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HAL is a

Introduction

Digital Planes are very classical objects of Discrete Geometry. Their combinatorics have been studied in a lot of papers (for example [START_REF] Forchhammer | Digital plane and grid point segments[END_REF][START_REF] Françon | Recognizing arithmetic straight lines and planes[END_REF][START_REF] Schramm | Coplanar tricubes[END_REF][START_REF] Reveillès | Combinatorial pieces in digital lines and planes[END_REF][START_REF] Gérard | Contribution à la Géométrie Discrète[END_REF][START_REF] Gérard | Local configurations of digital hyperplanes[END_REF][START_REF] Vittone | n, m)-cubes and Farey nets for naive planes understanding[END_REF][START_REF] Vittone | Caractérisation et reconnaissance de droites et de plans en géométrie discrète[END_REF][START_REF] Vuillon | Local configurations in a discrete plane[END_REF]), for a recent review on the subject, see [START_REF] Brimkov | Digital planarity -a review[END_REF]. In this paper we are interested in a class of patterns called (m, n)-cubes which are intuitively the pieces of digital planes of size m × n. These objects have been studied for quite a long time, for example it is well-known that the number of (m, n)-cubes appearing in a digital plane is always less than mn ( [START_REF] Reveillès | Combinatorial pieces in digital lines and planes[END_REF][START_REF] Gérard | Contribution à la Géométrie Discrète[END_REF][START_REF] Gérard | Local configurations of digital hyperplanes[END_REF][START_REF] Vittone | Caractérisation et reconnaissance de droites et de plans en géométrie discrète[END_REF][START_REF] Vuillon | Local configurations in a discrete plane[END_REF]). These (m, n)-cubes can be used in different domains of image analysis for example for normal vector estimation, area estimation ( [START_REF] Lindblad | Surface area estimation of digitized 3d objects using weighted local configurations[END_REF], see also second section of this paper), form reconstruction. The originality of this paper is the study of not only the presence or not of a (m, n)-cube in a digital plane, but also the frequency of this (m, n)-cube in all the digital plane.

The main result of this paper is that the function giving the frequency of (m, n)-cubes of digital planes with respect to the slopes of the plane is continuous and piecewise affine. Moreover we will see that the study of the frequency allows to prove some combinatorial properties on the (m, n)-cubes.

In a second part of the paper, we use our study about frequencies to prove some results about local estimators of area. A local estimator of area simply consists to decompose a surface into little pieces (in fact similar to (m, n)-cubes) and to sum some weights which correspond to the pieces. The study of the frequency of the (m, n)-cubes allows to prove that even for planar regions these estimators are not correct in the sense that, if the discrete regions are obtained from a continuous plane, then the estimated area does not converge to the exact area for almost all slope of plane when the resolution of the discretization tends to zero. It is in fact a generalization to 3D of [START_REF] Tajine | On local definitions of length of digital curves[END_REF]. Actually we can prove with the same technics that all the results of this paper are true for the regions of hyperplanes for any dimension d ≥ 3.

Preliminaries

Let a, b ∈ N and a ≤ b. The discrete interval {a, a + 1, . . . , b -1, b} is denoted a, b . For x ∈ R, ⌊x⌋ (resp. x ) denotes the integral part (resp. the fractional part) of x. So, x = ⌊x⌋ + x with ⌊x⌋ ∈ Z, ⌊x⌋ ≤ x < ⌊x⌋ + 1 and 0 ≤ x < 1. If m ∈ N * and n ∈ Z then n [mod m] denotes the congruence class of n modulo m and corresponds to the set {n + km|k ∈ Z}. The set of congruence classes modulo n is denoted Z/nZ. For any set E, card(E) denotes the cardinality of E. We refer in all the following to a subset of R 3 of the form R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that 0 ≤ α, β ≤ 1 and a, b, c, d ∈ R as a rectangular planar region. It corresponds to a subset of plane whose projection on the XY -plane is a rectangle with sides parallel to X, Y -axes. In this paper all the topological notions are considered relatively to the euclidean usual topology. The measure notions are considered relatively to the Lebesgue measure on the euclidean space, for example 'negligible set' (set with zero measure) and 'almost everywhere' are considered relatively to the Lebesgue measure on the euclidean space.

Frequencies of the (m, n)-cubes

In this paper we consider naive digital planes P α,β,γ = {(x, y, ⌊αx + βy + γ⌋) | (x, y) ∈ Z} with 0 ≤ α, β ≤ 1 and γ ∈ R. So a naive plane is functional in its x, y coordinates: z = p α,β,γ (x, y) = ⌊αx + βy + γ⌋ for all (x, y, z) ∈ P α,β,γ . Moreover we fix two positive integers m and n and we define F m,n = 0, m -

1 × 0, n -1 . Definition 1. A (m, n)-pattern is a function w : F m,n → Z. We note M m,n the set of all (m, n)-patterns and the size of a (m, n)-pattern is m × n.
We can also see a (m, n)-pattern as a set of voxels which projection in the XYplane is F m,n and which has at most one point in each line parallel the third coordinate direction. In all the following, a pattern of size less than m × n corresponds to a (m ′ , n ′ )pattern where m ′ ≤ m, n ′ ≤ n and (m, n) = (m ′ , n ′ ). A (m, n)-cube is a (m, n)-pattern which can be extracted from a naive digital plane, more precisely: Definition 2. The (m, n)-cube at position (i, j) of the digital plane P α,β,γ is the (m, n)-pattern w defined by w(i ′ , j ′ ) = p α,β,γ (i + i ′ , j + j ′ )p α,β,γ (i, j) for any

(i ′ , j ′ ) ∈ F m,n . It is denoted w i,j (α, β, γ).
So a (m, n)-cube is simply a piece of a digital plane which projection in the XY -plane is a translated of F m,n . Fig. 1 corresponds to a (3, 3)-cube in a digital plane.

Note that for all i, j ∈ Z and α, β, γ ∈ R, w i,j (α, β, γ) = w 0,0 (α, β, αi + βj + γ).

