * ).
(a) Suppose g ≥ e-lim sup n g n , H ≤ e w * -lim inf n H n , and either X is reflexive and there exists x * ∈ X * such that (e-lim sup n H n )(x * ) < ∞, or there exists x ∈ X such that

-∞ < (e-lim inf n H * n )(x) ≤ (e-lim sup n H * n )(x) < ∞. ( 6 
)
Then u ≥ e-lim sup n u n . (b) Assume that d((0, 0), epi H n ) is bounded, g ≥ b-lim sup n g n and H ≤ b-lim inf n H n .
Then u ≥ b-lim sup u n whenever one of the following conditions holds:

(b 1 ) for any p ∈ P there exists q ∈ P such that for all (w, t)

∈ [u < p] ∩ pU X×R with t ≥ 0 one has u(w, t) = inf{(tH) * (x) + g(w -x) : x ∈ qU X }; (b 2 ) there exist x * ∈ X * , b, c ∈ R, r ∈ R + with x * < b + r such that g ≥ b • + c and H is bounded above on x * + rB X * ; (b 3 ) X is reflexive, g ∞ (0) ≥ 0, g ∞ (-u) > -(ι dom H ) * (u) for each u ∈ X \ {0}
, and H is bounded above on a neighborhood of 0.

Let us observe that assumption (b 2 ) is satisfied when g ≥ b • + c for some b, c ∈ R, and either b > d(0, dom H) or b ≤ 0 and H is bounded above on rU X * for some r > -b. In the first case one takes r = 0 and one picks some x * ∈ dom H such that x * < b; in the second case one takes x * = 0.

Proof. (a) Since epi G = {(x, 0, r) : (x, r) ∈ epi g} and a similar relation for G n , one has G ≥ e-lim sup n G n and since w * -lim sup n (epi H n ) ⊂ epi H one has ι epi H ≤ e w * -lim inf n ι epi Hn . Let us first suppose X is reflexive and there exists x * ∈ X * such that e-lim sup n H n (x * ) < ∞. Then, there exist r ∈ R and a sequence (x * n ) → x * such that for all n one has (x * n , r) ∈ epi H n , hence F n (x * n , -r) = 0 and e-lim sup n F n (x * , -r) < ∞. By Lemma 3.1 (c), we have e-lim sup n F * n ≤ F * . Let us get the same inequality when condition (6) holds. Let us consider f := F * and f n := F n * for n ∈ N, so that, for every x ∈ X one has

H * (x) = sup (x * ,r * )∈epi H (x, -1), (x * , r * ) = (ι epi H ) * (x, -1) = f (x, 1)
and, similarly, H * n (x) = f n (x, 1). Then there exist r, s ∈ R and a sequence (x n ) → x such that lim sup n H * n (x n ) ≤ s and for every sequence (x n ) → x one has r ≤ lim inf n H * n (x n ). Thus (e-lim sup n f n )(x, 1) and (e-lim inf f n )(x, 1) are finite. Then, since f * n = F n , and since for a sequence (E n ) of subsets of X * ×R one has e w * -lim inf

n ι En = ι E for E := w * -lim sup n E n , Lemma 3.1 (d), yields e-lim sup n f n = (e w * -lim inf n F n ) * ≤ F * or e-lim sup n F * n ≤ F * .
Therefore, in both cases, assertion (a) is a direct consequence of the corresponding assertion of the preceding lemma: 3) is obtained by transcribing the present condition in terms of F and G, we obtain that

u = F * G ≥ e-lim sup n F * n G n = e-lim sup n u n . (b) It is clear that G ≥ b-lim sup n G n and F ≤ b-lim inf n F n (since epi H ⊃ b-lim sup n (epi H n )). Using Theorem 3.2 (d), we get b-lim sup n F * n ≤ F * . (b 1 ) Since (
u = F * G ≥ b-lim sup n F * n G n = b-lim sup n u n . (b 2 ) We apply criterion (b 2 ) of the preceding lemma with X 1 = X, X 2 = R. Let x * ∈ X * , b, c ∈ R, m, r ∈ R + be such that g ≥ b • + c, x * < b + r and sup H(x * + rB X * ) ≤ m. Since F * (x, t) = ∞ for t < 0, let us consider (x, t) ∈ X × R + . Then we have F * (x, t) ≥ sup{ x * , x + x * , x -tH(x * + x * ) : x * ∈ rB X * } ≥ (r -x * ) x -m |t| .
Since G(x, t) ≥ b x +(m + 1)•|t|+c for every (x, t) ∈ X ×R, the mentioned criterion is satisfied.

(b 3 ) Since F * is l.s.c. and sublinear, (

F * ) ∞ = F * > -∞, (F * ) ∞ (0) ≥ 0, G ∞ (u, t) = g ∞ (u) + ι {0} (t) and F * (u, 0) = (ι dom H ) * (u) > -g ∞ (-u) for all u ∈ X \ {0}, the condition F * ∞ (-u, -t) > -G ∞ (u, t)
for any (u, t) = (0, 0) is fulfilled. Since H is bounded above by some m ∈ R + on some ball rB X * with r > 0, we have F * (x, t) ≥ r xm |t| for all (x, t) ∈ X × R, so that Example 1 above shows that F * is weakly asymptotically compact. Now we turn to the lower epilimits of sequences of solutions. Again, we recall a general result about infimal convolutions of functions.

Lemma 4.3 ([51, Prop. 17, Cor. 18]) Let f, g, f n , g n : X → R (n ∈ N) be proper functions.
(a) If X is reflexive, f ≤ e w -lim inf n f n and g ≤ e w -lim inf n g n , then f g ≤ e w -lim inf n (f n g n ) whenever the following condition holds: for any infinite subset K of N, for any sequences

(w k ) k∈K , (x k ) k∈K such that (w k ) k∈K is bounded and (f k (x k ) + g k (w k -x k )) k∈K is majorized, the sequence (x k ) k∈K is bounded, or, more generally, ∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀w ∈ [f n g n < p] ∩ pU X : (f n g n ) (w) = inf{f n (x) + g n (w -x) : x ∈ qU X }. ( 7 
) (b) Assume f ≤ b-lim inf n f n , g ≤ b-lim inf n g n and condition (7) holds. Then f g ≤ b-lim inf n (f n g n ).
(c) If X = X 1 × X 2 with X 1 , X 2 reflexive Banach spaces, f ≤ e w -lim inf n f n and g ≤ e w -lim inf n g n , then f g ≤ e w -lim inf n (f n g n ) whenever the following condition holds:

there exist a 1 , a 2 , b 1 , b 2 , c, d ∈ R with a 1 + b 1 > 0, a 2 + b 2 > 0 such that for all x = (x 1 , x 2 ) ∈ X inf n f n (x 1 , x 2 ) ≥ a 1 x 1 + a 2 x 2 + c, inf n g n (x 1 , x 2 ) ≥ b 1 x 1 + b 2 x 2 + d. (8) 
(d) Assume f ≤ b-lim inf n f n and g ≤ b-lim inf n g n and condition (8) holds. Then f g ≤ b-lim inf n f n g n .

