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Abstract: Fix ν > 0, denote by G(ν/2) a Gamma random variable with parameter ν/2, and
let n > 2 be an even integer. Consider a sequence {Fk}k>1 of square integrable random vari-
ables, belonging to the nth Wiener chaos of a given Gaussian process and with variance con-
verging to 2ν. We prove that {Fk}k>1 converges in distribution to 2G(ν/2) − ν, if, and only if,
E(F 4

k ) − 12E(F 3
k ) → 12ν2 − 48ν. Observe that, if ν > 1 is an integer, then 2G(ν/2) − ν has

a centered χ2 law with ν degrees of freedom. Our approach involves the techniques of Malli-
avin calculus recently developed by Nualart and Ortiz-Latorre (2007). We also obtain some
multidimensional non-central limit theorems, as well as several equivalent conditions in terms of
Malliavin derivatives and norms of contraction operators. Our results should be compared with
the main findings by Nualart and Peccati (2005), where it is shown that a normalized sequence
of multiple Wiener-Itô integrals converges in law to a Gaussian random variable if, and only if,
the sequence of their fourth moments converges to 3.

Key words: Gaussian processes; Malliavin calculus; Multiple stochastic integrals; Non-central
limit theorems; Weak convergence.

2000 Mathematics Subject Classification: 60F05; 60G15; 60H05; 60H07.

1 Introduction and main results

Let H be a real separable Hilbert space and, for n > 1, let H⊗n (resp. H⊙n) be the nth tensor
product (resp. nth symmetric tensor product) of H. In what follows, we write

X = {X(h) : h ∈ H} (1.1)

to indicate a centered isonormal Gaussian process on H. For every n > 1, we denote by In the
isometry between H⊙n (equipped with the norm

√
n!‖·‖H⊗n) and the nth Wiener chaos of X. Note

that, if H is a σ-finite measure space with no atoms, then each random variable In(h), h ∈ H⊙n,
has the form of a multiple Wiener-Itô integral of order n. For n,m > 1, f ∈ H⊙n, g ∈ H⊙m

and p = 0, . . . , n ∧ m, we denote by f ⊗p g ∈ H⊗(n+m−2p) and f⊗̃pg ∈ H⊙(n+m−2p), respectively,
the pth contraction and the pth symmetrized contraction of f and g (a formal discussion of the
properties of the previous objects is deferred to Section 2).
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It is customary to call “Central Limit Theorem” (CLT in the sequel) any result describing the
weak convergence of a (normalized) sequence of nonlinear functionals of X towards a Gaussian
law. Classic references for CLTs of this type are the works by Breuer and Major (1978), Major
(1981), Giraitis and Surgailis (1985) and Chambers and Slud (1990); the reader is also referred
to the survey by Surgailis (2003a) and the references therein. More recently, Nualart and Peccati
(2005) proved the following result (here, and for the rest of the paper, we shall denote by N (0, 1)
the law of a Gaussian random variable with zero mean and unit variance).

Theorem 1.1 Fix an integer n > 2 and a sequence {fk}k>1 ⊂ H⊙n such that

lim
k→∞

n!‖fk‖2
H⊗n = lim

k→∞
E
[
In(fk)

2
]

= 1. (1.2)

Then, the following three conditions are equivalent:

(i) limk→∞ E[In(fk)
4] = 3;

(ii) for every p = 1, . . . , n − 1, limk→∞ ‖fk ⊗p fk‖H⊗2(n−p) = 0;

(iii) as k → ∞, the sequence {In(fk)}k>1 converges in distribution to N ∼ N (0, 1).

Theorem 1.1 is proved in Nualart and Peccati (2005) by means of a stochastic calculus result,
known as the Dambis, Dubins and Schwarz Theorem (see e.g. Revuz and Yor (1999, Ch. V)).
In particular, Theorem 1.1 implies that the convergence in distribution of a sequence of multiple
stochastic integrals towards a Gaussian random variable is completely determined by the asymp-
totic behavior of their second and fourth moments. As such, Theorem 1.1 can be seen as a drastic
simplification of the classic “method of moments and diagrams” (see for instance the previously
quoted works by Breuer, Major, Giriaitis, Surgailis, Chambers and Slud). In a subsequent pa-
per, Peccati and Tudor (2005) proved a multidimensional version of Theorem 1.1 (see Theorem
5.1 below for a precise statement). Thanks to the chaotic representation property of Gaussian
processes, this result has paved the way for the derivation of CLTs involving sequences of general
functionals of X (not necessarily with the form of a multiple stochastic integral). Since then, the
results by Nualart and Peccati (2005) and Peccati and Tudor (2005) have been applied to differ-
ent frameworks, such as: p-variations of fractional stochastic integrals (Corcuera et al. (2006)),
quadratic functionals of bivariate Gaussian processes (Deheuvels et al. (2006)), self-intersection
local times of fractional Brownian motion (Hu and Nualart (2006)), approximation schemes for
scalar fractional differential equations (Neuenkirch and Nourdin (2007)), high-frequency CLTs
for random fields on homogeneous spaces (Marinucci and Peccati (2007a,b) and Peccati (2007)),
needlets analysis on the sphere (Baldi et al. (2007)), and estimation of self-similarity orders (Tu-
dor and Viens (2007)). In Peccati and Taqqu (2006) one can find some generalizations of Theorem
1.1 to the framework of the stable convergence towards mixtures of Gaussian random variables.
The recent paper by Nualart and Ortiz-Latorre (2007) contains a crucial methodological break-
through, showing that one can prove Theorem 1.1 (as well as its multidimensional extensions) by
using exclusively results from Malliavin calculus, such as integration by parts formulae and the
duality properties of Malliavin derivatives and Skorohod integral operators. In particular, Nu-
alart and Ortiz-Latorre prove that, for every n > 2 and for every sequence {In(fk)}k>1 satisfying
(1.2), either one of conditions (i)-(iii) in Theorem 1.1 is equivalent to the following: as k → ∞,

‖D[In(fk)]‖2
H −→ n in L2, (1.3)
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where D is the usual Malliavin derivative operator (see Section 2).

The principal aim of this paper is to prove several non-central extensions of Theorem 1.1.
Our main result is the following, which can be seen as a further simplification of the method of
moments and diagrams, as applied to the framework of a non-Gaussian limit law. It should be
compared with other non-central limit theorems for non-linear functionals of Gaussian fields, such
as the ones proved by Taqqu (1975, 1979), Dobrushin and Major (1979), Fox and Taqqu (1985)
and Terrin and Taqqu (1990); see also the survey by Surgailis (2003b) for further references in
this direction.

