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A general, multipurpose interpolation procedure: the magic points

Lagrangian interpolation is a classical way to approximate general functions by finite sums of well chosen, pre-definite, linearly independent generating functions; it is much simpler to implement than determining the best fits with respect to some Banach (or even Hilbert) norms. In addition, only partial knowledge is required (here values on some set of points). The problem of defining the best sample of points is nevertheless rather complex and is in general not solved. In this paper we propose a way to derive such sets of points. We do not claim that the points resulting from the construction explained here are optimal in any sense. Nevertheless, the resulting interpolation method is proven to work under certain hypothesis, the process is very general and simple to implement, and compared to situations where the best behavior is known, it is relatively competitive.

Introduction

The extension of the reduced basis technique [START_REF] Grepl | Certified rapid solution of partial differential equations for real-time parameter estimation and optimization[END_REF][START_REF] Machiels | Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems[END_REF][START_REF] Maday | Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations[END_REF][START_REF] Prud'homme | Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods[END_REF][START_REF] Veroy | A Posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: "Convex inverse" bound conditioners[END_REF][START_REF] Maday | Reducedbasis method for the rapid and reliable solution of partial differential equations[END_REF] to nonlinear partial differential equations has led us to introduce an "empirical Lagrangian interpolation" method on a finite dimensional vectorial space spanned by functions that can actually be of any type (see [START_REF] Barrault | An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]). We refer to [START_REF] Patera | Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations to appear in (tentative rubric[END_REF] for a general presentation to the reduced basis method. The efficiency of this approach in the reduced basis context, as outlined in [START_REF] Barrault | An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF], and the simplicity of its implementation have stimulated us to deepen its analysis. The problem of Lagrangian interpolation is a classical one and, most of the times, it is associated with polynomial type approximations (algebraic polynomials, Fourier series, spherical harmonics, spline, rational functions, etc.). Given a finite dimensional space X M in a Banach space X of continuous functions defined over a domain Ω part of IR, IR d or C | d , and a set of M points in Ω, {x i ∈ Ω, i = 1, . . . , M }, the interpolant of a function f in X is the (preferably unique) element f M in X M such that f M (x i ) = f (x i ), i = 1, . . . , M .

Among the classical questions raised by the interpolation process are 1. given a set of points, does the interpolant at these points exist;

2. is this interpolant unique;

3. how does the interpolation process compare with other approximations (in particular orthogonal projections);

4. is there an optimal selection for the interpolation points; and 5. is there a constructive optimal selection for the interpolation points.

sup

x∈U inf y∈Xn x -y X (1)
where X n is some (unknown) n-dimensional subspace of X. The n-width of U thus measures the extent to which U may be approximated by some finite dimensional space of dimension n. There are many reasons why this n-width may go rapidly to zero as n goes to infinity. If U is a set of functions defined over a domain Ω, we can refer to regularity, or even to analyticity, of these functions with respect to the variable. Indeed, an upper bound for the asymptotic rate at which it converges to zero is provided by the example in [START_REF] Kolmogoroff | ber die beste annäherung von funktionen einer gegebenen funktionenklasse[END_REF] -d n ( B(r) 2 ; L 2 ) = O(n -r ) where B(r)

2
is the unit ball in the Sobolev space of all 2π-periodic real valued, (r -1)-times differentiable functions whose first (r -1) derivative is absolutely continuous and whose rth derivative belongs to L 2 . Furthermore, exponential small n-width is achieved when analyticity exists in the parameter dependency.

Another possibility, that we actually encounter in the reduced basis framework is given by U = {u(µ, •), µ ∈ D}, where, D is a given (infinite) set of parameters (either in IR p or even in some functional space of continuous functions). Then, the regularity of u in µ can also be a reason for having a small n-width.

Assuming that X is provided with a scalar product, then the best fit of an element u ∈ U in some finite dimensional space X M that realizes almost the infimum in [START_REF] Barrault | An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations[END_REF] is given by the orthogonal projection onto X M . In many cases the evaluation of this projection may be costly and the knowledge of u over the entire domain Ω is required. Thus, assuming that X ⊂ C 0 (Ω), so that the elements in U are continuous, the interpolation is a tool that is often referred to as a inexpensive surrogate to the evaluation of the orthogonal projection.

In one space dimension, the polynomial interpolation is rather well understood : the only condition for a Lagrangian interpolation operator to exist is that the points are distinct. The location of almost optimal points is provided by the Chebyshev Gauss nodes. In dimension greater than one, there exist more intricate conditions in order for a polynomial interpolation to be well defined, and not any set of points would provide a positive answer to questions (1) and [START_REF] Bathe | Finite element procedures[END_REF]. For general functions -as the one we have in mind for reduced basis approximations (the functions are solutions of parameter dependent partial differential equations or functional in [START_REF] Cancès | Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]) -the general conditions for which the interpolation points give an unique interpolant is an open problem. Our proposed method provides a constructive approach to this general problem and partially answer the 5 questions raised above. Actually, our algorithm provides also an answer to an additional question : what are the generating functions we should use for interpolation.

In section 2, we explain the construction of these interpolating functions and the associated points that we have named "magic points". We introduce the notion of Lebesgue constant and state some results related to the analysis of this approximation. In section 3, we compare the quality of this new general approach to some standard results in classical algebraic polynomial approximations of some typical geometries; we further demonstrate the versatility of the method with a nonstandard geometry. In section 4, we examine non-polynomial spaces and spaces spanned by parameter-dependent functions. In Section 5, we propose two applications of this procedure to approximate solutions of some PDEs, including a brief description of its application within reduced-basis methods. Lastly, we demonstrate how the a posteriori error estimator can be exploited in the construction of the approximation space.

We wish to stress that the applicability of the procedure is not limited to examples we have included in this paper; on the contrary, the procedure may prove advantageous in a variety of applications, for example image or data compression involving domains of irregular profile, fast rendering and visualization in animation, the development of computer simulation surrogates or experimental response surface for design and optimization, and the determination of a good numerical integration scheme for smooth functions on irregular domains. Lastly, for another approach to approximating parameterized fields, in particular an optimization-based approach well-suited to noisy data or constrained systems, see [START_REF] Nguyen | A "best points" interpolation method for efficient approximation of parametrized functions[END_REF].

