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Abstract : Designs and analysis of computer experiments have been widely 
investigated in the past decade. Two approaches seem adopted by engineers, the 
standard response surface methodology and the Kriging method. This paper 
describes and compares them briefly in order to present a methodology for 
computer experiments based on these two classical methods. The objective is to 
combine the advantages of the two approaches, notably the low cost of the 
standard experimental designs and the accurate response surface of the Kriging 
method. The use and the efficiency of this tool is demonstrated empirically 
through examples. 
 
KEY WORDS : Computer-Aided Designs, Response Surface, Spatial Statistics, 

Optimal design. 
 

1. INTRODUCTION 

For many scientific phenomena, physical experimentation is very expensive, time-

consuming, or impossible. Engineers and scientists have been in the forefront of 

developing mathematical models and numerical solutions to describe physical 

systems. As models become more sophisticated, computer run times increase 

rapidly, and computer experiments are necessary to characterize the physical 

phenomena. 

A computer experiment consists of running a simulation with an input vector x 

which specifies the values of some governing input parameters of the computer 

model. The outputs, y(x1),...,y(xn), at a given set of inputs x1,...,xn, are used to 

provide a predictor of the simulated response. We are faced with two questions :  

• How to select the simulation locations x1,...,xn? 

• Which statistical model is appropriate for the computer responses 

y(x1),...,y(xn)? 
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The context and the objectives of computer experiments should be specified before 

answer the two questions. The context is generally the following. 

• The experiments are deterministic, that is re-running the code with 

the same inputs provides identical outputs. 

• Each simulation is time consuming, and thus the number of 

simulations is limited. 

• The computer response is complex since it comes from sophisticated 

mathematical models, and the complexity is not masked by a random 

error. 

Two kind of objectives are investigated : 

• Identify the input parameters influencing the computer response for a 

better understanding of the physical phenomena, 

• Provide a response surface replacement for the computer model for 

prediction or optimization. 

In this paper, we describe and comment briefly on two classical approaches of this 

problem, the standard experimental design methodology and the Kriging method. 

The first uses well-known designs, as factorial or composite designs, to fit a 

polynomial regression model. The second prefers a more sophisticated statistical 

model taking into account correlation between observations and uses “space-filling” 

designs to fit it. Our comments highlight the advantages and inconvenient of the two 

approaches within the context of computer experiments and the two objectives 

above. Based on that comparison and on our use of the two methods in the 

petroleum industry, we suggest a sequential approach for computer experiments. 

This method consists of running an adaptation of the two traditional methods in a 

sequential way in order to benefit both, the low cost of the standard experimental 

designs, and the accurate response surface of the Kriging method. The paper is 

written from a practical point of view, but we refer to many referees throughout the 

article for more theoretical details. The objective is to provide a tool for computer 

experiments, efficient in terms of accuracy and simulation cost, and easy to 

implement. 
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2. STANDARD EXPERIMENTAL DESIGN APPROACH 

2.1. Description 

A second-order response surface is widely used for computer experiments (see for 

instance Iman and Helton 1988 [6] or Dejean and Blanc 1999 [5]). This well-known 

technique consists of using a standard experimental design, such as a Box-Behnken 

design or a composite design (Box and Draper, 1987 [3], Khuri and Cornell (1996) 

[10]), to select a set of values of the input parameters xi. The outputs of the computer 

code (the observations) are used to fit the second-order polynomial model, 

                                 ε+β+β+β+β= ���
< i

2
ii

ji
jiij

i
ii0 xxxxy ,                            (1) 

where ε~N(0,σ2) is the error term. Model (1) includes interactions xixj and quadratic 

terms xi
2 according to the design properties. 

We note that the main difference between physical experiments and computer 

experiments is the deterministic output of the computer code. The response is 

observed without error in computer experiments. From this there follows some 

adaptations of the standard response surface methodology, notably the experiment 

designs are used without replication. The error term, ε, is due to the model bias and 

no longer to the sampling variation. The error term may include a measurement 

error. Indeed, the object of study is not usually the computer code itself, but the 

simulated phenomena which can be considered as the computer response plus a 

random error. This error is due to the simplification of the mathematical models or 

to the systematic error of the numerical scheme. 

