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Abstract. In this paper we prove that the function giving the frequency
of a class of patterns of digital planes with respect to the slopes of the
plane is continuous and piecewise affine, moreover the regions of affinity
are precised. It allows to prove some combinatorial properties of a class
of patterns called (m, n)-cubes. This study has also some consequences
on local estimators of area: they never converge to the exact area when
the resolution tends to zero for almost all region of plane. Actually we
can prove with the same technics that this result is true for the regions
of hyperplanes for any dimension d ≥ 3.

Keywords: Digital Plane, Pattern, (m,n)-cube, Area Estimator, Local
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1 Introduction

Digital Planes are very classical objects of Discrete Geometry. Their combina-
torics have been studied in a lot of papers (for example [1,2,3,4,5,6,7,8,9]), for
a recent review on the subject, see [10]. In this paper we are interested in a
class of patterns called (m, n)-cubes which are intuitively the pieces of digital
planes of size m × n. These objects have been studied for quite a long time, for
example it is well-known that the number of (m, n)-cubes appearing in a digital
plane is always less than mn ([4,5,6,8,9]). These (m, n)-cubes can be used in
different domains of image analysis for example for normal vector estimation,
area estimation ([11], see also second section of this paper), form reconstruction.
The originality of this paper is the study of not only the presence or not of a
(m, n)-cube in a digital plane, but also the frequency of this (m, n)-cube in all
the digital plane.

The main result of this paper is that the function giving the frequency of
(m, n)-cubes of digital planes with respect to the slopes of the plane is continuous
and piecewise affine. Moreover we will see that the study of the frequency allows
to prove some combinatorial properties on the (m, n)-cubes.

In a second part of the paper, we use our study about frequencies to prove
some results about local estimators of area. A local estimator of area simply
consists to decompose a surface into little pieces (in fact similar to (m, n)-cubes)



and to sum some weights which correspond to the pieces. The study of the
frequency of the (m, n)-cubes allows to prove that even for planar regions these
estimators are not correct in the sense that, if the discrete regions are obtained
from a continuous plane, then the estimated area does not converge to the exact
area for almost all slope of plane when the resolution of the discretization tends
to zero. It is in fact a generalization to 3D of [12]. Actually we can prove with
the same technics that all the results of this paper are true for the regions of
hyperplanes for any dimension d ≥ 3.

2 Preliminaries

Let a, b ∈ N and a ≤ b. The discrete interval {a, a + 1, . . . , b − 1, b} is denoted
Ja, bK. For x ∈ R, ⌊x⌋ (resp. 〈x〉) denotes the integral part (resp. the fractional
part) of x. So, x = ⌊x⌋ + 〈x〉 with ⌊x⌋ ∈ Z, ⌊x⌋ ≤ x < ⌊x⌋ + 1 and 0 ≤ 〈x〉 < 1.
If m ∈ N∗ and n ∈ Z then n [mod m] denotes the congruence class of n modulo
m and corresponds to the set {n + km|k ∈ Z}. The set of congruence classes
modulo n is denoted Z/nZ. For any set E, card(E) denotes the cardinality of E.
We refer in all the following to a subset of R3 of the form R = {(x, y, αx + βy +
γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that 0 ≤ α, β ≤ 1 and a, b, c, d ∈ R as a
rectangular planar region. It corresponds to a subset of plane whose projection
on the XY -plane is a rectangle with sides parallel to X, Y -axes.
In this paper all the topological notions are considered relatively to the euclidean
usual topology. The measure notions are considered relatively to the Lebesgue
measure on the euclidean space, for example ‘negligible set’ (set with zero mea-
sure) and ‘almost everywhere’ are considered relatively to the Lebesgue measure
on the euclidean space.

3 Frequencies of the (m, n)-cubes

In this paper we consider naive digital planes Pα,β,γ = {(x, y, ⌊αx + βy +
γ⌋) | (x, y) ∈ Z} with 0 ≤ α, β ≤ 1 and γ ∈ R. So a naive plane is functional in
its x, y coordinates: z = pα,β,γ(x, y) = ⌊αx + βy + γ⌋ for all (x, y, z) ∈ Pα,β,γ .
Moreover we fix two positive integers m and n and we define Fm,n = J0, m −
1K × J0, n − 1K.

Definition 1. A (m, n)-pattern is a function w : Fm,n → Z. We note Mm,n

the set of all (m, n)-patterns and the size of a (m, n)-pattern is m × n.

We can also see a (m, n)-pattern as a set of voxels which projection in the XY -
plane is Fm,n and which has at most one point in each line parallel the third
coordinate direction.
In all the following, a pattern of size less than m × n corresponds to a (m′, n′)-
pattern where m′ ≤ m, n′ ≤ n and (m, n) 6= (m′, n′).
A (m, n)-cube is a (m, n)-pattern which can be extracted from a naive digital
plane, more precisely:

2



Definition 2. The (m, n)-cube at position (i, j) of the digital plane Pα,β,γ is
the (m, n)-pattern w defined by w(i′, j′) = pα,β,γ(i + i′, j + j′) − pα,β,γ(i, j) for
any (i′, j′) ∈ Fm,n. It is denoted wi,j(α, β, γ).

So a (m, n)-cube is simply a piece of a digital plane which projection in the
XY -plane is a translated of Fm,n. Fig.1 corresponds to a (3, 3)-cube in a digital
plane.

Note that for all i, j ∈ Z and α, β, γ ∈ R, wi,j(α, β, γ) = w0,0(α, β, αi + βj + γ).

Fig. 1. A (3, 3)-cube in a digital plane

Let Cα,β
i,j = 1− 〈αi + βj〉 for (i, j) ∈ Fm,n, and σα,β be a bijection from J1, mnK

to Fm,n such that the sequence (Bα,β
i )0≤i≤mn defined by Bα,β

i = Cα,β
σα,β(i)

for

1 ≤ i ≤ mn and Bα,β
0 = 0, is increasing.

We recall some known results (see for example [5]).

Proposition 1. For all α, β, γ ∈ R we have:

1. The (k, l)-th point of the (m, n)-cube at position (i, j) of the digital plane
Pα,β,γ can be computed by the formula:

wi,j(α, β, γ)(k, l) =

{

⌊αk + βl⌋ if 〈αi + βj + γ〉 < Cα,β
k,l

⌊αk + βl⌋ + 1 otherwise

2. The (m, n)-cube wi,j(α, β, γ) only depends on the interval [Bα,β
h , Bα,β

h+1[ con-
taining 〈αi + βj + γ〉.

