N
N

N

HAL

open science

Approximation of the Constrained Path Covering
Problem

Laurent Alfandari

» To cite this version:

‘ Laurent Alfandari. Approximation of the Constrained Path Covering Problem. 2007. hal-00174878

HAL Id: hal-00174878
https://hal.science/hal-00174878

Preprint submitted on 25 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00174878
https://hal.archives-ouvertes.fr

Approximation of the Constrained Path Covering Problem

Laurent Alfandari*'
* LIPN, UMR-CNRS 7030, Université Paris XIII, France
1 ESSEC,BP 05105 95021 Cergy-Pontoise, France
E-mail : alfandari@essec. fr

Abstract

We study a generic covering problem frequently met in transportation planning.
The problem is to cover a set of tasks by constrained paths, representing routings
of commodities, so that the total cost of selected paths is minimal. In this paper,
paths are constrained to have limited weight and limited number of tasks. We show
that the generic problem is NP-hard and that a greedy heuristic using dynamic
programming at each step achieves an approximation ratio of Ind, where d is the
maximum number of tasks of a path.

Keywords: transportation planning, constrained path, set covering, dynamic
programming, approximation.

1 Problem statement

The following generic minimization problem, that we call Constrained Path Covering
Problem (CPCP) in this paper, has many applications especially for fleet scheduling
or crew pairing in transportation planning [7, 4]. We are given a set of tasks V' =
{1,...,n} to be covered by a set K of commodities (for example, flight legs to be
covered by crews or planes, trains to be covered by pilots or locomotives). With each
commodity k € K is associated an acyclic graph G* = (V¥ U {s* t*}, A¥) where
VE C V is the subset of tasks that commodity k can perform, arc (i,j) € A¥ N V?2
if and only if commodity k can perform task j after task i, (s¥,i) € A* (resp.
(i,t*) € AF) if i starts (resp., ends) at the base of commodity k. With each arc
(i,7) € AF is associated a cost ci—“j and a weight wf] There is also a zero-cost and
zero-weight direct arc (s*,t*) in G*. The problem is to find in each graph G* a path
from s* to t* (possibly reduced to the single arc (s*,t*), meaning that commodity
k is not used) so that each task i € V is covered by at least one of these paths, each
path contains at most d* tasks, the weight of a path is at most b*, and the total
cost of the selected paths is minimum.

We note P* the set of feasible

The general problem can formulate as the following binary Linear Program:

keEK (i,j)e Ak

s.t. ooy ak>1 Vjev (2)
KEK is(if)eAb
(CPCP) > a:’:k = > :cftk =1 Vke K (3)
ji(sk,j)e Ak i:(i,tk)e Ak
xfj = > x?l Vke K,jeVk (4)
i:(i,5) AR 1:(j,1)e A*
. ?Akxfjgdk—l Vk e K (5)
1,7)€E
. %Ak wfjxfj < bk Vke K (6)
z5.]
af; € {0,1} Vk € K, (i,j) € AF (1)

The objective function (1) minimizes the sum of the costs of selected paths. A
special case where the objective is to minimize the number of used commodities
can be handled by setting data cfki = 1 for (s*,i) € A* and all other costs are
zero. This criterion can also be treated in lexicographical order compared to other
costs on arcs. The global constraint (2) expresses the need of covering each task
of V by at least one path. Constraints (3-6) are local constraints holding for each
path, which can be decomposed as a first block of structural constraints defining
a s* — t*-path (3-4) and a second block of resource constraints (5-6) limiting the
number of tasks and the weight of a path. The right hand side of constraint (5) is
dF — 1 because a path of a arcs starting from s* and ending at t* contains a — 1
tasks, i.e. nodes of V.

We note P* the set of s* — t¥ feasible paths of G*, i.e., having weight no more than
b¥ and number of tasks no more than d”.

The paper is structured as follows. Section 2 is devoted to the NP-hardness
of the problem, its reformulation as an exponential-size set covering problem, the
general greedy process and its worst-case performance analysis. Section 3 studies
approximation of the NP-hard subproblem of the greedy process, which is shown
to admit a Fully Polynomial Time Approximation Scheme (FPTAS) using dynamic
programming iterations on scaled and rounded costs. Section 4 concludes the paper.

2 Complexity and approximation

Proposition 1. CPCP is NP-hard.