Theorem 1.2 Let the previous notation prevail, fix ν > 0 and let F (ν) be a real-valued random
variable such that

E
(
eiλF (ν)

)
=

(
e−iλ

√
1 − 2iλ

)ν

, λ ∈ R. (1.4)

Fix an even integer n > 2, and define

cn :=
1

(n/2)!
( n−1
n/2−1

)2 =
4

(n/2)!
( n
n/2

)2 . (1.5)

Then, for any sequence {fk}k>1 ⊂ H⊙n verifying

lim
k→∞

n!‖fk‖2
H⊗n = lim

k→∞
E
[
In(fk)

2
]

= 2ν, (1.6)

the following six conditions are equivalent:

(i) limk→∞ E[In(fk)
3] = E[F (ν)3] = 8ν and limk→∞ E[In(fk)

4] = E[F (ν)4] = 48ν + 12ν2;

(ii) limk→∞ E[In(fk)
4] − 12E[In(fk)

3] = 12ν2 − 48ν;

(iii) limk→∞ ‖fk⊗̃n/2fk − cn × fk‖H⊗n = 0 and limk→∞ ‖fk⊗̃pfk‖H⊗2(n−p) = 0, for every
p = 1, ..., n − 1 such that p 6= n/2;

(iv) limk→∞ ‖fk⊗̃n/2fk − cn × fk‖H⊗n = 0 and limk→∞ ‖fk ⊗p fk‖H⊗2(n−p) = 0, for every
p = 1, ..., n − 1 such that p 6= n/2;

(v) as k → ∞, ‖D[In(fk)]‖2
H − 2nIn(fk) −→ 2nν in L2, where D is the Malliavin derivative

operator;

(vi) as k → ∞, the sequence {In(fk)}k>1 converges in distribution to F (ν).

Remark 1.3 1. The limit random variable F (ν) appearing in formula (1.4) is such that

F (ν)
Law
= 2G(ν/2) − ν, where G(ν/2) has a Gamma law with parameter ν/2, that is,

G(ν/2) is a (a.s. strictly positive) random variable with density

g(x) =
x

ν
2
−1e−x

Γ(ν/2)
1(0,∞)(x),

where Γ is the usual Gamma function. Note that the following elementary relations have
been implicitly used:

E(F (ν)) = 0, E(F (ν)2) = 2ν, E(F (ν)3) = 8ν, E(F (ν)4) = 48ν + 12ν2. (1.7)
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2. When ν > 1 is an integer, then F (ν) has a centered χ2 law with ν degrees of freedom. That
is,

F (ν)
Law
=
∑ν

i=1(N
2
i − 1), (1.8)

where (N1, ..., Nν) is a ν-dimensional vector of i.i.d. N (0, 1) random variables.

3. When n > 1 is an odd integer, there does not exist any sequence {In(fk)}k>1, with
{fk}k>1 ⊂ H⊙n, such that In(fk) has bounded variances and In(fk) converges in distri-
bution to F (ν) as k → ∞. This is a consequence of the fact that any multiple integral of
odd order has a third moment equal to zero, whereas E(F (ν)3) = 8ν > 0.

4. The only difference between point (iii) and point (iv) of the above statement is the sym-
metrization of the contractions of order p 6= n/2. We will see that one cannot dispense
with the symmetrization of the contraction of order n/2. Note also that (iii) and (iv) do
not depend on ν; this means that, when applying either one of conditions (iii) and (iv), the
dependence on ν is completely encoded by the normalization assumption (1.6).

5. In Section 4 we will specialize Theorem 1.2 to the case of sequences belonging to the second
chaos of X. In particular, we will show (see Corollary 4.3) that Theorem 1.2 yields the

following implication: if F is a random variable in the second chaos of X and if F
Law
=

2G(ν/2)− ν with ν > 0, then necessarily ν is an integer, and therefore F has a centered χ2

distribution with ν degrees of freedom. This characterization should be compared with the
well-known fact that a chaos of order > 3 does not contain any centered Gamma random
variable. See e.g. Janson (1997, Ch. VI), as well as Corollary 5.6 below. The reader is also
referred to Neveu (1968) and Dellacherie et al. (1992) for further characterizations of the
Wiener-Itô chaoses associated with general Gaussian processes.

6. In Proposition 3.2 we will use Theorem 1.1 in order to provide simple examples of sequences
{In(fk)}k>1 verifying both (1.6) and either one of the equivalent conditions (i)–(vi) of
Theorem 1.2, for a given even integer n > 4 and a given integer ν > 1.

7. As shown in Section 5, Theorem 1.2 admits several multidimensional extensions, that can
be used to obtain weak convergence results towards more general laws in the second Wiener
chaos of X.

Before going into details, we shall provide a short outline of the techniques used in the proof
of Theorem 1.2. We will prove the following implications

(vi) → (i) → (ii) → (iii) ↔ (iv) → (v) → (vi).

The double implication (vi) → (i) → (ii) is trivial. The implication (ii) → (iii) is obtained by
combining a standard version of the multiplication formula between multiple integrals with a
result based on the integration by parts formulae of Malliavin calculus (see Lemma 2.1 below).
The proof of (iii) ↔ (iv) is purely combinatorial, whereas that of (iv) → (v) relies once again on
multiplication formulae. Finally, to show (v) → (vi) we will adopt an approach similar to the one
by Nualart and Ortiz-Latorre (2007). Our argument goes as follows. Let us first observe that a
sequence of random variables {In(fk)}k>1 verifying (1.6) is tight and therefore, by Prokhorov’s
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Theorem, it is relatively compact. As a consequence, to show the implication (v) → (vi) it is
sufficient to prove that any subsequence {In(fk′)}, converging in distribution to some random

variable F∞, must be necessarily such that F∞
Law
= F (ν). This last property will be established

by means of Malliavin calculus, by proving that condition (v) implies that the characteristic
function φ∞ of F∞ always solves the linear differential equation

(1 − 2iλ)φ′
∞(λ) + 2λν φ∞(λ) = 0, λ ∈ R, φ∞(0) = 1. (1.9)

Since the solution of (1.9) is given by the application λ 7→ E{eiλF (ν)}, the desired conclusion will
follow immediately.

The paper is organized as follows. In Section 2 we present some preliminary results about
Malliavin calculus and second chaos random variables. Section 3 contains the proof of Theorem
1.2. Section 4 focuses on sequences of random variables in the second chaos of X. Section 5 is
devoted to multidimensional results, examples and further refinements.

