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Phase transitions are major phenomena in physics, where a small change in a 

parameter may induce a dramatic change in the physical properties of a system. 

Of particular interest in modern physics is the metal-insulator Anderson 

transition1 in disordered systems, ultimately due to the interplay between quantum 

interference and disorder. Here we present the first experimental observation of 

the Anderson transition using atomic matter waves.  The Anderson model 

describes the effect of random impurities on the quantum properties of a particle 

in a crystal lattice. The model predicts the existence of a quantum phase transition 

between an insulator phase, where the wavefunction is exponentially localized at 

long times, and a metallic phase, where the wavefunction is delocalized and 

displays diffusive transport. The metal-insulator transition is a fundamental 

quantum process which plays a central role in the study of quantum disordered 

systems, and has progressively been extended from its original solid-state physics 

scope1-4 to many different fields, including dynamical systems5,6, electromagnetic 
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radiation7-10, acoustics11,12, biology13,14 and even cosmology15. Many studies have 

pointed out strong analogies between cold atoms trapped in optical lattices and 

condensed matter physics16. Using an atom-optics system formally equivalent to 

the Anderson model in three dimensions17-19 we unambiguously demonstrate the 

Anderson transition. Sensitive measurements of the atomic wavefunction dynamics 

and the use of finite-size scaling techniques make it possible to extract both the 

critical disorder strength and the critical exponent of the transition. In doing so, 

we make full use of the physical concepts underlying phase transition phenomena 

such as universality classes (i.e., the insensitivity of the critical phenomena to the 

microscopic properties of the system) and renormalization (which describes the 

scaling laws in the vicinity of the transition). 

The Anderson model1-3 starts from the “tight-binding” description of an electron 

in a lattice, which is essentially composed of two terms: a “diagonal”, on-site, term that 

describes the energy associated with the site, and a “hopping” term that describes the 

probability amplitude for the electron to jump to a neighbouring site. Anderson 

postulated in 1958 that the dominant effect of impurities in the lattice is to randomize 

the diagonal term, and showed that this generally leads to a localization of the 

wavefunction, in sharp contrast with the Bloch-wave solution valid for a perfect crystal. 

This model and its extensions can in fact describe a variety of systems where a wave 

propagates in a disordered medium (not only a wavefunction but also light7,8 or 

acoustic11,12 waves). The large popularity that the Anderson model has enjoyed for five 

decades is also due to its mathematical simplicity, allowing analytical approaches; yet, 

it predicts a wealth of interesting phenomena. One of its most interesting predictions1,2 

is that the wavefunction is always localized in 1D; in 2D it is also localized but with a 

localization length that increases exponentially with the disorder strength; in 3D it 

predicts that there should be a phase transition at a well defined mobility edge between 
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localized and delocalized phases, with the density of impurities or the energy being the 

control parameter. 

Despite the wide interest on the Anderson transition, few experimental results are 

available.  In a crystal, it is very difficult to obtain the conditions for a clean observation 

of the Anderson localization. Firstly, one has no direct access to the electronic 

wavefunction and must rely on modifications of bulk properties like conductivity. 

Secondly, it is hard to reduce decoherence sources to a low enough level to allow 

quantum effects to be clearly observed. Finally, it is not easy to obtain a high directional 

confinement so as to produce the equivalent of a 1D or 2D system. It is thus interesting 

to find other systems that display the Anderson transition, but are more favourable for 

experimental studies. Anderson localization of photons propagating in a disordered 

medium has been observed in the microwave regime11,12 and recently in the visible 

range7,8. Theoretical propositions have also been made recently to observe it with 

ultracold-atomic matter waves20,21.  In the present work, we use another system having 

these properties, the atomic kicked rotor5,6,17-19. 