Proof. We reduce the NP-hard Set Covering Problem (SCP) to CPCP. Given a
set C of elements and a collection S = {S1,...,Sy,} of subsets of C' with cost ¢(5)
for S € S, SCP consists in finding a minimum cover of C, i.e., a subset &’ C S such
that Uses/S = C and total cost) g ¢(S) is minimum. We transform SCP in-
stance (C,S) into a CPCP instance the following way. Weset V = C = {1,2,...,n}
and for k = 1,...,m, we construct acyclic graph G¥ = (V¥ U {s* t*}, A¥) where

Vk = Sk = {7’]1671]267 '7if€5’k‘}7 Ak = (sk7tk)7(Skvilf)a(irskptk)} U {(Zfﬂ’f«kl) Dl =
1,...,|Sk| — 1}. We set moreover c’;kik = ¢(Sk), all other arcs have zero-cost. Fi-
1

nally, we set wfj = 1 for all arc (i,j) € A¥, b¥* = n+ 1 and d* = n for all k so
that every path is feasible in G*. It is easy to see that every cover in the SCP
instance can be transformed in a CPCP solution of the same cost and vice-versa by
associating subset Sy = {i¥,i5,... ,i‘kskl} in SCP and path (s*,i¥,i%, ... ,if“sk‘,tk) in

CpCP.OO

The objective of polynomial approximation is to find for NP-hard problems a
polynomial-time algorithm that finds a solution whose objective is always within
some factor, as small as possible, of the optimal value. We show that we can refor-
mulate CPCP as a particular exponential-size SCP, and derive from the best-known
approximation for SCP a polynomial-time heuristic for CPCP achieving a logarit-
mic approximation ratio.

Proposition 2. Let I be an arbitrary CPCP instance. Consider the following
SCP instance I' = (C,S) where C =V, S = Upex{V(p) : p is a feasible path in
G*}, and for S € S, ¢(9) is the cost of the corresponding path in G*. Then every
CPCP-solution of I can be transformed in a SCP-cover of I' of the same cost, and

vice-versa.

Proof. Every CPCP feasible solution {p,...,p/" 1} for instance I, where p*
is the selected path in subgraph G*, is in 1-1 correspondence with feasible cover
{(V(ph),...,V(p!EN)} in I’ and these solutions have obvioulsy the same cost. (]

We deduce from proposition 2 that solving the SCP reformulation of CPCP
is equivalent to solving the original problem. The best approximation algorithm
for SCP is the classical greedy algorithm analysed by Chvétal [3]. It starts with
U = C (U represents the current set of uncovered elements of C'), repeatedly solves
a subproblem, which consists in picking at each step a subset S* € S so that

(S . cS)
S n0] - S EAo) ®

and sets U «— U \ {S*}, until all elements of C are covered, i.e. U = (. This
greedy process achieves an approximation ratio of H (o), where 0 = maxges | S| and
H(o) =3 1ci<,1/i <Ino+1[3]. Although CPCP reduces to a particular SCP by
proposition 2, it is not obvious whether the above greedy algorithm can run on the
Set Covering reformulation of CPCP, as the number of subsets |S| is exponential at
worst case (|P*| = O(2IV") = 0(2")) so the computation of the subproblem ratio
(8) might be tricky. Nevertheless, we can show as in [1] that complete enumeration
of these subsets is not needed so that the subproblem remains tractable. In this
paper, as in [2], the subproblem is NP-hard but can be approximated by a fully
polynomial-time approximation scheme (FPTAS), which enables to conserve the
logaritmic approximation ratio of Greedy for the original master problem.

Proposition 3. [1, 2] Consider an instance (C,S) of the Set Covering problem.
If subproblem (8) can be approzimated within ratio 1 + €, then the associated greedy
heuristic approximates the Set Covering instance within ratio (1 + €)H (o), where
o = maxges |5/

The proof is a direct application of Chvatal’s result [3]. For CPCP, adapting the
above greedy heuristic we start with U = V. At each step of the greedy process,
there are exactly | K| subproblems and each subproblem (SP*) is defined as follows.

Definition 1. Given U C V, the CPCP subproblem (SP¥) for k € K consists
in finding in graph G* a path minimizing ratio c(p)/|V (p)NU| over all paths p € P*.

We show in next section that subproblem (SP*) admits a FPTAS providing a
feasible path p* € P* whose objective c¢(p*)/|V (p*) N U] lies within ratio (1 + €) of
the optimum. Then the global best path p* = arg min{c(p*)/|V (p*)NU| : k € K} is
added to the greedy solution, the set U of uncovered tasks is set to U\ V (p*), and the
greedy process is iterated again until U = (). By propositions 2 and 3, the worst-case
ratio of this greedy process is bounded above by 1+ In(d) where d = maxex d*.
It remains to show then that subproblem (SP*) admits a Fully-Polynomial Time
Approximation Scheme.

3 Approximation of the CPCP subproblem

Observation. In order to keep notations simple while studying a subproblem (SP¥)
of definition 1, for the whole section we drop the k-index in graph G* and in cost
and weight data. Hence we have a graph G = ({s,t} UV, A), with costs ¢;; and
weights w;j, and the subproblem (SP) is to find in G a path p € P minimizing ratio
c(p)/|V(p) NU|, where P is the set of all s —t paths p of G satisfying |V (p)| < d
and w(p) < b. We note OPT = min,ep c(p)/|V(p) NU|.