2 Preliminaries

2.1 Wiener chaos and Malliavin calculus

The reader is referred to the monograph by Nualart (2006) for any unexplained notion or result
discussed in this section. Let H be a real separable Hilbert space. As in formula (1.1), we denote
by X an isonormal Gaussian process over H. Recall that, by definition, X is a collection of
centered and jointly Gaussian random variables indexed by the elements of H, defined on some
probability space (Ω,F , P ) and such that, for every h, g ∈ H,

E
[
X(h)X(g)

]
= 〈h, g〉H. (2.10)

We will systematically assume that F is generated by X. It is well-known (see e.g. Nualart
(2006, Ch. 1)) that any random variable F belonging to L2(Ω,F , P ) admits the following chaotic
expansion:

F =

∞∑

n=0

In(fn), (2.11)

where I0(f0) := E[F ], the series converges in L2 and the kernels fn ∈ H⊙n, n > 1, are uniquely
determined by F . Observe that a random variable of the type In(f), f ∈ H⊙n, has finite moments
of all orders (see e.g. Janson (1997, Ch. VI)). As already pointed out, in the particular case where
H = L2(A,A , µ), where (A,A ) is a measurable space and µ is a σ-finite and non-atomic measure,
one has that H⊙n = L2

s(A
n,A ⊗n, µ⊗n) is the space of symmetric and square integrable functions

on An. Moreover, for every f ∈ H⊙n, In(f) coincides with the multiple Wiener-Itô integral (of
order n) of f with respect to X (see again Nualart (2006, Ch. 1)). For every n > 0, we write Jn

to indicate the orthogonal projection operator on the nth Wiener chaos associated with X. In
particular, if F ∈ L2(Ω,F , P ) is as in (2.11), then JnF = In(fn) for every n > 0.
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Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙n and g ∈ H⊙m, for
every p = 0, . . . , n ∧ m, the pth contraction of f and g is the element of H⊗(n+m−2p) defined as

f ⊗p g =
∞∑

i1,...,ip=1

〈f, ei1 ⊗ . . . ⊗ eip〉H⊗p ⊗ 〈g, ei1 ⊗ . . . ⊗ eip〉H⊗p . (2.12)

Note that, in the particular case where H = L2(A,A , µ) (with µ non-atomic), one has that

f ⊗p g =

∫

Ap

f(t1, . . . , tn−p, s1, . . . , sp) g(tn−p+1, . . . , tm+n−2p, s1, . . . , sp)dµ(s1) . . . dµ(sp).

Moreover, f⊗0g = f⊗g equals the tensor product of f and g while, for n = m, f⊗ng = 〈f, g〉H⊗n .
Note that, in general (and except for trivial cases), the contraction f ⊗p g is not a symmetric
element of H⊗(n+m−2p). As indicated in the Introduction, the canonical symmetrization of f ⊗p g
is written f⊗̃pg.

Let S be the set of all smooth cylindrical random variables of the form

F = g
(
X(φ1), . . . ,X(φn)

)

where n > 1, g : R
n → R is a smooth function with compact support and φi ∈ H. The Malliavin

derivative of F with respect to X is the element of L2(Ω,H) defined as

DF =

n∑

i=1

∂g

∂xi

(
X(φ1), . . . ,X(φn)

)
φi.

In particular, DX(h) = h for every h ∈ H. By iteration, one can define the mth derivative DmF
(which is an element of L2(Ω,H⊗m)) for every m > 2.

As usual, for m ≥ 1, D
m,2 denotes the closure of S with respect to the norm ‖ · ‖m,2, defined

by the relation

‖F‖2
m,2 = E

[
F 2
]
+

m∑

i=1

E
[
‖DmF‖2

H⊗i

]
.

The Malliavin derivative D verifies the following chain rule: if ϕ : R
n → R is in C 1

b and if
{Fi}i=1,...,n is a vector of elements of D

1,2, then ϕ(F1, . . . , Fn) ∈ D
1,2 and

D ϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

We denote by δ the adjoint of the operator D, also called the divergence operator. A random
element u ∈ L2(Ω,H) belongs to the domain of δ, noted Domδ, if, and only if, it verifies

|E〈DF, u〉H| ≤ cu ‖F‖L2 for any F ∈ S ,

where cu is a constant depending uniquely on u. If u ∈ Domδ, then the random variable δ(u) is
defined by the duality relationship (called “integration by parts formula”):

E(Fδ(u)) = E〈DF, u〉H, (2.13)
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which holds for every F ∈ D
1,2. We will moreover need the following property: for every F ∈ D

1,2

and every u ∈ Domδ such that Fu and Fδ(u) + 〈DF, u〉H are square integrable, one has that
Fu ∈ Domδ and

δ(Fu) = Fδ(u) − 〈DF, u〉H. (2.14)

The operator L is defined through the projection operators {Jn}n>0 as L =
∑∞

n=0 −nJn,
and is called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. It verifies the
following crucial property: a random variable F is an element of DomL (= D

2,2) if, and only if,
F ∈ DomδD (i.e. F ∈ D

1,2 and DF ∈ Domδ), and in this case:

δDF = −LF.

Note that a random variable F as in (2.11) is in D
1,2 if, and only if,

∞∑

n=1

n‖fn‖2
H⊙n < ∞,

and, in this case, E
[
‖DF‖2

H

]
=
∑

n≥1 n‖fn‖2
H⊙n . Of course, if H = L2(A,A , µ) (with µ non-

atomic), then the derivative of a random variable F as in (2.11) can be identified with the
element of L2(A × Ω) given by

DaF =
∞∑

n=1

nIn−1

(
fn(·, a)

)
, a ∈ A. (2.15)

The following Lemma will be used in Section 3.

Lemma 2.1 Fix an integer n > 2 and set F = In(f), with f ∈ H⊙n. Then, for every integer
s > 0, we have

E
(
F s‖DF‖2

H

)
=

n

s + 1
E
(
F s+2

)
.

Proof. We can write:

E
(
F s‖DF‖2

H

)
= E

(
F s〈DF,DF 〉H

)
=

1

s + 1
E
(
〈DF,D(F s+1)〉H

)

=
1

s + 1
E
(
δDF × F s+1

)
by integration by parts (2.13)

=
n

s + 1
E
(
F s+2

)
by the property δD = −L (which implies δDF = nF ).

2
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2.2 Second chaos random variables

In this subsection we focus on elements of the second chaos of X, that is, random variables of the
type F = I2 (f), with f ∈ H⊙2. These results will play an important role in Section 4. Observe

that, if f = h⊗h, where h ∈ H is such that ‖h‖H = 1, then I2 (f) = I1 (h)2 − 1
Law
= N2 − 1, where

N ∼ N (0, 1). To every kernel f ∈ H⊙2 we associate two objects:

1. The Hilbert-Schmidt operator

Hf : H 7→ H; g 7→ f ⊗1 g. (2.16)

In other words, Hf transforms an element g of H into the contraction Hf g = f ⊗1 g ∈ H

(as defined in formula (2.12)). We write {λf,j}j>1 and {ef,j}j>1, respectively, to indicate

the eigenvalues of Hf and the corresponding eigenvectors (forming an orthonormal system
in H).

2. The sequence of auxiliary kernels

{
f ⊗(p)

1 f : p > 1
}
⊂ H

⊙2 (2.17)

defined as follows: f ⊗(1)
1 f = f , and, for p > 2,

f ⊗(p)
1 f =

(
f ⊗(p−1)

1 f
)
⊗1 f . (2.18)

In particular, with the notation of the previous section, f ⊗(2)
1 f = f ⊗1 f .

