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Using Planar Facets for Stereovision SLAM

Cyrille Berger and Simon Lacroix

Abstract

In the context of stereovision SLAM, we propose a way to

enrich the landmark models. Vision-based SLAM approaches

usually rely on interest points associated to a point in

the Cartesian space: by adjoining oriented planar patches

(if they are present in the environment), we augment the

landmark description with an oriented frame. Thanks to this

additional information, the robot pose is fully observable

with the perception of a single landmark, and the knowledge

of the patches orientation helps the matching of landmarks

perceived from different viewpoints. The paper depicts the

chosen landmark model, the way to extract and match

them, and presents some SLAM results obtained with such

landmarks.

I. INTRODUCTION

Any solution to the problem of simultaneous localisation

and mapping (SLAM) needs to develop the following func-

tions:

• Landmarks detection. This mean the identification and

extraction from the perceived data of elements in the

environment on which the robot relies to estimate its

position,

• Relatives measures estimation. Two process are needed:

– Estimation of the position of the landmarks rela-

tively to the current position of the sensor: this is

the observation step,

– Estimation of robot motions between two landmark

perceptions: this is the prediction step,

• Data associations. Observing landmarks is only useful

if they can be perceived from different positions: they

need to be robustly matched when perceived from

different viewpoints.

• Estimation. This the heart of the SLAM: using the

various motion predictions and landmark observations,

the estimation process computes the position of the

robot and of landmarks

Most of the many existing contributions in the literature

tackle the estimation process – an up to date state of the

art can be read in [4], [1]. Various formalisms have been

successfully introduced, and important contributions propose

structures of the landmarks maps in order to both reduce the

algorithmic complexity of the estimation process, and the

difficulties related to the non-linearity of the problem.
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But most of the functions needed for SLAM are perception

process. This is obvious for the detection of landmarks and

the observation of their position, which comes from the

processing of acquired data. And if the landmark matching

problem can be solved by the mere knowledge of their

estimated and observed positions, it is more robustly solved

by the landmarks identification and recognition, because it

is independent of the current position estimate.

For the perception processes, the choice of the landmarks

model is a critical point. A good landmark must be salient in

the data, and should be easy to detected and matched from

different viewpoints. The model of a landmark can be split

in two parts: one part dedicated to the estimation (geometric

variables which defines its position), and one part dedicated

to the matching process, which includes the information that

identifies it. For instance, most of the solutions to the Vision

SLAM problem are based on interest points (Harris points, or

“SIFT” points, either in stereovision [8], [15] or monocular

vision [3]). Interest points have all the required properties:

they correspond to 3D points in the environment, and they

carry visual information useful to match them.

But the environment model made of such landmarks is

poor, and is only useful to solve the SLAM problem. There

is a strong interest to rely on richer landmarks models:

on the one hand it can help the matching process, and

on the other hand it can yield environment models more

representative of the environment structure, on the basis of

which other functions than localization can be applied (e.g.

computation of free space, computation of visibility...). The

recent contributions to vision SLAM which use segments as

landmarks are going in this direction [5], [17], [9].

In this paper, we propose a landmark model based on

planar facets detected using stereovision. Relying on interest

points, this model contains six geometric parameters and

texture informations: this description gives a better observ-

ability of the robot position by the perception of a small

number of landmark1, and makes the matching process easier

when detecting landmark from different view points. Sec-

tion II presents this landmark model and the corresponding

detection process in a pair of stereoscopic images. Section

III describes tracking and matching algorithms, and SLAM

results using those landmarks are shown in section IV.

II. PLANAR FACETS

Facets correspond to planar areas detected around interest

points, by checking whether an homography between their

two stereoscopic views can be fitted or not.

1As opposed to [14], in which facets are only used to ease the matching
process



Fig. 1. Top: left image of a stereoscopic image pair. Bottom: extracted
facets.

A. Facet model

a) a basis: A facet is a set of geometric properties that

represent its position and orientation, completed by signal

information. Figure 1 shows an example of facets extracted

from a pair of stereoscopic images.

Two equivalent geometric models are defined:

• A matrix representation of the position and orientation

of the facet (12 parameters: the facet center, plus the 3

vectors of the associated frame)

• A minimal representation (six Euler parameters)

The matrix representation is used to compute comparisons

and transformations during detection and matching, whereas

the Euler angles are used for the SLAM estimation.

To simplify the matching process, facets correspond to

a constant size of planar patches in the environment (we

typically use a size of 10×10 centimeters), and the associated

texture is stored in a fixed size image (25×25 pixels in our

implementation).

