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Energy change in elastic solids due to a spherical or circular

cavity, considering uncertain input data

I. Hlaváček∗, A.A. Novotny†, J. Soko lowski‡, A. Żochowski§

September 17, 2007

Abstract

In the paper we consider topological derivative of shape functionals for elasticity, which
is used to derive the worst and also the maximum range scenarios for behavior of elastic
body in case of uncertain material parameters and loading. It turns out that both problems
are connected, because the criteria describing this behavior have form of functionals depend-
ing on topological derivative of elastic energy. Therefore in the first part we describe the
methodology of computing the topological derivative with some new additional conditions
for shape functionals depending on stress. For the sake of fulness of presentation the explicit
formulas for stress distribution around cavities are provided.
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1 Introduction

In the paper we consider topological derivative of shape functionals for elasticity, which is used
to derive the worst and also the maximum range scenarios for behavior of elastic body in case
of uncertain material parameters.

It turns out that both problems are connected, because the criteria describing this behavior
have form of functionals depending on topological derivative of elastic energy.

Therefore in the first part we describe the methodology of computing the topological deriva-
tive with some new additional conditions for shape functionals depending on stress.

For the sake of fulness of presentation the explicit formulas for stress distribution around
cavities are provided.

2 Topological Derivative

The topological derivative TΩ of a shape functional J (Ω) is introduced in [9] in order to char-
acterize the infinitesimal variation of J (Ω) with respect to the infinitesimal variation of the
topology of the domain Ω. The topological derivative allows us to derive the new optimality
condition for the shape optimization problem:

J (Ω∗) = inf
Ω
J (Ω) .

The optimal domain Ω∗ is characterized by the first order condition [8] defined on the boundary
of the optimal domain Ω∗, dJ(Ω∗;V ) ≥ 0 for all admissible vector fields V , and by the following
optimality condition defined in the interior of the domain Ω∗:

TΩ∗(x) ≥ 0 in Ω∗ .

The other use of the topological derivative is connected with approximating the influence of the
holes in the domain on the values of integral functionals of solutions, what allows us to solve a
class of shape inverse problems.

In general terms the notion of the topological derivative (TD) has the following meaning.
Assume that Ω ⊂ IRN is an open set and that there is given a shape functional

J : Ω \K → IR

for any compact subset K ⊂ Ω. We denote by Bρ(x), x ∈ Ω, the ball of radius ρ > 0, Bρ(x) =
{y ∈ IRN |‖y−x‖ < ρ}, Bρ(x) is the closure of Bρ(x), and assume that there exists the following
limit

T(x) = lim
ρ↓0

J (Ω \Bρ(x))− J (Ω)
|Bρ(x)|
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which can be defined in an equivalent way by

T̃(x) = lim
ρ↓0

J (Ω \Bρ(x))− J (Ω)
ρN

The function T(x), x ∈ Ω, is called the topological derivative of J (Ω), and provides the informa-
tion on the infinitesimal variation of the shape functional J if a small hole is created at x ∈ Ω.
This definition is suitable for Neumann–type boundary conditions on ∂Bρ.

In several cases this characterization is constructive, i.e. TD can be evaluated for shape
functionals depending on solutions of partial differential equations defined in the domain Ω.

For instance, TD may be computed for the 3D elliptic Laplace type equation, as well as for
extremal values of cost functionals for a class of optimal control problems. All these examples
have one common feature: the expression for TD may be calculated in the closed functional
form.

As we shall see below, the 3D elasticity case is more difficult, since it requires evaluation of
integrals on the unit sphere with the integrands which can be computed at any point, but the
resulting functions have no explicit functional form. In the particular case of energy functional
we obtain the closed formula. In section 5 we compare the results of the present paper with the
formulae for 2D elasticity.

The main contribution of the present paper is the procedure for computations of the topo-
logical derivatives of shape functionals depending on the solutions of 3D elasticity systems.
Therefore it constitutes an essential extension of the results given in [9] for the 2D case.

2.1 Problem setting for elasticity systems

We introduce elasticity system in the form convenient for the evaluation of topological deriva-
tives. Let us consider the elasticity equations in IRN , where N = 2 for 2D and N = 3 for
3D, 

div σ(u) = 0 in Ω
u = g on ΓD

σ(u)n = T on ΓN

(1)

and the same system in the domain with the spherical cavity Bρ(x0) ⊂ Ω centered at x0 ∈ Ω,
Ωρ = Ω \Bρ(x0), 

div σρ(uρ) = 0 in Ωρ

uρ = g on ΓD

σρ(uρ)n = T on ΓN

σρ(uρ)n = 0 on ∂Bρ(x0)

(2)

where n is the unit outward normal vector on ∂Ωρ = ∂Ω ∪ ∂Bρ(x0). Assuming that 0 ∈ Ω, we
can consider the case x0 = 0.
Here u and uρ denote the displacement vectors fields, g is a given displacement on the fixed
part ΓD of the boundary, T is a traction prescribed on the loaded part ΓN of the boundary. In
addition, σ is the Cauchy stress tensor given, for ξ = u (eq. 1) or ξ = uρ (eq. 2), by

σ(ξ) = D∇sξ , (3)

where ∇s(ξ) is the symmetric part of the gradient of vector field ξ, that is

∇s(ξ) =
1
2

(
∇ξ +∇ξT

)
, (4)
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and D is the elasticity tensor,
D = 2µII + λ (I ⊗ I) , (5)

with
µ =

E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
and λ = λ∗ =

νE

1− ν2
(6)

being E the Young’s modulus, ν the Poisson’s ratio and λ∗ the particular case for plane stress.
In addition, I and II respectively are the second and fourth order identity tensors. Thus, the
inverse of D is

D−1 =
1
2µ

[
II − λ

2µ+Nλ
(I ⊗ I)

]
,

The first shape functional under consideration depends on the displacement field,

Ju(ρ) =
∫

Ωρ

F (uρ) dΩ , F (uρ) = (Huρ · uρ)p , (7)

where F is a C2 function, p ≥ 2 is an integer. It is also useful for further applications in the
framework of elasticity to introduce the yield functional of the form

Jσ(ρ) =
∫

Ωρ

Sσ(uρ) · σ(uρ) dΩ , (8)

where S is an isotropic fourth-order tensor. Isotropicity means here, that S may be expressed
as follows

S = 2mII + l (I ⊗ I) ,

where l,m are real constants. Their values may vary for particular yield criteria. The following
assumption assures, that Ju, Jσ are well defined for solutions of the elasticity system.