The relations between the objects introduced in (2.16) and (2.18) are explained in the next
proposition (the proof is standard and omitted, see e.g. Section 6.2 in Hirsch and Lacombe
(1999)).

Proposition 2.2 Let f ∈ H⊙2.

(1) The series
∑∞

j=1 λp
f,j converges for every p > 2, and f admits the expansion

f =

∞∑

j=1

λf,j ef,j ⊗ ef,j , (2.19)

where the convergence takes place in H⊙2.

(2) For p > 2, one has the relations

Tr(Hp
f ) = 〈f ⊗(p−1)

1 f, f〉H⊙2 =
∞∑

j=1

λp
f,j , (2.20)

where Tr(Hp
f ) stands for the trace of the pth power of Hf .
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In the following statement we collect some facts concerning the law of a real-valued random
variable of the type I2 (f). We recall that, given a random variable F such that E |F |p < ∞,
∀p > 1, the sequence of the cumulants of F , written {κp (F )}p>1, is defined by the relation (in
the sense of formal power series):

ln E(eiµF ) =
∞∑

p=1

(iµ)p

p!
κp (F ) , µ ∈ R, (2.21)

(see e.g. Shiryayev (1984), or Rota and Shen (2000)). For instance, κ1 is the mean, and κ2 is the
variance.

Proposition 2.3 Let F = I2 (f), with f ∈ H⊙2.

(1) The random variable F admits some exponential moments, hence the law of F is determined
by its moments or, equivalently, by its cumulants.

(2) The following equality holds:

F =

∞∑

j=1

λf,j

(
N2

j − 1
)
, (2.22)

where {Nj}j>1 is a sequence of i.i.d. N (0, 1) random variables, and the series converges

in L2.

(3) For every p > 2,

κp (F ) = 2p−1 (p − 1)! × Tr(Hp
f ) = 2p−1 (p − 1)!

∞∑

j=1

λp
f,j. (2.23)

Proof. Part (1) of the statement is proved e.g. in Slud (1993). Relation (2.22) is an
immediate consequence of (2.19), of the identity I2 (ef,j ⊗ ef,j) = I1 (ef,j)

2 − 1, and of the fact
that the {ef,j} are orthonormal (implying that the sequence {I1 (ef,j)}j>1 is i.i.d. N (0, 1)). To
prove (2.23), first observe that (2.22) implies that

E
(
eiµF

)
=

∞∏

j=1

e−iµλf,j

√
1 − 2iµλf,j

.

Thus, standard computations give

ln E
(
eiµF

)
= −iµ

∞∑

j=1

λf,j −
1

2

∞∑

j=1

ln (1 − 2iµλf,j)

=
1

2

∞∑

p=2

(2iµ)p

p

∞∑

j=1

λp
f,j =

∞∑

p=2

2p−1 (iµ)p

p

∞∑

j=1

λp
f,j. (2.24)

9



We can now identify the coefficients in the series (2.21) and (2.24), so to deduce that κ1 (F ) =
E (F ) = 0, and

2p−1

p

∞∑

j=1

λp
f,j =

κp (F )

p!
,

thus obtaining the desired conclusion. �

Proposition 2.3(2) is also proved in Janson (1997, Ch. VI, Theorem 6.1). In particular,
Proposition 2.3(2) shows that centered χ2 random variables are the basic building blocks of any
element of the second Wiener chaos of X (see also Neveu (1968, Ch. VII)). Moreover, by using
(2.20) it is easily seen that (2.23) coincides with the usual “diagram formulae” for the cumulants
of double Wiener-Itô integrals: in particular, for p > 3 the coefficient 2p−1(p − 1)! counts the
number of non-flat, Gaussian and connected diagrams over the partition of {1, . . . , 2p} given by
{{1, 2}, {3, 4}, . . . , {2p − 1, 2p}} (see Surgailis (2003a)). An alternate (combinatorial) proof of
(2.23) can be found in Fox and Taqqu (1985). As a particular case, (2.23) gives immediately
that, if N ∼ N (0, 1), then

κp(N
2 − 1) = 2p−1(p − 1)!, p > 2. (2.25)

Moreover, since the random variable F (1) (as defined in (1.4)) is such that F (1)
Law
= N2 − 1, one

can combine (2.21) and (2.25) to deduce that, for every ν > 0,

κp(F (ν)) = 2p−1(p − 1)! × ν, p > 2. (2.26)

3 Proof of Theorem 1.2

Throughout this section, n > 2 is an even integer, and {In(fk)}k>1 is a sequence of multiple
stochastic Wiener-Itô integrals of order n, such that condition (1.6) is satisfied for some ν > 0.

3.1 Proof of (vi) → (i) → (ii)

Since the sequence {In(fk)}k>1 lives inside the nth chaos of X, and since condition (1.6) is in
order, we deduce that, for every p > 0,

sup
k>1

E [|In (fk)|p] < ∞ (3.27)

(see e.g. Janson (1997, Ch. V)). This implies immediately that, if {In(fk)}k>1 converges in
distribution to F (ν), then, for every integer p > 3, E(In(fk)

p) → E(F (ν)p). The implications
(vi) → (i) → (ii) are therefore a direct consequence of (1.7).

3.2 Proof of (ii) → (iii)

Suppose that (ii) holds. We start by observing that, due to the multiplication formulae between
stochastic integrals (see Proposition 1.1.3 in Nualart (2006)), we have

In(fk)
2 = n! ‖fk‖2

H⊗n +

n−1∑

p=0

p!

(
n

p

)2

I2(n−p)

(
fk⊗̃pfk

)
, (3.28)

10



and

‖D[In(fk)]‖2
H = nn! ‖fk‖2

H⊗n + n2
n−1∑

p=1

(p − 1)!

(
n − 1

p − 1

)2

I2(n−p)

(
fk⊗̃pfk

)
(3.29)

(see also Nualart and Ortiz-Latorre (2007, Lemma 2)). Relation (3.28) gives immediately that

E
[
In(fk)

3
]

= n! (n/2)!

(
n

n/2

)2

〈fk, fk⊗̃n/2fk〉H⊗n . (3.30)

On the other hand, we deduce from Lemma 2.1 (specialized to the case s = 2) that

E
[
In(fk)

4
]

=
3

n
E
[
In(fk)

2 ‖D[In(fk)]‖2
H

]
, (3.31)

and therefore, thanks to (3.28)–(3.29),

E
[
In(fk)

4
]

= 3
[
n! ‖fk‖2

H⊗n

]2
+ (3.32)

3

n

n−1∑

p=1

n2 (p − 1)!

(
n − 1

p − 1

)2

p!

(
n

p

)2

(2n − 2p)!
∥∥fk⊗̃pfk

∥∥2

H⊗2(n−p) .