Residual plots, variable selection methods and other statistical tools in regression 

analysis are used for the selection of the best statistical model. The final estimated 

polynomial model (2) is the response surface which replaces the computer model for 

prediction or other applications. Let D={x1,…xn} be an experimental design. The 

computer outputs at the design points, YT=[y(x1),…,y(xn)], are required for the 

estimation of the unknown in Model (1), 

                                                         β= ˆ)x(X)x(ŷ ,                                                 (2) 

where XY)XX(ˆ 1T −=β is the least-square estimate of β with the design matrix 

X=[X(x1),…,X(xn)]T (Khuri and Cornell, 1996  [10]). 
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REMARK : Statistical tools such as cross validation are not appropriated for 

experimental design. Indeed, removing a point destroys the structure of the design, 

which then is no longer adapted to the polynomial model. 

2.2. Why a second-order surface for computer experiments 

A simple polynomial model can be adequate for modeling the computer response 

even if the code is very complex. The following examples describe suitable cases. 

- The computer response may be very smooth in practice despite the complexity 

of the code. For instance, in the petroleum industry, the fluid flow simulator 

provides the cumulative oil production which is usually regular enough to be 

represented by a second-order surface (Dejean and Blanc, 1999 [5]).  

- In a number of applications, the study domain may be smaller than the variation 

domain of the input parameters. The computer response can be represented by a 

second-order surface on such a restrictive experimental domain even if the 

response is not smooth. In the previous example, the input parameters of the 

fluid flow simulator are known within a range of uncertainty due to 

measurement error during the phase of characterization of the oil reservoir. The 

experimental domain represents the uncertainty of the input parameters and is 

small enough to justify the use of the polynomial model, even for complex 

responses of the simulator such as water or gas production (Jourdan and 

Zabalza-Mezghani, 2004 [7]). 

- The polynomial model may be useful for performing a sensitivity analysis. Iman 

and Helton (1988) [6] found in a number of examples that the response surface is 

inadequate for representing the complex output of the computer code, but could 

be useful for ranking the importance of the input parameters. 

The second-order response surface is widely used by engineers since the 

methodology is well-known and available in commercial packages, and the 

interpretation of the polynomial model is easy.  

2.3. Advantages and inconvenience 

The advantages of a second response surface are mainly, 

- the simplicity of the methodology, 
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- the low cost of simulation. 

If a second-order polynomial model is accurate, this approach is the simplest and 

cheapest method for modeling the computer response. Nevertheless, the statistical 

model may be too simple when considering the complexity of the simulated 

phenomena. In a number of cases, the computer response requires a more 

sophisticated approach such as the Kriging method. Moreover, most of the points in 

a standard experimental design are located on the edge of the experimental domain 

and do not allow the detection of irregularities within the domain (Fig. 3a). 

3. STANDARD KRIGING APPROACH 

Recent literature (Sacks et al., 1989 [14,15], Bates et al. 1966 [2], Koehler and 

Owen, 1996 [11]) suggests that a simple polynomial model may not be appropriate 

for modeling complex computer processes. For example, second-order response 

surfaces do not have a very flexible shape. They are incapable of modeling surfaces 

with multiple extrema. Thus, a spatial model has been adapted from the Kriging 

model used in geostatistics. 

3.1. Description 

The replacement model adopted in such cases considers the deterministic response 

as a realization of a random function, Y, that includes a regression model, 

                                                     )x()x(X)x(Y Γ+β= ,                                          (2) 

where x=(x1,…,xd) represents the input parameters, X(x) is a p-vector of regression 

functions on � d, β is a p-vector of the unknown parameters of the regression and Γ 

is a Gaussian process with mean zero and covariance function given by  

cov(Γ(x),Γ(y))=σ2R(x,w), 

where σ2 is the variance and R(x,w) is the correlation function depending on a 

correlation parameter θ, 

�
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ii )wx(-�expR(x,w) , ∀x∈� d, ∀w∈� d. 

The correlation between observations depends  

- on the correlation parameter : the correlation decreases as θ increases, 
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- on the distance between observations : the correlation decreases as the distance 

increases and two observations are assumed uncorrelated if the distance is large 

enough. 