3. For all h ∈ J1, mn − 1K, if [Bα,β
h , Bα,β

h+1[ is not empty (Bα,β
h < Bα,β

h+1), then

there exist i, j such that 〈αi + βj + γ〉 ∈ [Bα,β
h , Bα,β

h+1[ and thus the number

of (m, n)-cubes in the digital plane Pα,β,γ is equal to card({Cα,β
k,l | (k, l) ∈

Fm,n}). We have, in particular, card({Cα,β
k,l | (k, l) ∈ Fm,n}) ≤ mn.
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So, we have w0,0(α, β, γ) = w0,0(α, β, 〈γ〉) and thus wi,j(α, β, γ) = w0,0(α, β, 〈αi+
βj + γ〉) for all α, β, γ ∈ R and (i, j) ∈ Z2 .
By Proposition 1, the set of (m, n)-cubes of the digital plane Pα,β,γ depends only
on α, β and it is denoted Cm,n,α,β. In all the following, Um,n denotes the set of
all the (m, n)-cubes. So, Um,n =

⋃

(α,β)∈[0,1]2 Cm,n,α,β.

Definition 3 ([13]). Let w be a (m, n)-cube, then the pre-image PI(w) of w is
the set of the triple (α, β, γ) ∈ [0, 1]3 such that w is the (m, n)-cube at position
(0, 0) of the digital plane Pα,β,γ.

Remark. It is easy to see that PI(w) is a convex polyhedron defined by the
inequalities w(k, l) ≤ kα + lβ + γ < w(k, l) + 1 for (k, l) ∈ Fm,n. Moreover the
set of the γ′ ∈ [0, 1] such that (α, β, γ′) ∈ PI(wi,j(α, β, γ)) is exactly the interval

[Bα,β
h , Bα,β

h+1[ containing 〈αi + βj + γ〉.
The last remark leads to the following definition:

Definition 4. The γ-frequency of a (m, n)-cube w for the slopes (α, β) (denoted
freqα,β(w)) is the length of the interval Iα,β(w) = {γ ∈ [0, 1] | (α, β, γ) ∈ PI(w)}.
(so the function TP : PI(w) → R such that TP (α, β) = freqα,β(w) is the tomo-
graphic projection of PI(w) w.r.t. the third coordinate direction).

Definition 5. The overlapping frequency of a (m, n)-cube in the digital plane
Pα,β,γ is

lim
N→+∞

card({(i, j) ∈ J−N, NK2 |wi,j(α, β, γ) = w})

(2N + 1)2

if the limit exists. It is denoted overfreqα,β,γ(w).

So, overfreqα,β,γ(w) = limN→+∞
card({(i,j)∈J−N,NK2 | 〈αi+βj+γ〉∈Iα,β(w)})

(2N+1)2

We have the following properties:

Proposition 2. For any α, β ∈ [0, 1] and γ ∈ R we have:

1. w ∈ Cm,n,α,β if and only if freqα,β(w) > 0.

2. overfreqα,β,γ(w) = freqα,β(w)

Proof. 1. If w ∈ Cm,n,α,β, then there exists (i, j) ∈ Z2 and γ ∈ R such that
w = wi,j(α, β, γ) = w0,0(α, β, 〈αi + βj + γ〉). So, 〈αi + βj + γ〉 ∈ Iα,β(w).
Then freqα,β(w) = µ(Iα,β(w)) > 0 because Iα,β(w) is a non-empty interval
of the form [A, A′[.
Conversely if freqα,β(w) > 0 then Iα,β(w) 6= ∅. So, by Proposition 1, for all

γ ∈ R there exists (i, j) ∈ Z2 such that 〈αi+βj+γ〉 ∈ Iα,β(w) which implies
that w ∈ Cm,n,α,β.

2. We prove now that overfreqα,β,γ(w) = freqα,β(w) for any α, β ∈ [0, 1] and
γ ∈ R.
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(a) Suppose first that α and β are both rational and let γ ∈ R, then α = p1

q1

and β = p2

q2
with pi and qi co-prime.

Put p = gcd(p1, p2), p′1 = p1

p , p′2 = p2

p , q = gcd(q1, q2), q′1 = q1

q , q′2 = q2

q ,

q3 = q1q2

q and r = pq
q1q2

= p
q3

.

Put k0 = ⌊γq3⌋ and γ′ = γ − ⌊γq3⌋
q3

. Then 0 ≤ γ′ < 1
q3

.

As p′1q
′
2 and p′2q

′
1 are co-prime, then {p′1q

′
2x + p′2q

′
1y | (x, y) ∈ Z2} = Z

and thus {αx + βy | (x, y) ∈ Z2} = r{p′1q
′
2x + p′2q

′
1y | (x, y) ∈ Z2} = rZ,

which implies that {〈αx+βy+γ〉 | (x, y) ∈ Z2} = {γ′+ i
q3

| i ∈ J0, q3−1K}
because p and q3 are co-prime.

Consider the function f : Z2 → Z/q3Z such that for all (x, y) ∈ Z2, f(x, y) =
p′1q

′
2x+p′2q

′
1y [mod q3]. Then f is surjective and for all (x, y) ∈ Z2, f(x+

q1, y + q2) = f(x, y). So, f can be viewed as a function from Z/q1Z ×

Z/q2Z to Z/q3Z and in this case we use the notation f̂ instead f .

Then f̂ is a surjective morphism of groups and thus for all y ∈ Z/q3Z,

card({x ∈ Z/q1Z×Z/q2Z|f̂(x) = y}) = card(Ker(f̂)) = card(Z/q1Z×Z/q2Z)
card(Z/q3Z) =

q where Ker(f̂) is the Kernel of the morphism of groups f̂ .
Let s, t ∈ Z and consider the rectangle H(s, t) = Js, s+q1−1K×Jt, t+q2−
1K (H(s, t) can be viewed as a representation of the group Z/q1Z×Z/q2Z).
Then for any s, t ∈ Z and any y ∈ Z/q3Z, card({x ∈ H(s, t)|f(x) = y}) =

card({x ∈ Z/q1Z × Z/q2Z|f̂(x) = y}) = q.
Let i ∈ J0, q3 − 1K and consider (x0(i), y0(i)) ∈ Z2 such that 〈αx0(i) +
βy0(i) + γ〉 = γ′ + i

q3
.