Empirical interpolation

We begin by describing the construction of the empirical interpolation method -a generalization of the one sketched in [START_REF] Barrault | An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations[END_REF] and presented in greater details in [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF]. The present construction allows us to define simultaneously the set of generating functions and the associated interpolation points. It is based on a greedy selection procedure as outlined in [START_REF] Nguyen | Certified real-time solution of parametrized partial differential equations[END_REF][START_REF] Prud'homme | Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods[END_REF][START_REF] Veroy | A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations[END_REF]. In what follows, we assume that the functions in U are at least continuous over the domain Ω. With M being some given large number, we assume that the dimension of the vectorial space spanned by U : span (U) is of dimension ≥ M.

To begin, we choose our first generating function u 1 as being defined by u 1 = arg max u∈U u( • ) L ∞ (Ω) 1 . We then define the first interpolation point as being x 1 = arg max x∈Ω |u 1 (x)| then set q 1 = u 1 (•)/u 1 (x 1 ) and B 1 11 = 1. We now construct, by induction, the nested sets of interpolation points

T M = {x 1 , . . . , x M }, 1 ≤ M ≤ M max ,
and the nested sets of basis functions {q 1 , . . . , q M }, where M max ≤ M is some given upper bound fixed a priori. For M = 2, . . . , M max , we first solve the interpolation problem for α M -1,j [u], 1 ≤ j ≤ M, from (assuming that the invertibility of the (M -1) × (M -1) matrix of running entry q j (x i ))

M -1 j=1 q j (x i )α M -1,j [u] = u(x i ), i = 1, . . . , M -1 , (2) 
and compute

I M -1 [u(•)] = M -1 j=1 α M -1,j [u]q j , (3) 
We then set

ε M -1 (u) = u -I M -1 [u] L ∞ (Ω) , (4) 
for all u ∈ U; we define u M = arg max

u∈U ε M -1 (u) , (5) 
and

x M = arg max x∈Ω |u M (x) -I M -1 [u M ](x)| , (6) 
we finally set r

M (x) = u M (x) -I M -1 [u M (x)], q M = r M /r M (x M ) and B M ij = q j (x i ), 1 ≤ i, j ≤ M .
The Lagrangian functions are used to build the interpolation operator

I M in X M = span {u i , 1 ≤ i ≤ M } = span {q i , 1 ≤ i ≤ M } over the set of points T M = {x i , 1 ≤ i ≤ M }: for any given M , I M [u( • )] = M i=1 u(x i )h M i ( • ), where h M i ( • ) = M j=1 q j ( • )[B M ] -1 ji (note indeed that h M i (x j ) = δ ij ).
We now demonstrate that this construction of the interpolation points {x i , 1 ≤ i ≤ M } and the basis functions {q i , 1 ≤ i ≤ M } is well-defined, meaning that the set {q i , 1 ≤ i ≤ M } is linearly independent and, in particular, the matrix B M is invertible. We first prove an intermediate result:

Lemma 1. Assume that X M -1 = span {q 1 , . . . , q M -1 } is of dimension M -1 and that B M -1 is invertible, then we have I M -1 [v] = v for any v ∈ X M -1 ; here I M -1 [v] is the interpolant of v as given below I M -1 [v] = M -1 j=1 β M -1,j q j , (7) 
where the β M -1,j is the solution of

M -1 j=1 q j (x i )β M -1,j = v(x i ), i = 1, . . . , M -1 . (8) 
In other words, the interpolation is exact for all v in X M -1 .

Proof. For v ∈ X M -1 , which can be expressed as v(x) = M -1

j=1 γ M -1,j q j (x), we consider x = x i , 1 ≤ i ≤ M -1, to arrive at v(x i ) = M -1 j=1 q j (x i )γ M -1,j , 1 ≤ i ≤ M -1. It thus follows from the invertibility of B M -1 that β M -1 = γ M -1 ; and hence I M -1 [v] = v.
We use the above result to prove Theorem 1. Assume that M max is chosen such that M max < M; then, for any M ≤ M max , the space X M = span{q 1 , . . . , q M } is of dimension M . In addition, the matrix B M is lower triangular with unity diagonal (hence it is invertible).

Proof. We shall proceed by induction. Clearly, X 1 = span {q 1 } is of dimension 1 and the matrix B 1 = 1 is invertible. Next we assume that X M -1 = span {q 1 , . . . , q M -1 } is of dimension M -1 and the matrix B M -1 is invertible; we must then prove (i) X M = span{q 1 , . . . , q M } is of dimension M and (ii) the matrix B M is invertible. To prove (i), we note from our "arg max" construction that ε

M -1 (u M ) ≥ ε 0 , where ε 0 -the Kolmogorov M max -width of U -is strictly positive since M max < M. Hence ε M -1 (u M ) > 0, now if dim(X M ) = M , we have u( • , µ M ) ∈ X M -1
and thus ε M -1 (µ M ) = 0 by Lemma 1, which raises the contradiction and ends the proof that dim(X M ) = M and r M (x M ) = 0. To prove (ii ), we just note from the construction procedure that B M -1 i j = r j (x i )/r j (x j ) = 0 for i < j; that B M i j = r j (x i )/r j (x j ) = 1 for i = j; and that

B M i j = |r j (x i )/r j (x j )| ≤ 1 for i > j since x j = arg max x∈Ω |r j (x)|, 1 ≤ j ≤ M .
Hence, B M is lower triangular with unity diagonal.