(e) If X is reflexive, f ≤ e w -lim inf n f n and g ≤ e w -lim inf n g n , then f g ≤ e w -lim inf n f n g n whenever the following condition holds: there exist f , g : X → R with f w-asymptotically compact such that

inf n f n ≥ f , inf n g n ≥ g, f ∞ (0) ≥ 0, g ∞ (0) ≥ 0, f ∞ (-u) > -g ∞ (u) for all u ∈ X \ {0}. (9) (f ) Assume f ≤ b-lim inf n f n and g ≤ b-lim inf n g n and condition (9) holds. Then f g ≤ b-lim inf n f n g n .
Note that when f := a • + c with a ≥ 0 or, more generally, when f is bounded below by a continuous affine function, in particular when f ∈ Γ(X), the condition f ∞ (0) = 0 is automatically satisfied.

An application of these criteria to Lax-Oleinik solutions yields the following result.

Proposition 4.4 (a) Suppose X is reflexive, g ≤ e w -lim inf n g n and H ≥ e-lim sup n H n , where H, H n ∈ Γ * (X * ) for every n ∈ N. Then u ≤ e w -lim inf n u n provided one of the following conditions holds:

∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀(w, t) ∈ [u n < p] ∩ pU X×R , t ≥ 0 : u n (w, t) = inf{(tH n ) * (x) + g n (w -x) : x ∈ qU X }; (10) ∃a, b, c ∈ R, ∀n ∈ N, ∃x * n ∈ X * , ∃m, r n ∈ R + : r n ≥ x * n + a, a + b > 0, inf n g n ≥ b • + c and sup n sup H n (x * n + r n B X * ) ≤ m; ( 11 
)
∃r ∈ P, ∃ g : X → R, ∃ H : X * → R : inf n g n ≥ g, sup n H n ≤ H, sup H(rU X * ) < ∞, g ∞ (0) ≥ 0, g ∞ (-u) > -(ι dom H ) * (u) ∀ u ∈ X \ {0}. ( 12 
) (b) Assume that g ≤ b-lim inf n g n , H ≥ b-lim sup n H n and H ∈ Γ * (X * ).
Then u ≤ b-lim inf n u n whenever one of the conditions [START_REF] Azé | Operations on convergent families of sets and functions[END_REF], [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF], [START_REF] Azé | Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs[END_REF] 

). Let x * n ∈ X * , b, c ∈ R, m, r n ∈ R + be such that g n ≥ b • + c, x * n < b + r n and sup H n (x * n + r n B X * ) ≤ m. Then, for any (x, t) ∈ X × R + , we have F * n (x, t) ≥ sup{ x * , x + x * n , x -tH n (x * n + x * ) : x * ∈ r n B X * } ≥ (r n -x * n ) x -m |t| ≥ a x -m |t| ,
and so

F * n (x, t) ≥ a x -m |t|, G n (x, t) ≥ b x + (m + 1)
• |t| + c for all (x, t) ∈ X × R; hence the criterion (c) of the preceding lemma with X 1 = X, X 2 = R can be applied.

Finally, assume that condition [START_REF] Azé | Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs[END_REF] holds. This time we apply criteria (e) of the preceding lemma, observing that setting F (x * , t)

:= ι epi H (x * , -t) for (x * , t) ∈ X * × R, G(x, t) = g(x) + ι {0} (t), we have F * n ≥ F * and G n ≥ G for every n ∈ N with F * ∞ (0, 0) ≥ 0 (since F * is the support function of a nonempty set), G ∞ (0) ≥ 0, F * ∞ (-u) > -G ∞ (u) for each u ∈ X × R \ {(0, 0)}, F * being w-asymptotically compact by Example 1. (b) Clearly, G ≤ b-lim inf n G n and ι epi H ≥ b-lim sup n ι epi Hn (since epi H ⊂ b-lim inf n (epi H n ))
. Using Theorem 3.2 (a) and the fact that T is an isometry, we get b-lim inf n F * n ≥ F * . In the proof of (a) we obtained that conditions [START_REF] Azé | Operations on convergent families of sets and functions[END_REF], [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF] and ( 12) imply the corresponding assumptions of Lemma 4.3. Thus, Lemma 4.

3 ensures that u = F * G ≤ b-lim inf n F * n G n = b-lim inf n u n .
When H n = H for all n ∈ N, the preceding conditions can be simplified. For simplicity, we limit ourselves to condition [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF].

Corollary 4.5 Assume that X is reflexive, g ≤ b-lim inf n g n , H n = H for all n, with H proper and ∃b, c∈ R, ∃x * ∈ X * , ∃m, r ∈ P : r > x * -b, inf n g n ≥ b • + c and sup H(x * + rB X * ) ≤ m. ( 13 
)
Then u ≤ b-lim inf n u n .

Proof. Since H n = H for all n, we do not need to use Theorem 3.2 (a), so that we can drop the convexity assumption on H. (a) Let us first assume [START_REF] Azé | Operations on convergent families of sets and functions[END_REF]. Then condition ( 7) is satisfied for the sequences (G n ) and (F * n ) and the conclusion follows from the preceding lemma.

Gathering the assertions of

(a)]) Suppose X is reflexive. Let f, g, f n , g n : X → R be proper functions, f and g being w-l.s.c. If (f n ) b → f , (g n ) b → g and if condition (7) holds, then (f n g n ) b → f g.
(b) Now let us assume [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF] holds. Let us check the assumptions of assertion (b 2 ) of Proposition 4.2. Let b, c ∈ R, m, r ∈ P, r > -b be as in [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF]. Since epi g ⊂ lim inf n epi g n ⊂ epi g with g := b • + c we have g ≥ g. When b > sup n d(0, [H n ≤ m]), taking b ′ between these two numbers we get a sequence (x n ) ∈ b ′ U X such that (x n , m) ∈ epi H n for each n. It follows that for n large enough there exists

(x ′ n , m ′ n ) ∈ epi H with x ′ n -x n < b -b ′ and d(0, dom H) < b. When sup n sup H n (rU X * ) ≤ m we have rU X * × {m} ⊂ n epi H n ⊂ lim sup n (epi H n ) ⊂ epi H, so that sup H(rU X * ) ≤ m.
(c) Finally let us assume (12) holds. Using the fact that the asymptotic function of a function is equal to the asymptotic function of its l.s.c. hull (for the norm topology), we may assume that g is l.s.c. Then epi g ⊂ lim inf n (epi g n ) ⊂ epi g, hence g ≥ g. On the other hand, epi H ⊂ n epi H n ⊂ lim sup n (epi H n ) ⊂ epi H, hence H ≤ H. Thus, the assumptions of assertion (b 3 ) of Proposition 4.2 are satisfied.