Put F (i, γ) = {(x, y) ∈ Z2|〈αx + βy + γ〉 = γ′ + i
q3
} and for any set E,

put F (i, γ, E) = F (i, γ) ∩ E.
Then (x, y) ∈ F (i, γ) if and only if f((x, y) − (x0(i), y0(i))) = 0 because
p, q3 are co-prime.
So, F (i, γ, H(s, t)) = {(x0(i), y0(i))+(x, y) ∈ Z2|f(x, y) = 0}∩H(s, t) =
{(x, y) ∈ H(s − x0(i), t − y0(i))|f(x, y) = 0}.
Then card(F (i, γ, H(s, t))) = q which is independent of s, t ∈ Z and
i ∈ J0, q3 − 1K. Let N ∈ N and put EN = J−N, NK2.
Then EN = (

⋃

(i,j)∈J0,⌊ 2N+1

q1
⌋−1K×J0,⌊ 2N+1

q2
⌋−1K H(−N+q1i,−N+q2j))

⋃

E′
N

where E′
N = J−N + q1(⌊

2N+1
q1

⌋ − 1), NK× J−N, NK
⋃

J−N, NK× J−N +

q2(⌊
2N+1

q2
⌋ − 1), NK. So EN is partitioned on ⌊ 2N+1

q1
⌋⌊ 2N+1

q2
⌋ rectangles

of the form H(s, t) and E′
N .

Then, card(F (i, γ, EN )) = ⌊ 2N+1
q1

⌋⌊ 2N+1
q2

⌋q + card(F (i, γ, E′
N )).

So,

limN→+∞
card(F (i,γ,EN))

(2N+1)2 = limN→+∞
⌊ 2N+1

q1
⌋⌊ 2N+1

q2
⌋q

(2N+1)2 +

limN→+∞
card(F (i,γ,E′

N))
(2N+1)2 = q

q1q2
= 1

q3

because card(F (i, γ, E′
N)) < (q1 + q2)(2N + 1).
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So, for all l ∈ J0, q3 − 1K,

lim
N→+∞

card({(i, j) ∈ EN | 〈αi + βj + γ〉 = γ′ + l
q3
})

(2N + 1)2
=

1

q3
.

Put L = {〈αi + βj〉 | (i, j) ∈ Fm,n} = 1
q3
{l1, l2, ..., lh} where 0 = l1 <

l2 < ... < lh. Then Bα,β
0 = 0 and Bα,β

i = 1 − lh−i+1

q3
= q3−lh−i+1

q3
for

i = 1, ..., h.
Let k ∈ J0, h − 1K and w such that Iα,β(w) = [Bα,β

k , Bα,β
k+1[. Then

overfreqα,β,γ(w) = lim
N→+∞

card({(i, j) ∈ EN | 〈αi + βj + γ〉 ∈ [Bα,β
k , Bα,β

k+1[})

(2N + 1)2

= M
1

q3
where M = card({l|γ′ +

l

q3
∈ [Bα,β

k , Bα,β
k+1[})

= Bα,β
k+1 − Bα,β

k because 0 ≤ γ′ <
1

q3

= freqα,β(w)

(b) Suppose now that α or β is irrational. By Corollary 6 of Appendix A we
have

overfreqα,β,γ(w) = limN→+∞
card({(i,j)∈EN | 〈αi+βj+γ〉∈Iα,β(w)})

(2N+1)2

= µ(Iα,β(w))

So, for all α, β ∈ [0, 1], overfreqα,β,γ(w) = freqα,β(w) ⊓⊔

Definition 6. A function f : R2 → R is called a piecewise affine function if
there exists a finite collection (Ci)i∈I of open convex subsets of R3 and affine
functions fi : R3 → R for i ∈ I, such that :

– Ci ∩ Ci′ = ∅ for i, i′ ∈ I and i 6= i′,
–

⋃

i∈I Ci = R2 and
– the restriction of f to Ci is fi for all i ∈ I (for all i ∈ I, f(x) = fi(x) for all

x ∈ Ci).

Property 1. Let f, g : R2 → R be two piecewise affine functions. Then −f, f +
g, f − g, max(f, g) and min(f, g) are also piecewise affine functions.

Proof. Let (Ci)i∈I and (fi)i∈I (respectively (Dj)j∈J ) and (gj)j∈J collections of
open convex sets and affine functions corresponding to f (respectively to g) by
the last definition.
Then (Ci)i∈I and (−fi)i∈I (respectively (Ci ∩Dj)(i,j)∈I×J and (fi + gj)(i,j)∈I×J

correspond to −f (respectively to f +g). Then −f and f +g are piecewise affine
functions and thus f − g is a piecewise affine function.
Let (i, j) ∈ I × J and let H1

i,j = {x ∈ R3 | fi(x) > gj(x) } ∩ Ci ∩ Dj and

H2
i,j = {x ∈ R3 | fi(x) < gj(x) }∩Ci∩Dj . Then collections (Hk

i,j)(k,i,j)∈{1,2}×I×J
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and (hk
i,j)(k,i,j)∈{1,2}×I×J such that for all (i, j) ∈ I × J, h1

i,j(x) = fi(x) for all

x ∈ H1
i,j and h2

i,j(x) = gi(x) for all x ∈ H2
i,j correspond to the function max(f, g).

As min(f, g) = −max(−f,−g) then min(f, g) is a piecewise affine function ⊓⊔

Theorem 1. For any (m, n)-cube w, the function (α, β) 7→ freqα,β(w) is a con-
tinuous function which is piecewise affine.

Proof. PI(w) = {(α, β, γ) ∈ R3 | w(k, l) ≤ αk+βl+γ < w(k, l)+1 for all (k, l) ∈
Fm,n}.
Then Iα,β(w) = [max(l,k)∈Fm,n

(w(k, l) − αk − βl), min(l,k)∈Fm,n
(w(k, l) + 1 −

αk − βl)[.
So, freqα,β(w) = max(0, min(l,k)∈Fm,n

(w(k, l)+1−αk−βl)−max(l,k)∈Fm,n
(w(k, l)−

αk−βl)). Affine functions, max and min are continuous functions. Then (α, β) 7→
freqα,β(w) is a continuous function which is piecewise affine because it is com-
position of continuous functions and by Property 1 it is piecewise affine function
⊓⊔

Proposition 3. Let (α1, β1), (α2, β2), (α3, β3) be points of [0, 1]2 and T be the
convex hull of these three points. Let (α0, β0) ∈ T and consider λ1, λ2, λ3 ≥ 0

such that (α0, β0) =
∑3

i=1 λi(αi, βi) and
∑3

i=1 λi = 1 ( λ1, λ2, λ3 are barycentric
coordinates of (α0, β0) relatively to (α1, β1), . . . (α3, β3)). Suppose moreover that
the function (α, β) 7→ freqα,β(w) is affine on T for any (m, n)-cube w, then

Cm,n,α0,β0
=

⋃

1≤i≤3 and λi 6=0

Cm,n,αi,βi

Proof. By affinity of (α, β) 7→ freqα,β(w) on T we have:

freqα0,β0
(w) =

3
∑

i=1

λifreqαi,βi
(w)