B. Facets extraction

b) Interest point detection: Interest points are image

pixels to which are associated numeric properties that are

stable with respect to viewpoint changes. A facet can be

associated to a Harris point [6], or to scale invariants points

[13], [11], [7] – the later offer a better repeatability, at the

expense of a much higher computation time.

c) Homography estimation: Dense pixel stereovision

could be used to estimate the normal vector of the surface

corresponding to an interest point, with a least square plane

fitting algorithm applied to the neighbouring 3D points. But

fast stereovision algorithms yields noisy coordinates of the

3D points, which make the estimation of the normal very

unstable.

An approach based on the homography estimation is more

robust and reliable. The two image projections I1 and I2 of a

plane P corresponding to different viewpoints are linked by

a homography s ∗ H , where H is a 3x3 matrix, and s is an

unknown scale factor (often defined such that (s∗H)(3, 3) =
1.0). So two images Ip

1 and Ip
2 extracted from I1 and I2

correspond to a plane in the environment if there is a matrix

H that satisfies:

H ∗ Ip
2 = Ip

1 (1)

Alignment algorithms which compute the value of H are

optimization procedures whose goal is to minimize:

E = H ∗ Ip
2 − Ip

1 − (µ(H ∗ Ip
2 ) − µ(Ip

1 )) (2)

Where µ(H ∗ Ip
2 ) and µ(Ip

1 ) are the mean of the pixels

of H ∗ Ip
2 and Ip

1 , which reduce the influence of lightning

change between two images.

An analysis of various alignment algorithms is available in

[2], in which is also proposed a new method for homography

estimation called “Inverse Compositional Estimation” (ICE).

[12] introduce the “Efficient Second-order Minimization”

(ESM) used for tracking large planar areas using an homog-

raphy estimation.

For small image areas, both methods are able to estimate

an homography which either precisely corresponds to the

associated plane or is totally erroneous. Experimental trials

show that when an erroneous homography is estimated,

the resulting normal is completely random: those cases can

therefore be identified by analysing successive observations

(see III-D). We noticed that the ICE approach yields less

erroneous results with small image patches (around 20 pixels

by 20 pixels): in such cases, ICE is slightly better than ESM,

unlike what is observed for larger image patches in [2] and

[12].

d) Normal estimation: Once the homography is com-

puted, the normal of the facet is computed using the ge-

ometric parameters of the stereovision bench – e.g. by

computing the coordinates of three points of the plane using

the homography.

e) Completing the facet orientation information: The

facet orientation is defined by three vectors: it is only

necessary to compute two of them, the third one being the

result of their cross product. The first vector is the normal

vector, and the second vector is computed on the basis of

the texture of the facet, so as to represent its orientation: the

gradient is computed on each pixel P of a square window W



around the interest point IP , using Sobel masks. The facet

orientation is then defined as the following weighted sum:

Orientation =

∑

P∈W w(d(P, IP ) ∗ atan2(Gy(P ), Gx(P ))
∑

P∈W w(d(P, IP )
(3)

Where d(P, IP ) is the distance between the pixel P and the

interest point IP and w(x) is a Gaussian weighting function.

Unfortunately, despite the decrease of sensitivity to noise

and to viewpoint changes brought by the weighted sum, the

orientation is either very stable (in most cases) or very ran-

dom. As for the computation of homography, facets whose

orientation is not stable can be eliminated by analysing

successive observations (see III-D). In our convention, this

orientation is the third Euler angle of the facet (“roll”,

denoted w).

C. Texture

The texture of a facet F is interpolated from the image of

the camera, using the geometric properties of the facet. Each

point pt of the texture correspond to a 3D point P ∈ F , this

point P is then projected on a pixel pc of the camera.

Let PCamera the projection matrix of a point in the

environment on the focal plane of the camera, OF the vector

from the origin of the world to the center of the facet F , and

v and w, the orientation vectors parallel to the facet plane.

Assuming the texture pixels are indexed from the facet center

by i and j, and given r the resolution of the texture, the

following equation gives the value for each pixel of texture

as shown figure 2 :

pt(i, j) = pc(PCamera(OF + i ∗ v ∗ r + j ∗ w ∗ r)) (4)

Fig. 2. Interpolation of the texture of a facet. The blue line shows how a
pixel of the image is associated to a pixel of the texture.

By applying this interpolation to memorize the facet tex-

ture, the texture of the facet is represented the way it would

have been perceived with the camera “aligned” to the facet,

i.e. with the optical axis parallel to the facet normal, and the

horizontal axis aligned to the facet orientation w. Thanks

to this representation, during matching, a pixel by pixel

comparison of the texture allows to get a similarity score

between the observed texture and the memorized texture.

D. Error model

The error model for the minimal geometric representation

of facets is made of covariances of its center coordinates

and of its Euler angles. The center coordinates and the

orientation angles being computed by independent processes,

the center/orientation covariances are equal to 0. Similarly,

the facet normal estimate is provided by the homography

estimate, and its orientation by a analysis of the texture:

these parameters variances are therefore independent. This

yield a covariance matrix with the following form:









Mstereo
[3×3] 0[3×3]

σu σu/v 0
0[3×3] σv/u σv 0

0 0 σw









(5)

Where Mstereo
[3×3] is the stereovision usual error model

[18]. The variance and covariances value for the angles are

empirically set as follows: σu = σv = σw = 0.1 and

σu/v = 0.01.