Fig. 1. A (3, 3)-cube in a digital plane Let C α,β i,j = 1 -αi + βj for (i, j) ∈ F m,n
, and σ α,β be a bijection from 1, mn to F m,n such that the sequence (B α,β i ) 0≤i≤mn defined by B α,β i = C α,β σ α,β (i) for 1 ≤ i ≤ mn and B α,β 0 = 0, is increasing. We recall some known results (see for example [START_REF] Gérard | Contribution à la Géométrie Discrète[END_REF]).

Proposition 1. For all α, β, γ ∈ R we have:

1. The (k, l)-th point of the (m, n)-cube at position (i, j) of the digital plane P α,β,γ can be computed by the formula:

w i,j (α, β, γ)(k, l) = ⌊αk + βl⌋ if αi + βj + γ < C α,β k,l ⌊αk + βl⌋ + 1 otherwise 2. The (m, n)-cube w i,j (α, β, γ) only depends on the interval [B α,β h , B α,β h+1 [ con- taining αi + βj + γ . 3. For all h ∈ 1, mn -1 , if [B α,β h , B α,β h+1 [ is not empty (B α,β h < B α,β h+1 ), then there exist i, j such that αi + βj + γ ∈ [B α,β h , B α,β h+1 [ and thus the number of (m, n)-cubes in the digital plane P α,β,γ is equal to card({C α,β k,l | (k, l) ∈ F m,n }). We have, in particular, card({C α,β k,l | (k, l) ∈ F m,n }) ≤ mn.
So, we have w 0,0 (α, β, γ) = w 0,0 (α, β, γ ) and thus w i,j (α, β, γ) = w 0,0 (α, β, αi+ βj + γ ) for all α, β, γ ∈ R and (i, j) ∈ Z 2 . By Proposition 1, the set of (m, n)-cubes of the digital plane P α,β,γ depends only on α, β and it is denoted C m,n,α,β . In all the following, U m,n denotes the set of all the (m, n)-cubes. So, U m,n = (α,β)∈[0,1] 2 C m,n,α,β .

Definition 3 ([13]). Let w be a (m, n)-cube, then the pre-image PI(w) of w is the set of the triple (α, β, γ) ∈ [0, 1] 3 such that w is the (m, n)-cube at position (0, 0) of the digital plane P α,β,γ .

Remark. It is easy to see that PI(w) is a convex polyhedron defined by the inequalities w(k, l)

≤ kα + lβ + γ < w(k, l) + 1 for (k, l) ∈ F m,n . Moreover the set of the γ ′ ∈ [0, 1] such that (α, β, γ ′ ) ∈ PI(w i,j (α, β, γ)) is exactly the interval [B α,β h , B α,β h+1 [ containing αi + βj + γ .
The last remark leads to the following definition: Definition 4. The γ-frequency of a (m, n)-cube w for the slopes (α, β) (denoted freq α,β (w)) is the length of the interval

I α,β (w) = {γ ∈ [0, 1] | (α, β, γ) ∈ PI(w)}.
(so the function T P : PI(w) → R such that T P (α, β) = freq α,β (w) is the tomographic projection of PI(w) w.r.t. the third coordinate direction).

Definition 5. The overlapping frequency of a (m, n)-cube in the digital plane

P α,β,γ is lim N →+∞ card({(i, j) ∈ -N, N 2 | w i,j (α, β, γ) = w}) (2N + 1) 2
if the limit exists. It is denoted overfreq α,β,γ (w).

So, overfreq α,β,γ (w

) = lim N →+∞ card({(i,j)∈ -N,N 2 | αi+βj+γ ∈I α,β (w)}) (2N +1) 2
We have the following properties:

Proposition 2. For any α, β ∈ [0, 1] and γ ∈ R we have:

1. w ∈ C m,n,α,β if and only if freq α,β (w) > 0.

2. overfreq α,β,γ (w) = freq α,β (w)

Proof. 1. If w ∈ C m,n,α,β , then there exists (i, j) ∈ Z 2 and γ ∈ R such that w = w i,j (α, β, γ) = w 0,0 (α, β, αi + βj + γ ). So, αi + βj + γ ∈ I α,β (w). Then freq α,β (w) = µ(I α,β (w)) > 0 because I α,β (w) is a non-empty interval of the form [A, A ′ [. Conversely if freq α,β ( 
w) > 0 then I α,β (w) = ∅. So, by Proposition 1, for all γ ∈ R there exists (i, j) ∈ Z 2 such that αi + βj + γ ∈ I α,β (w) which implies that w ∈ C m,n,α,β . 2. We prove now that overfreq α,β,γ (w) = freq α,β (w) for any α, β ∈ [0, 1] and γ ∈ R.

(a) Suppose first that α and β are both rational and let γ ∈ R, then α = p1 q1 and β = p2 q2 with p i and q i co-prime.

Put p = gcd(p 1 , p 2 ), p ′ 1 = p1 p , p ′ 2 = p2 p , q = gcd(q 1 , q 2 ), q ′ 1 = q1 q , q ′ 2 = q2 q , q 3 = q1q2 q and r = pq q1q2 = p q3 . Put k 0 = ⌊γq 3 ⌋ and γ ′ = γ -⌊γq3⌋ q3 . Then 0 ≤ γ ′ < 1 q3 . As p ′ 1 q ′ 2 and p ′ 2 q ′ 1 are co-prime, then {p ′ 1 q ′ 2 x + p ′ 2 q ′ 1 y | (x, y) ∈ Z 2 } = Z and thus {αx + βy | (x, y) ∈ Z 2 } = r{p ′ 1 q ′ 2 x + p ′ 2 q ′ 1 y | (x, y) ∈ Z 2 } = rZ, which implies that { αx+βy+γ | (x, y) ∈ Z 2 } = {γ ′ + i q3 | i ∈ 0, q 3 -1 } because p and q 3 are co-prime. Consider the function f : Z 2 → Z/q 3 Z such that for all (x, y) ∈ Z 2 , f (x, y) = p ′ 1 q ′ 2 x+p ′ 2 q ′ 1 y [mod q 3 ].
Then f is surjective and for all (x, y) ∈ Z 2 , f (x+ q 1 , y + q 2 ) = f (x, y). So, f can be viewed as a function from Z/q 1 Z × Z/q 2 Z to Z/q 3 Z and in this case we use the notation f instead f . Then f is a surjective morphism of groups and thus for all y ∈ Z/q 3 Z, card({x