The preceding results have consequences on regularity issues. Recall that if X is a Hilbert space, and if g ∈ Γ(X), then (g n • 2 ) b → g and g n • 2 is continuously differentiable. Several extensions can be given, either by taking for X a more general Banach space ([3, Th. 3.24], [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF]) or by requiring that g just satisfies a quadratic minorization ( [START_REF] Attouch | Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method[END_REF], [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF]). One can also take a more general regularizing kernel ( [START_REF] Azé | Caractérisation de la convergence au sens de Mosco en terme d'approximations inf-convolutives[END_REF], [21, Th. 7.3.8], [START_REF] Bougeard | Towards minimal assumptions for the infimal convolution regularization[END_REF]). Here, we say that a family (j n ) of nonnegative convex functions (j n ) is a regularizing kernel if (j n ) b → ι {0} and j n (0) = 0 for all n. In [21, Def. 7.3.5] the functions j n are supposed to be lower semicontinuous and continuous at 0.

Let us show that we can obtain the convergence (g j n ) b → g for every g ∈ Γ(X) without these additional assumptions made in ([21, Th. 7.3.8]).

Note that for a sequence (j n ) of nonnegative functions null at 0 one has (j n ) b → ι {0} if and only if for every bounded sequence ((x n , r n )) with (x n , r n ) ∈ epi j n for large n one has that (x n ) → 0. Lemma 4.9 Let (j n ) be a sequence of nonnegative convex functions null at 0 such that (j n ) b → ι {0} and let g be a proper function for which there exist b, c ∈ R such that g ≥ b • +c. Let g n := g j n . Then (a) for every c ′ < c there exists some k ∈ N such that for all n ≥ k one has

g n ≥ b • + c ′ ; (b) one has (g n ) b → g. Proof. Since (j n ) b → ι {0} , given q > 1,
we can find k := k(q) ∈ N such that e q (epi j n , epi ι {0} ) < q -1 for n ≥ k, hence j n (u) ≥ q for all n ≥ k, u ∈ X satisfying u = q -1 since if we had j n (u) < q for such an u, we could find t ∈ R + satisfying (u, j n (u)) -(0, t) < q -1 , what is impossible. By convexity, we get

j n (v) ≥ q 2 v for v ∈ X \ q -1 U X , n ≥ k.
(a) Without loss of generality, we may assume that c ′ := c -1. Let q > |b| + 1 and let n ≥ k := k(q). For w, x ∈ X with wx ≥ q -1 , we have, when b < 0,

g(w) + j n (x -w) ≥ b w + c + q 2 w -x ≥ c -|b| w + |b| w -x ≥ c -|b| x = b x + c, while for b ≥ 0 we have g(w) + j n (x -w) ≥ b w + c + q 2 w -x ≥ b x + c.
When wx < q -1 we have for b < 0

g(w) + j n (x -w) ≥ c -|b| w ≥ c -|b| q -1 -|b| x ≥ b x + c -1,
while for b ≥ 0 we have

g(w) + j n (x -w) ≥ b w + c ≥ b x -bq -1 + c ≥ b x + c -1.
Taking the infimum over w ∈ X, we get g n (x) ≥ b x + c -1.

(b) Let a := max(|b| , |c|), so that g(x) ≥ -a( x + 1) for all x ∈ X. Since j n (0) = 0, we have g n ≤ g, hence b-lim sup n g n ≤ g. Let p ∈ P and let ((x n , t n )) be a sequence of pU X×R with (x n , t n ) ∈ epi g n for all n. Let us show that (d ((x n , t n ), epi g)) → 0. Given ε ∈ (0, 1), let us take q > max(1, a + ε -1 (p + 1)(a + 1)). Let us pick w n ∈ X such that

g(w n ) + j n (x n -w n ) < g n (x n ) + ε.
If for some n ≥ k := k(q) we had x nw n ≥ ε (hence x nw n > q -1 ), as q 2 x nw n ≤ j n (x nw n ) by the first part of the proof, we would get

-a( w n + 1) + q 2 x n -w n < g n (x n ) + ε < p + 1, (q -a)ε ≤ (q 2 -a) x n -w n < p + 1 + a( x n + 1) ≤ (a + 1)(p + 1), a contradiction with the choice of q. Thus x n -w n < ε. Since g(w n ) < g n (x n ) + ε ≤ t n + ε, for n ≥ k we have d((x n , t n ), epi g) ≤ (x n , t n ) -(w n , t n + ε) ≤ ε.
That shows that (e p (epi g n , epi g)) → 0, i.e. g ≤ b-lim inf n g n and so (g n ) b → g. Proof. The preceding lemma yields some k ∈ N such that for n ≥ k one has

g n ≥ b • + c -1. Moreover (g n ) b → g. Corollary 4.5 ensures that u ≤ b-lim inf n u n . Now, since g n ≤ g for all n, we have u n ≤ u, hence b-lim sup n u n ≤ u. Thus (u n ) b → u.
Remark 4.1 In the preceding corollary one has u n = F * G n , where F is given by ( 4) and

G n (x, t) := g n (x)+ι {0} (t) = (G K n )(x, t) with K n (x, t) := j n (x)+ι {0} (t)
. By the associativity of the infimal convolution, we have u n = (F * G) K n = u K n ; u n can be seen as the regularization of u by the regularizing kernel K n . For the smoothing of u, a more standard regularizing kernel is given by J n (x, t) := j n (x) + nt 2 . In order to obtain the convergence of

w n := u J n = (F * G) J n = F * (G J n )
to u we need to check the assumptions of Lemma 4.9 with g replaced by u. Let us assume again that there exist

x * ∈ X * , b, c, m ∈ R, r > 0 such that r > x * -b, g ≥ b • + c and sup H(x * + rU X * ) < m.
As in the proof of Proposition 4.2 (b 2 ), taking a > -b with r > x * + a, we have F * (y, s) ≥ -b ym |s| for all (y, s) ∈ X × R and G(z, t) ≥ b z + (m + 1) • |t| + c, for all (z, t) ∈ X × R. Thus, for (x, q) ∈ X × R,

(F * G)(x, q) ≥ -|b| x -m |q| + c
and the preceding lemma shows that (w n ) b → u. However, for (x, t) ∈ X×R, one has (G J n ) (x, t) = (g j n ) (x) + nt 2 . Thus, in general, w n = (F * G) J n = u n .