III. FACETS MATCHING

A. General Algorithm

The method used for facets matching is an extension to

the third dimension of an interest point matching algorithm

described in [8]: the idea is to mix signal information with

geometric relations between neighbouring facets to assess

robust matches.

Let F1 and F2 two sets of facets within which we

are looking for matches. The algorithm is a hypothesize-

and-test procedure: it starts by establishing a first match

between a facet from F1 and one from F2 using only signal

information. This first match hypothesis gives a geometric

transformation T1→2(f), which is used to focus the search

of additional matches, the discovery of additional matches

reinforcing the initial hypothesis.

1) Given f1 ∈ F1, let f2 ∈ F2 the facet whose texture

is the closest to the one of f1 – in other word,

the facet which maximizes CompareTexture(f1, f)
∀f ∈ F2 where CompareTexture is a texture com-

parison function (for instance the ZNCC score)

2) This first match allows to compute the geometric

transformation T1→2(f) such that:

T1→2(f1) = f2 (6)

3) ∀f ′

1 ∈ F1, if there is f ′

2 ∈ F2 which satisfies the

following two conditions:

T1→2(f
′

1) ≈ f ′

2 (7)

CompareTexture(f ′

1, f
′

2) > Ttexture (8)

Then the couple (f ′

1, f
′

2) is a match.

Figure 3 shows two example of facet matching results.
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Fig. 3. Two results of facets matching. Red “+” denote the detected facets,
and green numbered squares show the ones that have been matched.

B. Facets tracking

One of the advantages of using planar facets is the

possibility to re-project them and to predict how a camera

will observe them from a different viewpoint. Especially,

if the transformation is precisely known, it is very easy to

compare the observation with the texture in memory. This is

of a limited interest for SLAM when the change of view point

is not very well known – typically when closing a loop. But

between t and t + 1, the estimation of the viewpoint change

Tt→(t+1) provided by the prediction step is precise enough

to predict the position and orientation of the facets observed

at time t to track them.

Let Ip(I l
t+1) and Ip(Ir

t+1) the list of interest points

detected at time t + 1 in the left and right images I l
t+1 and

Ir
t+1, and F(t) the set of facets detected at time t.

1) ∀f ∈ F(t), the projection P l
f of f on the image I l

t+1

is computed

2) Let C the list of interest points located close to the

predicted position of the facet on the image:

C = Ipl ∈ Ip(I l
2)/|Ip − PF | < ǫ (9)

Using the motion estimate Tt→(t+1)(base), it is pos-

sible to predict the facet parameters, and especially to

use its predicted normal to compute the texture for

each points of C as in section II-C. Let I l
p(F ) ∈ C the

interest point whose texture is the closet to the one of

the facet.

3) The same method is used to find Ipr(F ) in the right

image, with the added constraint that the two interest

points must satisfy the epipolar constraint

4) using the couple (Ipl, Ipr), the parameters of the facet

fsuivi are computed as in section II, this allow to check

that fsuivi = Tt→(t+1)(f)

With respect to other tracking methods (such as [16]

or [12]), this approach offers the interest to get a direct
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Fig. 4. Tracked facets in two consecutive images. The red “+” denote
detected facets, the blue points are Harris points, and green squares shows
tracked facets.

control on the facets parameters, the possibility to update

their models and to filter out the ones for which an er-

roneous homography has been estimated, as shown in the

following sections. A tracking step requires 300 ms of

computation (including all processings: image rectification,

interest point detection and faces tracking), whereas an initial

facet detection requires 500ms (including all processing), and

the matching without any prior motion estimate requires a

second 2.

C. Facets update

Everytime a facet is tracked or matched, its model is

updated: geometric information are updated by the SLAM

estimation process, and the texture information is updated if

the facet has been perceived from a “better position” than

previously – for instance, if the new observation is closer to

the previous one, and made with a smaller angle between

the facet normal and the camera axis.

D. Unstable facets elimination

After the application of the matching or tracking algo-

rithms, some facets remain unmatched, or their observation

is not consistent with the matched facets observation. Such

facets correspond either to an interest point with a too small

repeatability, or to an erroneous normal or rotation estimate

(see section II-B). This can be due to various causes: for

instance, if the neighbourhood of an interest point has a weak

texture, this can lead to a wrong homography (a black point

on a white wall is a strong interest point, but the resulting

homography is very likely to be erroneous).

Unmatchable, untrackable and inconsistent facets are con-

sidered to be weak facets, and are simply discarded.