∈ Z/q 1 Z×Z/q 2 Z| f (x) = y}) = card(Ker( f )) = card(Z/q1Z×Z/q2Z) card(Z/q3Z) =
q where Ker( f ) is the Kernel of the morphism of groups f . Let s, t ∈ Z and consider the rectangle H(s, t) = s, s+q 1 -1 × t, t+q 2 -1 (H(s, t) can be viewed as a representation of the group Z/q 1 Z×Z/q 2 Z). Then for any s, t ∈ Z and any

y ∈ Z/q 3 Z, card({x ∈ H(s, t)|f (x) = y}) = card({x ∈ Z/q 1 Z × Z/q 2 Z| f (x) = y}) = q. Let i ∈ 0, q 3 -1 and consider (x 0 (i), y 0 (i)) ∈ Z 2 such that αx 0 (i) + βy 0 (i) + γ = γ ′ + i q3 . Put F (i, γ) = {(x, y) ∈ Z 2 | αx + βy + γ = γ ′ + i q3 } and for any set E, put F (i, γ, E) = F (i, γ) ∩ E. Then (x, y) ∈ F (i, γ) if and only if f ((x, y) -(x 0 (i), y 0 (i))) = 0 because p, q 3 are co-prime. So, F (i, γ, H(s, t)) = {(x 0 (i), y 0 (i)) + (x, y) ∈ Z 2 |f (x, y) = 0} ∩ H(s, t) = {(x, y) ∈ H(s -x 0 (i), t -y 0 (i))|f (x, y) = 0}. Then card(F (i, γ, H(s, t))) = q which is independent of s, t ∈ Z and i ∈ 0, q 3 -1 . Let N ∈ N and put E N = -N, N 2 . Then E N = ( (i,j)∈ 0,⌊ 2N +1 q 1 ⌋-1 × 0,⌊ 2N +1 q 2 ⌋-1 H(-N +q 1 i, -N +q 2 j)) E ′ N where E ′ N = -N + q 1 (⌊ 2N +1 q1 ⌋ -1), N × -N, N -N, N × -N + q 2 (⌊ 2N +1 q2 ⌋ -1), N . So E N is partitioned on ⌊ 2N +1 q1 ⌋⌊ 2N +1 q2 ⌋ rectangles of the form H(s, t) and E ′ N . Then, card(F (i, γ, E N )) = ⌊ 2N +1 q1 ⌋⌊ 2N +1 q2 ⌋q + card(F (i, γ, E ′ N )). So, lim N →+∞ card(F (i,γ,EN )) (2N +1) 2 = lim N →+∞ ⌊ 2N +1 q 1 ⌋⌊ 2N +1 q 2 ⌋q (2N +1) 2 + lim N →+∞ card(F (i,γ,E ′ N )) (2N +1) 2 = q q1q2 = 1 q3 because card(F (i, γ, E ′ N )) < (q 1 + q 2 )(2N + 1).
So, for all l ∈ 0, q 3 -1 , lim

N →+∞ card({(i, j) ∈ E N | αi + βj + γ = γ ′ + l q3 }) (2N + 1) 2 = 1 q 3 . Put L = { αi + βj | (i, j) ∈ F m,n } = 1 q3 {l 1 , l 2 , ..., l h } where 0 = l 1 < l 2 < ... < l h . Then B α,β 0 = 0 and B α,β i = 1 -l h-i+1 q3 = q3-l h-i+1 q3 for i = 1, ..., h. Let k ∈ 0, h -1 and w such that I α,β (w) = [B α,β k , B α,β k+1 [. Then overfreq α,β,γ (w) = lim N →+∞ card({(i, j) ∈ E N | αi + βj + γ ∈ [B α,β k , B α,β k+1 [}) (2N + 1) 2 = M 1 q 3 where M = card({l|γ ′ + l q 3 ∈ [B α,β k , B α,β k+1 [}) = B α,β k+1 -B α,β k because 0 ≤ γ ′ < 1 q 3 = freq α,β (w) (b) Suppose now that α or β is irrational. By Corollary 6 of Appendix A we have overfreq α,β,γ (w) = lim N →+∞ card({(i,j)∈EN | αi+βj+γ ∈I α,β (w)}) (2N +1) 2 = µ(I α,β (w))
So, for all α, β ∈ [0, 1], overfreq α,β,γ (w) = freq α,β (w) ⊓ ⊔ Definition 6. A function f : R 2 → R is called a piecewise affine function if there exists a finite collection (C i ) i∈I of open convex subsets of R 3 and affine functions f i : R 3 → R for i ∈ I, such that :

-C i ∩ C i ′ = ∅ for i, i ′ ∈ I and i = i ′ , -i∈I C i = R 2 and -the restriction of f to C i is f i for all i ∈ I (for all i ∈ I, f (x) = f i (x) for all x ∈ C i ).
Property 1. Let f, g : R 2 → R be two piecewise affine functions. Then -f, f + g, fg, max(f, g) and min(f, g) are also piecewise affine functions.