(A) The domain Ω has piecewise smooth boundary, which may have reentrant corners with
α < 2π created by the intersection of two planes. In addition, g, T must be compatible with
u ∈ H1(Ω; IRN ).

The interior regularity of u in Ω is determined by the regularity of the right hand side of the
elasticity system. For simplicity the following notation is used for functional spaces,

H1
g (Ωρ) = {ψ ∈ [H1(Ωρ)]N | ψ = g on ΓD},

H1
ΓD

(Ωρ) = {ψ ∈ [H1(Ωρ)]N | ψ = 0 on ΓD},

H1
ΓD

(Ω) = {ψ ∈ [H1(Ω)]N | ψ = 0 on ΓD},

here we use the convention that eg., in our notation H1
g (Ωρ) stands for the Sobolev space of

vector functions [H1
g (Ωρ)]N .

The weak solutions to the elasticity systems are defined in the standard way.
Find uρ ∈ H1

g (Ωρ) such that, for every φ ∈ H1
ΓD

(Ωρ),∫
Ωρ

D∇suρ · ∇sφdΩ =
∫

ΓN

T · φdS (9)
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We introduce the adjoint state equations in order to simplify the form of shape derivatives of
functionals Ju, Jσ. For the functional Ju they take on the form:

Find wρ ∈ H1
ΓD

(Ωρ) such that, for every φ ∈ H1
ΓD

(Ωρ),∫
Ωρ

D∇swρ · ∇sφdΩ = −
∫

Ωρ

F ′
u(uρ) · φdΩ, (10)

whose Euler-Lagrange equation reads
div σρ(wρ) = F ′

u(uρ) in Ωρ

wρ = 0 on ΓD

σρ(wρ)n = 0 on ΓN

σρ(wρ)n = 0 on ∂Bρ(x0)

, (11)

while vρ ∈ H1
ΓD

(Ωρ) is the adjoint state for Jσ and satisfies for all test functions
φ ∈ H1

ΓD
(Ω) the following integral identity:∫

Ωρ

D∇svρ · ∇sφdΩ = −2
∫

Ωρ

DSσ(uρ) · ∇sφdΩ. (12)

which associated Euler-Lagrange equation becomes
div σρ(vρ) = −2div (DSσρ(uρ)) in Ωρ

vρ = 0 on ΓD

σρ(vρ)n = −2DSσρ(uρ)n on ΓN

σρ(vρ)n = −2DSσρ(uρ)n on Sρ(x0) = ∂Bρ(x0)

. (13)

Remark 1 We observe that DS can be written as

DS = 4µmII + γ (I ⊗ I) (14)

where
γ = λlN + 2 (λm+ µl) (15)

Thus, when γ = 0, the boundary condition on ∂Bρ(x0) in eq. (13) becomes homogeneous and
the yield criteria must satisfy the constraint

m

l
= −

(
µ

λ
+
N

2

)
, (16)

which is naturally satisfied for the energy shape functional, for instance. In fact, in this particular
case, tensor S is given by

S =
1
2
D−1 ⇒ γ = 0 and 2m+ l =

1
2E

, (17)

which implies that the adjoint solution associated to Jσ can be explicitly obtained such that
vρ = −(uρ − g).
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2.2 Main result

We shall define the topological derivative of the functionals Ju, Jσ at the point x0 as:

T Ju(x0) = lim
ρ↓0

dJu(ρ)
d(|Bρ(x0)|)

, (18)

T Jσ(x0) = lim
ρ↓0

dJσ(ρ)
d(|Bρ(x0)|)

. (19)

Now we may formulate the following result, giving the constructive method for computing the
topological derivatives:

Theorem 1 Assume that (A) is satisfied, then

T Ju(x0) = − 1
2(N − 1)π

[ 2(N − 1)πF (u) + Ψ(D−1;σ(u), σ(w))]x=x0 , (20)

T Jσ(x0) = − 1
2(N − 1)π

[ Ψ(S;σ(u), σ(u)) + Ψ(D−1;σ(u), σ(v))]x=x0 , (21)

where w, v ∈ H1
ΓD

(Ω) are adjoint variables satisfying the integral identities (10) and (12) for
ρ = 0, i.e. in the whole domain Ω instead of Ωρ, that is∫

Ω
D∇sw · ∇sφdΩ = −

∫
Ω
F ′

u(u) · φdΩ. (22)

∫
Ω
D∇sv · ∇sφdΩ = −2

∫
Ω
DSσ(u) · ∇sφdΩ. (23)

for all test functions φ ∈ H1
ΓD

(Ω).

Some of the terms in (20), (21) require explanation. The function Ψ is defined as an integral
over the unit sphere S1(0) = {x ∈ IRN | ‖x‖ = 1} of the following functions:

Ψ(S;σ(u(x0)), σ(u(x0))) =
∫

S1(0)
Sσ∞(u(x0);x) · σ∞(u(x0);x) dS (24)

Ψ(D−1;σ(u(x0)), σ(v(x0))) =
∫

S1(0)
σ∞(u(x0);x) ·D−1σ∞(v(x0);x) dS (25)

Ψ(D−1;σ(u(x0)), σ(w(x0))) =
∫

S1(0)
σ∞(u(x0);x) ·D−1σ∞(w(x0);x) dS (26)

The symbol σ∞(u(x0);x) denotes the stresses for the solution of the elasticity system (2) in the
infinite domain IRN \B1(0) with the following boundary conditions:

• no tractions are applied on the surface of the ball, S1(0) = ∂B1(0);

• the stresses σ∞(u(x0);x) tend to the constant value σ(u(x0)) as ‖x‖ → ∞.
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In this notation σ∞(u(x0);x) is a function of space variables depending on the functional
parameter u(x0), while σ(u(x0)) is a value of the stress tensor computed in the point x0 for the
solution u. The dependence between them results from the boundary condition at infinity listed
above. The method for obtaining such solutions (and u∞), based on [3], is discussed in the next
section.