The error analysis of the interpolation procedure classically involves the Lebesgue constant Λ M = sup x∈Ω M i=1 |h M i (x)|. It has been proven in [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF] that an upper-bound for the Lebesgue constant is 2 M -1 (in practice it turns out to be a very pessimistic upper bound, see however appendix A where we prove that this upper bound can be achieved). We remind also that the Lebesgue constant enters into the bound for the interpolation error as follows Lemma 2. For any u ∈ X, the interpolation error satisfies

u -I M [u] L ∞ (Ω) ≤ (1 + Λ M ) inf v M ∈span {ui(•),1≤i≤M } u -v M L ∞ (Ω) . (9) 
The last term in the right hand side of the above inequality is known as the best fit of u by elements in

span {u i , 1 ≤ i ≤ M }.
The following result, extends to the interpolation process the proof in [START_REF] Buffa | [END_REF] for the best approximation. It makes much more precise the previous lemma, since it allows to state that even though we do not know finite dimensional spaces -candidates for achieving the minimal distance in the n-width -the greedy process for the magic points provides spaces that give an upper bound for the right hand side in [START_REF] Hagelstein | Introductory Applied Quantum and Statistical Mechanics[END_REF]. Indeed, we can prove that Theorem 2. Assume that U ⊂ X ⊂ L ∞ (Ω), and that there exists a sequence of finite dimensional spaces

Z 1 ⊂ Z 2 ⊂ • • • ⊂ Z M ⊂ • • • ⊂ span U, dim Z M = M ( 10 
)
such that there exists c > 0 and α > log(4) with

∀u ∈ U, inf v M ∈Z M u -v M X ≤ ce -αM (11) then, u -I M [u] L ∞ (Ω) ≤ ce -(α-log(4))M . ( 12 
)
Proof. Refer to Appendix B.

Remark 1. This theorem states that, under the reasonable condition that the reduced space allows an exponential convergence (actually even faster convergence is observed most of the times, as explained in [START_REF] Buffa | [END_REF]), the empirical interpolation procedure : (i) proposes a discrete space (spanned by the chosen u i ) where the best fit is good, (ii) provides a set of interpolation points that leads to a convergent interpolant.

Remark 2. If for some reasons, a set of functions u i ∈ U, i ∈ IN were to be given, all linearly independent, then the procedure of finding the interpolation points through the process ∀i,

1 ≤ i ≤ M -1, u(x i ) = M -1 j=1 α i,j [u]u j (x i ) and set x M = arg max x∈Ω |u M (x) - M -1 j=1 α i,j [u M ]u j (x)
| is also well defined and leads to a set of interpolation points that have similar properties as above. The rational for the greedy approach is that it allows us to get a better sense of the interpolation properties since ∀u,

u( • ) -I M [u(.)] L ∞ (Ω) ≤ u M +1 ( • ) -I M [u M +1 ( • )] L ∞ (Ω) = ε M (x M +1 ) ( 13 
)
and this last quantity is one of the outputs of the construction process.

Remark 3. In the actual implementation of the method, since the cardinal of U is infinite, we start with a large enough sample subset W u in U of cardinal M much larger than the dimension of the discrete spaces and number of interpolation nodes we plan to use. For example, if

U = {u(µ, •), µ ∈ D}, we choose W u = {u(µ), µ ∈ Ξ µ ⊂ D}; Ξ µ consists of M parameter sample points µ.
We assume this sample subset is representative of the entire set U in the sense that sup x∈U inf y∈X M xy X is much smaller than the approximation we envision through the interpolation process. Here X M is the vectorial space spanned by W u . We assume that the dimension of X M is M.

We will now subject the empirical interpolation procedure described above to some tests: the abstract formulation of the problems we are going to solve can be stated as follows: given a space U ⊂ X ⊂ L ∞ (Ω), we will construct a space X M ⊂ X and an interpolant

I M ∈ X M such that for a given function u ∈ U, u -I M [u] L ∞ (Ω) → 0 rapidly as M → ∞.
We can classify the problems into two distinct categories:

1. U ≡ X ≡ C m and X M spans the same space as a preselected universal approximation space; here we are interested in constructing a well-conditioned set of basis functions in X M and the corresponding magic points;

2. U is a set of functions on the parametric manifold, X M is a -a priori not known -finite dimensional space in X is some well-defined function spaces such as Sobolev spaces.

Polynomial Interpolation

We consider the first category of problems. In particular, X M consists of polynomial functions. The purpose of this section is to (i) test the empirical interpolation process in well-documented situations in order to first measure where magic points stand with respect to some optimal results, and (ii) understand if the order at which the basis functions are processed affects the Lebesgue constant.

One dimension

We consider a domain Ω 1d ≡ [-1, 1] and construct X M (Ω 1d ) and the associated magic points based on:

(a) monomials,

W P n (Ω 1d ) = {x i , x ∈ Ω 1d , 0 ≤ i ≤ n}, 0 ≤ n ≤ n max ; and (b) Legendre polynomials, W L n (Ω 1d ) = {L i (x), x ∈ Ω 1d , 0 ≤ i ≤ n}, 0 ≤ n ≤ n max
where L i is the Legendre polynomial of order i. 

W P n , case (i) W L n , case (i) W P n , case (ii) W L n , case (ii) Chebyshev points Equidistant points Figure 1: (a)
Comparison of the Lebesgue constant, Λ M =n+1 for magic points obtained through different constructions (case (i) refers to increasing polynomial order and case (ii), greedy algorithms) with that obtained for Chebyshev points and the uniform grid. (b) cos -1 of the distribution of magic points compared to Chebyshev points and the uniform grid, for Ω 1d .

Note that

X M = span {W P n (Ω 1d )} = span {W L n (Ω 1d )} with M = n+1.
To examine the effects of ordering on the resulting approximation, we apply the empirical interpolation procedure based on two variations: (i) the basis functions are processed in increasing polynomial order; and (ii) the order by which the basis functions are processed is determined by the greedy algorithm. We discretize the space into 2000 intervals and solve the system up to n max = 30. As expected and shown in Figure 1, the choice of the initial approximation spaces does not affect the magnitude of the Lebesgue constant when the basis functions are processed in increasing polynomial orders. Greedy algorithm can result in slightly better Lebesgue constant for some n, although the result is not uniform. In both cases, the Lebesgue constant obtained through our empirical interpolation procedure is close to the (nearly) optimal values obtained based on the Chebyshev points, as shown in Figure 1. Lastly, Figure 1 also shows that the distribution of the empirical interpolation points bears significant resemblance to the Chebyshev points. For comparison, we have also plotted the behavior for equidistant interpolation points. Finally, it should be noted that the Lebesgue constant for the magic point construction is not monotonic as a function of the number of points.