Proof. Let (C i ) i∈I and (f i ) i∈I (respectively (D j ) j∈J ) and (g j ) j∈J collections of open convex sets and affine functions corresponding to f (respectively to g) by the last definition. Then (C i ) i∈I and (-f i ) i∈I (respectively (C i ∩ D j ) (i,j)∈I×J and (f i + g j ) (i,j)∈I×J correspond to -f (respectively to f + g). Then -f and f + g are piecewise affine functions and thus fg is a piecewise affine function. Let (i, j) ∈ I × J and let

H 1 i,j = {x ∈ R 3 | f i (x) > g j (x) } ∩ C i ∩ D j and H 2 i,j = {x ∈ R 3 | f i (x) < g j (x) }∩C i ∩D j . Then collections (H k i,j ) (k,i,j)∈{1,2}×I×J
and (h k i,j ) (k,i,j)∈{1,2}×I×J such that for all (i, j) ∈ I × J, h 1 i,j (x) = f i (x) for all x ∈ H 1 i,j and h 2 i,j (x) = g i (x) for all x ∈ H 2 i,j correspond to the function max(f, g). As min(f, g) =max(-f, -g) then min(f, g) is a piecewise affine function ⊓ ⊔ Theorem 1. For any (m, n)-cube w, the function (α, β) → freq α,β (w) is a continuous function which is piecewise affine.

Proof. P I(w) = {(α, β, γ) ∈ R 3 | w(k, l) ≤ αk+βl+γ < w(k, l)+1 for all (k, l) ∈ F m,n }. Then I α,β (w) = [max (l,k)∈Fm,n (w(k, l) -αk -βl), min (l,k)∈Fm,n (w(k, l) + 1 - αk -βl)[. So, freq α,β (w) = max(0, min (l,k)∈Fm,n (w(k, l)+1-αk-βl)-max (l,k)∈Fm,n (w(k, l)- αk-βl)).
Affine functions, max and min are continuous functions. Then (α, β) → freq α,β (w) is a continuous function which is piecewise affine because it is composition of continuous functions and by Property 1 it is piecewise affine function ⊓ ⊔ Proposition 3. Let (α 1 , β 1 ), (α 2 , β 2 ), (α 3 , β 3 ) be points of [0, 1] 2 and T be the convex hull of these three points. Let (α 0 , β 0 ) ∈ T and consider

λ 1 , λ 2 , λ 3 ≥ 0 such that (α 0 , β 0 ) = 3 i=1 λ i (α i , β i ) and 3 i=1 λ i = 1 ( λ 1 , λ 2 , λ 3 are barycentric coordinates of (α 0 , β 0 ) relatively to (α 1 , β 1 ), . . . (α 3 , β 3 )). Suppose moreover that the function (α, β) → freq α,β (w) is affine on T for any (m, n)-cube w, then C m,n,α0,β0 = 1≤i≤3 and λi =0 C m,n,αi,βi
Proof. By affinity of (α, β) → freq α,β (w) on T we have:

freq α0,β0 (w) = 3 i=1 λ i freq αi,βi (w) If w /
∈ C m,n,α0,β0 then by Proposition 2, freq α0,β0 (w) = 0 and so for any i, freq αi,βi (w) = 0 or λ i = 0 because λ 1 , λ 2 , λ 3 ≥ 0 which implies that for any i, if λ i = 0 then w / ∈ C m,n,αi,βi . Conversely as λ 1 , λ 2 , λ 3 ≥ 0 and

3 i=1 λ i = 1, if w ∈ C m,n,α0,β0
, then by Proposition 2, freq α0,β0 (w) > 0 and thus, there must exist a i ∈ {1, 2, 3} such that λ i = 0 and freq αi,βi (w) > 0 ⊓ ⊔ Remarks: By Proposition 3, we have:

-If the points (α 1 , β 1 ), (α 2 , β 2 ), (α 3 , β 3 ) are non-aligned and (α 0 , β 0 ) is in the interior of T . So λ 1 , λ 2 , λ 3 > 0 and then

C m,n,α0,β0 = C m,n,α1,β1 ∪ C m,n,α2,β2 ∪ C m,n,α3,β3
-If (α 0 , β 0 ) is in the interior of the segment defined by (α 1 , β 1 ), (α 2 , β 2 ) so, λ 1 , λ 2 > 0 and λ 3 = 0 and then

C m,n,α0,β0 = C m,n,α1,β1 ∪ C m,n,α2,β2
We will now precise the domains where the function (α, β) → freq α,β (w) is affine:

Let D u,v,w be the line {(α, β) ∈ R 2 | αu + βv + w = 0} and E m,n = (u,v,w)∈ -m+1,m-1 × -n+1,n-1 ×Z D u,v,w ∩ [0, 1] 2 .
E m,n involves only straight lines D u,v,w such that D u,v,w ∩ [0, 1] 2 = ∅ and so we must only consider the straight lines D u,v,w such that |w| ≤ |u| + |v| and thus E m,n involves only a finite number of straight lines. E m,n is called Hyper Farey fan in [START_REF] Forchhammer | Digital plane and grid point segments[END_REF] and Farey's diagram in [START_REF] Vittone | Caractérisation et reconnaissance de droites et de plans en géométrie discrète[END_REF]. Proof. Suppose that (α, β) → ⌊αk+βl⌋ is not constant on O and let (α, β),

(α ′ , β ′ ) ∈ O ⊂ [0, 1] 2 \ E m,n such that h = ⌊αk + βl⌋ < h ′ = ⌊α ′ k + β ′ l⌋ (h ′ ≥ h + 1)
and consider the straight line D k,l,-(h+1) . Then αk + βl -(h + 1) < 0 and α ′ k + β ′ -(h + 1) > 0 and so (α, β), (α ′ , β ′ ) are not in the same connected component of [0, 1] 2 \E m,n because they are separated by the straight line D k,l,-(h+1) .