The correlation parameter defines the distance of correlation in the model. 

REMARK : Different correlation functions (exponential, spherical, Matérn, ...) 

characterizing the computer response smoothness have been investigated in the 

literature (refer to Chritensen, 1990 [4] or Koeher and Owen, 1996 [11], for an 

overview of the correlation functions). Moreover, the correlation parameter θ can 

take into account different distances of correlation on each axis (θ is then a d-

vector). These solutions may be more adapted than a simple Gaussian process. Note 

however, that a complex correlation model requires more simulations for the 

estimation of its parameters. 

Let D={x1,…xn} be an experimental design. The computer output at the design 

points, YT=[y(x1),…,y(xn)], are required for the estimation of the unknown 

parameters β, σ2 and θ in Model (2). Once, θ is specified. We introduce the notation, 

X=[X(x1),…,X(xn)]T as the design matrix, R=(R(xi,xj))i,j=1,…,n, is the matrix of 

correlation between the design points, r(x)=[R(x1,x),…,R(xn,x)]T the vector of 

correlation between x and the design points. The best linear unbiased predictor 

(BLUP) is given by (Sacks et al., 1989 [15], Christensen, 1990 [4], Koehler and 

Owen, 1996 [11]) 

                                        ]ˆXY[R)x(rˆ)x(X)x(Ŷ 1T β−+β= − ,                                  (3) 

where YXR)XRX(ˆ 111T −−−=β is the generalized least-square estimate of β. The 

predictor minimizes the mean square error (MSE), 

   ( ))x(K)XRX()x(K)x(rR)x(r1)]x(Ŷ)x(Y[E)x(MSE 11TT1T22 −−− +−σ=−= ,  (4) 

where T1T ]XR)x(r)x(X[)x(K −−= . The variance σ2 is estimated by 

                                   )ˆXY(R)ˆXY(
n
1ˆ 1T2 β−β−=σ − .                                            (5) 

The correlation parameter θ has to be specified in (3), (4) and (5). Under Gaussian 

assumptions, θ could be estimated by maximum likelihood (Mardia and Marshall, 

1984 [12]. However, the numerical optimization of the likelihood is time consuming 
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and leads usually to a local maximum (Warnes and Ripley, 1987 [16]). In this paper, 

we select the correlation parameter which minimizes the empirical integrated mean 

squared error, 

                                         IMSE= �
=

σ
G

1k

2
k /)x(MSE

G
1

,                                            (6) 

where xk, k=1,…,G are the G points of a grid in the experimental domain. The size 

of the grid G can be large since (6) does not require the computer response at xk. 

Moreover, if G is large enough, the optimal θ is independent to the grid size. 

3.2. Kringing as an interpolation model 

In computer experiments there is no measurement error. In this case, the random 

Gaussian process Γ represents the systematic departure from the assumed regression 

model and leads to an interpolation model, )x(Y)x(Ŷ ii = . The two terms in the 

right side of (3) are uncorrelated. Adding the second term ]ˆXY[R)x(r 1T β−−  to the 

regression model corrects for the difference between the regression prediction 

β̂)x(X  and the observation (Fig. 1). 

This aspect of the model is interesting for modeling a computer output since the 

responses are deterministic. Furthermore, the interpolation permits the detection of 

possible irregularities of the complex computer response. 
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Figure 1. The Kriging response surface behavior in the case of a constant regression 

REMARK : Sacks et al., 1989 [15] and Jourdan, 2002 [8] suggest adding an error term 

in Model (2), called a nugget effect in geostatistics. This term removes the 

interpolation constraint and seems useful when the interpolation model leads to an 

irregular response surface. The error term smoothes the surface. In addition, when 
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considering physical experiments, the exact interpolation is no longer required and 

the error term represents a measurement error. The technique presented in this paper 

in the context of computer experiments can thus be applied to physical experiments.  

3.3. The choice of the regression model 

In a number of examples of the literature (Welch et al., 1992 [17]), the regression 

model is chosen constant and the regression is the mean of the observations 

(computer responses). The predictions are then entirely determined by  

- the correlation function chosen a priori by the user 

- the estimation of the correlation parameter θ which is not numerically accurate 

(see previously §3.1). 