If w /∈ Cm,n,α0,β0
then by Proposition 2, freqα0,β0

(w) = 0 and so for any i,
freqαi,βi

(w) = 0 or λi = 0 because λ1, λ2, λ3 ≥ 0 which implies that for any i,

if λi 6= 0 then w /∈ Cm,n,αi,βi
. Conversely as λ1, λ2, λ3 ≥ 0 and

∑3
i=1 λi = 1, if

w ∈ Cm,n,α0,β0
, then by Proposition 2, freqα0,β0

(w) > 0 and thus, there must
exist a i ∈ {1, 2, 3} such that λi 6= 0 and freqαi,βi

(w) > 0 ⊓⊔

Remarks:
By Proposition 3, we have:

– If the points (α1, β1), (α2, β2), (α3, β3) are non-aligned and (α0, β0) is in the
interior of T . So λ1, λ2, λ3 > 0 and then

Cm,n,α0,β0
= Cm,n,α1,β1

∪ Cm,n,α2,β2
∪ Cm,n,α3,β3

– If (α0, β0) is in the interior of the segment defined by (α1, β1), (α2, β2) so,
λ1, λ2 > 0 and λ3 = 0 and then

Cm,n,α0,β0
= Cm,n,α1,β1

∪ Cm,n,α2,β2

7



We will now precise the domains where the function (α, β) 7→ freqα,β(w) is affine:
Let Du,v,w be the line {(α, β) ∈ R2 |αu + βv + w = 0} and

Em,n =
⋃

(u,v,w)∈J−m+1,m−1K×J−n+1,n−1K×Z

Du,v,w ∩ [0, 1]2.

Em,n involves only straight lines Du,v,w such that Du,v,w ∩ [0, 1]2 6= ∅ and so we
must only consider the straight lines Du,v,w such that |w| ≤ |u| + |v| and thus
Em,n involves only a finite number of straight lines.
Em,n is called Hyper Farey fan in [1] and Farey’s diagram in [8].
Fig.2 corresponds to Farey’s diagram for m = 4 and n = 3.

1

0
10

β

α

Fig. 2. Farey’s diagram for m = 4 and n = 3

Lemma 1. Let O be a connected component of [0, 1]2 \ Em,n and (k, l) ∈ Fm,n

then the function (α, β) 7→ ⌊αk + βl⌋ is constant on O and so the function

(α, β) 7→ Cα,β
k,l is affine on O.

Proof. Suppose that (α, β) 7→ ⌊αk+βl⌋ is not constant on O and let (α, β), (α′, β′) ∈
O ⊂ [0, 1]2 \ Em,n such that h = ⌊αk + βl⌋ < h′ = ⌊α′k + β′l⌋ (h′ ≥ h + 1)
and consider the straight line Dk,l,−(h+1). Then αk + βl − (h + 1) < 0 and
α′k + β′ − (h + 1) > 0 and so (α, β), (α′, β′) are not in the same connected com-
ponent of [0, 1]2\Em,n because they are separated by the straight line Dk,l,−(h+1).
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Thus for any (k, l) ∈ Fm,n and for all connected component O of [0, 1]2 \ Em,n

the function (α, β) 7→ ⌊αk + βl⌋ is constant in O.

As (α, β) 7→ ⌊αk + βl⌋ is constant in O and Cα,β
k,l = 1− 〈αk + βl〉 = −αk − βl +

(1 + ⌊αk + βl⌋), then the function (α, β) 7→ Cα,β
k,l is affine on O ⊓⊔

Lemma 2. Let O be a connected component of [0, 1]2 \ Em,n and (α, β) ∈ O

then all the Cα,β
k,l for (k, l) ∈ Fm,n are distinct.

Proof. Let (α, β) ∈ O ⊂ [0, 1]2\Em,n and suppose that there exist (k, l), (k′, l′) ∈

Fm,n and (k, l) 6= (k′, l′) such that Cα,β
k,l = Cα,β

k′,l′ which implies that αk+βl−h =
αk′ +βl′−h′ where by Lemma 1, h = ⌊αk+βl⌋ (respectively h′ = ⌊αk′ +βl′⌋) is
constant on O. Then (α, β) ∈ Dk−k′,l−l′,h−h′ . This is absurd because as k− k′ ∈
J−m+1, m−1K and l− l′ ∈ J−n+1, n−1K then (α, β) ∈ Em,n but by hypothesis
(α, β) ∈ O ⊂ [0, 1]2 \ Em,n ⊓⊔

Theorem 2. The function (α, β) 7→ freqα,β(w) is affine on the closure of any
connected component of [0, 1]2 \ Em,n for all w ∈ Um,n. Moreover for any
(α, β), (α′, β′) ∈ [0, 1]2 \ Em,n: Cm,n,α,β = Cm,n,α′,β′ if and only if (α, β) and
(α′, β′) are in the same connected component of [0, 1]2 \ Em,n.

Proof. We consider a connected component O of [0, 1]2 \ Em,n.
Suppose that there exist (α1, β1), (α2, β2) ∈ O and (k1, l1), (k2, l2) two different

couples of Fm,n such that Cα1,β1

k1,l1
< Cα1,β1

k2,l2
and Cα2,β2

k1,l1
> Cα2,β2

k2,l2
then by continu-

ity of the functions (α, β) 7→ Cα,β
k,l and connectivity of O there exists (α, β) ∈ O

such that Cα,β
k1,l1

= Cα,β
k2,l2

which is impossible by Lemma 2. So, (α, β) 7→ σα,β is

constant on O. But by Lemma 2, for (α, β) ∈ O we know that all the Cα,β
k,l for

(k, l) ∈ Fm,n are distinct. Then (α, β) 7→ Cm,n,α,β is constant on O.
Let (α0, β0) ∈ O and put σ0 = σα0,β0 and C0 = Cm,n,α0,β0

.

So, for all (α, β) ∈ O, Bα,β
h = Cα,β

σ0(h) for all h ∈ J1, mnK. Thus, by Lemma 1

(α, β) 7→ Bα,β
h is affine on O for all h ∈ J1, mnK.

As for w ∈ C0, freqα,β(w) = Bα,β
h+1 − Bα,β

h for some h ∈ J1, mn − 1K, then
(α, β) 7→ freqα,β(w) is affine in O for all w ∈ C0.