In what follows, given two (deterministic) sequences a (k) and b (k), we write a (k) ≈ b (k) when-
ever a (k)−b (k) → 0. Since (ii) and (1.6) hold, we deduce from (3.30)–(3.32) and condition (1.6),
that

E
[
In(fk)

4
]
− 12E

[
In(fk)

3
]

(3.33)

≈ [12ν2 − 48ν] +
3

n

∑

p=1,...,n−1
p 6=n/2

n2 (p − 1)!

(
n − 1

p − 1

)2

p!

(
n

p

)2

(2n − 2p)!
∥∥fk⊗̃pfk

∥∥2

H⊗2(n−p)

+24n! ‖fk‖2
H⊗n + 3n (n/2 − 1)!

(
n − 1

n/2 − 1

)2

(n/2)!

(
n

n/2

)2

n!
∥∥fk⊗̃n/2fk

∥∥2

H⊗n

−12n! (n/2)!

(
n

n/2

)2

〈fk, fk⊗̃n/2fk〉H⊗n .

Elementary simplifications give

24n! ‖fk‖2
H⊗n + 3n (n/2 − 1)!

(
n − 1

n/2 − 1

)2

(n/2)!

(
n

n/2

)2

n!
∥∥fk⊗̃n/2fk

∥∥2

H⊗n

−12n! (n/2)!

(
n

n/2

)2

〈fk, fk⊗̃n/2fk〉H⊗n

= 24n! ‖fk‖2
H⊗n +

3

2
(n!)2

(
n

n/2

)3 ∥∥fk⊗̃n/2fk

∥∥2

H⊗n−12n! (n/2)!

(
n

n/2

)2

〈fk, fk⊗̃n/2fk〉H⊗n

=

∥∥∥∥∥2
√

n!
√

6fk −
√

3

2

(n!)2
√

n!

[(n/2)!]3
fk⊗̃n/2fk

∥∥∥∥∥

2

H⊗n

=
3

2

(n!)5

[(n/2)!]6
∥∥fk⊗̃n/2fk − fk × cn

∥∥2

H⊗n ,

where cn is defined in (1.5). This yields the desired conclusion.
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3.3 Proof of (iii) ↔ (iv)

We can assume that n > 4. We shall introduce some further notation. Fix an integer M > 1,
and denote by S2M the group of the (2M)! permutations of the set {1, ..., 2M}. We write π0 to
indicate the identity (trivial) permutation. Given a set A and a vector a = (a1, ..., a2M ) ∈ A2M ,
for every π ∈ S2M we denote by aπ = (aπ(1), ..., aπ(2M)) the canonical action of π on a. Note
that, with this notation, one has a = aπ0. For every r = 0, ....,M and for π, σ ∈ S2M , we write

π ∼r σ

whenever the set {π (1) , ...., π (M)} ∩ {σ (1) , ...., σ (M)} contains exactly r elements. For every

π ∈ S2M , there are exactly M !2
(M

r

)2
permutations σ such that π ∼r σ. The double implication

(iii) ↔ (iv) in the statement of Theorem 1.2 is a consequence of the following result.

Proposition 3.1 Let n > 4 be an even integer, and let {fk} ⊂ H⊙n be a sequence of symmetric
kernels. Then, the following two conditions are equivalent:

(A)
∥∥fk⊗̃pfk

∥∥
H⊗2(n−p) → 0, p = 1, ..., n − 1, p 6= n/2;

(B) ‖fk ⊗p fk‖H⊗2(n−p) → 0, p = 1, ..., n − 1, p 6= n/2.

Proof. Since ‖fk ⊗p fk‖H⊗2(n−p) >
∥∥fk⊗̃pfk

∥∥
H⊗2(n−p) , the implication (B) ⇒ (A) is trivial.

Moreover, since

‖fk ⊗p fk‖H⊗2(n−p) = ‖fk ⊗n−p fk‖H⊗2p (3.34)

for every p = 1, ..., n − 1, to show that (A) ⇒ (B) it is sufficient to prove that (A) implies that,
∀p = 1, ..., n

2 − 1,

‖fk ⊗p fk‖H⊗2(n−p) → 0. (3.35)

Thanks to (3.34), and since fk⊗n−1 fk = fk⊗̃n−1fk, we immediately deduce that (A) implies that
(3.35) holds for p = 1. This proves the implication (A) ⇒ (B) in the case n = 4, so that from
now on we can suppose that n > 6. The rest of the proof is done by recurrence. In particular,
we shall show that, for every q = 2, ..., n

2 − 1, the following implication holds: if (A) is true and
if (3.35) holds for p = 1, ..., q − 1, then

‖fk ⊗q fk‖H⊗2(n−q) = ‖fk ⊗n−q fk‖H⊗2q → 0.

Now fix q = 2, ..., n
2 −1, suppose (A) is verified, and assume that (3.35) takes place for p = 1, ..., q−

1. To simplify the discussion, we shall suppose (without loss of generality) that H = L2 (A,µ),
where µ is σ-finite and non-atomic. Start by writing

∥∥fk⊗̃n−qfk

∥∥2

H⊗2q = 〈fk ⊗n−q fk, fk⊗̃n−qfk〉H⊗2q

=
1

(2q)!

∑

π∈S2q

∫

A2q

fk ⊗n−q fk (aπ0) × fk ⊗n−q fk (aπ) µ2q (da) .

Now, if π ∼0 π0 or π ∼q π0, one has that
∫

A2q

fk ⊗n−q fk (aπ0) × fk ⊗n−q fk (aπ)µ2q (da) = ‖fk ⊗n−q fk‖2
H⊗2q .
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On the other hand, if π ∼p π0 for some p = 1, ..., q − 1, then
∫

A2q

fk ⊗n−q fk (aπ0) × fk ⊗n−q fk (aπ) µ2q (da) (3.36)

=

∫

A2(n−p)
fk ⊗p fk (aπ[2(n−p)]) fk ⊗p fk (aσ[2(n−p)])µ2(n−p) (da) , (3.37)

where
(
π[2(n−p)], σ[2(n−p)]

)
⊂ S2(n−p) is any pair of permutations of {1, ..., 2 (n − p)} such that

π[2(n−p)] ∼(q−p) σ[2(n−p)].

Now, thanks to the recurrence assumption, and by Cauchy-Schwarz, we deduce that the expression
in (3.37) converges to zero as k → ∞, thus yielding that

0 = lim
k→∞

∥∥fk⊗̃n−qfk

∥∥2

H⊗2q = lim
k→∞

2 q!2

(2q)!
‖fk ⊗n−q fk‖2

H⊗2q

= lim
k→∞

2(2q
q

) ‖fk ⊗q fk‖2
H⊗2(n−q) .