Convergence of Hopf-Lax solutions

Let g n , H n (n ∈ N), g, H be given functions and let v n (resp. v) be the Hopf solution associated with (g n , H n ) (resp. (g, H)). In order to establish convergence results for the Hopf solutions v n , v associated with those pairs, we recall from [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF], [START_REF] Imbert | On vectorial Hamilton-Jacobi equations[END_REF], that

v(x, t) = (F + G * ) * (x, t),
with F , G given by ( 4), [START_REF] Attouch | On some inverse stability problems for the epigraphical sum[END_REF] 

provided that dom g * ∩ dom H = ∅. ( 14 
)
Throughout this section this assumption will be in force as will be the similar one with (g n , H n ). We recall that when H is in Γ * (X * ), the Fenchel conjugate v * of v is given by Lemma 5.2 Let h n , k n be functions on X * such that (h n ) and (k n ) are equi-bounded from below on bounded subsets. Then

e w * -lim inf n h n + e w * -lim inf n k n ≤ e w * -lim inf n (h n + k n ).
A similar result holds when h n and k n are functions on X.

Proof. Let (x * , r) be a w * -cluster point of a bounded sequence ((

x * n , r n )) n∈K with r n ≥ (h n + k n ) (x *
n ) for each n in an infinite subset K of N. Let ϕ : I → K be a filtering map from a directed set I to K such that (x * , r) = lim i∈I (x * ϕ(i) , r ϕ(i) ). Since (x * n ) is bounded and (h n ) and (k n ) are equi-bounded from below on bounded subsets, there exists some c ∈ R with

h n (x * n ) ≥ c, k n (x * n ) ≥ c for each n ∈ K. As h n (x * n ) + k n (x * n ) ≤ r n for n ∈ K, the sequences (h n (x * n )) n∈K , (k n (x * n )) n∈K are bounded. Then, we can find a subnet of (x * ϕ(i) , h ϕ(i) (x * ϕ(i) ), k ϕ(i) (x * ϕ(i)
)) i∈I which weak * converges to some (u * , s, t). Then we have u * = x * and s + t ≤ r. Then

r ≥ s + t ≥ e w * -lim inf n h n (x * ) + e w * -lim inf n k n (x * ).
Since (x * , r) has been taken arbitrarily in w * -lim sup n epi(h n + k n ), we get the result.

Proposition 5.3 Let g, g n ∈ Γ(X), H, H n ∈ Γ * (X * ) (n ∈ N). Suppose X is reflexive, g ≥ e-lim sup n g n , H ≤ e w * -lim inf n H n
and there exist a bounded sequence (x n ) in X and a converging sequence

(x * n ) in X * such that (g n (x n )), (g * n (x * n )) and (H n (x * n )) are bounded above. Then one has v ≥ e-lim sup n v n . Proof. Since (e-lim sup n G n ) (x, t) = (e-lim sup n g n ) (x)+ ι {0} (t) we have G ≥ e-lim sup n G n , hence, by Lemma 3.1 (a), G * ≤ e w * -lim inf n G * n . Let us show that F ≤ e w * -lim inf n F n . Let (x * , t, r) be a w * -cluster point of a bounded sequence ((x * n , t n , r n )) n∈K with (x * n , t n , r n ) ∈ epi F n for each n in an infinite subset K of N, i.e. r n ≥ 0 and (x * n , -t n ) ∈ epi H n for n ∈ K. Since H ≤ e w * -lim inf n H n we get (x * , -t) ∈ epi H, i.e. F (x * , t) = 0 ≤ r, hence (x * , t, r) ∈ epi F . Now let B
be a bounded subset of X * × R and let m := sup n g(x n ). Then, for each n ∈ N and each (x * , t * ) ∈ B we have

G * n (x * , t * ) = g * n (x * ) ≥ x * , x n -g n (x n ) ≥ -sup x * ∈B x * sup n x n -m.
Since F n ≥ 0, the preceding lemma yields

F + G * ≤ e w * -lim inf n F n + e w * -lim inf n G * n ≤ e w * -lim inf n (F n + G * n ). Since F n , G * n ∈ Γ * (X *
) and dom(F n +G * n ) is nonempty by our standing assumption corresponding to [START_REF] Bardi | On Hopf's formulas for solutions of Hamilton-Jacobi equations[END_REF], we have F n + G * n ∈ Γ * (X * ); applying Lemma 3.1 (c), with the help of our assumption about the sequence (x * n ) we obtain

(F + G * ) * ≥ e-lim sup n (F n + G * n ) * , or v ≥ e-lim sup n v n . Theorem 5.4 Let g, g n ∈ Γ(X), H, H n ∈ Γ * (X * ) (n ∈ N), X being reflexive. Suppose (g n ) M → g, (H n ) M → H and -H ≤ e-lim inf n (-H n ). Then one has (v n ) M → v.
Proof. The result is a consequence of the preceding two propositions, since for any x * ∈ dom g * ∩ dom H one can find a sequence (x * n ) → x * with (g * n (x * n )) bounded from above and from the upper continuous convergence of (H n ) one gets that H n (x * n ) ≤ H(x * ) + 1 for n large enough.

A convergence result for the Hopf-Lax solutions can be deduced from a convergence result for the Lax-Oleinik solution.