In order to derive the above formulae (20), (21) we calculate the derivatives of the functional
Ju(ρ) with respect to the parameter ρ, which determines the size of the hole Bρ(x0), by using the
material derivative method [8]. Then we pass to the limit ρ ↓ 0 using the asymptotic expansions
of uρ with respect to ρ. For the functional Ju the shape derivative with respect to ρ is given by

J ′u(ρ) =
∫

Ωρ

F ′
u(uρ) · u′ρ dΩ−

∫
Sρ(x0)

F (uρ) dS, (27)

and in the same way for the state equation:∫
Ωρ

D∇su′ρ · ∇sφdΩ−
∫

Sρ(x0)
D∇suρ · ∇sφdS = 0, (28)

where u′ρ is the shape derivative, i.e. the derivative of uρ with respect to ρ, [8].
After substitution of the test functions φ = wρ in the derivative of the state equation, φ = u′ρ

in the adjoint equation, we get

J ′u(ρ) = −
∫

Sρ(x0)
[F (uρ) +D∇suρ · ∇swρ] dS

= −
∫

Sρ(x0)
[F (uρ) + σ(uρ) ·D−1σ(wρ)] dS, (29)

and similarly for Jσ

J ′σ(ρ) = −
∫

Sρ(x0)
[Sσ(uρ) · σ(uρ) +D∇suρ · ∇svρ] dS

= −
∫

Sρ(x0)
[Sσ(uρ) · σ(uρ) + σ(uρ) ·D−1σ(vρ)] dS. (30)

Observe, that both matrices D−1 and S are isotropic, and therefore the corresponding bilinear
forms in terms of stresses are invariant with respect to the rotations of the coordinate system.

Now we exploit the fact, that

dJu(ρ)
d(|Bρ(x0)|)

=
1

2(N − 1)πρN−1

dJu

dρ
,

and use the existence of the asymptotic expansions for uρ in the neighborhood of Bρ(x0), namely

uρ = u(x0) + u∞ +O(ρ2). (31)

In addition, u∞ is proportional to ρ, ‖u∞‖IRN = O(ρ), on the surface Sρ(x0) of the ball. The
expansion of σ(uρ) corresponding to (31) has the form

σ(uρ) = σ∞(u(x0);x) +O(ρ). (32)
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It may be proved, that wρ and vρ have similar expansions.
Using the formulae (31),(32) we may justify the following passages to the limit:

lim
ρ↓0

1
ρN−1

∫
Sρ(x0)

σ(uρ) ·D−1σ(vρ) dS = Ψ(D−1;σ(u(x0)), σ(v(x0))),

lim
ρ↓0

1
ρN−1

∫
Sρ(x0)

σ(uρ) ·D−1σ(wρ) dS = Ψ(D−1;σ(u(x0)), σ(w(x0))),

lim
ρ↓0

1
ρN−1

∫
Sρ(x0)

Sσ(uρ) · σ(uρ) dS = Ψ(S;σ(u(x0)), σ(u(x0))),

lim
ρ↓0

1
ρN−1

∫
Sρ(x0)

F (uρ) dS = 2(N − 1)πF (u(x0)).

This completes the proof of the theorem.
The main difficulty lies in the computation of the values of the functions denoted above

as Ψ(S;σ(u(x0)), σ(u(x0))), Ψ(D−1;σ(u(x0)), σ(w(x0))) and Ψ(D−1;σ(u(x0)), σ(v(x0))), which,
in general, is difficult to obtain in the closed form, in contrast with the two dimensional case.
Therefore we can approximate them using numerical quadrature. It is possible, because we may
calculate the values of integrands at any point on the sphere. This makes the computations
more involved, but does not increase the numerical complexity in comparison to evaluating
single closed form expression.

Remark 2 The tensor S in the definition of Jσ may, in fact, be arbitrary, not only isotropic.
However, it is difficult to imagine such a need for the isotropic material. Anyway, in the general
case, we would have to transform S according to the known rules for the fourth order tensor,
connected with the rotation of the reference frame.

2.2.1 Topological derivatives in 3D elasticity

The shape functionals Ju, Jσ are defined in the same way as presented in section 2.2 with the
exception, that Jσ is now the energy stored in a 3D elastic body (see remark 1). The weak
solutions to the elasticity system as well as adjoint equations are defined also analogously to
the section 2.2. Then, considering the expansions presented in Appendix A.2, we may state the
following result [6] (see also [1]):

Theorem 2 The expressions for the topological derivatives of the functionals Ju, Jσ have the
form

T Ju(x0) = −
[
F (u) +

3
2E

1− ν

7− 5ν
(10(1 + ν)σ(u) · σ(w)− (1 + 5ν)trσ(u)trσ(w))

]
x=x0

, (33)

T Jσ(x0) =
3

4E
1− ν

7− 5ν

[
10(1 + ν)σ(u) · σ(u)− (1 + 5ν)(trσ(u))2

]
x=x0

. (34)

2.2.2 Topological derivatives in 2D elasticity

For the convenience of the reader we recall here the results derived in [9] for the 2D case. The
principal stresses associated with the displacement field u are denoted by σI(u), σII(u), the
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trace of the stress tensor σ(u) is denoted by trσ(u) = σI(u) + σII(u). The shape functionals
Ju, Jσ are defined in the same way as presented in section 2.2, with the tensor S isotropic (that
is similar to D). The weak solutions to the elasticity system as well as adjoint equations are
defined also analogously to the section 2.2. Then, from the expansions presented in Appendix
A.1, we may formulate the following result [9]:

