Kernel methods for in silico chemogenomics - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2007

Kernel methods for in silico chemogenomics

Laurent Jacob
Jean-Philippe Vert


Predicting interactions between small molecules and proteins is a crucial ingredient of the drug discovery process. In particular, accurate predictive models are increasingly used to preselect potential lead compounds from large molecule databases, or to screen for side-effects. While classical in silico approaches focus on predicting interactions with a given specific target, new chemogenomics approaches adopt cross-target views. Building on recent developments in the use of kernel methods in bio- and chemoinformatics, we present a systematic framework to screen the chemical space of small molecules for interaction with the biological space of proteins. We show that this framework allows information sharing across the targets, resulting in a dramatic improvement of ligand prediction accuracy for three important classes of drug targets: enzymes, GPCR and ion channels.
Fichier principal
Vignette du fichier
jacob-vert-kernelchemogenomics.pdf (243.07 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00174808 , version 1 (25-09-2007)



Laurent Jacob, Jean-Philippe Vert. Kernel methods for in silico chemogenomics. 2007. ⟨hal-00174808⟩
82 View
54 Download



Gmail Facebook X LinkedIn More