IV. APPLICATION TO SLAM

A. Facets grouping

To constitute a landmark for SLAM, facets are grouped in

clusters: one the one hand this reduces the size of the SLAM

filter state used, and on the other hand it increases the chance

of detecting and matching a landmark when the robot comes

back to a previous location (loop closing). Indeed, using facet

clusters as landmarks, it doesn’t matter if one of the facet is

hidden or if its interest point is not detected, as the position

2Time measured on a Intel core Duo @ 2GHz using only one thread, on
512× 392 images.



of the landmark can be observed from the observation any

other facet in the cluster.

Facets are grouped by geometric proximity, and so that

the density of the group is higher close to the center of the

landmark. The reason is that facets closer to the center of

the landmark gives a better estimation of its position. Indeed,

an error on the observation of the facet angles basis yields

an higher error on the position of the landmark the farther

away the facet is (the error is δposition = δangle ∗ distance,

assuming δangle is small so that δangle ≃ tan(δangle)).
After the detection step, we have a set F of facets.

1) Given f i ∈ F , given Gi the set of facets close of f i :

Gi = f ∈ F/d(f, f i) < r (10)

where d(f1, f2) is the distance between two facets f1

and f2 and r is the radius of a landmark

2) Using this first group of facets, the center C of the

landmark is computed as the barycenter:

OC =

∑

f∈=Gi wf ∗ f
∑

f∈=Gi wf
(11)

The weighting wf is used to favor facets which are

considered to be better observed, i.e. whose normal is

parallel to the camera. Thus, the weighting function is:

wi =< axecamera|nf > (12)

3) The group of facets that define the landmark is the set:

f ∈ F/d(f/OC) < r (13)

Steps 2 and 3 could be repeated in a loop until the group

of facets remain stable. But during experiments show that the

group of facets does not change much during the following

iterations. Figure 5 shows the result of grouping facets.

B. Integration in SLAM

Let A the set of landmarks in the environment, Ftr the set

of facets tracked at a given time t (that is to say the set of

facets which have been tracked and the facets which couldn’t

be tracked but were possibly in the field of view of the

camera), and Mrobot the prediction of the robot displacement

(provided by e.g. odometry).

1) The set of tracked facets Ftr is determined using

the algorithm described in section III-B, the motion

estimation Mrobot, and Ft−1, which allows to deduce

a set of landmark observations O
2) if the ratio of tracked facets is bellow a given threshold:

|Ftr|

|Ft−1|
< thTrackeFacets (14)

it is necessary to start a new detection step:

a) the facet detection process described section II-B

returns the set Fdetect of detected facets

b) the matching algorithm of section III-A is used

to compute whether one of the landmark of A

Fig. 5. The top image shows the facets which have been extracted in the
environment, and the bottom one shows the two groups of facets which will
be used as landmarks for SLAM.

has reappeared in the field of view. Considering

a landmark A ∈ A and if the set Fmatched

of matched facets between the facets of A and

Fdetect is not empty, Fmatched 6= ⊘. Then

the set of observations O is completed with a

new observation of the landmark, and the facets

which are part of this landmark are removed from

Fdetect

c) the grouping algorithm of the facets in sec-

tion IV-A allows to create a new landmark

newlandmarks

3) the sets O and newlandmarks are used to update the

Kalman filter and its state vector

4) the set Ft is computed by removing facets that can

not be tracked anymore (because they left the field of

view), and by adding the newly detected facets:

Ft = (Ft ∪ Fdetect) \ Funtrackable (15)

where Funtrackable is the subset of facets of Ft−1

which are not in the field of view of the camera

This process is summarized by figure 6, and figure 7

shows two trajectories, one with the loop detection and one

where the matching algorithm has been disabled. Naturally,

applying the loop detection algorithm yields a final position

estimate that is closer to the ground truth.



V. FUTURE WORK

The work made until now have shown the interest of

modeling the environment using facets for the SLAM. There

are however some limitations that should be overcome:

• while facets are observable from different view points,

as they are centered on interest points, their detection

is still very sensible to changes of viewing angle

• without an heuristic to reduce the space of research, the

facets matching process is a costly one. The heuristic

we used in this paper is based on the estimation of

the position: it will be necessary to develop other

methods, especially when the position is unknown or

too imprecise.

Furthermore, this representation of the environment, while

richer than models using until now in vision SLAM is far to

use all the available information that can be extracted from

a stereovision bench. To limit this loss of information, we

have decided to suppose that the transformation of two facets

observed at a given time was certain (see section IV-B), and

that the two facets could be inserted in a single landmark

without any problems. But it would be also interesting

to re-estimate the relative positions of the facets that are

grouped with respect the local frame associated to the group

landmark. This could be achieved by associating a Kalman

filter to each group landmark, using a “Divide and Conquer”

method as in [10].
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