We engineered a matter-wave system described by an Anderson-like model. It 

allows us to probe the physics of disordered systems in much better controlled 

conditions than what is possible in condensed matter physics, namely: (almost) no 

interaction between the particles exposed to the disordered potential, no absorption in 

the medium, no coupling with a thermal reservoir which could destroy localization, 

possibility of preparing an initially localized state and possibility of measuring the final 

state of the system after a chosen interaction time. Our system consists in a one-

dimensional particle exposed to pulses (equally separated in time) of a spatially 

sinusoidal potential whose amplitude is quasi-periodically modulated at frequencies f2 

and f3. The corresponding Hamiltonian reads: 
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where x and p are the particle position and momentum, K is the pulse intensity, and δ(t) 

is the Dirac delta function. We have chosen normalized variables such that x is 

measured in units of the spatial period of the potential divided by 2π, the particle’s mass 

is unity and time is measured in units of pulse period T1.  

 By taking 0=ε we obtain the standard kicked rotor (strictly time-periodic) 

which has been widely used in theoretical and experimental studies of both classical and 

quantum chaos. This system is known to display a phenomenon called dynamical 

localization5, which manifests itself by an exponential localization of the wavefunction 

in momentum space. Dynamical localization has been shown to be a direct analogue of 

Anderson localization in one dimension, with the following correspondences: 

Localization takes place in real space for the Anderson model and in momentum space 

for the kicked rotor, the so-called “stochasticity parameter” K [see eq. (1)] is the 

equivalent of the diagonal disorder in the Anderson model. K will thus be the control 

parameter for the observation of the Anderson transition in our system, the mobility 

edge corresponding to a critical value Kc. It should be noted that dynamical localization 

exists only when the classical dynamics of the kicked rotor eq. (1) is a chaotic diffusion 

(inhibited in the quantum case by destructive interference). The experimental 

observation of dynamical localization in the kicked rotor17 actually constitutes the first 

observation of Anderson-like 1D localization with matter waves. 

As the Anderson transition between localized and delocalized states exists only in 

three (or more) dimensions, one must generalize the kicked rotor to obtain a system 

analogous to the 3D Anderson model. This can be done by introducing further temporal 

dependencies18,19 making the Hamiltonian quasi-periodic in time, i.e. by taking 0≠ε in 

(1) and choosing f2 and f3 as incommensurate irrational numbers. One can then use a 
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generalization of the transformation introduced by Grempel et al.6 to show that the 

resulting system is substantially equivalent to the 3D Anderson model18, the new spatial 

coordinates in the Anderson model corresponding to the new time dependences in the 

quasi-periodic kicked rotor. Generally, to introduce additional incommensurable 

frequencies in the kicked rotor is equivalent to increase the dimensionality of the 

corresponding Anderson model. 

Our atom-optics realization of the kicked rotor has been described in detail 

elsewhere22. Basically, we cool caesium atoms in a standard magneto-optical trap. After 

a Sisyphus-molasses phase, we obtain a cloud of 107 atoms at a temperature of 3.2 µK. 

The laser-cooling setup thus prepares a sample of atoms in a thermal state whose 

momentum distribution is much narrower than the expected localization length. These 

atoms then interact with the potential generated by a horizontal standing wave. The 

laser beams forming the standing wave pass through an acousto-optical modulator 

driven by an arbitrary-form synthesizer, which allows us to modulate the optical 

potential at will. One generates in this way short pulses of duration 0.8 µs at T1 = 27.778 

µs, to which is superimposed a modulation of the form (1), with 3.0=ε , 236.22 =f  

and 606.33 =f . The standing wave, of typical power 160 mW, is far off-resonant (17.3 

GHz to red of the atomic transition, corresponding to 3102.3 ×  natural widths) in order 

to reduce spontaneous emission, which is a source of decoherence in the system. Our 

setup also allows sensitive measurements of the atomic momentum distribution by 

means of stimulated Raman transitions23. The momentum exchange between the atom 

and the laser radiation is aligned along the axis of the standing wave, insuring that the 

spatial dynamics is essentially 1D. Atom-atom interactions are negligible on the time 

scale of the experiment, which may thus be considered as the superposition of 107 

independent one-particle experiments. 
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 In order to observe the Anderson transition we apply a sequence of kicks to the 

atomic cloud and measure its dynamics. In the localized regime, the evolution of its 

momentum distribution is “frozen” after some characteristic time (~12 kicks) into an 
exponential curve ( )locpp /exp −  (where ploc is the localization length). In the diffusive 