Triangle

We consider a triangle Ω tri ≡ {(x, y) : x ≥ -1, y ≥ -1, x + y ≤ 0}. We define the initial sample set as

W P n (Ω tri ) ≡ {x i y j , (x, y) ∈ Ω tri , i + j ≤ n}, 0 ≤ n ≤ n max . Then X M (Ω tri ) = span {W P n (Ω tri )} and M = 1 2 (n + 1)(n + 2).
Since the greedy algorithm leads to smaller Lebesgue constants in most cases, we will apply the greedy algorithm to W P n (Ω tri ) (and to all subsequent examples) when determining the magic points. We further discretize the domain such that the smallest division in each direction is 0.01. Figure 2 shows the growth of the Lebesgue constant with n up to n max = 12. Compared to the optimal points obtained in [START_REF] Heinrichs | Improved Lebesgue constants on the triangle[END_REF] and [START_REF] Chen | Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[END_REF], the Lebesgue constants for our empirical interpolation points are not too far off, as shown in Table 1. In addition, these points are obtained through a simple procedure, in the absence of any sophisticated optimization process. Lastly, we observe that the distribution of the empirical interpolation points again bears strong resemblance to those reported in [START_REF] Heinrichs | Improved Lebesgue constants on the triangle[END_REF], as shown in Figure 2 for n = 12. 2 (n + 1)(n + 2), and (b) distribution of magic points compared to [START_REF] Heinrichs | Improved Lebesgue constants on the triangle[END_REF] 

Hexagon

We define Ω hex as a hexagon inscribed in a circle of radius 1 and an initial sample set given by W P n (Ω hex ) ≡ {x i y j , (x, y) ∈ Ω hex , i + j ≤ n}, 0 ≤ n ≤ n max . Then, X M (Ω hex ) = span {W P n (Ω hex )} with M = 1 2 (n + 1)(n + 2). The growth of the Lebesgue constants with n, and the distribution of the magic points (for the case with increasing n) are shown in Figure 3. We have not found any analysis for the best position of the interpolation points over such a simple domain, the good behavior of the Lebesgue constant associated with the magic points is one of the interests of the method.

Lunar Croissant

We consider now a non-convex domain of "lunar croissant" shape, Ω cro ≡ Ω 1 cir \Ω 2 cir , where Ω 1 cir and Ω 2 cir are two unit circles centered at (0, -0.5) and (0, 0.5), respectively. We define an initial sample set as

W P n (Ω cro ) ≡ {x i y j , (x, y) ∈ Ω cro , i + j ≤ n}, 0 ≤ n ≤ n max , and X M (Ω tri ) = span {W P n (Ω tri )} with M = (n + 1) 2 .
We show in Figure 4 the Lebesgue constant Λ n as a function of n and the distribution of the magic points for n = 12. We observe that the growth of the Lebesgue constant with n is quite similar to those in the triangle and hexagon cases. We know of neither exact nor computed values for the optimal (or even near optimal) point set over the domain Ω cro .

Tetrahedron

We define Ω tet as a three-dimensional simplex in IR 3 with vertices at (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0) and an initial sample set given by W

P n (Ω tet ) ≡ {x i y j z k , (x, y, z) ∈ Ω tet , i + j + k ≤ n}, 0 ≤ n ≤ n max . Then, X M (Ω tet ) = span {W P n (Ω tet )} with M = 1 6 (n + 1)(n + 2)(n + 3
). The application of the empirical interpolation procedure yields Lebesgue constants shown in Table 2 for n ≤ n max = 9. It is compared to results from [START_REF] Luo | A Lobatto interpolation grid in the tetrahedron[END_REF] and [START_REF] Chen | The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron[END_REF] obtained through optimization procedures. Again, in comparison to the best known approximation, the empirical interpolation procedure performs reasonably well. n We consider the surface of the sphere Ω sph ≡ {|x| = 1, x ∈ S 2 ⊂ IR 3 } and define an initial sample set given by W

S n (Ω sph ) ≡ {Y lm (x), x ∈ Ω sph , 0 ≤ l ≤ n, |m| ≤ l}, 0 ≤ n ≤ n max , where {Y lm (x)} is an orthonormal set of spherical harmonics. Then, X M (Ω sph ) = span {W S n (Ω sph )} with M = (n + 1) 2 .
The application of the empirical interpolation procedure yields Lebesgue constant that grows as shown in Figure 5 for n ≤ n max = 20; this is compared to the improved rate of n + 1 obtained in [START_REF] Womersley | How good can polynomial interpolation on the sphere be?[END_REF] through an optimization procedure. The deviation here is sensibly larger with respect to the best fit, though still acceptable if we compare it to the other earlier results quoted before [START_REF] Womersley | How good can polynomial interpolation on the sphere be?[END_REF] where a O(n 2 ) is documented. Remark 4. An important remark is now in order. The magic points in T M are defined recursively, which is not at all the case for other approaches, in particular the points proposed in [START_REF] Womersley | How good can polynomial interpolation on the sphere be?[END_REF]. Starting from a maximal space X max , the associated approximation spaces X M are hierarchical, i.e. X 1 ⊂ X 2 ⊂ . . . ⊂ X M ⊂ X max . In order to illustrate this distinction, we first look at the problem of choosing M/2 points from the M points proposed by Sloan [START_REF] Womersley | How good can polynomial interpolation on the sphere be?[END_REF] for a given n that gives the minimum Lebesgue constant when approximating using the first M/2 basis functions in W S n . Clearly, as the number of possible combinations increases exponentially fast as n increases. Considerable effort is required to find a good combination. On the contrary, with empirical interpolation procedure, determining a good combination of M/2 points out of the M number of magic points is simple -we simply choose the first M/2 points. To demonstrate how good these magic points are, we randomly choose 1000 combinations of M/2 points from the M Sloan points and search through these sets of points for the minimum Lebesgue constant. We compare the resulting Lebesgue constants with that obtained using the first M/2 magic points. For n = 4, Sloan points gives 6.44 vs 4.93 for magic points. For n = 10, Sloan points gives 138.56 vs 20.25 for magic points. Here the Lebesgue constants for the magic points are obtained without using the greedy algorithm, i.e. the basis functions are processed in the order given in W S n .