Proposition 5.12 (a) Let W , X be n.v.s., let Φ : W × X → R be such that for some α, β, γ > 0, for every w ∈ αB W one can find x ∈ βB X with Φ(w, x) ≤ γ. Then, for all w * ∈ W * , x * ∈ X * , one has

Φ * (w * , x * ) ≥ α w * -β x * -γ. ( 16 
) (b) In particular, if W , X are Banach spaces and if Φ ∈ Γ(W × X) is such that W = R + Pr W (dom Φ), then the preceding estimate holds. (c) Let f, g ∈ Γ(X) be such X = R + (dom f -dom g). If X is complete then there exist α, β, γ > 0 such that for all x * , y * ∈ X * f * (x * ) + g * (y * ) ≥ α( x * + y * ) -β x * + y * -γ. Proof. (a) Given w * ∈ W * , x * ∈ X * , setting p(w) := inf{Φ(w, x) -x * , x : x ∈ X} for w ∈ W , one gets p(w) ≤ inf{Φ(w, x) -x * , x : x ∈ βB X } ≤ γ + β x * + ι αB W (w). Therefore Φ * (w * , x * ) = p * (w * ) ≥ sup w∈W ( w * , w -γ -β x * -ι αB W (w)) = α w * -β x * -γ.
(b) The existence of constants α, β, γ > 0 satisfying the assumption of (a) follows from the hypothesis and the Robinson-Ursescu theorem (see [START_REF] Zȃlinescu | Convex Analysis in General Vector Spaces[END_REF]Prop. 2.7.2]).

(c) Let us take W = X, and set Φ(w, x) = f (x) + g(w + x). Then Φ ∈ Γ(W × X) and, as easily seen,

Φ * (w * , v * ) = f * (v * -w * ) + g * (w * ).
Moreover Pr W (dom Φ) = dom gdom f , so that the assumptions of (b) are satisfied. Thus, one can find some positive constants α ′ , β ′ , γ ′ > 0 such that, for all x * , y * ∈ X * , taking v * := x * + y * , w * := y * we get

f * (x * ) + g * (y * ) = Φ * (y * , x * + y * ) ≥ α ′ y * -β ′ x * + y * -γ ′ .
Interchanging the roles of f and g, we can find some constants α ′′ , β ′′ , γ ′′ > 0 such that for all x * , y * ∈ X * g * (y

* ) + f * (x * ) ≥ α ′′ x * -β ′′ x * + y * -γ ′′ .
Adding side by side these two relations we get the conclusion with α := 1 2 min(α ′ , α ′′ ), β := 1 2 (β ′ + β ′′ ), γ := 1 2 (γ ′ + γ ′′ ). Now let us show that (10) is a consequence of the relation

X * = R + (dom g * -dom H) when g, g n ∈ Γ(X), H, H n ∈ Γ * (X * ) (n ∈ N) are such that (g n ) b → g, (H n ) b → H. Let F, F n and G, G n
be as in relations (4), [START_REF] Attouch | On some inverse stability problems for the epigraphical sum[END_REF].

Then (F n ) b → F , (G * n ) b → G * .
We first observe that the Robinson-Ursescu theorem and these convergences yield m ∈ N and constants α, β, γ > 0 such that for every n ≥ m, (w * , s * ) ∈ αB X * ×R one can find (x * , t * ) ∈ βB X * ×R with Φ n ((w * , s * ), (x * , t * )) := F n (x * , t * ) + G * n (w * + x * , s * + t * ) ≤ γ. The preceding proposition ensures that

F * n (x, t) + G n (y, s) ≥ α( (x, t) + (y, s) ) -β (x + y, s + t) -γ
for all n ≥ m, (x, t), (y, s) ∈ X × R. Taking t ≥ 0, s = 0, we get for all n ≥ m, w, x ∈ X, t ∈ R + (tH n ) * (x) + g n (wx) ≥ α( (x, t) + (wx, 0) )β (w, t)γ.

Then, setting q := α -1 (βp + p + γ), for every n ≥ m, (w, t) ∈ [u n < p] ∩ pU X×R , t ≥ 0 for x ∈ X \ qU X one has (tH n ) * (x) + g n (wx) ≥ p. Therefore condition ( 10) is satisfied.

6 Convergence for fixed t > 0

Because our proofs involve auxiliary functions F , G, F n , G n , the reader may wonder whether one would get simpler results when considering the convergence of (u n (•, t)) and (v n (•, t)) to u(•, t) and v(•, t) respectively for fixed t > 0. Let us first observe that, for f, f n : X × R → R, one has

e w -lim inf n f n ≥ f =⇒ ∀t ∈ R : e w -lim inf n f n (•, t) ≥ f (•, t) , ( 17 
) ∀t ∈ R : e-lim sup n f n (•, t) ≤ f (•, t) =⇒ e-lim sup n f n ≤ f. (18) 
Thus Mosco convergence of (f n ) and Mosco convergence for (f n (•, t)) for all t are a priori independent properties. However, a direct analysis shows that convergence results for (u n (•, t)) and (v n (•, t)) for all t ∈ P are not very different from the results above for (u n ) and (v n ), at least for epiconvergence and Mosco convergence. Let us give details for the convenience of the reader. For the sake of simplicity, here we use assumptions bearing on the sequence (H * n ) rather than assumptions on the sequence (H n ). We could also use condition [START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF] or [START_REF] Azé | Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs[END_REF]. In view of implication [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF] it is only in the case of assumption [START_REF] Beer | Conjugate convex functions and the epi-distance topology[END_REF] below that the analysis for fixed t provides a new result. Moreover, since implication [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF] with b-convergence instead of epiconvergence is not known to us, in this case one has to devise direct proofs which follow the same type of arguments. 

∀p∈ P, ∃q ∈ P, ∀x ∈ [u(•, t) < p] ∩ pU X : u(x, t) = inf{(tH) * (w) + g(x -w) : w ∈ qU X }. ( 19 
)
(c) Suppose g ≤ e w -lim inf n g n , H * ≤ e w -lim inf n H * n and X is reflexive. Then u(•, t) ≤ e wlim inf n u n (•, t) provided the following condition holds:

∀p ∈ P, ∃q ∈ P, ∃m ∈ N, ∀n ≥ m, ∀x ∈ [u n (•, t) < p] ∩ pU X : u n (x, t) = inf{g n (x -z) + (tH n ) * (z) : z ∈ qU X }. ( 20 
) (d) Suppose g ≤ b-lim inf n g n and H * ≤ b-lim inf n H * n . Then u(•, t) ≤ b-lim inf n u n (•, t) provided the preceding condition holds.
Proof. (a) Let x ∈ X and r > u(x, t). There exists some w ∈ X such that g(xw) + (tH) * (w) < r. Since g ≥ e-lim sup n g n , H * ≥ e-lim sup n H * n , we can find sequences (w

n ) → w, (z n ) → x -w such that lim sup n g n (z n ) ≤ g(x -w) and lim sup n H * n (t -1 w n ) ≤ H * (t -1 w). Then (x n ) := (w n + z n ) → x and lim sup n u n (x n , t) ≤ lim sup n g n (z n ) + tH * n (t -1 w n ) ≤ g(x -w) + (tH) * (w) < r.
Since r can be taken arbitrarily close to u(x, t), this shows that u(•, t) ≥ e-lim sup n u n (•, t).