Theorem 3 The expressions for the topological derivatives of the functionals Ju,Jσ have the
form

T Ju(x0) = −
[
F (u) +

1
E

(auaw + 2bubw cos 2δ)
]

x=x0

= −
[
F (u) +

1
E

(4σ(u) · σ(w)− trσ(u)trσ(w))
]

x=x0

(35)

T Jσ(x0) = −
[
η(a2

u + 2b2u) +
1
E

(auav + 2bubv cos 2δ)
]

x=x0

= −
[
η(4σ(u) · σ(u)− (trσ(u))2) +

1
E

(4σ(u) · σ(v)− trσ(u)trσ(v))
]

x=x0

(36)

Some of the terms in (35), (36) require explanation.
According to eq. (15) for N = 2, constant η is given by

η = l + 2
(
m+ γ

ν

E

)
. (37)

Furthermore, we denote

au = σI(u) + σII(u), bu = σI(u)− σII(u),
aw = σI(w) + σII(w), bw = σI(w)− σII(w),
av = σI(v) + σII(v), bv = σI(v)− σII(v).

(38)

Finally, the angle δ denotes the angle between principal stress directions for displacement fields
u and w in (35), and for displacement fields u and v in (36).

Remark 3 For the energy stored in a 2D elastic body, tensor S is given by eq. (17), γ = 0 and
η = 1/(2E). Thus, since v = −(u− g), we obtain the following well-known result

T Jσ(x0) =
1

2E

[
4σ(u) · σ(u)− (trσ(u))2

]
x=x0

(39)

Compare these expressions to the 3D case. Their simplicity comes from the fact, that on
the plane the rotation of one coordinate system with respect to the other is defined by the
single value of the angle (here δ). This is a purely 2D phenomenon and it makes the explicit
computations possible.

3 Uncertain input data

In reality, the values of input data(loading, material parameters) are guaranteed only in some
given intervals. One of the simplest remedy is to apply the worst scenario or maximum range
scenario method [2]. In what follows, we present the methods for the traction problem (1) with
∂Ω = ΓN and the criterion corresponding to the topological derivatives (34) or (39), respectively.
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3.1 Traction problem in 3D-elasticity

Let us consider a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω ≡ Γ, occupied by a
homogeneous and isotropic elastic body. Let the body be loaded by surface forces T ∈ [L∞ (Γ)]3

and the body forces be zero.
We introduce sets of admissible uncertain input data as follows :

(i) Lamé coefficients

λ ∈ Uλ
ad =

[
λ, λ

]
, 0 ≤ λ < λ <∞,

µ ∈ Uµ
ad =

[
µ, µ

]
, 0 < µ < µ <∞;

(ii) surface loading forces

Ti ∈ UTi
ad

=
{
τ ∈ L∞ (Γ) : τ

∣∣
Γp ∈ C(0),1

(
Γp

)
, |τ | ≤ C1, |∂τ/∂sj | ≤ C2 a.e. on Γ, j = 1, 2

}
,

where
Γ =

⋃P
p=1 Γp, Γk ∩ Γm = ∅ for k 6= m, i = 1, 2, 3,

sj are local coordinates of the surface Γp and C1, C2 are given constants,
T ≡ (T1, T2, T3) ∈ UT

ad = {Ti ∈ UTi
ad, i = 1, 2, 3 and

∫
Γ TdS = 0,

∫
Γ x× TdS = 0}.

Finally, we define

Uad = Uλ
ad × U

µ
ad × U

T
ad and A ≡ {A, T}, A = {λ, µ}.

We will consider the following criterion-functional based on the topological derivative asso-
ciated to the energy shape functional (34)

Φ(A, σ) = σTH(A)σ

where σ ≡ σ(y) is the stress tensor of a full body at the center y ∈ Ω of a spherical cavity,

H(A) =
3(1− ν)

4E
(Λ1 +

10(1 + ν)
7− 5ν

Λ2), (40)

Λ1 = 1
3I⊗I, Λ2 = II−Λ1, ν is the corresponding Poisson’s constant and E the Young’s modulus.

Note that ν = λ
2(λ+µ) , E = µ(3λ+2µ)

λ+µ .

3.1.1 Continuous dependence of the criterion on the input data

Our main result of the present section is given by the following theorem

Theorem 4 Let An ∈ Uad, An → A in R2 × [L∞(Γ)]3 as n→∞. Then

Φ(An, σ(An)) → Φ(A, σ(A)).
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Proof is based on the formulas ([7]-Theorem 10.1.1)

∂ui

∂yj
(y) =

∫
Γ
T ·Gij

y dS (41)

and
Gij

y = Gij
y (A) = u∗ij(A)− uij(A), (42)

where
uij

k (A) = 1
κu

ij0
k , κ(A) = 16πµ(1− ν)

uij0
k (A) = |r|−3(rkδij + riδjk − 3rjrirk|r|−2 − (3− 4ν)rjδik),

(43)

and r = x− y. Since
(κ(An))−1 −→ (κ(A))−1

and the components uij0
k are bounded on Γ,

uij(An) −→ uij(A) in [L2(Γ)]3. (44)

The vector field u∗ij(A) is the displacement solving the first boundary value problem with zero
body forces and the equilibriated surface loading

T ∗ij = sij + wij ,

where

sij
k = (λδkmdivuij + 2µεkm(uij))nm (45)

and
wij = aij + bij × x, aij , bij ∈ R3

represents a rigid body displacement such that∫
Γ
wijdS = 0,

∫
Γ
wij × xdS = ei × ej ,

(ei denote unit vectors in the directions of Cartesian coordinates). The field wij is uniquely
determined by the conditions shown.

Inserting (43) in (45), we observe that

sij
k =

(
λ

κ
δkmdivuij0 + 2

µ

κ
εkm(uij0)

)
nm = sij

k (ν) (46)

since uij0, λ
κ and µ

κ are independent of the modulus E.