Remark 5. Another remark is the versatility of this approach with respect to the domain. We have considered the domain on the sphere delimited by reducing the angle to [π/3, 5π/6] × [2π/3, 4π/3], so it is more or less a curve surface. Over a very fine grid of 600 × 600 the best Lebesgue constant that we could get for n = 10 is 36 as shown in figure 6. There is also signficicant resemblance between the magic points and the tensorized Chebyshev points, as shown in Figure 6. Here again no reference could be found for interpolating with spherical harmonics over a portion of a sphere. 

Parameter-dependent functions

We now examine the second category of problems outlined in Section 2. Here, we are interested in approximating parameter-dependent transcendental functions f (x, µ). In particular, we have in mind functions that are complicated to evaluate but have a smooth dependency on some parameters such as e g(x,µ) , convoluted functions, smooth empirical data varying smoothly in time or space etc. To illustrate the potential computational savings resulting from the use of empirical interpolation procedure, we examine the following convoluted function

f (x, µ) = Ω l(x ′ , µ)g(x, x ′ )dx ′ . (14) 
For every new µ, a full evaluation of f will require, for each x point the computation of an integral (in x ′ ) which may be done by numerical integration based on a large enough set of points (say N points) Assume, for the sake of simplicity, that we want to compute f at any of these N points, this will required O(N 2 ) operations. However, if for a given Ξ µ , we construct an approximation space of dimension M and the associated magic points for f ( • , µ), we will only required 2(M N ) + M 2 operations -we only evaluate the integral at M magic points (which gives M N operations), solve for the coefficients by inverting a M × M triangular matrix, then require another M N to get an approximation of f at every N points .

As an example, we consider a domain Ω rec = [-0.5, 0.5] × [-0.5, 0.5], µ ∈ [1, 10], x ≡ (x, y), l(x, µ) = sin(2πµ|x|), and g(x) = 50 π exp(-50|x| 2 ). We construct our approximation based on the sample set 3 shows that the error f ( • , µ) -I M [f ( • , µ)] L ∞ (Ωrec) decreases exponentially and the Lebesgue constants are generally small for all M . Thus, the approximation leads to fast evaluation of f with minimal loss of accuracy. This may have applications in areas such as animation where µ represent temporal variables, the regeneration of 3D tomographic data sets where µ represent spatial variables, or the reduced basis methods, as will be illustrated in the section. 5 Two applications for the approximation of the solutions to some PDEs

W f (Ω rec ) = {f ( • , µ), µ ∈ Ξ µ ⊂ [1, 10]}. Table
M f ( • , µ) -I M [f ( • , µ)] L ∞ (Ωrec) Λ M 2 8.60 E

Reduced basis method

This is the frame actually for which the magic points have been constructed... We consider a weak formulation of µ-parametrized nonlinear elliptic PDEs of the form

µa 0 (u(µ), v) + Ω g(u(µ))v = f (v), ∀v ∈ H 1 0 (Ω). ( 15 
)
A particular instantiation considered here is as follows

a 0 (w, v) = Ω ∇w • ∇v, f (v) = Ω v, g(w) = |w| 2/3 w, ( 16 
)
where Ω =]0, 1[∈ IR, w and v ∈ H 1 0 (Ω), and µ ∈ D ≡ [0.01, 1]; note the solution u(µ) develops a boundary layer at x = 0 and x = 1 for µ close to 0.01.

We now introduce the nested samples, S u N = {µ u 1 ∈ D, . . . , µ u N ∈ D}, 1 ≤ N ≤ N max , and associated nested Lagrangian [START_REF] Porsching | Estimation of the error in the reduced basis method solution of nonlinear equations[END_REF] reduced-basis spaces

W u N = span{u(µ u n ), 1 ≤ n ≤ N } = span {ζ n , 1 ≤ n ≤ N }, 1 ≤ N ≤ N max , where u(µ u n ) is the solution of (15) at µ = µ u n and ζ n , 1 ≤ n ≤ N are the orthonormalized bases of u(µ u n ), 1 ≤ n ≤ N with respect to (•, •) X (obtained through a Gram-Schmidt process).
The classical reduced-basis approximation [START_REF] Machiels | Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems[END_REF][START_REF] Maday | Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations[END_REF][START_REF] Prud'homme | Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods[END_REF][START_REF] Veroy | A Posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: "Convex inverse" bound conditioners[END_REF][START_REF] Grepl | Certified rapid solution of partial differential equations for real-time parameter estimation and optimization[END_REF] is then obtained by a standard Galerkin projection: given

µ ∈ D, u N (µ) ∈ W u N satisfies µa 0 (u N (µ), v) + Ω g(u N (µ)) v = f (v), ∀v ∈ W u N . (17) 
Unfortunately, the presence of strong nonlinearity in g does not allow an efficient offline-online procedure outlined in [START_REF] Veroy | A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations[END_REF][START_REF] Nguyen | Certified real-time solution of parametrized partial differential equations[END_REF]. As a result, although the dimension of the system ( 17) is small, solving it is actually expensive [START_REF] Cancès | Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF].