regime, the initial Gaussian shape is preserved and the distribution gets broader as kicks 

are applied, corresponding to a linear increase of the average kinetic energy. Observing 

the Anderson transition would thus mean to obtain narrow, exponentially localized 

distributions for cKK <  and increasingly broad, Gaussian-shaped distributions for 

cKK > . In practice, however, it is much easier to measure the population )(0 tΠ  of the 

zero velocity class. By virtue of the constancy of the total number of atoms, )(2
0 t−Π  is 

proportional to 2
locp  in the localized regime and to the average kinetic energy in the 

diffusive regime. If the dynamics is diffusive then tp ∝2 , which means, by a simple 

area-conservation argument, that 2/1
0 )( −∝Π tt . In the localized regime, )(0 tΠ  tends 

asymptotically to a constant value 1−
locp . At the critical point (see below), we expect 

( ) 3/1
0

−∝Π tt . So, if we multiply the )(0 tΠ   curves by t1/3 we obtain curves of positive 

slope in the localized case and of negative slope in the diffusive (delocalized) regime. 

This provides us a simple way to clearly distinguish the two regimes, the zero slope 

curve being the critical curve corresponding to the phase transition. 

We performed 44 experimental runs corresponding to different values of K, below 

and above the transition. In each run we recorded the value of )(0 tΠ  as the kicks were 

applied. We also recorded the background signal obtained by not applying the Raman 

detection sequence, and the total number of atoms in the cold-atom cloud. These signals 

were used to correct the experimental data from background signals and from long-term 

drifts of the cloud population. Fig. 1 displays the experimental data 3/1
0 )( tt ×Π  as a 

function of time, in the various regimes. It clearly shows the changing of behaviour 

from localized (positive slope) to diffusion (negative slope) around 8.3≈K . However, 

this is not enough to prove that we observe a true phase transition, characterized by 
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singular behaviours. In order to do so, we will show that the data follow the scaling 

laws predicted by renormalization theory applied to the 3D Anderson model. This will 

permit us to extract the critical singularities, thus to measure the critical disorder and the 

critical exponents. 

When one approaches the critical point, the localization length diverges on the 

insulator side while the diffusion constant vanishes on the metallic side. However, a 

strict divergence can be observed only in macroscopically large samples; in small 

samples the divergence is smoothed. This fact plagued the numerical studies of the 

solid-state Anderson transition, as only a finite (small) lattice can be dealt with in a 

computer, and no divergence is observed. In our system, this singular behaviour would 

show up only for prohibitively large numbers of kicks. Indeed, during our experiment, 

the atoms are falling under gravity action, and eventually go out of the detection region 

and are lost. In practice, this limits the maximum number of kicks to around 150. To 

overcome this limitation, a technique named “finite-size scaling”24-29 was introduced. 

 

Fig. 1: Direct experimental observation of the Anderson transition. We plot the 

experimentally measured quantity Π0(t) t1/3 vs. time t in a log-log scale. The values of the 

stochasticity parameter K are (from top to bottom) 0.9, 2.1, 3.8, 6.3 and 9.0, and 3.0=ε . 

The inversion of the slope from positive (localization, blue) to negative (diffusion, red) is 

clearly visible around 8.3≈K . 
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The basic idea is to infer the scaling law allowing proper extrapolation of the measured 

localization length to an infinite sample.  

We have adapted the standard finite-size scaling approach used in numerical 

studies of the Anderson transition3 assuming that, for finite interaction time, the 

quantity )()( 3/-22
0 ttt Λ≡Π −  is an arbitrary function ( )3/-1ξtf  (see methods section), with 

ξ  the scaling parameter which depends only on K. By gathering the results obtained for 

various values of t and K, one can reconstruct both the function f and the scaling 

parameter )(Kξ . It should be emphasized that no assumption about the form of f has 

been made. The result is shown in Fig. 2 for numerical simulations of the system and in 

Fig. 3 for the experimental results, which contain the most important results of this 

work. In both cases, the scaling hypothesis is justified by the fact that all points in Fig. 