Figure 2 illustrates that a constant regression is unstable when the correlation 

parameter θ varies. A more sophisticated regression, such as polynomial (Sacks et 

al., 1989 [14]) or trigonometric regression (Bates et al., 1996 [2], Jourdan, 2002 

[8]), is required to make the estimated response surface independent of the θ 

variations. 
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Figure 2. Variation of the Kriging response surface according to the correlation parameter for two 
kind of regressions 

3.4. Space Filling Designs 



 9

Standard designs (such as Box-Behnken, factorial or composite designs) are not 

adapted to complex computer codes, and inappropriate for Kriging models. These 

designs select points essentially on the edge of the experimental domain (Fig. 3a), 

which is inadequate for 

- catching possible irregularities of the computer response within the experimental 

domain, 

- estimating the correlation parameter θ since only large distances are tested by the 

design. 

Experimental designs used for the Kriging model fit are called ‘space filling 

designs’. They fill up the experimental domain in a uniform fashion and then are 

suitable for answering the two objectives above. Different kinds of space filling 

designs have been explored in the bibliography : Latin hypercubes, orthogonal 

arrays, low discrepancy sequences as one-generator lattices,... (Bates et al., 1996 [2], 

Koehler and Owen, 1996 [11]).  

The more often used designs are Latin hypercubes. Each range of the d input 

parameters are divided into n equal subintervals and formed a n×…×n grid on the 

experimental domain. A Latin hypercube selects n points among the nd points of the 

grid such that the n levels of each parameter are represented once in the design (Fig. 

3b). Latin hypercubes have the following advantages. 

- The construction is easy. Each column of a Latin hypercube is a permutation of  

{1,…,n} or any set of n symbols. 

- The design points are uniformly distributed on each axis (the n levels of each 

input parameter are tested by the design). 

Moreover, given n and d, (n!)d Latin hypercubes are possible. The final Latin 

hypercube can be selected according to a standard Kriging criteria such as maximum 

entropy, minimum mean squared error or maximin distance (see Park, 1994 [13] for 

an algorithm and Bates et al., 1996 [2] or Koehler and Owen, 1996 [11] for an 

overview of the criteria) 
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Figure 3. Two nine-point designs for two factors : (a) standard experimental design (b) space-filling design 

3.5. Advantages and inconvenience 

The Kriging appraoch appears more appropriate for computer experiments. The 

interpolation model has a very flexible shape and is capable of modeling complex 

surfaces.  

On the other hand, this sophisticated model requires more simulations to estimate 

the unknown parameters, especially for an accurate estimation of the correlation 

parameter θ. For Latin hypercube, the design size is very flexible and becomes an 

additional parameter  or the problem.  

We should also note that the Kriging approach is not adequate for ranking the 

importance of the input parameters. 

4. SEQUENTIAL APPROACH OF KRIGING 

The standard experimental designs are inexpensive in terms of simulations but can 

provide a polynomial model which is inappropriate for computer experiments. On 

the other hand, the Kriging approach provides an efficient model but requires more 

simulations. The difficulty lies in the selection of the best method 

(quality/simulation-cost) when no information about the computer response behavior 

is available. In this instance, we suggest using the two methods in a sequential 

approach. The objective is to progressively increase the number of simulations in 

order to improved the response surface, if and only if, the surface requires 

improvement. 

The first step is devoted to the fit of a cheap and simple polynomial model. If the 

second-order response surface is accurate, the process is stopped. A quality surface 
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is obtained for the replacement of the computer program by using a small number of 

simulations. This step first requires an experimental design for the polynomial 

model fit. The choice of this design is the first difficulty of the sequential approach 

since the design should 

- possess the good properties of standard response surface designs (see Box and 

Draper, 1987 [3]) 

- allow the detection of possible irregularities inside the experimental domain. 

If the second-order surface is inaccurate, a second step consists of improving the 

initial polynomial model by Kriging. The initial design has insufficient number of 

simulations, and additional points are necessary to fit the new model. The second 

difficulty of the sequential approach is the location of the new simulations, since 

adding points must 

- provide information where the first-step model is inaccurate in the experimental 

domain 

- test small distances in order to estimate the correlation parameter θ. 