(b) The proof is similar, replacing (x, r) by a bounded sequence ((x n , r n )) such that r n > u(x n , t).

(c) Let (x, r) be the weak limit of a bounded sequence ((x n , r n )) such that (x n , r n ) ∈ epi u n (•, t) for each n in an infinite subset K of N. Condition (20) yields a bounded sequence (z n ) of X such that g n (x nz n ) + (tH n ) * (z n ) < r n + 2 -n for all n ∈ K. Taking a subsequence if necessary, we may assume that (z n ) weakly converges to some z ∈ X which is reflexive. Then Let us turn to Hopf-Lax solutions. For Propositions 5.1 and 5.7, the same assumptions give v(•, t) ≤ e-lim inf n v n (•, t) and v(•, t) ≤ b-lim inf n v n (•, t) for all t ∈ P, respectively (with similar proofs). Taking into account [START_REF] Barles | Discontinuous solutions of deterministic optimal stopping time problems[END_REF], one expects to have to strengthen the hypotheses of Proposition 5.3 in order to obtain v(•, t) ≥ e-lim sup n v n (•, t) for t ∈ P. Indeed, to obtain this conclusion, besides the hypotheses of Proposition 5.3 we have to assume that (H n ) is equi-bounded from below on bounded sets. On the other hand, under the assumptions of Proposition 5.10, we obtain also that v(•, t) ≥ b-lim sup n v n (•, t) for every t ∈ P. The same hypotheses as in Theorem 5.4

(x n -z n ) converges to x -z, hence r ≥ lim inf n g n (x n -z n ) + lim inf n tH * n (t -1 z n ) ≥ g(x -z) + tH(t -1 z) ≥ u(x,
yield v n (•, t) M → v(•, t) for t ∈ P. Indeed, because (H n ) M → H we have that (H n ) is equi-bounded from below on bounded sets.

Convergence properties of arbitrary solutions

In this section, we deal with sequences of arbitrary solutions in the sense of viscosity ( [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF], [START_REF] Crandall | Viscosity solutions to Hamilton-Jacobi equations[END_REF]). For simplicity, we suppose throughout that X is reflexive and we limit ourselves to some cases which may give the flavor of further developments. We will use two comparison results taken from [START_REF] Penot | Questions and observations about Hamilton-Jacobi evolution equations, Proceedings of the conference[END_REF], [START_REF] Penot | Explicit solutions of Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF] (see also [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF], [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF] for related results).

Part of our analysis can be given for the equations

J x, t, u(x, t), Du(x, t), ∂ ∂t u(x, t) = 0, (21) 
J n x, t, u(x, t), Du(x, t), ∂ ∂t u(x, t) = 0,

where J, J n : X × R 2 × X * × R → R are given functions. Such equations obviously include [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF].

In order to get some flexibility, we formulate notions of solution which involve a general concept of subdifferential. Such an approach can be considered as an enlargement of the notion of viscosity solution, which, in Asplund spaces corresponds to the choice of the Fréchet subdifferential. By a subdifferential on a class F(Z) of functions on a n.v.s. Z we mean a set-valued map ∂ : F(Z)×Z ⇒ Z * which assigns to a pair (f, z) ∈ F(Z) × Z a subset ∂f (z) of Z * which is empty if f (z) is not finite. Moreover we require the following condition:

(C) if f is a convex function finite at z, then ∂f (z) = {z * ∈ Z * : f (•) ≥ z * (•) -z * (z) + f (z)}.
In the next statement we also use the following condition which is satisfied by most subdifferentials:

(C') if f is concave, finite at z and if z * ∈ ∂f (z), then -z * ∈ ∂(-f )(z).
Given a subdifferential ∂ one says that u is a supersolution (resp. subsolution) to ( 21) if for all (x, t) ∈ X × P and all (p, q) ∈ ∂u(x, t) (resp. (p, q) ∈ -∂(-u)(x, t)) one has J(x, t, u(x, t), p, q) ≥ 0 (resp. J(x, t, u(x, t), p, q) ≤ 0). We say that u is a lower solution (resp. upper solution) to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF] if for all (x, t) ∈ X × P and all (p, q) ∈ ∂u(x, t) (resp. (p, q) ∈ -∂(-u)(x, t)) one has J(x, t, u(x, t), p, q) ≤ 0 (resp. J(x, t, u(x, t), p, q) ≥ 0). A supersolution which is also a subsolution is called a viscosity solution (for ∂). A first comparison between these concepts is inspired by [START_REF] Barron | Viscosity solutions and analysis in L ∞[END_REF], [START_REF] Barron | Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex Hamiltonians[END_REF]. Its assumption on J is satisfied when J(x, t, r, p, q) = q + H(p) with H convex and l.s.c. Proposition 7.1 Let ∂ be the Fréchet subdifferential and let X be reflexive. Suppose there exists a l.s.c. and quasiconvex function K such that J(x, t, r, p, q) = K(x, t, p, q) for all (x, t, r, p, q). Then a continuous function u is a lower solution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF], if, and only if, it is a subsolution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

Proof. Let u be a lower solution. By [24, Thm 3.6.5], given (x, t) ∈ X × P and (p, q) ∈ -∂(-u)(x, t) and taking a sequence (ε n ) → 0 + , we can find (p n , q n ) ∈ B((p, q), ε n ) which belongs to the convex hull of the set ∂u(B((x, t), ε n )) := {(p ′ , q ′ ) ∈ ∂u(x ′ , t ′ ) : (x ′ , t ′ ) ∈ B((x, t), ε n )}. For any (p ′ , q ′ ) ∈ ∂u(x ′ , t ′ ) with (x ′ , t ′ ) ∈ B((x, t), ε n ) we have K(x ′ , t ′ , p ′ , q ′ ) ≤ 0 since u is a lower solution. Taking a convex combination, we can find (x n , t n ) ∈ B((x, t), ε n ) such that K(x n , t n , p n , q n ) ≤ 0. Passing to the limit, we get K(x, t, p, q) ≤ lim inf n K(x n , t n , p n , q n ) ≤ 0. Thus u is a subsolution.