Lemma 1 Let us define

a(A;u, v) =
∫

Ω
(λ divu divv + 2µ εij(u)εij(v))dx.

If A ∈ Uλ
ad × U

µ
ad, then positive constants C, c0 exist, independent of A and such that

|a(A;u, v)| ≤ C‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ [H1(Ω)]3, (47)

a(A;u, u) ≥ c0‖u‖2
1,Ω ∀u ∈ V0, (48)

where
V0 = {v ∈ [H1(Ω)]3 :

∫
Γ
v dS = 0,

∫
Γ
v × xdS = 0}.

11



Proof. The estimate (47) follows from the Cauchy-Schwartz inequality and the boundedness
of sets Uλ

ad, U
µ
ad. To justify (48), we write

a(A;u, u) ≥ 2µ
∫

Ω
εij(u)εij(u)dx

and use the Korn’s inequality∫
Ω
εij(u)εij(u)dx ≥ c‖u‖2

1,Ω ∀u ∈ V0

(see e.g. [7]-Lemma 7.3.3).

Lemma 2 Let λn ∈ Uλ
ad, µn ∈ Uµ

ad, λn → λ and µn → µ as n→∞. Then νn → ν and

T ∗ij(νn) → T ∗ij(ν) in [L2(Γ)]3. (49)

Proof. Since λn + µn ≥ λ+ µ > 0,

νn =
λn

2(λn + µn)
→ λ

2(λ+ µ)
= ν.

We infer that
sij
k (νn) → sij

k (ν) in L2(Γ), k = 1, 2, 3. (50)

Indeed, we have λn/κn → λ/κ, µn/κn → µ/κ and

‖uij0(νn)− uij0(ν)‖H1(Γ) ≤ C|νn − ν| → 0,

so that (50) holds.
Since the field wij is independent of A, we arrive at (49).

Lemma 3 Let λn ∈ Uλ
ad, µn ∈ Uµ

ad, λn → λ and µn → µ as n→∞ and u∗ij(An) ∈ V0. Then

u∗ij(An) → u∗ij(A) in [H1(Ω)]3.

Proof. For brevity, let us denote T ∗
n = T ∗ij(νn), T ∗ = T ∗ij(ν), u∗n = u∗ij(An), u∗ = u∗ij(A).

By definition, we have

a(An;u∗n, v) =
∫

Γ
T ∗

nv dS (51)

a(A;u∗, v) =
∫

Γ
T ∗v dS (52)

for all v ∈ [H1(Ω)]3. Let us consider also solutions ûn ∈ V0 of the following problem

a(A; ûn, v) =
∫

Γ
T ∗

nv dS ∀v ∈ [H1(Ω)]3. (53)

From (53) and (52) we obtain

a(A; ûn − u∗, v) =
∫

Γ
(T ∗

n − T ∗)v dS.

12



Inserting v := ûn − u∗ and using Lemma 1, we infer that

c0‖ûn − u∗‖1,Ω ≤ C‖T ∗
n − T ∗‖L2(Γ) (54)

so that ‖ûn − u∗‖1,Ω → 0 follows from Lemma 2.
We can show that

‖u∗n‖1,Ω ≤ C1 ∀n . (55)

Indeed, (51) and Lemma 1 yield that

c0‖u∗n‖2
1,Ω ≤ C‖T ∗

n‖L2(Γ)‖u∗n‖1,Ω,

so that (55) follows from Lemma 2.
We can use (51), (53) and Lemma 1 to obtain

c0‖u∗n − ûn‖2
1,Ω ≤ a(A;u∗n − ûn, u

∗
n − ûn)

= [a(A;u∗n, u
∗
n − ûn)− a(An;u∗n, u

∗
n − ûn)]

+[a(An;u∗n, u
∗
n − ûn)− a(A; û,u

∗
n − ûn)]

= a(A;u∗n, u
∗
n − ûn)− a(An;u∗n, u

∗
n − ûn)

≤ C‖A −An‖0,∞,Ω‖u∗n‖1,Ω‖u∗n − ûn‖1,Ω.

(56)

Then (55) and (56) yield

‖u∗n − ûn‖1,Ω ≤ C2‖A −An‖0,∞,Ω → 0. (57)

The convergence u∗n → u∗ in [H1(Ω)]3 follows from the triangle inequality, (54) and (57).

Proposition 1 Let An ∈ Uλ
ad × U

µ
ad, An → A in R2. Then

Gij
y (An) → Gij

y (A) in [L2(Γ)]3, i, j ∈ {1, 2, 3} (58)

as n→∞.

Proof. Since by (42) we have

‖Gij
y (An)−Gij

y (A)‖0,Γ ≤ ‖u∗ij(An)− u∗ij(A)‖0,Γ + ‖uij(An)− uij(A)‖0,Γ,

the assertion follows from Lemma 3, the Trace theorem and (44).

Proposition 2 Let the stress components at the point y be

σkl(A) =
∫

Γ
T · (cklij(A)Gij

y (A))dS.

Assume that An ∈ Uad, An → A in R2 × [L∞(Γ)]3 as n→∞. Then

σkl(An) → σkl(A).

13



Proof. We may write

|σkl(An)− σkl(A)| = |
∫
Γ Tn · (cklij(An)Gij

y (An))dS
−

∫
Γ T · (cklij(A)Gij

y (A))dS|
≤ |

∫
Γ Tn · ((cklij(An)− cklij(A))Gij

y (An))dS|
+|

∫
Γ Tn · (cklij(A)(Gij

y (An)−Gij
y (A)))dS|

+|
∫
Γ(Tn − T ) · (cklij(A)Gij

y (A))dS| ≡ I1 + I2 + I3,

where
I1 ≤

∫
Γ
C‖An −A‖0,∞|Gij

y (An)|dS → 0

and
I2 ≤

∫
Γ
C|Gij

y (An)−Gij
y (A)|dS → 0

due to Proposition 1 and the boundedness of Tn in [L∞(Γ)]3. I3 tend to zero by assumption.
Proof of Theorem 1. We have

|Φ(An, σ(An))− Φ(A, σ(A))|
≤ |σ(An)TH(An)(σ(An)− σ(A))|
+|σ(An)T (H(An)−H(A))σ(A)|

+|(σ(An)T − σ(A)T )H(A)σ(A)| = J1 + J2 + J3.