This concludes the proof.
2

3.4 Proof of (iv) → (v)

Suppose that (iv) holds. By using (3.29), we infer that E
[
‖D[In(fk)]‖2

H

]
= nn!‖fk‖2

H⊗n → 2nν.
Moreover, by taking into account the orthogonality between multiple stochastic integrals of dif-
ferent orders and by using the multiplication formulae for multiple Wiener-Itô integrals, we have

E
[
In(fk)‖D[In(fk)]‖2

H

]
= n2(n/2 − 1)!

(
n − 1

n/2 − 1

)2

n!〈fk⊗̃n/2fk, fk〉H⊗n

and

E
[
‖D[In(fk)]‖4

H

]
= n4

n∑

p=1

(p − 1)!2
(

n − 1

p − 1

)4

(2n − 2p)!‖fk⊗̃pfk‖2
H⊗2(n−p) .

Now define cn according to (1.5), and observe that (iv) and (1.6) imply that

lim
k→∞

‖fk⊗̃n
2
fk‖2

H⊗n = lim
k→∞

‖cn fk‖2
H⊗n = (2ν c2

n)/n! and lim
k→∞

〈fk⊗̃n
2
fk, fk〉H⊗n = (2νcn)/n!.

Thus, under (iv) one has that, as k → ∞,

E
(
‖D[In(fk)]‖2 − 2nIn(fk) − 2nν

)2

=E
[
‖D[In(fk)]‖4

]
−4nE[In(fk)‖D[In(fk)]‖2]

+4n2E
[
In(fk)

2
]
+ 4n2ν2−4nνE[‖D[In(fk)]‖2]

−→4ν2n2+2 c2
nν n4(n/2 − 1)!2

(
n − 1

n/2 − 1

)4

−8 cnν n3(n/2 − 1)!

(
n − 1

n/2 − 1

)2

+8n2ν + 4n2ν2−8n2ν2 = 0.
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3.5 Proof of (v) → (vi)

Now we assume that (v) holds. We start by observing that condition (1.6) implies that the
sequence of the laws of the random variables {In(fk)}k>1 is tight (since it is bounded in L2).
By Prokhorov’s Theorem, we deduce that {In(fk)}k>1 is relatively compact so that, to prove
our claim, it is sufficient to show that any subsequence {In(fk′)} converging in distribution to

some random variable F∞ is necessarily such that F∞
Law
= F (ν), where the law of F (ν) is defined

by formula (1.4). From now on, and only for notational convenience, we assume that {In(fk)}
itself converges to F∞. Also, for any k > 1, we let φk(λ) = E

(
eiλIn(fk)

)
denote the characteristic

function of In(fk), so that φ′
k(λ) = iE

(
In(fk) eiλIn(fk)

)
. On the one hand, by the Continuous

Mapping Theorem, we have that

In(fk)e
iλIn(fk) Law−→F∞eiλF∞ .

Since boundedness in L2 implies convergence of the expectations, we also deduce that φ′
k(λ) →

φ′
∞(λ) for any λ ∈ R. On the other hand, we can write

φ′
k(λ) =

i

n
E
(
δD[In(fk)] × eiλIn(fk)

)
since δD = −L,

=
i

n
E
(
〈D[In(fk)],D(eiλIn(fk))〉H

)
by integration by parts (2.13),

= −λ

n
E
(
eiλIn(fk)‖D[In(fk)]‖2

H

)
.

Since (v) is in order, we deduce that

φ′
k(λ) + 2λE

(
eiλIn(fk)In(fk)

)
+ 2λν E

(
eiλIn(fk)

)
→ 0.

As a consequence, φ∞ must necessarily solve the linear differential equation (1.9), yielding

φ∞(λ) =

(
e−iλ

√
1 − i2λ

)ν

= E
(
eiλF (ν)

)
, λ ∈ R.

This concludes the proof of Theorem 1.2.

3.6 Further remarks

(I) When ν > 1 is an integer, one can use Theorem 1.1 in order to obtain examples of sequences
of multiple integrals {In(fk)}k>1, where n > 4 is even, satisfying either one of conditions (i)–(vi)
in Theorem 1.2. This fact is summarized in the following statement.

Proposition 3.2 Let m > 2 and ν > 1 be integers and, for i = 1, ..., ν, let {gi
k}k>1 ⊂ H⊙m, be

a sequence of kernels such that: (i) as k → ∞, m!‖gi
k‖2

H⊗m → 1, (ii) {Im(gi
k)}k>1 converges in

distribution to N ∼ N (0, 1), and (iii) for every fixed k, the random variables Im(gi
k), i = 1, ..., ν,

are mutually independent (of course, condition (iii) is immaterial when ν = 1). Then, the

sequence {I2m(fk)}k>1, where fk =
∑ν

i=1 gi
k⊗̃gi

k ∈ H⊙2m, converges in distribution to F (ν)
Law
=∑ν

i=1(N
2
i − 1), where (N1, ..., Nν) is a vector of i.i.d. N (0, 1) random variables.
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Proof. Since Im(gi
k) converges in law to N , we deduce from Theorem 1.1 that, for every p =

1, . . . ,m − 1, limk→∞ ‖gi
k ⊗p gi

k‖H⊗2(m−p) = 0. The conclusion is once again a consequence of the
multiplication formulae for multiple Wiener-Itô integrals, yielding

ν∑

i=1

Im(gi
k)

2 =
ν∑

i=1

m!
∥∥gi

k

∥∥2

H⊗m +
ν∑

i=1

m−1∑

p=1

p!

(
m

p

)2

I2(m−p)

(
gi
k⊗̃pg

i
k

)
+

ν∑

i=1

I2m(gi
k⊗̃gi

k).

Since
∑ν

i=1 I2m(gi
k⊗̃gi

k) = I2m(fk) (by linearity) and ‖gi
k⊗̃pg

i
k‖H⊗2(m−p) 6 ‖gi

k ⊗p gi
k‖H⊗2(m−p) , the

conclusion is immediately obtained.
2

Remark 3.3 When k is fixed, a necessary and sufficient condition implying that the variables
Im(gi

k), i = 1, ..., ν, are mutually independent is that gi
k⊗1gj

k = 0 for every i 6= j. See e.g. Üstünel
and Zakai (1989).

(II) For n > 4, it is not possible to replace the condition limk→∞ ‖fk⊗̃n/2fk − cn × fk‖H⊗n = 0
in Points (iii) and (iv) of Theorem 1.2 with its “non-symmetrized” version

lim
k→∞

‖fk ⊗n/2 fk − cn × fk‖H⊗n = 0. (3.38)

Suppose indeed that n > 4 and that the kernels {fk}k>1 verify (3.38), and moreover

n! ‖fk‖2
H⊗n → 2 (3.39)

‖fk ⊗p fk‖H⊗2(n−p) → 0, for p = 1, ..., n − 1 with p 6= n/2. (3.40)

Then, by reasoning as in Section 3.3, it is not difficult to show that conditions (3.38)–(3.40)
necessarily imply that

2
∥∥fk ⊗n/2 fk

∥∥
H⊗n −

(
n

n/2

)∥∥fk⊗̃n/2fk

∥∥
H⊗n → 0,

which is absurd, since one would also obtain
∥∥fk ⊗n/2 fk

∥∥
H⊗n − cn ‖fk‖H⊗n → 0,

∥∥fk⊗̃n/2fk

∥∥
H⊗n

−cn ‖fk‖H⊗n → 0 and ‖fk‖H⊗n →
√

2ν/n!.