To obtain an inexpensive reduced-oder model of the nonlinear problem (15), we apply the empirical interpolation procedure on {g(u(µ)), µ ∈ Ξ µ } of size M = 51 to develop a collateral reduced-basis expansion g u N,M M (x; µ) for the nonlinear term g(u N (µ)) as

g u N,M M (x; µ) = M m=1 ϕ M m (µ)q m (x) , (18) 
We next replace g(u N (µ)) -as required in our reduced-basis projection for u N (µ) -with g u N,M M (x; µ). Our reduced-basis approximation is thus:

given µ ∈ D, u N,M (µ) ∈ W u N satisfies µa 0 (u N,M (µ), v) + Ω g u N,M M (x; µ)v = f (v), ∀ v ∈ W u N . (19) 
Inserting u N,M (µ) = N j=1 u N,M j (µ)ζ j and ( 18) into ( 19) yields

µ N j=1 A N i j u N,M j (µ) + M m=1 C N,M i m ϕ M m (µ) = F N i , 1 ≤ i ≤ N ; (20) 
where

A N ∈ IR N ×N , C N,M ∈ IR N ×M , F N ∈ IR N are given by A N i j = a 0 (ζ j , ζ i ), 1 ≤ i, j ≤ N , C N,M i m = Ω q m ζ i , 1 ≤ i ≤ N, 1 ≤ m ≤ M , and 
F N i = f (ζ i ), 1 ≤ i ≤ N , respectively. Furthermore, we note that ϕ M (µ) ∈ IR M is given by M k=1 B M m k ϕ M k (µ) = g(u N,M (x i , µ)) = g N n=1 u N,M n (µ)ζ n (x m ) , 1 ≤ m ≤ M . (21) 
We then substitute ϕ M (µ) from ( 21) into ( 20) and let D N,M = C N,M (B M ) -1 to obtain the following nonlinear algebraic system

µ N j=1 A N i j u N,M j (µ) + M m=1 D N,M i m g N n=1 ζ n (x m )u N,M n (µ) = F N i , 1 ≤ i ≤ N , (22) 
which can be solved efficiently by using a Newton method [START_REF] Cancès | Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF] to yield u N,M j (µ), 1 ≤ j ≤ N, for any parameter value µ in D.

In a similar manner, to get a comparison of this approach with a more classical one, we also develop a reduced-order model based on a coefficient-function approximation of the nonlinear term g(u N (µ)) using polynomials x m , 0 ≤ m ≤ M -1, and associated Chebyshev points x che m = (cos((2m+1)π/(2M +2))+1)/2, 0 ≤ m ≤ M -1. We denote by u che N,M (µ) the reduced-basis approximation using the polynomial approach with Chebyshev points.

We now present numerical results obtained for this particular example. For this purpose, we introduce a parameter sample Ξ t ⊂ D of size 100; we then define

ǫ g M = max µ∈Ξt g(u(µ)) -g u M (x; µ) L ∞ (Ω) , ǫ g,che M = max µ∈Ξt g(u(µ)) -g u,che M (x; µ) L ∞ (Ω) , ǫ u N,M = max µ∈Ξt u(µ) -u N,M (µ) L ∞ (Ω) , ǫ u,che N,M = max µ∈Ξt u(µ) - u che N,M (µ) L ∞ (Ω)
; here g u M (x; µ) and g u,che M (x; µ) are the approximations of g(u(µ)) obtained using the magic points approach and polynomial approach, respectively. We present in Table 4 ǫ g M and ǫ g,che

M

for different values of M . We see that ǫ g M converges exponentially with M and significantly faster than ǫ g,che

M

. We also tabulate in Table 5 ǫ u N,M and ǫ u,che N,M as a function of N for M = 8. Not surprising, we observe the same convergence behavior in terms of the reduced-basis dimension N : while the reduced-basis error ǫ u N,M decays exponentially fast with N , the error ǫ u,che N,M decreases with N for N ≤ 5 and then maintains a fixed value of 3.80 E -03 for N > 5 due to poor approximation of the nonlinearity as observed in Table 4.

One-dimensional quantum harmonic oscillator

We now look at another example of a model reduction method, the modal expansion technique [START_REF] Bathe | Finite element procedures[END_REF]. For linear partial differential equations, the projection onto the eigenmodes of the operator leads to a set of decoupled differential equations. This is particularly advantageous in dynamic response analysis due to order of reductions in problem size. However, the initial projection of the initial condition onto the eigenspace is usually required, leading to an operation count which depends on N , the discretization of the underlying computational domain. We will demonstrate how empirical interpolation technique provides a inexpensive surrogate to this projection step. As an example, we consider a time-dependent Schrödinger equation for a harmonic oscillator:

M ǫ g M ǫ g,
i ∂ ∂t ψ(x, t) = - 1 2 ∂ 2 ∂x 2 ψ(x, t) + 1 2 ω 2 0 x 2 ψ(x, t), (23) 
where x ∈ Ω 1d,SHO ≡ [-15 , 15]. Given an initial solution ψ(x, 0), the solution can be approximated by

ψ(x, t) = n i=0 c i φ i (x)e -iEit , (24) 
where n + 1 is the number of basis functions considered; φ i (x) and E i are solution to the following static harmonic oscillator equation

E i φ i (x) = - 1 2 ∂ 2 ∂x 2 φ i (x) + 1 2 ω 2 0 x 2 φ i (x); (25) 
and c i is given by

c i = ∞ -∞ φ * i (x)ψ(x, 0)dx. ( 26 
)
Note that the analytical solutions to φ i (x) and E i exist but evaluation of c i based on (26) can be tedious and expensive, especially if the problem is multidimensional. For example, evaluation of c i for all i = 0, . . . , n based on the Newton-Cotes Formulae using N nodes would require O((n + 1)N ) operations. Our goal is to approximate c i based on the empirical interpolation procedure. Therefore, given W φ n = {φ i (x), x ∈ Ω 1d,SHO , 0 ≤ i ≤ n}, we can construct X M and the associated set of magic points T M = {x i , 0 ≤ i ≤ n} and the interpolation matrix B based on the empirical interpolation procedure. Here, M = n + 1. Then we approximate c i by ci , where

n j=0 B ij cj = ψ(x i , 0), 0 ≤ i ≤ n. The operations count is only O((n + 1) 2 ).
We achieve an operation count that is independent of N . The growth of the Lebesgue constant Λ M with M is shown in Figure 7 -they are in general small.

We now consider a particular example where ψ(x, 0) = ω π 1/4 e 1 2 ω(x-x0) 2 (with ω = 2). For this initial condition, analytical solution, ψ a (x, t) is available [START_REF] Hagelstein | Introductory Applied Quantum and Statistical Mechanics[END_REF]. We first define Ξ x ∈ [-15, 15] of size 1000 and Ξ t ∈ [0, 5] of size 1000. We then define ε M = max t∈Ξt max x∈Ξx |ψ a (x, t)ψ(x, t)|. Figure 8 shows that the error ε M decreases very rapidly with M . (The initial increase in the error is simply because φ 0 (x) is close to ψ(x, 0), of course it would not be the case if a pure Galerkin method based on X M was used??).