Now let w ∈ (Um,n \ C0) and (α, β) ∈ O, then Iα,β(w) = ∅ which implies that
freqα,β(w) = 0.
Then for all w ∈ Um,n, (α, β) 7→ freqα,β(w) is affine on any connected component
of [0, 1]2 \ Em,n.
But by Theorem 1, for all w ∈ Um,n, the function (α, β) 7→ freqα,β(w) is a
continuous function which is piecewise affine. Then for w ∈ Um,n and for any
connected component O, the function (α, β) 7→ freqα,β(w) is affine on O where

O is the closure of O.
Now it remains to prove that if (α, β) and (α′, β′) are not in the same connected
component of [0, 1]2 \ Em,n then Cm,n,α,β 6= Cm,n,α′,β′ .
Let (α, β) ∈ [0, 1]2 and (k, l), (k′, l′) ∈ Fm,n, put:

– PZ(α, β, k, l) = {w(k, l) | w ∈ Cm,n,α,β} and
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– PZ2(α, β, k, l, k′, l′) = {(w(k, l), w(k′, l′)) | w ∈ Cm,n,α,β}.

PZ(α, β, k, l) (respectively PZ2(α, β, k, l, k′, l′)) is the set of the restrictions of
the (m, n)-cubes of Cm,n,α,β to the sub-window {(k, l)} (respectively {(k, l), (k′, l′)}.
Let (α, β) and (α′, β′) be two points in two distinct connected components of
[0, 1]2 \Em,n. Then there exists a line Du,v,w of Em,n such that uα+ vβ +w and
uα′ +vβ′+w have not the same sign. Suppose for example that uα+vβ +w < 0
and uα′ + vβ′ + w > 0. By definition of Em,n there exist (k, l), (k′, l′) ∈ Fm,n

such that u = k′ − k and v = l′ − l. We have k′α + l′β < kα + lβ − w and
k′α′ + l′β′ > kα′+ lβ′−w. Let q1 = ⌊αk+βl⌋, q2 = ⌊αk′ +βl′⌋, q′1 = ⌊α′k+β′l⌋,
q′2 = ⌊α′k′ + β′l′⌋.
Then PZ(α, β, k, l) = {q1} or {q1, q1 +1} and PZ(α′, β′, k, l) = {q′1} or {q′1, q

′
1 +

1}. So, if q1 6= q′1 then PZ(α, β, k, l) 6= PZ(α′, β′, k, l) and thus Cm,n,α,β 6=
Cm,n,α′,β′ . We have similarly Cm,n,α,β 6= Cm,n,α′,β′ if q2 6= q′2.

So we can suppose now q1 = q′1 and q2 = q′2. We have:

〈k′α + l′β〉 < 〈kα + lβ〉 + q1 − q2 − w

〈k′α′ + l′β′〉 > 〈kα′ + lβ′〉 + q1 − q2 − w

as 〈x〉 is always in [0, 1[, then we have q1 − q2 −w = 0, and so Cα,β
k′,l′ > Cα,β

k,l and

Cα′,β′

k′,l′ < Cα′,β′

k,l .
We deduce that PZ2(α, β, k, l, k′, l′) = {(q1, q2), (q1 + 1, q2)} or {(q1, q2), (q1 +
1, q2), (q1 + 1, q2 + 1)} and PZ2(α

′, β′, k, l, k′, l′) = {(q1, q2), (q1, q2 + 1)} or
{(q1, q2), (q1, q2 + 1), (q1 + 1, q2 + 1)}. Thus, Cm,n,α,β 6= Cm,n,α′,β′ which proves
the claim ⊓⊔

Corollary 1. Let O be a connected component of [0, 1]2 \ Em,n. Then O is a
convex polygon and if p1, p2, p3 are distinct vertexes of the polygon O then

1. for any point p ∈ O, Cm,n,p = Cm,n,p1
∪ Cm,n,p2

∪ Cm,n,p3
and

2. for any point p in the interior of the segment of vertexes p1, p2, Cm,n,p =
Cm,n,p1

∪ Cm,n,p2
.

Proof. The function (α, β) 7→ Cm,n,α,β is constant on O. By Theorem 2, for all
w ∈ Um,n, the function (α, β) 7→ freqα,β(w) is affine on O and we conclude by
using Proposition 3 ⊓⊔

Corollary 2. The number of (m, n)-cubes is in O((m + n)2m3n3).

Proof. Any line of equation ux+vy+w = 0 with |w| > |u|+|v| does not intersect
the square [0, 1]2, so Em,n is composed of at most (2m + 1)(2n + 1)(2(m + n +
1) + 1) = f(m, n) lines. Thanks to Theorem 2 and Corollary 3 all the (m, n)-
cubes appear in the vertices of the connected components of [0, 1]2∩Em,n. Each
vertex is the intersection of two lines of Em,n so there are at most f(m, n)2 such
vertices. Each vertex corresponds to at most mn (m, n)-cubes, so in total there
are at most ((2m+1)(2n+1)(2(m+n+1)+1))2mn (m, n)-cubes, which proves
the claim ⊓⊔
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Corollary 2 gives an upper bound for the number of (m, n)-cubes. In the follow-
ing, we will give a lower bound for this number.

Definition 7. Let m ∈ N∗

1. Let α, γ ∈ [0, 1]. The set S(m, α, γ) = {(x, ⌊αx+γ⌋ |x ∈ J0, m−1K} is called
a digital segment of size m.

2. Sm = {S(m, α, γ) |α, γ ∈ [0, 1]} is the set of all digital segments.

Property 2. [14,15]

1. card(Sm) = 1 +
∑m

i=1(m− i + 1)ϕ(i) where ϕ is the Euler’s totient function
(ϕ(i) = card({j | 1 ≤ j < i and i and j are co − prime})).

2. card(Sm) = m3

π2 + O(m2 log(m)).

Property 3. Let m, n ∈ N∗ and α, β, γ1, γ2 ∈ [0, 1] and consider the two dig-
ital segments S(m, α, γ1), S(n, β, γ2). Then, there exists w ∈ Um,n such that
S(m, α, γ1) = {(i, w(i, 0)) | i ∈ J0, m − 1K} and S(m, β, γ2) = {(j, w(0, j)) | j ∈
J0, m − 1K}.

Proof. By [15,5], there exist i, j ∈ Z such that S(m, α, γ1) = {(x − i, ⌊αx⌋ −
⌊αi⌋) |x ∈ Ji, m+i−1K} and S(n, β, γ2) = {(x−j, ⌊βy⌋−⌊βj⌋) | y ∈ Jj, n+j−1K}.
Then w = wi,j(α, β, 0) verifies the conditions of the property ⊓⊔

Corollary 3. card(Um,n) ≥ card(Sm)card(Sn). So, card(Um,n) ≥ 1
π4 m3n3 +

O(m2n2 log(m) log(n)).

Proof. By Property 3, we have card(Um,n) ≥ card(Sm)card(Sn) and the second
assertion is a direct consequence of Property 2 ⊓⊔

Corollaries 2 and 3 imply that there exist two constant numbers k1, k2 such that
k1m

3n3 < card(Um,n) < k2(m + n)2m3n3.