The converse is similar, using [24, Thm 3.6.6]. When u is convex, another comparison can be made between these concepts. Proof. Let (p, q) ∈ -∂(-u)(x, t). Then u(x, t) is finite and by (C'), one has (p, q) ∈ ∂u(x, t), so that J(x, t, u(x, t), p, q) ≤ 0. This shows that u is a subsolution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF]. The proof of assertion (b) is similar. Theorem 7.3 Suppose X is finite dimensional and ∂ satisfies (C) and (C'). Let J, J n : X × R 2 × X * × R → R and let w n : X × R → R (n ∈ N) be l.s.c. and proper.

(a) Suppose J ≤ e-lim inf n J n and, for all n ∈ N, w n is a convex lower solution to equation [START_REF] Beer | Convex optimization and the epi-distance topology[END_REF]. Then (w n ) has a subsequence which epiconverges to a lower solution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

(b) Suppose -J ≤ e-lim inf n (-J n ) and, for all n ∈ N, w n is a convex supersolution to equation [START_REF] Beer | Convex optimization and the epi-distance topology[END_REF]. Then (w n ) has a subsequence which epiconverges to a supersolution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

(c) Suppose J ≤ e-lim inf n J n and, for all n ∈ N, w n is a convex lower solution of equation [START_REF] Beer | Convex optimization and the epi-distance topology[END_REF]. Then (w n ) has a subsequence which epiconverges to a lower solution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF] which is also a subsolution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

(d) Suppose J ≤ e-lim inf n J n and -J ≤ e-lim inf n (-J n ). If (w n ) is a sequence of convex viscosity solutions to [START_REF] Beer | Convex optimization and the epi-distance topology[END_REF], then (w n ) has a subsequence which epiconverges to a viscosity solution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

Proof. (a) Transposing to functions the Zarankiewicz theorem ([3, Th. 2.22], [START_REF] Aubin | Set-Valued Analysis[END_REF]Th. 1.1.7]), for any subsequence of (w n ) we can find a further subsequence (w k(n) ) which epiconverges to some l.s.c. function w. Since w is convex, either it is proper or does not take a finite value. In the later case, there is nothing to prove, so that we may suppose w is proper. Let (x, t) ∈ dom w and let (p, q) ∈ ∂w(x, t). The Attouch theorem ( [START_REF] Attouch | Familles d'opérateurs maximaux monotones et mesurabilite[END_REF], [START_REF] Attouch | Variational convergence for functions and operators[END_REF]) provides a sequence ((x n , t n , p n , q n )) → (x, t, p, q) such that (w n (x n , t n )) → w(x, t) and (p n , q n ) ∈ ∂w k(n) (x n , t n ) for all n ∈ N. Since J ≤ e-lim inf n J n and since w n is a lower solution of ( 22), we have J(x, t, w(x, t), p, q) ≤ lim inf n J k(n) (x n , t n , w n (x n , t n ), p n , q n ) ≤ 0 so that w is a lower solution.

(b) The proof is similar to that in (a), changing J into -J.

(c) Let (w k(n) ) be a subsequence of (w n ) which epiconverges to some l.s.c. function w. Then, w being convex and a lower solution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF], it is also a subsolution to [START_REF] Beer | Topologies on closed and closed convex sets[END_REF] by the preceding proposition.

(d) We can apply (b) and (c) to a subsequence (w k(n) ) which epiconverges.

When w satisfies a boundary condition, and when some uniqueness property holds, assertion (d) can produce a convergence result for the whole sequence. See [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF], [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF], [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF], [START_REF] Lions | Generalized Solutions of Hamilton-Jacobi Equations[END_REF], [START_REF] Strömberg | On viscosity solutions of the Hamilton-Jacobi equation[END_REF] for a sample of uniqueness results.

  a∈A d(a, B), e(∅, B) = 0 and e(A, ∅) = ∞. Then, for p ∈ P, we set e p (A, B) := e(A ∩ pU X , B), d p (A, B) := max(e p (A, B), e p (B, A)).

  the reverse implications hold. We write (A n ) b → A and we say that (A n ) boundedly converges to A, or that (A n ) converges to A for the bounded Hausdorff topology, if b-lim inf n A n ⊃ A ⊃ b-lim sup n A n . The choice of the open unit ball of X in what precedes, rather than the closed unit ball, enables one to use the equalities e p (A, B) = e p (A, B) = e p (A, B) = e p (A, B).

Lemma 3 . 1

 31 (a) For any sequence (f n ) of functions on X one has (e-lim sup n f n ) * ≤ e w * -lim inf n f * n . (b) For any sequence (g n ) of functions on X * one has (e-lim sup n

  holds. Proof. (a) In view of the constructions of F and G, we have G ≤ e w -lim inf n G n and ι epi H ≥ e-lim sup n ι epi Hn (since epi H ⊂ lim inf n (epi H n )), hence F ≥ e-lim sup n F n . Using Lemma 3.1 (b), we get e w -lim inf n F * n ≥ F * . Assume that condition (10) holds. After transcribing it we observe that condition (7) is satisfied for f n := F * n and g n := G n ; the conclusion is a consequence of assertion (a) of the preceding lemma: u = F * G ≤ e w -lim inf n F * n G n = e w -lim inf n u n . Assume now that condition (11) holds. We use an argument similar to the one used in the proof of Proposition 4.2 (b 2

  Propositions 4.2 (a) and 4.4 (a) and observing that condition (6) is satisfied when (H * n ) M → H * , what is the case when (H n ) M → H with H n ∈ Γ * (X * ) and X is reflexive, we get the following result about Mosco convergence of Lax-Oleinik solutions.Theorem4.6 Suppose X is reflexive, (g n ) M → g, (H n ) M → H, with H, H n ∈ Γ * (X * ), dom g n = ∅for each n ∈ N. Suppose one of the conditions (10),[START_REF] Azé | Lipschitz behaviour of the Legendre-Fenchel transform[END_REF],[START_REF] Azé | Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs[END_REF] holds. Then (u n ) M → u.Similarly, gathering the assertions of Propositions 4.2 (b), (d), (f) and 4.4 (b), and using the following result about the b-convergence of infimal convolutions, we will get a b-convergence result for Lax-Oleinik solutions.

Lemma 4 . 7 (

 47 [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF] Prop. 19 

Theorem 4 . 8

 48 Suppose (g n ) b → g and (H n ) b → H, with g, g n proper and H, H n ∈ Γ * (X * ) for each n ∈ N. Then (u n ) b → u whenever one of the following conditions holds (a) (10) is satisfied, X is reflexive and g is weakly l.s.c.; (b) (11) is satisfied; (c) (12) is satisfied and X is reflexive. Proof. Defining F , F n , G, G n as in (4), (5) and using Theorem 3.2 (c), we have (F * n ) b → F * and, obviously, (G n ) b → G. For each of the assertions (a), (b), (c) we have u ≤ b-lim inf n u n by Proposition 4.4.