In the following sections, we describe in details the two steps with the aid of the 

following example (Fig. 8.a). We consider the function f as the response of a 

computer code with two inputs parameters : x1 varying within [0,2] and x2 varying 

within [-0.8,3.5], 
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4.1 Step1 : Selection of the initial experimental design 

The first step entails fitting a polynomial model at the lowest simulation cost. This 

step may be extended by Kriging in order to improve the quality response surface. 

This possibility implies that traditional experimental designs cannot be used due to 

their point distribution (§ 2.3). On the other hand, the space-filling designs used in 

the Kriging approach do not have the necessary properties for fitting a polynomial 

model. In addition, we need a good quality second-order design, especially if the 

process is stopped after the first step. The suitable designs for a sequential approach 
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must have a good spatial point distribution and properties required for a second-

order surface simultaneously. 

Kenny, 1998 [9] has developed a class of designs called orthogonal column Latin 

hypercubes (Table 1) having the two qualities required for our sequential approach. 

First, the design contains some of the interesting properties of the standard second-

order surface designs. In particular, the estimates of linear effects of all input 

parameters are uncorrelated with each other, with the estimates of bilinear 

interactions and quadratic effects. This property assures a good quality design in 

terms of D-optimality. Furthermore, the design is adapted for sensitivity studies. The 

orthogonality makes readable the ranking of the importance of the input parameters 

since the main effects are independent of interactions or quadratic effects. 

Second, as Latin hypercube, the design has a good point distribution. Moreover, one 

can select the best space-filling design within the class of orthogonal column Latin 

hypercubes according to standard Kriging criteria. 

n° x1 x2 

1 1 3 
2 2 -4 
3 3 -1 
4 4 2 
5 0 0 
6 -4 -2 
7 -3 1 
8 -2 4 
9 -1 -3 

Table 1. A 9×2 orthogonal Latin hypercube with entries from {-4,-3,…,3,4} 

In our example, we select the orthogonal Latin hypercube detailed in Table 1 and 

illustrated in Figure 3b. The outputs of function f at the design points are used to fit 

and select a second-order polynomial regression. The accuracy of the estimated 

model is unsatisfactory since the coefficient of determination R² is 0.76 and the 

adjusted coefficient is 0.52. Figure 4 illustrates the non-influence of the terms in the 

regression, with exception of the constant. This result is not surprising since the 

computer surface in Figure 8.a can obviously not be represented by a polynomial 

surface. The Kriging model seems necessary in this example. 
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Figure 4. Pareto plot of the selected polynomial regression 

4.2. Step 2 : additional points for Kriging 

The second step consists of improving the model obtained in the first step by adding 

a Gaussian process to the polynomial model selected previously. The estimation of 

the unknown parameters of the Gaussian process requires additional simulations. 

The location of the new design points must respect two objectives. 

First, the new points have to test small distances in order to estimate the correlation 

distance. Note that the smallest distance involved by a Latin hypercube is n/d , and 

provides no information about the correlation between simulations less than this 

distance. 

Second, the new points have to provide local information in the areas of the 

experimental domain where the polynomial surface is inefficient. 

Classical statistical tools are used to detect the points of the initial design which 

provide an inaccurate prediction (Figure 5). An area is defined around these points 

and the additional points are randomly chosen in this area, as illustrated in Figure 6. 

The area is a cube with side length 2/n, centered around the selected point. This cube 

assures that critical zones are tested as well as distances smaller than n/d .  
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Figure 5. Residual plot and predicted values against simulated (true) values at the design points. 
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Figure 6. The Latin hypercube of Table 1 (crosses) plus the new simulations (points) 

The outputs of the new simulations plus the first-step outputs are used to estimate 

the correlation parameter θ by optimizing the IMSE (6). In our example, the optimal 

θ equals 0.56. 

REMARK : In this example the inefficient points of the initial design are obviously 

numbers 7 and 3 (numeration of Table 1), but we can also consider points 4 and 6 . 

If we add new points only around 7 and 3, the IMSE optimizing process converges 

on  large values of θ, and the matrix of correlation R becomes numerically unstable. 