2a and 3a lie (within reasonably small errors) on a single curve. The remarkable feature 

is the existence of two branches: the upper one (asymptotic slope -1 in the log-log plot) 

corresponds to diffusive motion while the lower one (asymptotic slope +2 in the log-log 

plot) corresponds to the localized regime, while the critical point is at the right tip 

joining the diffusive and localized branches. The scaling parameter )(Kξ  is plotted in 

Figs. 2b and 3b: it represents the localization length in the localized regime and scales 

as the inverse of the diffusion constant in the diffusive regime. Clearly, it increases 

rapidly in the vicinity of the critical value Kc, on both sides of the transition. Although 

no hypothesis has been made about its behaviour near the critical point, it is found to 

behave as | | ν−− cKKξ ~  when cKK →  for the numerical results in Fig. 2. The value of 

the critical exponent 2.06.1 ±=ν  can be directly extracted from Fig. 2b; the numerical 

uncertainties in the fitting procedure are the main source of error. Once the existence of 

the scaling law is established from Figs. 2 and 3, it is more convenient to use a global 

analysis of the numerical data at various values of K (see ref.25,26). We then obtain the 

more precise value for the critical exponent 10.058.1 ±=ν . 
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In order to perform a similar analysis of the experimental data, we must consider 

decoherence processes, which make the strict localization impossible to maintain for 

arbitrarily long times. In our system, spontaneous emission is such a phase-breaking 

mechanism. The process where an atom absorbs a photon from the standing wave and 

performs a spontaneous emission is not included in the Hamiltonian eq. (1). Although 

this process is rare, it destroys the phase coherence of the atomic matter wave, and 

consequently breaks Anderson localization. Other sources of decoherence are most 

likely present in our experiment, such as acoustical vibrations and laser-intensity or 

frequency fluctuations, which would also break the quantum localization effect and 

contribute to make the transition less sharp than expected. This is a rather common 

situation also in solid state physics, where phase-breaking processes are due e.g. to 

 

Fig. 2: Finite size scaling applied to the results of numerical simulations of the quasi-periodic 

kicked rotor ( 3.0=ε ).  We compute the evolution of the zero-velocity class population 

)(0 tΠ  as a function of time (from 102 to 104 kicks), for various values of K. The finite-size 

scaling makes it possible to determine both the scaling function f, shown in (a), with its upper 

branch (red), associated with the diffusive regime, and its lower branch (blue), associated 

with the localized regime. The dependence of the scaling parameter ξ on K is shown in (b). It 

displays a divergent behaviour around the critical point 23.8=cK , which is a signature of 

the Anderson phase transition. The critical exponent is 10.058.1 ±=ν , in good agreement 

with numerical experiments on the Anderson model. 
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phonons at finite temperature or electron-electron interactions at zero temperature. We 

performed numerical experiments taking decoherence into account. The resulting 

scaling parameter )(Kξ  is plotted in Fig. 4 for various values of the decoherence rate η. 

Not surprisingly, the sharp divergence at zero rate is smoothed when η increases and the 

critical value Kc is shifted. We checked that there is a good agreement (in the 

perturbative regime 0→η ) between the numerical data and the experimental 

measurements. More precisely, the experimental data are well fitted by the formula: 

βηα
ξ

ν +−= )(
)(

1
cKK

K
, (2) 

where α and β are the fitting parameters. This makes it possible to extract from the 

experimental data a value of the critical exponent 20.055.1 ±=ν , in good agreement 

with the critical exponent obtained above from numerical simulations in the absence of 

phase-breaking mechanisms. 