Corollary 4 . 10

 410 Assume that X is reflexive, g, H are proper and (j n ) is a family of regularizing kernels. Suppose there exist x * ∈ X * , b, c ∈ R, r > 0 such that r ≥ x * + a, a + b > 0, g ≥ b • + c and sup H(x * + rU X * ) < ∞. Let g n := g j n and let u n be the Lax-Oleinik solution associated with g n and H. Then (u n ) b → u.

Proposition 6 . 1

 61 Let g, g n : X → R, let H, H n : X → R and let t ∈ P. (a) Suppose g ≥ e-lim sup n g n and H * ≥ e-lim sup n H * n . Then u(•, t) ≥ e-lim sup n u n (•, t). (b) Suppose g ≥ b-lim sup n g n and H * ≥ b-lim sup n H * n . Then u(•, t) ≥ b-lim sup n u n (•, t) provided the following condition holds:

Proposition 7 . 2

 72 Suppose ∂ satisfies (C'). Let u : X × R → R be a convex function. (a) If u is a lower solution to[START_REF] Beer | Topologies on closed and closed convex sets[END_REF], then u is a subsolution to[START_REF] Beer | Topologies on closed and closed convex sets[END_REF]. (b) If u is an supersolution to[START_REF] Beer | Topologies on closed and closed convex sets[END_REF], then u is an upper solution to[START_REF] Beer | Topologies on closed and closed convex sets[END_REF].

  If X is reflexive and if condition[START_REF] Beer | Conjugate convex functions and the epi-distance topology[END_REF] holds, then, for all t ∈ P one has (u n (•, t)) If conditions (19) and (20) hold, then, for all t ∈ P one has (u n (•, t))

	t)
	and the conclusion holds.
	(d) The proof is similar, avoiding weak convergence and reflexivity.
	Corollary 6.2 (a) Suppose (g n )
	M → u(•, t).
	(b) Suppose (g n )

M → g and (H n ) M → H. b → g and (H n ) b → H. b → u(•, t).

The main feature of the following convergence result is that no convexity assumption is required on the Hamiltonians. However, the convergence of the sequence (H n ) is not of the types we have used previously. It is a one-sided form of continuous convergence. We recall (or make precise, as the case of extended real-valued functions is not classical) that a sequence (H n ) of functions from a topological space Y to R converges continuously to H if, for any y ∈ H -1 (R) and any sequence (y n ) → y, the sequence (H n (y n )) converges to H(y). For a continuous function H with finite values, continuous convergence of (H n ) to H is equivalent to uniform convergence on compact subsets of X * . We say that (H n ) converges upper continuously if, for any y ∈ H -1 (R) and any sequence (y n ) → y, we have lim sup n H n (y n ) ≤ H(y). This property is obviously satisfied when H is finite, upper semicontinuous and (H n ) → H locally uniformly. It is also satisfied when the family (H n ) is equicontinuous at any y ∈ H -1 (R) and (H n ) → H pointwise (or even e-lim sup n H n ≤ H). Let us note that, when H is proper, (H n ) converges upper continuously to H if, and only if -H ≤ e-lim inf n (-H n ). 

Let us turn to e-lim sup n v n ; here a convexity assumption is made on the family (H n ). The proof relies on the following lemma of independent interest.

dom g n = ∅ for each n ∈ N. Suppose one of the conditions ( 10), ( 11), [START_REF] Azé | Intrinsic bounds for Kuhn-Tucker points of perturbed convex programs[END_REF] 

Proof. Under our assumptions, we have v = u * * = u, v n = u * * n = u n , the l.s.c. hulls of u and u n respectively. Since (u n ) M → u by Theorem 4.6, we get that (

Under reinforced assumptions, we can obtain a stronger conclusion.

→ g, the assumptions g ≤ e w -lim inf n g n and e-lim sup n g n (x) < ∞ for some x ∈ X (in fact any x ∈ dom g) of Proposition 5.1 are satisfied, so that v ≤ e w -lim inf n v n . Now, given x * ∈ dom H we have

so that the assumptions of Proposition 4.2 (a) are satisfied, hence e-lim sup n u n ≤ u. Since u = v and since v n ≤ u n for every n ∈ N, the conclusion follows.

In the next results we turn to b-convergence. Lemma 5.8 Let A, B, A n , B n be nonempty subsets of a Banach space X, the sets A, B being closed convex and such that

Proof. Corollary 25 in [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF] asserts that if L : X → Y is a continuous linear map and if Lemma 5.9 Let f, g, f n , g n be functions on a Banach space X, with f, g ∈ Γ(X). Suppose that

Proof. We follow the line of the proof of [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF]Th. 30]. Again, we introduce B, C, B n , C n , E, E n as the epigraphs of f , g, f n , g n , f + g, f n + g n respectively and we set

We observe that the epigraph E of f + g is obtained as E = T (A) with A := (B × C) ∩ D, where T : W := (X × R) 2 → V := X ×R is given by T (x, r, y, s) = (x, r +s). The epigraph E n of f n +g n is also given by

. By Lemma 5.8 we get b-lim sup n A n ⊂ A. Then we apply Proposition [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF]Prop. 8 (d)] by checking its condition [START_REF] Bardi | Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations[END_REF]:

Given p > 0, we use [START_REF] Penot | Continuity of usual operations and variational convergences[END_REF]Lem. 29] and the fact that f and g are bounded below on bounded sets (they are bounded below by continuous affine functions)

Taking q := p + ℓ we obtain the desired condition. Thus, we get b-lim sup n E n ⊂ E, i.e. the conclusion

We are now in a position to state and prove a result about b-lim sup n v n . 

The following theorem is our main result.

Moreover, if X is reflexive, one has v = u and v n = u n for n large enough.

Proof. Since (g n ) b → g we can find a converging sequence (x n ) such that (g n (x n )) is bounded above, so that v ≤ b-lim inf n v n by Proposition 5.7. Since X * = R + (dom g *dom H) and since

, by the Robinson-Ursescu theorem and the cancelation lemma, there exist r, p > 0 such that rU [START_REF] Penot | Bounded convergence for perturbed optimization problems[END_REF]Lem. 3.5]). Thus, as above, we get v n = u n for n large enough.

Let us compare the qualification condition of the preceding theorem with condition [START_REF] Azé | Operations on convergent families of sets and functions[END_REF]. For such a purpose we need the following statement of independent interest.