The optimizing process requires additional simulations, and new points around 4 and 

6 are necessary. Adding sequentially the new points in the second step assures 

running a minimum number of simulations. 

The Kriging predictor (3) obtained with the polynomial regression and the optimal θ 

is used to generate the final response surface (Fig. 8c). 
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Fig. 8b. Polynomial surface 
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Fig. 8c. Kriging surface 
 (step 2) 

Figure 8. Comparison of the two response surfaces 
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4.3. Comparison with standard approaches 

In this example, the final estimated model necessitates 21 simulations, 9 points in 

the initial design (Table 1) plus 12 additional points (Figure 6). 

Comparison with the standard experimental design approach 

In order to compare the two methods, the standard experimental design approach has 

been applied to the example using composite design requiring 9 simulations. The 

sequential approach provides either a polynomial surface (Fig. 8b, step 1) or a 

Kriging surface if the polynomial surface needs to be improved (Fig. 8c, step 2). If 

the computer response behaves like a polynomial surface, the two methods lead to a 

satisfactory second-order surface using the same number of simulations. In the 

example, the initial composite design with two factors in the first step requires 9 

simulations. If the computer response is more complex, the standard approach is 

very poor since the second-order surface cannot be improved. Thus the sequential 

approach either provides the same result for the same cost, or gives a better quality 

surface. 

Comparison with the standard Kriging approach 

In order to compare the two methods, the standard Kriging approach has been 

applied to the example using the same model, a second-order polynomial regression 

plus a Gaussian process, and the same number of simulations, an optimal Latin 

hypercube of size 21 (maximin distance criteria). 

The same quality surfaces have been obtained with the two approaches. The 

advantage of the sequential approach is that is less expensive in the case of a smooth 

computer response requiring only a polynomial model. The standard Kriging method 

has also been applied with smaller Latin hypercubes. The accuracy of the response 

surface decreases naturally with the number of simulations. The difficulty with this 

approach is selecting a priori the number of simulations necessary for a quality 

surface. This problem does not exist with the sequential approach since the design is 

constructed step by step. 

An other example 



 16

We consider the function g (Balkin and Lin, 2000 [1]) as the response of a computer 

program with two inputs parameters : x1 varying within [0,2] and x2 varying within 

[-0.8,3.5], 

( ) 1
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2
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121 5x2xx10xx20x10)x,x(gy −+−++−== . 

The initial design used in the first step is the Latin hypercube of Table 1. The 

accuracy of the second-order surface is unsatisfactory since the coefficient of 

determination R² is 0.62 and the adjusted coefficient is 0.16. Figure 9b illustrates the 

poor performance of the polynomial surface. Hence, a Kriging model is fitted by 

adding new simulations around points 5, 6, 7 and 9. The Kriging surface (Figure 9c) 

is less accurate than in the previous example but is obviously better than the 

polynomial surface (Figure 9b), especially when searching for the maximum value. 

The true surface maximum is 0.25 and occurs at x1=1.0 and x2=1.0. The maximum 

provided by the Kriging surface is 0.26 and occurs at x1=1.15 and x2=0.88, whereas 

the polynomial surface gives a maximum of 0.16 found at the extremities of the 

experimental domain. We note that Balkin and Lin, 2000 [1] obtained the quite same 

quality result with a neural network approach.  

x1x2

y

 

Fig. 9a. Computer surface  
(function g) 
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x2

y

 

Fig. 9b. Polynomial surface 
 (step 1) 

x1x2

y

Fig. 9c. Kriging surface 
 (step 2) 

Figure 9. Comparison of the two response surfaces 

 

5. DISCUSSION 

The interest of the approach presented in this paper is to adapt two standard methods 

in order to run them sequentially. The two objective are achieved since the method 

improves the poor performance of a second-order response surface and reduces the 

number of simulations required by Kriging (in the case of a smooth computer 

response). This approach can be considered as repairing a second-order surface 

using the computer experiments already run. 
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The paper shows initial work on this method and many questions are to develop, 

especially concerning the Kriging step (definition of the area, number of new 

simulations in each area, quantify the information provided by the new 

experiments...). The sequential Kriging approach appears promising and will be 

applied to a reservoir oil production simulation problem. 
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