-

P Z 2 (α, β, k, l, k ′ , l ′ ) = {(w(k, l), w(k ′ , l ′ )) | w ∈ C m,n,α,β }. P Z(α, β, k, l) (respectively P Z 2 (α, β, k, l, k ′ , l ′ ))
is the set of the restrictions of the (m, n)-cubes of C m,n,α,β to the sub-window {(k, l)} (respectively {(k, l), (k ′ , l ′ )}. Let (α, β) and (α ′ , β ′ ) be two points in two distinct connected components of [0, 1] 2 \ E m,n . Then there exists a line D u,v,w of E m,n such that uα + vβ + w and uα ′ + vβ ′ + w have not the same sign. Suppose for example that uα + vβ + w < 0 and uα ′ + vβ ′ + w > 0. By definition of E m,n there exist (k, l),

(k ′ , l ′ ) ∈ F m,n such that u = k ′ -k and v = l ′ -l. We have k ′ α + l ′ β < kα + lβ -w and k ′ α ′ + l ′ β ′ > kα ′ + lβ ′ -w. Let q 1 = ⌊αk + βl⌋, q 2 = ⌊αk ′ + βl ′ ⌋, q ′ 1 = ⌊α ′ k + β ′ l⌋, q ′ 2 = ⌊α ′ k ′ + β ′ l ′ ⌋. Then P Z(α, β, k, l) = {q 1 } or {q 1 , q 1 + 1} and P Z(α ′ , β ′ , k, l) = {q ′ 1 } or {q ′ 1 , q ′ 1 + 1}. So, if q 1 = q ′ 1 then P Z(α, β, k, l) = P Z(α ′ , β ′ , k, l) and thus C m,n,α,β = C m,n,α ′ ,β ′ . We have similarly C m,n,α,β = C m,n,α ′ ,β ′ if q 2 = q ′ 2 .
So we can suppose now q 1 = q ′ 1 and q 2 = q ′ 2 . We have:

k ′ α + l ′ β < kα + lβ + q 1 -q 2 -w k ′ α ′ + l ′ β ′ > kα ′ + lβ ′ + q 1 -q 2 -w
as x is always in [0, 1[, then we have q 1q 2w = 0, and so

C α,β k ′ ,l ′ > C α,β k,l and C α ′ ,β ′ k ′ ,l ′ < C α ′ ,β ′ k,l . We deduce that P Z 2 (α, β, k, l, k ′ , l ′ ) = {(q 1 ,
q 2 ), (q 1 + 1, q 2 )} or {(q 1 , q 2 ), (q 1 + 1, q 2 ), (q 1 + 1, q 2 + 1)} and P Z 2 (α ′ , β ′ , k, l, k ′ , l ′ ) = {(q 1 , q 2 ), (q 1 , q 2 + 1)} or {(q 1 , q 2 ), (q 1 , q 2 + 1), (q 1 + 1, q 2 + 1)}. Thus, C m,n,α,β = C m,n,α ′ ,β ′ which proves the claim ⊓ ⊔ Corollary 2 gives an upper bound for the number of (m, n)-cubes. In the following, we will give a lower bound for this number.

Definition 7. Let m ∈ N * 1. Let α, γ ∈ [0, 1]. The set S(m, α, γ) = {(x, ⌊αx + γ⌋ | x ∈ 0, m -1 } is called a digital segment of size m. 2. S m = {S(m, α, γ) | α, γ ∈ [0, 1]} is the set of all digital segments.
Property 2. [START_REF] Berenstein | On the number of digital straight line segments[END_REF][START_REF] Mignosi | On the number of factors of Sturmian words[END_REF] 1. card(S m ) = 1 + m i=1 (mi + 1)ϕ(i) where ϕ is the Euler's totient function (ϕ(i) = card({j | 1 ≤ j < i and i and j are co -prime})).

card(S

m ) = m 3 π 2 + O(m 2 log(m)). Property 3. Let m, n ∈ N * and α, β, γ 1 , γ 2 ∈ [0, 1]
and consider the two digital segments S(m, α, γ 1 ), S(n, β, γ 2 ). Then, there exists w ∈ U m,n such that

S(m, α, γ 1 ) = {(i, w(i, 0)) | i ∈ 0, m -1 } and S(m, β, γ 2 ) = {(j, w(0, j)) | j ∈ 0, m -1 }.
Proof. By [START_REF] Mignosi | On the number of factors of Sturmian words[END_REF][START_REF] Gérard | Contribution à la Géométrie Discrète[END_REF], there exist i, j ∈ Z such that S(m, α, γ

1 ) = {(x -i, ⌊αx⌋ - ⌊αi⌋) | x ∈ i, m+i-1 } and S(n, β, γ 2 ) = {(x-j, ⌊βy⌋-⌊βj⌋) | y ∈ j, n+j-1 }.
Then w = w i,j (α, β, 0) verifies the conditions of the property ⊓ ⊔

Corollary 3. card(U m,n ) ≥ card(S m )card(S n ). So, card(U m,n ) ≥ 1 π 4 m 3 n 3 + O(m 2 n 2 log(m) log(n)).
Proof. By Property 3, we have card(U m,n ) ≥ card(S m )card(S n ) and the second assertion is a direct consequence of Property 2 ⊓ ⊔ Corollaries 2 and 3 imply that there exist two constant numbers k 1 , k 2 such that

k 1 m 3 n 3 < card(U m,n ) < k 2 (m + n) 2 m 3 n 3 .

Application to local estimators

A digital surface is the discretization of a surface of R 3 . We investigate in this section the local estimators of the area of digital surface in the digital space rZ 3 of resolution r. The local estimator of area is obtained by associating a weight p(w) to each pattern w ∈ M(m, n) of size m×n where M(m, n) is the set of all m×n-patterns, then any digital surface S r , can be obtained by concatenation of elements in M(m, n) with perhaps a pattern ε i , ε ′ j of size less that m × n. In other words S r can be viewed as a bi-dimensional word on the alphabet of patterns of size less or equal to m × n.