Let u; = 1if j € U, u; = 0 otherwise. Let us first consider the two-step Dynamic
Programming (DP) algorithm 1 which, given a cost vector é on arcs and an upper
bound B:

(i) finds at step 1, for all node j € V' U {t}, the minimum weight w}(q) of a path
among all s — j paths p satisfying |V (p) NU| = g, for ¢ < d, and keeps in a set
Qj only those feasible values of g, i.e., such that w}(q) <b,

(ii) finds at step 2, for all ¢ € Q¢, the minimum cost ¢ of a s —t path among all
feasible paths p, € P satisfying |V (p,) NU| = ¢ and é(pq)/q < B.

The complexity of step 1, as all nodes and for each node all predecessors are
examined, is in O(|A|). At step 2, for each iteration of the while loop all nodes
j € VU{t}, all predecessors of j and all values of @); are enumerated, so the com-
plexity of one iteration is in O(|A|d) as max; |@Q;| < d. The overall complexity of
DP is derived then in lemma 1.

Algorithm 1 : DP(¢, B)
Begin

Step 1 // outputs for each j €V the set Q;={q€{0,...,d}:wj(q) <b}
Qs = {O}

S = {s}
S=VvVult}
While S # 0:

For j € S such that P(j) C S:

Qj ={q+uj:q € Uiep;Qi} \ {d+1}
For ¢ € Q;:
wj(q) = minge p(j){wi (g — ;) + wiz}
If wj(q) > b then Q; «— Q; \ {¢}
End for
Output Q; for j € V U {t}
S —Su{j} S S\{j}
End for
End while

Step 2
c=0
Qp — Q
While Q; # 0:
c+—c—+ 1
For j €V, for g € Q;:
w;(C, q) = min(miniep(j);aijgc{w;‘(c — &ij,q — uj) + wij}; w;-‘(c “1,q))
For q € Q}:
wy(c,q) = min(minieP(t):éijgc{w;k(c — ey q —ug) + wi i wi(c—1,q))
End for
For q € Q}:
if wi(c,q) <bthen & =c; Q) — Q) \ {g}
if ¢ > B then ¢ = o0; Q) — Q; \ {¢}
End for
End while
End.

Lemma 1. Given cost vector ¢ and upper bound B, algorithm DP(¢, B) runs in
time O(|Ald min(dB, maxgeq, ¢;))-

For solving exactly the subproblem, we could set cost vector ¢ = ¢, upper bound
B = oo and simply output OPT = min{¢;/q : ¢ € Q;} . In that case however, the
value maxgeq, ¢; may be arbitrary large and the complexity of the DP procedure
would not be polynomial in the data (which of course is consistent with the fact that
the subproblem is NP-hard). We thus use a technique inspired from [5] (this paper
being itself inspired from [6]) for approximating OPT by a Fully Polynomial Time
Approximation Scheme. The main idea is to start with a lower bound LB and an
upper bound UB on OPT; then, an iterative reduction of interval [LB,U B] is per-
formed by testing at each iteration whether OPT > R or OPT < (1+46)R, where R
is an appropriate value inside interval [LB, U B], and updating bounds in both cases.
This test is correctly done running algorithm DP(¢é, d/d), where &;; = |¢;;/(R6/d)],
as shown in Lemma 2. When the ratio UB/LB falls under a prefixed constant, the
DP procedure is applied on scaled and rounded costs in order to achieve the (14 €)
approximation claimed for the subproblem.

Lemma 2. Let R € [LB,UB], 0 < 6 < d and ¢&; = |¢i;/(R6/d)] for all
(i,7) € A such that ¢;; < R, else é;; = co. At the end of procedure DP(¢é,d/¢),
which runs in time O(|A|d®/68), if mingeq, & /q < d/§ then OPT < R(1+) else
OPT > R.

Proof. The complexity of DP(é,d/d) directly follows from Lemma 2. Now, if
for some g € Q; we have ¢;/q < d/§ then there is a feasible path p, € P satisfying
|[V(p) NU| = q and é(pg)/q < d/6, and then

C(pq> _ 1
(1,)Epq

<2 Y (|gm])Y wavsamn

(1,5)€Pq
1 /RS,
(B ew) i)
(R+ Ré/q) as ¢(pq)/q < dJ6 and [pg| < d
(I1+6)Rasg>1

IN A

On the other side, if for all ¢ € Q; ¢*/q > d/0 then if p* is an optimal path of
value OPT, we have é(p*)/|V (p*)NU| > d/é and then OPT = c(p*)/|V (p*)NU| >
ép*)(RA/A)/|V(p*)NU| > R as é(p)/|V(p) NU| > d/é for all pe P. O

We are now ready to introduce the algorithm. Let pZ and pj, denote respectively
a minimum-cost s —t path, and a minimum-weight s —t path among paths with no
more than d nodes of V'\ U (the latter can be computed by dynamic programming,
not extending labels with more than d nodes outside U). We set the initial Lower

Bound LB to ¢(p})/d and the initial Upper Bound UB; to c(pf)/|V (pf,) N U|.
Finally, > 1 and § €]0; 1] are constant parameters (in [5], 4 = 2 and 8 = 1/2).