 

Fig. 3: Finite size scaling applied to the experimental results (with 3.0=ε  and 50 to 150 

kicks). The scaling procedure is identical to the one used in Fig. 2. The fact that all 

experimental points lie on a single curve in (a), with a diffusive (red) and a localized (blue) 

branch, is a proof of the relevance of the one-parameter scaling hypothesis. The maximum 

displayed by the scaling parameter ξ in (b) in the vicinity of 83.3=cK   is a clear-cut proof of 

the Anderson transition. Phase-breaking mechanisms (cf. text) smooth the divergence at the 

critical point. When these effects are properly taken into account, one obtains a critical 

exponent 20.055.1 ±=ν , compatible with the numerical result. 
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In conclusion, we have presented the first unambiguous experimental evidence of 

the Anderson transition in 3D with atomic matter waves, characterized by a well 

defined critical point, a divergence of the localization length below the critical point (in 

the localized regime) and a vanishing of the diffusion constant above the critical point 

(in the diffusive regime). We have determined the scaling laws and the critical exponent 

6.1≈ν  of the Anderson transition. This exponent is significantly larger than unity and 

very close to the one observed in recent numerical experiments25,26 on the “pure” 

Anderson model, enforcing the assumption18,19 that the two systems are substantially 

equivalent. Whether this exponent is universal (i.e. independent of the microscopic 

details) or not remains to be studied. A very interesting point is that our Anderson-

equivalent system can be easily generalized to higher dimension, which opens 

perspectives for fascinating studies of the dependence of the critical exponent on the 

dimension. Finally, we have shown how to take into account quantitatively spurious 

phase-breaking mechanisms such as spontaneous emission which smooth the sharp 

Anderson transition. 

 

Fig. 4: The scaling parameter ξ – extracted from finite-size scaling analysis of numerical 

experiments in the presence of decoherence – as a function of the kick strength K and the 

decoherence rate η. One sees that decoherence shifts and smoothes the critical behaviour, 

but the transition is still clearly visible. 
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METHODS  

Finite-size scaling. A quantum phase transition obeys scaling laws in the critical 

regime. The single parameter scaling theory, successfully used for the standard 3D 

Anderson model, can be applied to analyze our experimental data, and especially to 

determine the critical properties of the Anderson transition, i.e. the critical exponents. 

How can we combine the localized and diffusive dynamics on both sides of the 

transition in a consistent frame, including possible anomalous diffusion at the critical 

point? Scaling theory can be applied to )(0 tΠ  depending on the two variables t/1  and 

( )cKK − . We thus assume the scaling law:  

[ ]21
2

0

)(t=
)(

1 k
c

k tKKF
t

−
Π

    

with F(x) an arbitrary function and 1k  and 2k two exponents which can be determined 

as follows. In the diffusive regime, for sufficiently long times, the transport depends on 

the diffusion constant D  which goes to zero as K  approaches cK  from above: 

( )s
cKKD −~ . In the localized regime, for sufficiently long times, the behaviour 

depends on the localization length which diverges as K  goes to cK : ( ) ν
cloc KKp −−~ , 

with ν  the localization “length” exponent. It is easy to see that these two asymptotic 

behaviours of F  imply that 11 =sk+k 2  and 021 =νkk 2− . Using Wegner's scaling 

law27,28 which relates the exponents ν  and s by the relation ( )νd=s 2−  ( d  = 3 being 

the dimensionality of the system), we have: 3/21 =k  and ν=k 3/12 . We therefore 

expect anomalous diffusion, with 3/22
0 )( t~t−Π to govern the dynamics right at the 

critical point29,30. We can thus exhibit the scaling property by plotting the quantity: 

 ⎟
⎠
⎞

⎜
⎝
⎛

Π
Λ 3/13/22

0 )(
1)(

t
ξf=

tt
=t   

where the two branches ±f  of the function f  are defined as )()( /1 ν−
± ±= xFxf  and 

the scaling parameter ξ  behaves as ν
cKKξ −−∝ .  
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 How can we evaluate the critical exponent ν  and the critical stochasticity 

parameter cK ? The behaviour close to the transition can be found by linearising the 

scaling function F  around cK  to obtain: 

 ( ) ( )3ν/1)( tKKB+A=t c−Λ              (3)      

Then cK  and the critical exponent ν can be obtained by fitting the data with eq. (3). 

When taking into account systematic corrections to scaling in the data due to the 

practical limitations on the number of kicks which can be applied, this procedure leads 

to a more accurate estimation of the critical parameters. For further details we refer the 

reader to ref.25,26.  
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