If S r = w 1,1 w 2,1 • • • w M,1 ε 1 w 1,2 w 2,2 • • • w M,2 ε 2 . . . . . . • • • . . . . . . w 1,N w 2,N • • • w M,N ε N ε ′ 1 ε ′ 2 • • • ε ′ M ε ′ M+1
where w i,j ∈ M(m, n) for all i, j, then we define the area of S r by S r,m,n,p (S r ) = r 2 i,j p(w i,j ) (i.e. we neglect the contribution of the digital surfaces ε i and ε ′ j ). Actually, we investigate the following problem: Does there exist m, n and p(.) such that for any surface S ∈ R 3 the areas S r,m,n,p (S r ) converge to the area of S where r tends to 0? (i.e. S r is a discretization of S).

In this section, we study this problem for a particular class of surfaces: the set of rectangular planar regions. Moreover we suppose that the discretization operator δ r restricted to these regions is the "Bresenham" discretization.

We consider the rectangular planar region R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that 0 ≤ α, β ≤ 1, the other cases could be deduced by symmetry.

Its "Bresenham" discretization in rZ 3 is R r = r{(x, y, ⌊αx + βy + γ r ⌋) | (x, y) ∈ ⌈ a r ⌉, ⌊ b r ⌋ × ⌈ c r ⌉, ⌊ d r ⌋ }
We fix m, n as a positive integers. As it has been explained for surfaces, the discrete region R r can be seen as the bi-dimensional word

w 1,1 w 2,1 • • • w M,1 ε 1 w 1,2 w 2,2 • • • w M,2 ε 2 . . . . . . • • • . . . . . . w 1,N w 2,N • • • w M,N ε N ε ′ 1 ε ′ 2 • • • ε ′ M ε ′ M+1 where M = ⌊ ⌊ b r ⌋-⌈ a r ⌉+1 m ⌋ and N = ⌊ ⌊ d r ⌋-⌈ c r ⌉+1 n
⌋ and for all i, j, w i,j is a pattern of size m × n and ε i , ε ′ j are patterns of size less than m × n.

We construct S r,m,n,p as the local estimator of measure by using a weight function p : U m,n → R. Then S r,m,n,p is defined by:

S r,m,n,p (R r ) = r 2 i,j p(w i,j ) = r 2 w∈Um,n n(w, R r , r)p(w)
Where n(w, R r , r) is the number of (i, j) ∈ 1, M × 1, N such that w i,j = w.

The central question of this section can be formulated as the following, does there exist m, n and p(.) such that, for any rectangular planar region R, the estimation S r,m,n,p (R r ) converges to the area of R when the resolution r tends to 0?

We will prove in this section that the response is almost everywhere no.

Actually, we will prove that for almost all rectangular planar regions R, the estimation S r,m,n,p (R r ) does not converge to the area of R when the resolution r tends to 0.

The result of this section is an extension of the results of [START_REF] Tajine | On local definitions of length of digital curves[END_REF] for estimating area of rectangular planar regions of R 3 .

Let a, b, c, d ∈ R such that a < b and c < d and 0 ≤ α, β ≤ 1. Let r > 0 be the resolution of the discrete space rZ 3 . Let R = {(x, y, αx

+ βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d}. So the "Bresenham" discretization of R in rZ 3 is R r = r{(x, y, ⌊αx+βy + γ r ⌋) | (x, y) ∈ ⌈ a r ⌉, ⌊ b r ⌋ × ⌈ c r ⌉, ⌊ d r ⌋ }. Put M r = ⌊ ⌊ b r ⌋-⌈ a r ⌉+1 m ⌋ and N r = ⌊ ⌊ d r ⌋-⌈ c r ⌉+1 n ⌋. Then R r = w 1,1 w 2,1 • • • w Mr ,1 ε 1,r w 1,2 w 2,2 • • • w Mr ,2 ε 2,r . . . . . . • • • . . . . . . w 1,Nr w 2,Nr • • • w Mr ,Nr ε Nr,r ε ′ 1,r ε ′ 2,r • • • ε ′ Mr ,r ε ′ Mr+1,r
where w i,j ∈ U m,n for (i, j) ∈ 1, N r × 1, M r and ε i,r , ε ′ j,r are of size less than m × n for i ∈ 1, N r and j ∈ 1, M r + 1 .

Consider S r,m,n,p (R r ) = r 2 1≤i≤Nr 1≤j≤Mr p(w i,j ) as an approximation of the area of the region R (i.e. we neglect the contributions of the ε i,r and ε ′ j,r ). Put DA m,n,p (R) = lim r→0 S r,m,n,p (R r ). 

F α,β,γ,a,b,c,d r = card({(x, y) ∈ E r | w x,y (α, β, γ r ) = w}) S r Lemma 3. Let α, β ∈ [0, 1] such that α or β is irrational, γ, a, b, c, d ∈ R, w ∈ C m,n,α,β . Then F α,β,γ,a,b,c,d = lim r→0 F α,β,γ,a,b,c,d r = 1 mn freq α,β (w) 
In particular F α,β,γ,a,b,c,d does not depend on γ, a, b, c, and d.

Proof. Proof. We suppose that the weight function p : U m,n → R associates to each pattern w of size m × n a weight p(w). The digital region R r can be seen as the bi-dimensional word:

R r = w 1,1 w 2,1 • • • w Mr ,1 ε 1,r w 1,2 w 2,2 • • • w Mr ,2 ε 2,r . . . . . . • • • . . . . . . w 1,Nr w 2,Nr • • • w Mr ,Nr ε Nr,r ε ′ 1,r ε ′ 2,r • • • ε ′ Mr ,r ε ′ Mr+1,r
where where n(w, R r , r) = card({(x, y) ∈ (((mZ + ⌈ Proof. We consider a connected component O of [0, 1] 2 \ E m,n . By Theorem 3, there exist u, v, t ∈ R such that the estimated area of the rectangular planar