Algorithm 2 : approximation scheme for (SP)
Begin
r=1;
While UB, > uLB,:
8, — (UB, /LB % —1
R, — UB!?LB} P12
cij < [cij/(Rr6,/d)] for all (i,5) € As.t. ¢jj < Ry, else cf; 0
run DP(c",d/4,)
If mingeq, ¢; < d/6, then UB, 41 « (1+6,)R, else LB, «+ R,
End while
Obtain an (1 + €)-approximation of OPT by running DP(|¢/(LBe/d)]|,d).
End.

The complexity of 7" run DP(c",d/$,), following Lemma 1, is O(]A|d®/5,). We

rewrite for general parameters p and [the proof of [5] , showing that Y, ..., 1/, =
O(1), where [is the total number of runs of the while loop. Then the whole com-
plexity of solving one subproblem is O(| A|d?).
If at the end of DP the lower bound is modified as LB, 41 = R, then UB,41/LBy11 =
UB,/(UBY?LB}?/*) = (UB,/LB,)'~9/2. Otherwise, if UB,41 = (1 + 6,)R,
then UB,11/LB,1 = (1 + 6,)R,/LB, = (UB,/LB,)' "3 (UB*LB}**)/LB, =
(UB,/LB,)*~P/2. Hence in both cases,

UBy41/LB,y1 = (UB,/LB,)'~#/?
As1/6, =1/((UB,/LB," ?) —1) and UB,/LB, > 11 we have

(LB,JUB,)'7P <1/6, < (LB, /UB,)*~ "

v
1—1/pt=F
and then 3, ., 1/6, = O(Z1grgl(LBr/UBr)1*ﬁ)- We have

l

> (LB,/UB,)'"™" =

r=1

(LB,/UB;)=A-2/2=5)""

MN

~ 3
=

(LBI/UBl)(1*/3)~(2/(2*ﬁ))j

I
(]

3=0
-1 _
< = (1=8)-2/2=p)y
=0
-1 j
< w Oy (M—(l—ﬁ)ﬁ—l)
j=0
< p A - e

So Zlgrgz 1/6, < (*) (,tf(l*m/(l - Mf(lfﬁ) e 71)) which is a func-

1-1/pl=F
tion of two constants p and 3, hence O(1). O

We thus conclude that subproblem (SP) admits a FPTAS running in O(|A|d?).
Going back to CPCP, each of the | K| subproblems is approximated in time O (| A*|(d*)3).
Hence the whole greedy heuristic described in section 2 for CPCP runs in time
O(|V||K||A|d?), achieving an approximation ratio of 1 + Ind where d = max;, d*.

4 Conclusion

We presented a polynomial-time greedy heuristic for the minimum Constrained Path
Covering Problem providing a feasible solution with cost at most 1 + Ind times
the optimal cost, which is particularly interesting for small values of the maximum
allowed number of tasks on a path. In real-case applications, this parameter is often
limited indeed as for example when paths represent plannings of crews the number
of tasks they can perform within their duty period is generally restricted by social
rules of the company. Let us note finally that the approximation result holds because
the min-ratio subproblem is submitted to a single (knapsack) resource constraint.
It would not hold anymore for more resource constraints, no approximation schemes
generally exist in that latter case.

References

[1] Alfandari L., V. Paschos. Master-slave strategy and polynomial approximation.
Computational optimization and Applications 16:3 (2000) 231-245.

[2] Alfandari L. Improved approximation of the Soft-Capacitated Facility Location
Problem. RAIRO Operations Research 41 (2007) 43-93.

[3] Chvatal V. A greedy heuristic for the set covering problem. Mathematics of
Operations Research 4:3 (1979) 233-235.

[4] Desaulniers G., J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, MM. Solomon, F.
Soumis. Crew pairing at Air France. Furopean journal of operational research
97:22 (1997) 245-2509.

[5] Ergun F., R. Sinha and L. Zhang. An Improved FPTAS for Restricted Shortest
Path. Information Processing Letters 83:5 (2002) 237-293.

[6] Hassin R. Approximation schemes for the restricted shortest path problems.
Mathematics of Operations Research 17:1 (1992) 36-42.

[7] Ziarati K., F. Soumis, J. Desrosiers, M.M. Solomon. A branch-first cut-second
approach for locomotive assignment. Management Science 45:8 (1999) 1156-
1168.