By Proposition 2 we infer that J1 and J3 tend to zero. We also use the continuity of the function
A → H(A), which follows from Lemma 2 and the convergence

En = 2µn(1 + νn) → 2µ(1 + ν) = E ≥ 2µ > 0.

As a consequence, J2 tends to zero, as well.

3.1.2 The worst scenario and the maximum range scenario

Suppose that we wish to be “on the safe side”, taking uncertain input data A and T in consid-
eration. Then we solve either the worst scenario problem

A0 = arg max
A∈Uad

Φ(A, σ(A)) (59)

or the maximum range scenario problem: find

(i) A0 according to (59) and

(ii)
A0 = arg min

A∈Uad

Φ(A, σ(A)). (60)

In other words, we seek exact upper and lower bounds of the criterion functional (see the
monograph [2] for applications of problem (60) within the frame of the fuzzy set theory).

Theorem 5 Problems (59) and (60) have at least one solution.

Proof. The set Uad is compact in R2 × (
3∏

i=1

P∏
p=1

C(Γp)), so that the assertion follows from

Theorem 1.
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3.2 Traction problem in 2D-elasticity

Let us consider a plane elasticity, i.e., either the case of plane strain or that of plane stress. It
is well-known, that both cases have the same stress-strain relations, where only the coefficient
λ varies It is either λ or λ?, see (6).

λ =
Eν

(1 + ν)(1− 2ν)

for plane strain, whereas

λ = λ∗ =
Eν

1− ν2

for plane stress.
Let us consider a bounded domain Ω ⊂ R2 with a Lipschitz boundary ∂Ω ≡ Γ, occupied by

a homogeneous and isotropic elastic body, loaded only by surface loads T ∈ [L∞(Γ)]2. Assume
that λ ∈ Uλ

ad, µ ∈ Uµ
ad and Ti ∈ UTi

ad, i = 1, 2, with Uλ
ad, U

µ
ad and UTi

ad defined in section 1.
Moreover, assume that the forces T are in equilibrium, i.e.∫

Γ
TdS = 0,

∫
Γ
(x1T2 − x2T1)dS = 0. (61)

We define
UT

ad = {T ≡ (T1, T2) : Ti ∈ UTi
ad, i = 1, 2, T satisfy (61)},

Uad = Uλ
ad × U

µ
ad × U

T
ad,

A = {λ, µ}, A = {A, T}

and introduce the criterion-functional based on the topological derivative associated to the
energy shape functional (39)

Φ(A, σ) = σTH(A)σ, (62)

where σ ≡ σ(y) is the stress tensor of a full body at the center y ∈ Ω of a circular cavity, and

H(A) =
(K + µ)

2Kµ
(Λ1 + 2Λ2), (63)

where K = λ+ µ is the bulk modulus.

3.2.1 Continuous dependence of the criterion on the input data

The main result of the present section will be represented by an analogue of Theorem 1 as
follows.

Theorem 6 Let An ∈ Uad, An → A in R2 × [L∞(Γ)]2 as n→∞. Then

Φ(An, σ(An)) → Φ(A, σ(A)).

For the proof we shall employ the following integral representation formula, analogous to
(41), namely

∂ui

∂yj
(y) =

∫
Γ
T ·Gij

y dS, i, j ∈ {1, 2}. (64)
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We can construct the vector function Gij
y in a way parallel to that of the proof of Theorem 10.1.1

in [7]. First, we consider the well-known Kelvin’s solution

(ui
y)k = κ−1

0 [−(K + 2µ)δik ln |r|+Krirk|r|−2], (65)

where
κ0 = 4πµ(K + µ), r = x− y

and define
uij = −∂ui

y/∂yj .

The corresponding surface forces on Γ are then

(sij)k = [λδkmdivuij + 2µεkm(uij)]nm.

We can find that ∫
Γ
sijdS = 0,

∫
Γ
(x1(sij)2 − x2(sij)1)dS = e3 · (ej × ei). (66)

Let us construct the rigid body translation

wij = aij + bije3 × x

where aij ∈ R2, bij ∈ R and wij satisfies the following conditions∫
Γ
wijdS = 0,

∫
Γ
(x1w

ij
2 − x2w

ij
1 )dS = e3 · (ei × ej). (67)

Note that the field wij is uniquely determined by conditions (67). If we define

T ∗ij = sij + wij ,

the forces T ∗ij are in equilibrium, i.e., they satisfy conditions (61).
There exists a unique displacement field u∗ij , which solves the first boundary value problem of

elasticity with zero body forces and surface loads T ∗ij and satisfies the normalization conditions∫
Γ
u∗ijdS = 0,

∫
Γ
(x1u

∗ij
2 − x2u

∗ij
1 )dS = 0. (68)

Next, we assume that the field u fullfils conditions (68) as well and consider the so-called
Love’s formula

∂ui

∂yj
(y) =

∫
Γ
(sij · u− T · uij)dS, (69)

which follows by differentiating the so-colled Somigliana’s identity

ui(y) =
∫

Γ
(T · ui

y − u · si
y)dS, (70)

where
∂si

y/∂yj = −sij .
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By Reciprocity theorem, we obtain∫
Γ
(T · u∗ij − T ∗ij · u)dS = 0. (71)

Then (69) and (71) yield

∂ui

∂yj
(y) =

∫
Γ
T · (u∗ij − uij)dS +

∫
Γ
u · (sij − T ∗ij)dS.

The last integral vanishes by virtue of normalization conditions, since

sij − T ∗ij = −wij .