(III) Plainly, relation (3.32) holds for multiple integrals of any order n > 2 (with n not necessarily
even). Such an expression should be compared with the following formula, proved in Nualart and
Peccati (2005, p. 183): for every n > 2 and every f ∈ H⊙n,

E
[
In (f)4

]
= 3n!2 ‖f‖4

H⊗n +

n−1∑

p=1

n!4

p!2 (n − p)!2

[
‖f ⊗p f‖2

H⊗2(n−p) (3.41)

+

(
2n − 2p

n − p

)∥∥f⊗̃pf
∥∥2

H⊗2(n−p)

]
.

Note that it would be much more difficult to use (3.41) in order to prove the implication (ii)
→ (iii) of Theorem 1.2, since (3.41) involves the norm ‖f ⊗n/2 f‖H⊗n of the non-symmetrized
contraction f ⊗n/2 f .
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4 Second chaos sequences

In this section, we specialize the content of Theorem 1.2 to the case of sequences belonging to the
second Wiener chaos of X. The first result provides a further characterization of the non-central
convergence of the elements of the second chaos, based on the discussion contained in Section 2.2.

Theorem 4.1 Let {I2 (fk)}k>1, with fk ∈ H⊙2, be such that limk→∞ ‖fk‖2
H⊗2 = ν. Then, as

k → ∞, the six following conditions are equivalent:

(i) I2 (fk) converges in distribution to F (ν), as given by (1.4);

(ii) E[I2 (fk)
4] → 48ν + 12ν2, and E[I2 (fk)

3] → 8ν.

(iii) E[I2 (fk)
4] − 12E[I2 (fk)

3] → 12ν2 − 48ν;

(iv)
∥∥fk⊗̃1fk − fk

∥∥
H⊗2 = ‖fk ⊗1 fk − fk‖H⊗2 → 0;

(v)
∑∞

j=1(λfk,j − λ2
fk,j)

2 → 0, where, for k > 1, {λfk,j}j>1 stands for the sequence of the

eigenvalues of the operator Hfk
, as defined in formula (2.16);

(vi) for every p > 3,
∑∞

j=1 λp
fk,j → ν.

Proof. The equivalence of (i), (ii), (iii) and (iv) is a direct consequence of Theorem 1.2 and of
the fact that c2 = 1 (see formula (1.5)). To prove the equivalence of (iv) and (v), we use relation
(2.19) to deduce that

fk ⊗1 fk =

∞∑

j=1

λ2
fk,j efk ,j ⊗ efk,j,

where {efk ,j}j>1 is the sequence of the eigenvectors of Hfk
. It is therefore immediate that

‖fk ⊗1 fk − fk‖2
H⊗2 =

∞∑

j=1

(
λfk,j − λ2

fk,j

)2
, (4.42)

which yields the desired implication. We are left with the double implication (v) ↔ (vi). To prove
this, suppose first that (v) holds and observe that, by assumption,

∑∞
j=1 λ2

fk,j = ‖fk‖2
H⊗2 → ν.

The proof of (v) → (vi) can now be achieved by recurrence. Indeed, if
∑∞

j=1 λ2+m
fk,j → ν for some

m > 0, then
∣∣∣∣∣∣

∞∑

j=1

λ2+m+1
fk,j −

∞∑

j=1

λ2+m
fk,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

j=1

λm+1
fk,j

(
λ2

fk,j − λfk,j

)
∣∣∣∣∣∣

6

√√√√
∞∑

j=1

λ2m+2
fk,j

√√√√
∞∑

j=1

(
λ2

fk,j − λfk,j

)2
→ 0,

thus yielding that (iv) → (v). To see that (vi) → (v), just write

∞∑

j=1

(λfk ,j − λ2
fk,j)

2 =
∞∑

j=1

λ2
fk,j +

∞∑

j=1

λ4
fk,j − 2

∞∑

j=1

λ3
fk,j.
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2

A first consequence of Theorem 4.1 is the following simple characterization of centered χ2

random variables (with any number of degrees of freedom) in the second chaos of X.

Corollary 4.2 Fix an integer ν > 1. Let I2 (f), with f ∈ H⊙2, be such that E(I2 (f)2) =
2 ‖f‖2

H⊗2 = 2ν. Then, the following conditions are equivalent:

(i) I2 (f)
Law
= F (ν), where F (ν) has a centered χ2 distribution with ν degrees of freedom (see

(1.4));

(ii) E[I2 (f)4] − 12E[I2 (f)3] = 12ν2 − 48ν;

(iii) f = f ⊗1 f ;

(iv) there exists hi ∈ H, i = 1, ..., ν, such that ‖hi‖H = 1, 〈hi, hj〉H = 0 (i 6= j), and I2 (f) =∑ν
i=1 I2

(
hi ⊗ hi

)
=
∑ν

i=1(I1(h
i)2 − 1).

Proof. In view of the previous discussion, the only non-immediate implication is (iii) → (iv). To
prove this, we can use (4.42) to deduce that, if (iii) is verified, then, for every j > 1, λf,j = λ2

f,j .

Since
∑∞

j=1 λ2
f,j = ν by assumption, we deduce immediately that there exist indices j∗1 , ..., j∗ν such

that λf,j∗a = 1, for every a = 1, ..., ν, and λf,j = 0 for every j /∈ {j∗1 , ..., j∗ν}. The conclusion is
obtained by using formula (2.19).

2

For instance, Corollary 4.2 yields that two centered χ2 random variables in the second chaos
of X (even with a different number of degrees of freedom) are independent if, and only if, they
are non-correlated. Indeed, any two centered χ2 random variables F and G in the second chaos
of X have necessarily the form

F = I2

(
M∑

i=1

f i ⊗ f i

)
=

M∑

i=1

(I1(f
i)2 − 1) and G = I2




K∑

j=1

gj ⊗ gj


 =

K∑

j=1

(I1(g
j)2 − 1),

where M,K > 1 are integers. As a consequence,

E(FG) = 2

〈
M∑

i=1

f i ⊗ f i,

K∑

j=1

gj ⊗ gj

〉

H⊗2

= 2

M∑

i=1

K∑

j=1

〈
f i, gj

〉2
H

,

and the last sum is zero if, and only if, I1(f
i) and I1(g

j) are independent for every i, j such that
1 6 i 6 M and 1 6 j 6 K.