4 Application to local estimators

A digital surface is the discretization of a surface of R3. We investigate in this
section the local estimators of the area of digital surface in the digital space rZ3

of resolution r.
The local estimator of area is obtained by associating a weight p(w) to each
pattern w ∈ M(m, n) of size m×n where M(m, n) is the set of all m×n-patterns,
then any digital surface Sr, can be obtained by concatenation of elements in
M(m, n) with perhaps a pattern εi, ε′j of size less that m × n. In other words
Sr can be viewed as a bi-dimensional word on the alphabet of patterns of size
less or equal to m × n. If

Sr =

w1,1 w2,1 · · · wM,1 ε1

w1,2 w2,2 · · · wM,2 ε2

...
... · · ·

...
...

w1,N w2,N · · · wM,N εN

ε′1 ε′2 · · · ε′M ε′M+1

11



where wi,j ∈ M(m, n) for all i, j, then we define the area of Sr by Sr,m,n,p(Sr) =
r2

∑

i,j p(wi,j) (i.e. we neglect the contribution of the digital surfaces εi and ε′j).

Actually, we investigate the following problem:

Does there exist m, n and p(.) such that for any surface S ∈ R3 the areas
Sr,m,n,p(Sr) converge to the area of S where r tends to 0? (i.e. Sr is a dis-
cretization of S).

In this section, we study this problem for a particular class of surfaces: the set of
rectangular planar regions. Moreover we suppose that the discretization operator
δr restricted to these regions is the “Bresenham” discretization.

We consider the rectangular planar region R = {(x, y, αx + βy + γ) | a ≤ x ≤
b and c ≤ y ≤ d} such that 0 ≤ α, β ≤ 1, the other cases could be deduced by
symmetry.
Its “Bresenham” discretization in rZ3 is

Rr = r{(x, y, ⌊αx + βy +
γ

r
⌋) | (x, y) ∈ J⌈

a

r
⌉, ⌊

b

r
⌋K × J⌈

c

r
⌉, ⌊

d

r
⌋K}

We fix m, n as a positive integers. As it has been explained for surfaces, the
discrete region Rr can be seen as the bi-dimensional word

w1,1 w2,1 · · · wM,1 ε1

w1,2 w2,2 · · · wM,2 ε2

...
... · · ·

...
...

w1,N w2,N · · · wM,N εN

ε′1 ε′2 · · · ε′M ε′M+1

where M = ⌊
⌊ b

r
⌋−⌈ a

r
⌉+1

m ⌋ and N = ⌊
⌊ d

r
⌋−⌈ c

r
⌉+1

n ⌋ and for all i, j, wi,j is a pattern
of size m × n and εi, ε′j are patterns of size less than m × n.

We construct Sr,m,n,p as the local estimator of measure by using a weight func-
tion p : Um,n → R. Then Sr,m,n,p is defined by:

Sr,m,n,p(Rr) = r2
∑

i,j

p(wi,j)

= r2
∑

w∈Um,n

n(w, Rr , r)p(w)

Where n(w, Rr , r) is the number of (i, j) ∈ J1, MK × J1, NK such that wi,j = w.

The central question of this section can be formulated as the following, does
there exist m, n and p(.) such that, for any rectangular planar region R, the esti-
mation Sr,m,n,p(Rr) converges to the area of R when the resolution r tends to 0?
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We will prove in this section that the response is almost everywhere no.

Actually, we will prove that for almost all rectangular planar regions R, the es-
timation Sr,m,n,p(Rr) does not converge to the area of R when the resolution r
tends to 0.

The result of this section is an extension of the results of [12] for estimating area
of rectangular planar regions of R3.

Let a, b, c, d ∈ R such that a < b and c < d and 0 ≤ α, β ≤ 1. Let r > 0 be
the resolution of the discrete space rZ3. Let R = {(x, y, αx + βy + γ) | a ≤
x ≤ b and c ≤ y ≤ d}. So the “Bresenham” discretization of R in rZ3 is Rr =

r{(x, y, ⌊αx+βy+ γ
r ⌋) | (x, y) ∈ J⌈a

r ⌉, ⌊
b
r ⌋K×J⌈ c

r ⌉, ⌊
d
r ⌋K}. Put Mr = ⌊

⌊ b
r
⌋−⌈a

r
⌉+1

m ⌋

and Nr = ⌊
⌊ d

r
⌋−⌈ c

r
⌉+1

n ⌋.
Then

Rr =

w1,1 w2,1 · · · wMr ,1 ε1,r

w1,2 w2,2 · · · wMr ,2 ε2,r

...
... · · ·

...
...

w1,Nr
w2,Nr

· · · wMr ,Nr
εNr,r

ε′1,r ε′2,r · · · ε′Mr ,r ε′Mr+1,r

where wi,j ∈ Um,n for (i, j) ∈ J1, NrK× J1, MrK and εi,r, ε′j,r are of size less than
m × n for i ∈ J1, NrK and j ∈ J1, Mr + 1K.

Consider Sr,m,n,p(Rr) = r2
∑

1≤i≤Nr

∑

1≤j≤Mr
p(wi,j) as an approximation of

the area of the region R (i.e. we neglect the contributions of the εi,r and ε′j,r ).
Put DAm,n,p(R) = limr→0 Sr,m,n,p(Rr).

In all the following, put Er = (J⌈a
r ⌉, ⌊

b
r ⌋K×J⌈ c

r ⌉, ⌊
d
r ⌋K)∩((mZ+⌈a

r ⌉)×(nZ+⌈ c
r ⌉))

and Sr = (⌊ b
r ⌋ − ⌈a

r ⌉ + 1)(⌊d
r ⌋ − ⌈ c

r ⌉ + 1)

Definition 8. The non-overlapping frequency Fα,β,γ,a,b,c,d
r of a pattern w of size

m × n in Rr is defined by:

Fα,β,γ,a,b,c,d
r =

card({(x, y) ∈ Er | wx,y(α, β, γ
r ) = w})

Sr

Lemma 3. Let α, β ∈ [0, 1] such that α or β is irrational, γ, a, b, c, d ∈ R,
w ∈ Cm,n,α,β. Then

Fα,β,γ,a,b,c,d = lim
r→0

Fα,β,γ,a,b,c,d
r =

1

mn
freqα,β(w)

In particular Fα,β,γ,a,b,c,d does not depend on γ, a, b, c, and d.

Proof.