M r = ⌊ ⌊ b r ⌋-⌈ a r ⌉+1 m ⌋ and N r = ⌊ ⌊ d r ⌋-⌈ c r ⌉+1 n ⌋, w i,j ∈ U m,n for (i, j) ∈ 1, N r × 1, M r and ε i,r , ε ′ j,
a r ⌉) × (nZ + ⌈ c r ⌉)) ∩ ([⌈ a r ⌉, [⌊ b r ⌋] × [⌈ c r ⌉, [⌊ d r ⌋]) | w x,y (α, β, γ r ) = w})
region R is DA m,n,p (R) = (b -a)(d -c)(uα + vβ + t) for α or β is irrational. The exact area of R is area(R) = (b -a)(d -c) 1 + α 2 + β 2 . So we have: DA m,n,p (R) = area(R) ⇐⇒ (uα + vβ + t) 2 = 1 + α 2 + β 2 Which is equivalent to (u 2 -1)α 2 + (v 2 -1)β 2 + 2(uvαβ + utα + vtβ) + t 2 -1 = 0
But, the last equation corresponds to an object of Lebesgue measure greater than 0 only when u 2 -1 = 0, v 2 -1 = 0, t 2 -1 = 0, uv = 0, ut = 0 and vt = 0 which never happens. So, the last equation corresponds to a curve in R 2 (which is the intersection of conic and the region O) and thus, for (α, β) ∈ O, the estimated area can be equal to the exact area for only (α, β) in a set included in the intersection of a conic and the region O which corresponds to a negligible set.

But, [0, 1] 2 \ E m,n contains only a finite number of connected components. Thus, the set of (α,

β) ∈ ([0, 1] 2 \ (E m,n ∪ Q 2 )
) such that the estimated area is equal to the exact area is a negligible set because it is a finite union of negligible sets ⊓ ⊔ 

Conclusion

In this paper we have seen that the frequencies of the (m, n)-cubes of digital planes satisfy nice properties: they constitute a continuous piecewise affine function in the slopes of the digital planes. This has consequences on the combinatorics of (m, n)-cubes, in particular on the asymptotic behavior of the number of (m, n)-cubes when m and n tend to infinity.

Moreover it has also consequences on local estimators of area as it permits to prove rigorously that any local estimator of area is never multigrid-convergent: for almost all region of plane it does not converge to the true area. This result is a generalization of a result in dimension two proved in [START_REF] Tajine | On local definitions of length of digital curves[END_REF]. Actually we can prove with the same technics that this result is true for the equivalent notions for any finite dimension.

A Appendix: Frequencies for irrational parameters

In all the following α, β ∈ R such that α or β ∈ (R \ Q), γ : R * → R * (i.e. In the following we note γ r for γ(r)), a, b, c, d ∈ R such that a < b and c < d and i, j ∈ N. 

(1 + q-1 ⌊ d r ⌋-⌈ c r ⌉+1 ) 1 ⌊ b r ⌋-⌈ a r ⌉+1 2 
|1-e h (pα)| . Thus lim r→0 l r;p,q,a,b,c,d (e h ) = 0 because lim r→0 q-1 ⌊ d r ⌋-⌈ c r ⌉+1 = 0, lim r→0 1 ⌊ b r ⌋-⌈ a r ⌉+1 = 0 and |1e h (pα)| = 0 because α is irrational. We have the same conclusion if β is irrational ⊓ ⊔

Fig. 2 Fig. 2 . 3 Lemma 1 .

 2231 Fig. 2. Farey's diagram for m = 4 and n = 3
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 12 Let O be a connected component of [0, 1] 2 \ E m,n . Then O is a convex polygon and if p 1 , p 2 , p 3 are distinct vertexes of the polygon O then 1. for any point p ∈ O, C m,n,p = C m,n,p1 ∪ C m,n,p2 ∪ C m,n,p3 and 2. for any point p in the interior of the segment of vertexes p 1 , p 2 , C m,n,p = C m,n,p1 ∪ C m,n,p2 . Proof. The function (α, β) → C m,n,α,β is constant on O. By Theorem 2, for all w ∈ U m,n , the function (α, β) → freq α,β (w) is affine on O and we conclude by using Proposition 3 ⊓ ⊔ The number of (m, n)-cubes is in O((m + n) 2 m 3 n 3 ). Proof. Any line of equation ux+vy +w = 0 with |w| > |u|+|v| does not intersect the square [0, 1] 2 , so E m,n is composed of at most (2m + 1)(2n + 1)(2(m + n + 1) + 1) = f (m, n) lines. Thanks to Theorem 2 and Corollary 3 all the (m, n)cubes appear in the vertices of the connected components of [0, 1] 2 ∩ E m,n . Each vertex is the intersection of two lines of E m,n so there are at most f (m, n) 2 such vertices. Each vertex corresponds to at most mn (m, n)-cubes, so in total there are at most ((2m + 1)(2n + 1)(2(m + n + 1) + 1)) 2 mn (m, n)-cubes, which proves the claim ⊓ ⊔

  In all the following, putE r = ( ⌈ a r ⌉, ⌊ b r ⌋ × ⌈ c r ⌉, ⌊ d r ⌋ )∩((mZ+⌈ a r ⌉)×(nZ+⌈ c r ⌉)) and S r = (⌊ b r ⌋ -⌈ a r ⌉ + 1)(⌊ d r ⌋ -⌈ c r ⌉ + 1) Definition 8.The non-overlapping frequency F α,β,γ,a,b,c,d r of a pattern w of size m × n in R r is defined by:

F

  α,β,γ,a,b,c,d = lim r→0 card({(x,y)∈Er | wx,y(α,β, γ r )=w}) Sr = lim r→0 card({(x,y)∈Er | αx+βy+ 1 r γ ∈I α,β (w)}) Sr So, if we take p = m, q = n, γ r = 1 r γ and I = I α,β (w) in Theorem 4 of the Appendix A, then we have F α,β,γ,a,b,c,d = 1 mn µ(I α,β (w)) = 1 mn freq α,β (w) because by Proposition 2 overfreq α,β,γ (w) = µ(I α,β (w)) ⊓ ⊔ Theorem 3. Let O be a connected component of [0, 1] 2 \ E m,n . Then there exist u, v, t ∈ R such that DA m,n,p (R) = (ba)(dc)(uα + vβ + t) for all rectangular planar regions R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} such that α, β ∈ O and α or β is irrational. In other words, DA m,n,p (.) is an affine function in (α, β) for (α, β) ∈ (O \ Q 2 ).

  r are of size less than m × n for i ∈ 1, N r and j ∈ 1, M r + 1 . So, the approximated area of the digital region R r is : S r,m,n,p (R r ) = r 2 1≤i≤Mr 1≤j≤Nr p(w i,j ) = r 2 w∈Um,n n(w, R r , r)p(w)

Corollary 4 .