An a posteriori analysis

In this section, we propose an a posteriori error estimator for our approximation. In [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF], it was proven that if the function we are approximating, say ϕ, is in 

X M +1 , then ε M ≡ ϕ -I M [ϕ] L ∞ (Ω) = εM where n M |ϕ 1d (x M +1 ) -I M [ϕ 1d (x M +1 )]| ϕ 1d -I M ϕ 1d L ∞ η M 2 3 
(x M +1 ) -I M [ϕ 2d (x M +1 )]| ϕ 2d -I M ϕ 2d L ∞ η M 2 9 
[ϕ] L ∞ (Ω)
≥ εM , and εM is thus a lower bound. However, if ϕ -I M ϕ L ∞ (Ω) → 0 very fast, we expect the effectivity, η M = ε M /ε M to be good. In addition, determination of x M +1 is very inexpensive -we only need to do an additional iteration of the empirical interpolation procedure.

As an example, we choose to approximate through polynomial interpolation on magic points a gaussian function, ϕ 1d (x) = e -x 2 in one dimension (on a segment), and ϕ 2d (x, y) = e -(x 2 +y 2 ) in two dimensions (over a triangle). Table 6 and7 show that results are good -η M is in general very small. In the one dimensional case, a good estimator is obtained for I M at all M ≤ M max . However, in the two dimensional case, a good estimator is only obtained for I M when M = 1 2 (n + 1)(n + 2). This is because the polynomial approximation of the gaussian function is good only if all monomials of order ≤ n is included. Thus, good effectivity is always obtained for the one dimensional case, and 1 2 (n + 1)(n + 2) for the two dimensional case. For a non-regular function, we obtain similar results: in Table 8, we show the error estimate and the actual error resulting from a polynomial approximation of ϕ irr = |x 3 y 3 | on the triangle. Again, the effectivities is good when the complete set of monomials of degree ≤ n is included, but due to discontinuity in higher derivative, we have a much lower convergence rate.

Conclusions

We have presented a general multipurpose interpolation method for selecting interpolation points which we dub "magic points". For the problems in which the interpolating functions are not given, our method also provides the construction of such functions. The proposed method is very simple to implement and extremely efficient, since unlike many other methods it does not require optimization procedures. We illustrate many of its attractive features through several numerical examples in polynomial interpolation, parameter-dependent functions, and the approximation of solutions of parametrized PDEs. In the case of polynomal interpolation, results show that the distribution of magic points is quite similar to that of optimal interpolation points and that the Lebesgue constant is close to the optimal values reported in the open literature. We further demonstrate the versality of the method with non-standard domains whereby we are not aware of any optimal (or even near optimal) point settings. In approximating parameter-dependent functions, the method is superior to classical polynomial interpolation methods (e.g., Chebyshev points with polynomial approximation) thanks to its good choice of both interpolating function and point sets that are adaptive to the parameter dependence. In approximating the solution of parametrized PDE, the method helps to establish an efficient reduced order model by constructing a coefficient-function approximation of the nonlinear terms, which results in significant computational savings relative to standard discretization methods. Lastly, we wish to emphasize that the method can be applicable and may prove advantageous in a variety of applications involving image and pattern recognition, data compression, field reconstruction, fast rendering and visualization in animation, numerical integration of smooth functions on irregular domains. (See [START_REF] Nguyen | An interpolation method for the reconstruction and recognition of face images[END_REF][START_REF] Nguyen | A "best points" interpolation method for efficient approximation of parametrized functions[END_REF] for application of a similar method to face recoginition and optimal sensor placement for field reconstruction.) The good performance and the simplicity of the present method warrant further investigations for these applications.

n M |ϕ irr (x M +1 ) -I M [ϕ irr (x M +1 )]| ϕ irr -I M ϕ irr L ∞ η M 2 9 

A An example of a bad Lebesgue constant

Let us consider two sequences of interlaced and increasing real numbers a 0 < b 0 < a 1 < b 1 < • • • < a i < b i < a i+1 < . . . and let χ i be equal to 1 over ]a i , b i [ and 0 elsewhere.

For i ≥ 1, we denote by ϕ i the L ∞ function given by

ϕ i = χ 0 + χ i - ∞ j=i+1 χ j ( 27 
)
Then it is an easy matter to realize that the empirical interpolation procedure may actually rank the interpolating function as they are (i.e. leave them in the same order) and choose the interpolation points x i = ai+bi 2 . (Actually, there are multiple choices here for the points that realize the arg max x∈I R |ϕ i |; we could avoid by multiplying the ϕ i by a suitable slowly decreasing function.)

Then, for any given M , the Lagrangian functions h M i are defined by h M M = ϕ M and, for any i,

1 ≤ i < M h M i = ϕ i + M j=i+1 h M j ( 28 
)
so that, by induction, h M i (x 0 ) = 2 M -i , which is the L ∞ norm of h M i . The Lebesgue constant, being the sum of these L ∞ norms, then gives 2 M -1.

B Proper sampling procedure of the empirical interpolation approach

We adapt to our interpolation greedy construction, the analysis presented in [START_REF] Buffa | [END_REF] where the best fit approximation is analyzed. Let us denote by r M the difference between u and its interpolation over the points x i , i = 1, . . . , M , i.e. r M (x; u) = u(x) -

M -1 j=1 α M,j (u) r j (x) r j (x j ) . ( 29 
)
where the coefficients α M,j (u) satisfy ∀i, i = 1, . . . , M M j=1 α M,j (u)q j (x i ) = u(x i ) taking into account the triangular structure (with only 1 on the diagonal) we get