As a consequence, we arrive at the formula (64), where

Gij
y = u∗ij − uij . (72)

Now we may go on in proving Theorem 3 as in the prooof of Theorem 1. We establish an
analogue of Lemma 1, where the subspace V0 is defined by

V0 =
{
v ∈ [H1(Ω)]2 :

∫
Γ
v dS = 0,

∫
Γ
(x1v2 − x2v1)dS = 0

}
.

For the Korn’s inequality in V0, see e.g. Section 10.2.2 in [7].
As far as an analogue of Lemma 2 is concerned, we use the formula

ν =
λ

2(λ+ µ)

for plane strain and

ν =
λ∗

λ∗ + 2µ
for plane stress.

It is readily seen that sij ≡ sij(ν), i.e., it does not depend on the modulus E. Then we can
prove that λ∗n → λ∗, νn → ν and

sij(νn) → sij(ν) in
[
L2(Γ)]2 as νn → ν ,

since
λn(Kn + 2µn)/κ0n → λ(K + 2µ)/κ0 (73)

and λnKn/κ0n → λK/κ0 for Kn = λn + µn, λn ∈ Uλ
ad, µn ∈ Uµ

ad, An → A.
The field wij is independent of A, so that we arrive at

T ∗ij(νn) → T ∗ij(ν) in
[
L2(Γ)]2 .

An analogue of Lemma 3 can be proved in the same way as Lemma 3. We infer that

u∗ij(An) → u∗ij(A) in [H1(Ω)]2. (74)

Using again (73), we observe that

uij(An) → uij(A) in
[
L2(Γ)]2 . (75)

Combining (72) with (74), the Trace theorem and (75), we obtain

Gij
y (An) → Gij

y (A) in
[
L2(Γ)]2 . (76)

Theorem 3 follows in a way parallel to the proof of Theorem 1, from (76), the uniform convergence
of surface loads on Γ and the continuity of the function A 7→ H(A).
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3.2.2 The worst scenario and the maximum range scenario

Both the worst scenario problem (59) and the maximum range scenario problem (60) have at
least one solution. This assertion is a consequence of Theorem 3 and the compactness of the set

Uad in R2 ×
2∏

i=1

P∏
p=1

C(Γp).

Acknowledgments

4 Conclusions

We have seen that the worst case and maximal range scenario problems are solvable with cri-
terions of energy-based topological derivative. The same methodology, considering topological
derivatives of different shape functional may be applied to derive similar analysis for criteria
dependent for example on displacement (kinematic constraints) and yield constraints.

A Stress distribution around cavities

We present in this appendix the analytical solution for the stress distribution around a circular
(N = 2) and spherical (N = 3) cavities respectively for two and three-dimensional linear elastic
bodies.

A.1 Circular cavity

Considering a polar coordinate system (r, θ), we have the following expansion for the stress
distribution σ(ξρ) around a free boundary circular cavity (σrr(ξρ) = σrθ(ξρ) = 0 on ∂Bρ(x0)),
with ξρ = uρ or ξρ = wρ

σrr(ξρ) =
aξ

2

(
1− ρ2

r2

)
+
bξ
2

(
1− 4

ρ2

r2
+ 3

ρ4

r4

)
cos 2θξ +O (ρ) , (77)

σθθ(ξρ) =
aξ

2

(
1 +

ρ2

r2

)
−
bξ
2

(
1 + 3

ρ4

r4

)
cos 2θξ +O (ρ) , (78)

σrθ(ξρ) = −
bξ
2

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
sin 2θξ +O (ρ) , (79)

where the angle θu = θ and θw = θ + δ, with δ denoting the angle between principal stress
directions for displacement fields u and w in (35). In addition, the following expansion for σ(vρ)
satisfying the boundary condition on ∂Bρ(x0) given by σrθ(vρ) = 0 and σrr(vρ) = −2γσθθ(uρ),
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holds

σrr(vρ) = −γau

(
1 +

ρ2

r2

)
+ γbu

(
1 + 4

ρ2

r2
− ρ4

r4

)
cos 2θ

+
av

2

(
1− ρ2

r2

)
+
bv
2

(
1− 4

ρ2

r2
+ 3

ρ4

r4

)
cos 2θv +O (ρ) , (80)

σθθ(vρ) = −γau

(
1− ρ2

r2

)
− γbu

(
1− ρ4

r4

)
cos 2θ

+
av

2

(
1 +

ρ2

r2

)
− bv

2

(
1 + 3

ρ4

r4

)
cos 2θv +O (ρ) , (81)

σrθ(vρ) = −γbu
(

1− ρ2

r2

)2

sin 2θ − bv
2

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
sin 2θv +O (ρ) , (82)

where the angle θv = θ + δ, with δ denoting the angle between principal stress directions for
displacement fields u and v in (36). Finally,

aξ = σI(ξ) + σII(ξ) and bξ = σI(ξ)− σII(ξ) ,

where σI(ξ) and σII(ξ) are the principal stress values of tensor σ(ξ), for ξ = u, ξ = w or ξ = v
associated to the original domain without hole Ω.

A.2 Spherical cavity

Let us introduce a spherical coordinate system (r, θ, ϕ). Then, the stress distribution around
the spherical cavity Bρ(x0) is given by

σrr(ξρ) = σrr
1 (ξρ) + σrr

2 (ξρ) + σrr
3 (ξρ) +O(ρ) ,

σrθ(ξρ) = σrθ
1 (ξρ) + σrθ

2 (ξρ) + σrθ
3 (ξρ) +O(ρ) ,

σrϕ(ξρ) = σrϕ
1 (ξρ) + σrϕ

2 (ξρ) + σrϕ
3 (ξρ) +O(ρ) ,

σθθ(ξρ) = σθθ
1 (ξρ) + σθθ

2 (ξρ) + σθθ
3 (ξρ) +O(ρ) ,

σθϕ(ξρ) = σθϕ
1 (ξρ) + σθϕ

2 (ξρ) + σθϕ
3 (ξρ) +O(ρ) ,

σϕϕ(ξρ) = σϕϕ
1 (ξρ) + σϕϕ

2 (ξρ) + σϕϕ
3 (ξρ) +O(ρ) ,

(83)

where ξρ = uρ, ξρ = wρ or ξρ = vρ; σrr
i (ξρ), σrθ

i (ξρ), σ
rϕ
i (ξρ), σθθ

i (ξρ), σ
θϕ
i (ξρ) and σϕϕ

i (ξρ), for
i = 1, 2, 3, are written, as:
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• for i = 1