 4 which is the number of occurrences of the pattern w in the bi-dimensional word R r . So,DA m,n,p (R) = lim r→0 r 2 w∈Um,n n(w, R r , r)p(w) β (w)p(w) (By Lemma 3) So, according to Theorem 2, DA m,n,p (.) is an affine function in (α, β) for (α, β) ∈ (O \ Q 2 ) ⊓ ⊔ The set of (α, β) ∈ ([0, 1] 2 \ E m,n ) such that α or β is irrational and DA m,n,p (R) = area(R)is a negligible (relatively to the Lebesgue measure on the euclidean space) where for a, b, c, d ∈ R, R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d}.

Corollary 5 .

 5 For any m, n ∈ N * and any weight function p(.) the set of (α, β) ∈ [0, 1] 2 such that the rectangular planar region R = {(x, y, αx + βy + γ) | a ≤ x ≤ b and c ≤ y ≤ d} (where γ, a, b, c, d ∈ R) satisfies area(R) = DA m,n,p (R) is a negligible set. So, for any m, n ∈ N * and any weight function p(.), for all rectangular planar regions R with the parameters α, β ∈ [0, 1], we have area(R) = DA m,n,p (R) almost everywhere. Proof. By Corollary 5, we have, for almost all rectangular planar regions R with parameters(α, β) ∈ ([0, 1] 2 \ E m,n ) area(R) = DA m,n,p (R). But Q 2 isinfinite countable set and E m,n is a finite set of straight lines. So E m,n ∪Q 2 is a negligible set. So, for all rectangular planar regions R with the parameters α, β ∈ [0, 1], area(R) = DA m,n,p (R) almost everywhere ⊓ ⊔

Put

  E r = ( ⌈ a r ⌉, ⌊ b r ⌋ × ⌈ c r ⌉, ⌊ d r ⌋ ) ∩ ((pZ + ⌈ a r ⌉) × (qZ + ⌈ c r ⌉)) and S r = (⌊ b r ⌋ -⌈ a r ⌉ + 1)(⌊ d r ⌋ -⌈ c r ⌉ + 1) and consider the linear form : l r;p,q,a,b,c,d :L 1 ([0, 1]) → R such that for all f ∈ L 1 ([0, 1]) l r;p,q,a,b,c,d (f ) = 1 S r (x,y)∈Er f ( αx + βy + γ r ).

Lemma 4 . 1 So

 41 Let h ∈ Z * and put e h : t → e 2πhit . Then lim r→0 l r;p,q,a,b,c,d (e h ) = 0 Proof. l r;p,q,a,b,c,d (e h ) = 1 S r x∈(pZ+⌈ a r ⌉),x∈ ⌈ a r ⌉,⌊ b r ⌋ and y∈(qZ+⌈ c r ⌉),y∈ ⌈ c r ⌉,⌊ d r ⌋ e h (αx + βy + γ r ). = 1 S r e h (γ r )( x∈(pZ+⌈ a r ⌉) and x∈ ⌈ a r ⌉,⌊ b r ⌋ e h (αx))( y∈(qZ+⌈ c r ⌉) and y∈ ⌈ c r ⌉,⌊ d r ⌋ e h (βy)).Assumethat α ∈ (R \ Q). Then |l r;p,q,a,b,c,d (e h )| ≤ 1 (⌊ b r ⌋-⌈ a r ⌉+1)(⌊ d r ⌋-⌈ c r ⌉+1) F |1-e h ((E+1)hα)| |1-e h (hα)|where E = ⌊ |l r;p,q,a,b,c,d (e h )| ≤ 1 q

Thus for any (k, l) ∈ F m,n and for all connected component O of [0, 1] 2 \ E m,n the function (α, β) → ⌊αk + βl⌋ is constant in O. As (α, β) → ⌊αk + βl⌋ is constant in O and C α,β k,l = 1αk + βl = -αkβl + (1 + ⌊αk + βl⌋), then the function (α, β) → C α,β k,l is affine on O ⊓ ⊔ Lemma 2. Let O be a connected component of [0, 1] 2 \ E m,n and (α, β) ∈ O then all the C α,β k,l for (k, l) ∈ F m,n are distinct.

Proof. Let (α, β) ∈ O ⊂ [0, 1] 2 \E m,n and suppose that there exist (k, l), Proof. l r;p,q,a,b,c,d (e 0 ) =

Look to the proof of Lemma 4 for the definition of E and F ). Thus, lim r→0 l r;p,q,a,b,c,d (e 0 ) = 1 pq ⊓ ⊔ Proposition 4 ( [START_REF] Tajine | On local definitions of length of digital curves[END_REF]). Let f be a continuous function from [0, 1] to C. Then

Lemma 6 ( [START_REF] Tajine | On local definitions of length of digital curves[END_REF]). Let M r (r ∈ R * ) and M be linear positive functionals on some space F of real-valued function f : X → R (X = ∅) and let L ⊆ F be the subspace of theses functions satisfying the property

Suppose that f ∈ F has the property that every ε > 0 there exist functions

Sr (x,y)∈Er X I ( αx + βy + γ r ) = l r;p,q,a,b,c,d (X I ) where X I is the characteristic function of I (i.e. X I (t) = 1 if t ∈ I and 0 otherwise).

But I is an interval thus for every ε > 0 there exist two continuous functions g 1 , g 2 on [0, 1] such that g 1 ≤ X I ≤ g 2 and 1