α M,i (u) = u(x i ) - i-1 j=1
α M,j (u)q j (x i )

or again (noticing that α M,j (u) is actually independent of M α M,i (u)

r i (x i ) = r i (x i ; u) r i (x i )
which is, in absolute value, smaller than 1 from the argmax definition of u i . It is then an easy matter to realize by induction, that for ℓ < M r ℓ (x) ≡ r ℓ (x, u ℓ ) = u ℓ (x) + ℓ-1 j=1 γ ℓ j (u)u j (x),

with |γ ℓ i | ≤ 2 ℓ-i-1 . From the hypothesis stated in theorem 2, we derive that there exists v j in Z M -1 such that u j (x)v j Y ≤ ce -αM so that, by setting v ℓ = v µ ℓ + ℓ-1 j=1 γ ℓ j v µj we get
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 2 Figure 2: (a) Variation of Lebesgue constant, Λ M with n where M = 12 (n + 1)(n + 2), and (b) distribution of magic points compared to[START_REF] Heinrichs | Improved Lebesgue constants on the triangle[END_REF] for Ω tri .
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 34 Figure 3: (a) Variation of Lebesgue constant, Λ M with n where M = 1 2 (n + 1)(n + 2), and (b) distribution of magic points, for Ω hex .

Λ M = n + 1 Figure 5 :

 15 Figure 5: Variation of the Lebesgue constant, Λ M with n where M = (n + 1) 2 , for Ω sph .
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 6 Figure 6: (a) Variation of the Lebesgue constant, Λ M with n where M = (n + 1) 2 , and (b) distribution of magic points, compared to Chebyshev points, for part of Ω sph given by [π/3, 5π/6] × [2π/3, 4π/3].
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 78 Figure 7: (a) Variation of Lebesgue constant, Λ M with M , and (b) distribution of the magic points compared to the zeros of the Hermite polynomials for ω o = 1, for the quantum harmonic oscillator problem for M = 20.

Table 1 :

 1 for Ω tri . Comparing the Lebesgue constants for magic points, with that from literature, for Ω tri .

	n Magic Points	[10]	[5]
	6	9.16	3.67	3.79
	9	17.70	5.58	5.92
	12	24.86	7.12 10.08

Table 2 :

 2 Comparing the Lebesgue constants for magic points with that from literature, for Ω tet .

		Magic Points	[12]	[6]
	2	2.0	2.0	2.0
	3	3.80	2.93	2.93
	4	8.70	4.07	4.11
	5	9.77	5.38	5.62
	6	15.27	7.53	7.36
	7	31.04	10.17 9.37
	8	34.31	14.63 12.31
	9	62.99	20.46 15.69

Table 3 :

 3 Actual error between f (•, µ) of Section 4.2 and its iterpolation together with the associated Lebesgue constant.

		-1	1.51
	3	4.19 E -1	1.69
	4	2.74 E -1	1.98
	5	1.24 E -1	2.43
	6	9.80 E -2	3.16
	7	6.59 E -2	5.14
	8	6.00 E -2	3.89
	9	9.10 E -3	2.48
	10	3.88 E -3	3.28
	11	1.74 E -3	4.38
	12	6.44 E -4	4.56
	13	2.82 E -4	4.24
	14	6.35 E -5	5.94
	15	6.09 E -6	5.23

Table 4 :

 4 che M 1 2.43 E -01 9.94 E -01 2 1.62 E -02 7.35 E -01 3 1.86 E -03 1.73 E -01 4 1.28 E -04 1.63 E -01 5 4.21 E -06 1.10 E -01 6 2.18 E -07 8.84 E -02 7 1.15 E -08 6.75 E -02 8 9.22 E -10 4.57 E -02 Results for the approximation of g(u(µ)): ǫ g M and ǫ g,che

	M	as a function of M .

Table 5 :

 5 Results for the reduced-basis approximation: ǫ u N,M and ǫ u,che N,M as a function of N for M = 8.

Table 6 :

 6 Comparison between the error estimate and the actual error, for ϕ 1d .

			7.27 E -2	7.79 E -2	1.07
	4	5	7.47 E -3	7.52 E -3	1.01
	6	7	6.18 E -4	6.70 E -4	1.08
	8	9	3.84 E -5	3.84 E -5	1.00
	10 11	1.69 E -6	1.72 E -6	1.02
	12 13	3.08 E -8	4.02 E -8	1.30
	14 15	1.65 E -9	1.65 E -9	1.00
	16 17	6.33 E -11	6.73 E -11	1.06
	18 19	1.39 E -12	1.39 E -12	1.00
	20 21	2.50 E -14	2.51 E -14	1.00
	n	M	|ϕ 2d		

Table 7 :

 7 Comparison between the error estimate and the actual error, for ϕ 2d .

			1.13 E -1	6.32 E -1	5.59
	4	25	1.43 E -1	1.66 E -1	1.16
	6	49	2.03 E -2	2.24 E -2	1.10
	8	81	7.23 E -4	1.46 E -3	2.02
	10 121	5.36 E -5	1.06 E -4	1.98
	12 169	2.76 E -6	2.78 E -6	1.01
	14 225	1.04 E -8	1.31 E -7	12.60
	16 289	2.67 E -9	4.88 E -9	1.83
	18 361	4.98 E -11	1.16 E -10	2.33
	20 441	2.57 E -12	2.78 E -12	1.08

εM = |ϕ(x M +1 )-I M [ϕ(x M +1 )]|. However, in general ϕ / ∈ X M +1 and hence ϕ-I M

Table 8 :

 8 Comparison between the error estimate and the actual error, for ϕ irr .

			7.95 E -2	1.59 E -1	2.00
	4	25	3.88 E -2	1.47 E -1	3.79
	6	49	2.44 E -3	1.95 E -2	8.00
	8	81	4.26 E -3	2.42 E -2	5.68
	10 121	1.37 E -3	3.74 E -3	2.73
	12 169	3.75 E -3	5.66 E -3	1.51
	14 225	2.96 E -4	5.69 E -4	1.92
	16 289	5.01 E -5	5.80 E -4	11.58
	18 361	1.29 E -4	3.00 E -4	2.33
	20 441	3.09 E -4	5.72 E -4	1.85

In case U is e.g. invariant by multiplication by a scalar, the max in the above formula is = +∞ of course we should then replace it by e.g.u 1 = arg max u∈U u( • ) L ∞ (Ω) u( • ) X
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