σrr
1 (ξρ) =

σI(ξ)
14− 10ν

[
12

(
ρ3

r3
− ρ5

r5

)
+

(
14− 10ν − 10(5− ν)

ρ3

r3
+ 36

ρ5

r5

)
sin2 θ sin2 ϕ

]
,

(84)

σrθ
1 (ξρ) =

σI(ξ)
14− 10ν

[
7− 5ν + 5(1 + ν)

ρ3

r3
− 12

ρ5

r5

]
sin 2θ sin2 ϕ , (85)

σrϕ
1 (ξρ) =

σI(ξ)
14− 10ν

[
7− 5ν + 5(1 + ν)

ρ3

r3
− 12

ρ5

r5

]
sin θ sin 2ϕ , (86)

σθθ
1 (ξρ) =

σI(ξ)
56− 40ν

[
14− 10ν + (1 + 10ν)

ρ3

r3
+ 3

ρ5

r5
−

(
14− 10ν + 25(1− 2ν)

ρ3

r3
− 9

ρ5

r5

)
cos 2ϕ

+
(

28− 20ν − 10(1− 2ν)
ρ3

r3
+ 42

ρ5

r5

)
cos 2θ sin2 ϕ

]
, (87)

σθϕ
1 (ξρ) =

σI(ξ)
14− 10ν

[
7− 5ν + 5(1− 2ν)

ρ3

r3
+ 3

ρ5

r5

]
cos θ sin 2ϕ , (88)

σϕϕ
1 (ξρ) =

σ1(ξ)
56− 40ν

[
28− 20ν + (11− 10ν)

ρ3

r3
+ 9

ρ5

r5
+

(
28− 20ν + 5(1− 2ν)

ρ3

r3
+ 27

ρ5

r5

)
cos 2ϕ

−30
(

(1− 2ν)
ρ3

r3
− ρ5

r5

)
cos 2θ sin2 ϕ

]
, (89)

• for i = 2

σrr
2 (ξρ) =

σII(ξ)
14− 10ν

[
12

(
ρ3

r3
− ρ5

r5

)
+

(
14− 10ν − 10(5− ν)

ρ3

r3
+ 36

ρ5

r5

)
sin2 θ cos2 ϕ

]
,

(90)

σrθ
2 (ξρ) =

σII(ξ)
14− 10ν

[
7− 5ν + 5(1 + ν)

ρ3

r3
− 12

ρ5

r5

]
cos2 ϕ sin 2θ , (91)

σrϕ
2 (ξρ) =

−σII(ξ)
14− 10ν

[
7− 5ν + 5(1 + ν)

ρ3

r3
− 12

ρ5

r5

]
sin θ sin 2ϕ , (92)

σθθ
2 (ξρ) =

σII(ξ)
56− 40ν

[
14− 10ν + (1 + 10ν)

ρ3

r3
+ 3

ρ5

r5
+

(
14− 10ν + 25(1− 2ν)

ρ3

r3
− 9

ρ5

r5

)
cos 2ϕ

+
(

28− 20ν − 10(1− 2ν)
ρ3

r3
+ 42

ρ5

r5

)
cos 2θ cos2 ϕ

]
, (93)

σθϕ
2 (ξρ) =

−σII(ξ)
14− 10ν

[
7− 5ν + 5(1− 2ν)

ρ3

r3
+ 3

ρ5

r5

]
cos θ sin 2ϕ , (94)

σϕϕ
2 (ξρ) =

σII(ξ)
56− 40ν

[
28− 20ν + (11− 10ν)

ρ3

r3
+ 9

ρ5

r5
−

(
28− 20ν + 5(1− 2ν)

ρ3

r3
+ 27

ρ5

r5

)
cos 2ϕ

−30
(

(1− 2ν)
ρ3

r3
− ρ5

r5

)
cos 2θ cos2 ϕ

]
, (95)
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• for i = 3

σrr
3 (ξρ) =

σIII(ξ)
14− 10ν

[
14− 10ν − (38− 10ν)

ρ3

r3
+ 24

ρ5

r5

−
(

14− 10ν − 10(5− ν)
ρ3

r3
+ 36

ρ5

r5

)
sin2 θ

]
, (96)

σrθ
3 (ξρ) =

−σIII(ξ)
14− 10ν

[
14− 10ν + 10(1 + ν)

ρ3

r3
− 24

ρ5

r5

]
cos θ sin θ , (97)

σrϕ
3 (ξρ) = 0 , (98)

σθθ
3 (ξρ) =

σIII(ξ)
14− 10ν

[
(9− 15ν)

ρ3

r3
− 12

ρ5

r5
+

(
14− 10ν − 5(1− 2ν)

ρ3

r3
+ 21

ρ5

r5

)
sin2 θ

]
,

(99)

σθϕ
3 (ξρ) = 0 , (100)

σϕϕ
3 (ξρ) =

σIII(ξ)
14− 10ν

[
(9− 15ν)

ρ3

r3
− 12

ρ5

r5
− 15

(
(1− 2ν)

ρ3

r3
− ρ5

r5

)
sin2 θ

]
, (101)

where σI(ξ), σIII(ξ) and σIII(ξ) are the principal stress values of tensor σ(ξ), for ξ = u, ξ = w
or ξ = v associated to the original domain without hole Ω.

Remark 4 It is important to mention that the stress distribution for i = 1, 2 was obtained from
a rotation of the stress distribution for i = 3. In addition, the derivation of this last result (for
i = 3) can be found in [3], for instance.
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