Fα,β,γ,a,b,c,d = limr→0
card({(x,y)∈Er | wx,y(α,β, γ

r
)=w})

Sr

= limr→0
card({(x,y)∈Er | 〈αx+βy+ 1

r
γ〉∈Iα,β(w)})

Sr
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So, if we take p = m, q = n, γr = 1
r γ and I = Iα,β(w) in Theorem 4 of

the Appendix A, then we have Fα,β,γ,a,b,c,d = 1
mnµ(Iα,β(w)) = 1

mn freqα,β(w)

because by Proposition 2 overfreqα,β,γ(w) = µ(Iα,β(w)) ⊓⊔

Theorem 3. Let O be a connected component of [0, 1]2 \Em,n. Then there exist
u, v, t ∈ R such that DAm,n,p(R) = (b−a)(d− c)(uα+vβ + t) for all rectangular
planar regions R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that
α, β ∈ O and α or β is irrational.
In other words, DAm,n,p(.) is an affine function in (α, β) for (α, β) ∈ (O \Q2).

Proof. We suppose that the weight function p : Um,n → R associates to each
pattern w of size m× n a weight p(w). The digital region Rr can be seen as the
bi-dimensional word:

Rr =

w1,1 w2,1 · · · wMr ,1 ε1,r

w1,2 w2,2 · · · wMr ,2 ε2,r

...
... · · ·

...
...

w1,Nr
w2,Nr

· · · wMr ,Nr
εNr,r

ε′1,r ε′2,r · · · ε′Mr ,r ε′Mr+1,r

where Mr = ⌊
⌊ b

r
⌋−⌈ a

r
⌉+1

m ⌋ and Nr = ⌊
⌊ d

r
⌋−⌈ c

r
⌉+1

n ⌋, wi,j ∈ Um,n for (i, j) ∈
J1, NrK × J1, MrK and εi,r, ε′j,r are of size less than m × n for i ∈ J1, NrK and
j ∈ J1, Mr + 1K.
So, the approximated area of the digital region Rr is :

Sr,m,n,p(Rr) = r2
∑

1≤i≤Mr

∑

1≤j≤Nr

p(wi,j)

= r2
∑

w∈Um,n

n(w, Rr , r)p(w)

where n(w, Rr , r) = card({(x, y) ∈ (((mZ + ⌈a
r ⌉) × (nZ + ⌈ c

r ⌉)) ∩ ([⌈a
r ⌉, [⌊

b
r ⌋] ×

[⌈ c
r ⌉, [⌊

d
r ⌋]) | wx,y(α, β, γ

r ) = w}) which is the number of occurrences of the
pattern w in the bi-dimensional word Rr. So,

DAm,n,p(R) = lim
r→0

r2
∑

w∈Um,n

n(w, Rr, r)p(w)

= lim
r→0

r2Sr

∑

w∈Um,n

n(w, Rr , r)

Sr
p(w)

= (b − a)(d − c)
∑

w∈Um,n

1

mn
freqα,β(w)p(w) (By Lemma 3)

So, according to Theorem 2, DAm,n,p(.) is an affine function in (α, β) for (α, β) ∈
(O \ Q2) ⊓⊔

14



Corollary 4. The set of (α, β) ∈ ([0, 1]2 \ Em,n) such that α or β is irrational
and DAm,n,p(R) = area(R) is a negligible (relatively to the Lebesgue measure
on the euclidean space) where for a, b, c, d ∈ R, R = {(x, y, αx + βy + γ) | a ≤
x ≤ b and c ≤ y ≤ d}.

Proof. We consider a connected component O of [0, 1]2 \ Em,n. By Theorem 3,
there exist u, v, t ∈ R such that the estimated area of the rectangular planar
region R is DAm,n,p(R) = (b − a)(d − c)(uα + vβ + t) for α or β is irrational.

The exact area of R is area(R) = (b − a)(d − c)
√

1 + α2 + β2. So we have:
DAm,n,p(R) = area(R) ⇐⇒ (uα + vβ + t)2 = 1 + α2 + β2

Which is equivalent to (u2−1)α2 +(v2−1)β2 +2(uvαβ +utα+vtβ)+ t2−1 = 0
But, the last equation corresponds to an object of Lebesgue measure greater
than 0 only when u2 − 1 = 0, v2 − 1 = 0, t2 − 1 = 0, uv = 0, ut = 0 and vt = 0
which never happens. So, the last equation corresponds to a curve in R2 (which
is the intersection of conic and the region O) and thus, for (α, β) ∈ O, the
estimated area can be equal to the exact area for only (α, β) in a set included
in the intersection of a conic and the region O which corresponds to a negligible
set.
But, [0, 1]2 \Em,n contains only a finite number of connected components. Thus,
the set of (α, β) ∈ ([0, 1]2 \ (Em,n ∪Q2)) such that the estimated area is equal to
the exact area is a negligible set because it is a finite union of negligible sets ⊓⊔

Corollary 5. For any m, n ∈ N∗ and any weight function p(.) the set of (α, β) ∈
[0, 1]2 such that the rectangular planar region R = {(x, y, αx+βy + γ) | a ≤ x ≤
b and c ≤ y ≤ d} (where γ, a, b, c, d ∈ R) satisfies area(R) = DAm,n,p(R)
is a negligible set. So, for any m, n ∈ N∗ and any weight function p(.), for
all rectangular planar regions R with the parameters α, β ∈ [0, 1], we have
area(R) 6= DAm,n,p(R) almost everywhere.

Proof. By Corollary 5, we have, for almost all rectangular planar regions R with
parameters (α, β) ∈ ([0, 1]2 \ Em,n) area(R) 6= DAm,n,p(R). But Q2 is infinite
countable set and Em,n is a finite set of straight lines. So Em,n∪Q2 is a negligible
set. So, for all rectangular planar regions R with the parameters α, β ∈ [0, 1],
area(R) 6= DAm,n,p(R) almost everywhere ⊓⊔

5 Conclusion

In this paper we have seen that the frequencies of the (m, n)-cubes of digi-
tal planes satisfy nice properties: they constitute a continuous piecewise affine
function in the slopes of the digital planes. This has consequences on the combi-
natorics of (m, n)-cubes, in particular on the asymptotic behavior of the number
of (m, n)-cubes when m and n tend to infinity.

Moreover it has also consequences on local estimators of area as it permits to
prove rigorously that any local estimator of area is never multigrid-convergent:
for almost all region of plane it does not converge to the true area. This result
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is a generalization of a result in dimension two proved in [12]. Actually we can
prove with the same technics that this result is true for the equivalent notions
for any finite dimension.

A Appendix: Frequencies for irrational parameters

In all the following α, β ∈ R such that α or β ∈ (R \ Q), γ : R∗ → R∗ (i.e. In
the following we note γr for γ(r)), a, b, c, d ∈ R such that a < b and c < d and
i, j ∈ N.

Put Er = (J⌈a
r ⌉, ⌊

b
r ⌋K× J⌈ c

r ⌉, ⌊
d
r ⌋K)∩ ((pZ + ⌈a

r ⌉)× (qZ + ⌈ c
r ⌉)) and Sr = (⌊ b

r ⌋−

⌈a
r ⌉ + 1)(⌊d

r ⌋ − ⌈ c
r ⌉ + 1) and consider the linear form :

lr;p,q,a,b,c,d : L1([0, 1]) → R such that for all f ∈ L1([0, 1])

lr;p,q,a,b,c,d(f) =
1

Sr

∑

(x,y)∈Er

f(〈αx + βy + γr〉).

Lemma 4. Let h ∈ Z∗ and put eh : t 7→ e2πhit. Then

lim
r→0

lr;p,q,a,b,c,d(eh) = 0

Proof.

lr;p,q,a,b,c,d(eh) =
1

Sr

∑

x∈(pZ+⌈a
r
⌉),x∈J⌈a

r
⌉,⌊ b

r
⌋K and

y∈(qZ+⌈ c
r
⌉),y∈J⌈ c

r
⌉,⌊ d

r
⌋K

eh(αx + βy + γr).

=
1

Sr
eh(γr)(

∑

x∈(pZ+⌈a
r
⌉) and

x∈J⌈a
r
⌉,⌊ b

r
⌋K

eh(αx))(
∑

y∈(qZ+⌈ c
r
⌉) and

y∈J⌈ c
r
⌉,⌊ d

r
⌋K

eh(βy)).

Assume that α ∈ (R \ Q). Then

|lr;p,q,a,b,c,d(eh)| ≤ 1
(⌊ b

r
⌋−⌈ a

r
⌉+1)(⌊ d

r
⌋−⌈ c

r
⌉+1)

F |1−eh((E+1)hα)|
|1−eh(hα)| where E = ⌊

⌊ b
r
⌋−⌈ a

r
⌉

p ⌋+

1 and F = ⌊
⌊ d

r
⌋−⌈ c

r
⌉

q ⌋ + 1

So |lr;p,q,a,b,c,d(eh)| ≤ 1
q (1 + q−1

⌊ d
r
⌋−⌈ c

r
⌉+1

) 1
⌊ b

r
⌋−⌈ a

r
⌉+1

2
|1−eh(pα)| .

Thus limr→0 lr;p,q,a,b,c,d(eh) = 0 because limr→0
q−1

⌊ d
r
⌋−⌈ c

r
⌉+1

= 0,

limr→0
1

⌊ b
r
⌋−⌈ a

r
⌉+1

= 0 and |1 − eh(pα)| 6= 0 because α is irrational.

We have the same conclusion if β is irrational ⊓⊔
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Lemma 5.

lim
r→0

lr;p,q,a,b,c,d(e0) =
1

pq

Proof. lr;p,q,a,b,c,d(e0) = EF
(⌊ b

r
⌋−⌈ a

r
⌉+1)(⌊ d

r
⌋−⌈ c

r
⌉+1)

= 1
pq (1 + p+ε1

⌊ b
r
⌋−⌈a

r
⌉+1

)(1 + q+ε2

⌊ d
r
⌋−⌈ c

r
⌉+1

) where |ε1|, |ε2| ≤ 1 (i.e. Look to the proof

of Lemma 4 for the definition of E and F ).
Thus, limr→0 lr;p,q,a,b,c,d(e0) = 1

pq ⊓⊔

Proposition 4 ([12]). Let f be a continuous function from [0, 1] to C. Then

lim
r→0

lr;p,q,a,b,c,d(f) =
1

pq

∫ 1

0

f(t)dt

Lemma 6 ([12]). Let Mr (r ∈ R∗) and M be linear positive functionals on
some space F of real-valued function f : X → R (X 6= ∅) and let L ⊆ F be the
subspace of theses functions satisfying the property

lim
r→0

Mr(f) = M(f).

Suppose that f ∈ F has the property that every ε > 0 there exist functions
g1, g2 ∈ L with g1 ≤ f ≤ g2 and M(g2) −M(g1) < ε. Thus f ∈ L.

Theorem 4. Let I ⊆ [0, 1] be an interval. Then

limr→0
card({(x,y)∈Er | 〈αx+βy+γr〉∈I})

Sr
= 1

pq µ(I)

Proof. card({(x,y)∈Er | 〈αx+βy+γr〉∈I}
Sr

= 1
Sr

∑

(x,y)∈Er
XI(〈αx + βy + γr〉)

= lr;p,q,a,b,c,d(XI) where XI is the characteristic function of I (i.e. XI(t) = 1 if
t ∈ I and 0 otherwise).

But I is an interval thus for every ε > 0 there exist two continuous functions

g1, g2 on [0, 1] such that g1 ≤ XI ≤ g2 and 1
pq

∫ 1

0
(g2(t) − g1(t))dt < ε. Thus

limr→0
card({(x,y)∈Er | 〈αx+βy+γr〉∈I})

Sr
= 1

pq µ(I) ⊓⊔

Corollary 6. Let I ⊆ [0, 1] be an interval. Then

lim
N→∞

card({(x, y) ∈ J−N, NK2 | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2
= µ(I)

Proof. Let N ∈ N∗, α, β ∈ R such that α or β ∈ (R \ Q), γ ∈ R (i.e. γr = γ for
all r ∈ R∗) and let I ⊆ [0, 1] be an interval. Then

l 1
N

;1,1,−1,1,−1,1(XI) =
card({(x, y) ∈ J−N, NK2 | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2

So

lim
N→∞

card({(x, y) ∈ J−N, NK2 | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2
= µ(I) ⊓⊔
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Corollary 7. Let I ⊆ [0, 1] be an interval and p, q ∈ N∗. Then

lim
N→∞

card({(x, y) ∈ J−N, NK2 ∩ (pZ × qZ) | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2
=

1

pq
µ(I)

Proof. Let N ∈ N∗, α, β ∈ R such that α or β ∈ (R \ Q), γ ∈ R (i.e. γr = γ for
all r ∈ R∗), p, q ∈ N∗ and let I ⊆ [0, 1] be an interval. Then

l 1
N

;p,q,−1,1,−1,1,(XI) =
card({(x, y) ∈ J−N, NK2 ∩ (pZ × qZ) | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2

So

lim
N→∞

card({(x, y) ∈ J−N, NK2 ∩ (pZ × qZ) | 〈αx + βy + γ〉 ∈ I}

(2N + 1)2
=

1

pq
µ(I) ⊓⊔
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