The next result, which is a consequence of Theorem 4.1, implies that any centered Gamma
random variable in the second chaos of X must necessarily be a multiple of a centered χ2.

Corollary 4.3 Let I2 (f), with f ∈ H⊙2, be such that E(I2 (f)2) = 2 ‖f‖2
H⊗2 = 2ν, for some

ν > 0. If I2 (f)
Law
= 2G(ν/2) − ν, where G(ν/2) is a Gamma random variable with parameter

ν/2, then necessarily ν is an integer, and I2 (f) has a χ2 distribution with ν degrees of freedom.
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Proof. By arguing as in the proof of Corollary 4.2, one sees immediately that the relation

I2 (f)
Law
= 2G(ν/2) − ν implies that, for every j > 1, λf,j = λ2

f,j , that is, λf,j is either 0 or 1.
Since, by assumption,

∞∑

j=1

λ2
f,j = ‖f‖2

H⊗2 = ν,

we deduce that ν must necessarily be an integer. The conclusion follows.
2

Further results on second chaos sequences are contained in the next section.

5 Multidimensional results

For the sake of completeness, we start by stating the following multidimensional generalization
of Theorem 1.1, proved in Peccati and Tudor (2005):

Theorem 5.1 For d > 2, fix d integers 1 6 n1 6 . . . 6 nd. Consider a sequence of random
vectors of the form

Fk =
(
In1(f

1
k ), . . . , Ind

(fd
k )
)

where f i
k ∈ H⊙ni . For every 1 6 i, j 6 d, assume that limk→∞ E

[
Inj

(f j
k)Ini

(f i
k)
]

= δij, where δij

is the Kronecker symbol. Then, the following two conditions are equivalent:

(i) as k → ∞, the sequence {Fk}k>1 converges in distribution to a standard centered Gaussian
vector Nd(0, Id) (Id is the d × d identity matrix),

(ii) for every j = 1, . . . , d, as k → ∞, the sequence {Inj
(f j

k)}k>1 converges in distribution to a
standard Gaussian random variable N (0, 1).

The content of Theorem 1.2 can be extanded to the multidimensional case, as shown in the
following statement. The proof is obtained by simply mimicking the arguments displayed in
Nualart and Ortiz-Latorre (2007, proof of Th. 7), and it is therefore omitted.

Theorem 5.2 Let r > 1 and s > 1 be integers, and fix r+s integers n1, . . . , nr, nr+1, . . . , nr+s > 1
such that nr+u is even and > 2 for every u = 1, ..., s. Let also ν1, ..., νs > 0 be strictly positive
real numbers. Consider a sequence of random vectors of the form

Ik =
(
In1(f

1
k ), . . . , Inr(f

r
k), Inr+1(f

r+1
k ), . . . , Inr+s

(f r+s
k ),

)

where f i
k ∈ H⊙ni, i = 1, ..., r+s. We suppose the following: (A) for every i, limk→∞ ni!‖f i

k‖2
H⊗ni

=
ǫi, where ǫi equals 1 or 2νi, according as 1 6 i 6 r, or r + 1 6 i 6 r + s, and (B) for every pair
(i, j) such that i 6= j

lim
k→∞

E〈D[Ini
(f i

k)],D[Inj
(f j

k)]〉2H = 0. (5.43)

Then, the following two conditions are equivalent, as k → ∞:
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(i) the sequence {Ik}k>1 converges in distribution to

(N1, . . . , Nr, F (ν1), . . . , F (νs)) ,

where (N1, . . . , Nr, F (ν1), . . . , F (νs)) denotes a (r + s)-dimensional vector of independent
random variables, such that each Nℓ, ℓ = 1, . . . , r, has the law N (0, 1) and each F (νℓ),
ℓ = 1, ..., s, has the law specified by formula (1.4) in the case ν = νℓ;

(ii) for every j = 1, . . . , r, the sequence {Inj
(f j

k)}k>1 converges in distribution to N ∼ N (0, 1),
while, for every ℓ = r + 1, . . . , r + s, the sequence {Inℓ

(f ℓ
k)}k>1 converges in distribution to

F (νℓ).

Remark 5.3 In Lemma 6 of Nualart and Ortiz-Latorre (2007), it is proved that, if one as-
sumes that condition (ii) in the previous statement is true for every 1 6 i 6 r, and if moreover
E(Ini

(f i
k)Inj

(f j
k)) → δij , 1 6 i 6= j 6 r, where δij is the Kronecker symbol, then (5.43) is

automatically verified for every 1 6 i 6= j 6 r.

Our applications of Theorem 5.2 will be mainly based on the following relation, proved in
Nualart and Ortiz-Latorre (2007, Lemma 6): for every n,m > 1 and every f ∈ H⊙n, g ∈ H⊙m,

E〈D[In(f)],D[Im(g)]〉2H =

n∧m∑

r=1

m!2n!2(n + m − 2r)!

(n − r)!2(m − r)!2(r − 1)!2
‖f⊗̃rg‖2

H⊗(n+m−2r)

6

n∧m∑

r=1

n!2m!2(n + m − 2r)!

(n − r)!2(m − r)!2(r − 1)!2
‖f ⊗r g‖2

H⊗(n+m−2r) . (5.44)

The first consequence of Theorem 5.2 is a “stable convergence” generalization of Theorem 1.2
in the case of integrals of even order n > 4.

Proposition 5.4 Let n > 4 be an even integer, and let {In(fk)}k>1 be a sequence of multiple
integrals verifying (1.6) and satisfying either one of conditions (i)–(vi) of Theorem 1.2. Then,

as k → ∞, the pair (In(fk),X) converges in law to (F (ν),X), where F (ν)
Law
= 2G(ν/2) − ν is

independent of X.

Proof. According to Theorem 5.2 and the inequality (5.44), it is sufficient to prove that, for
every h ∈ H,

‖fk ⊗1 h‖H⊗(n−1) → 0.

By the definitions of the contractions of order 1 and n − 1, one has that

‖fk ⊗1 h‖2
H⊗(n−1) = 〈fk ⊗n−1 fk, h ⊗ h〉H⊗2 6 ‖fk ⊗n−1 fk‖H⊗2‖h‖2

H → 0,

where the last convergence is a consequence of Point (iv) in Theorem 1.2, and of the fact that
n > 2.

2

Remark 5.5 When n = 2, the statement of Proposition 5.4 is not true in general. As a coun-
terexample, one can consider a sequence I2(fk), k > 1, such that fk = h ⊗ h for every k, and
‖h‖H = 1. The stable convergence of sequences in the second chaos of X is discussed in the
forthcoming Proposition 5.7.
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Proposition 5.4 can be reformulated by saying that In(fk) converges σ(X)-stably to F (ν) (see
e.g. Jacod and Shiryayev (1987) for an exhaustive discussion of stable convergence). Moreover,
Proposition 5.4 yields a refinement of a well-known result (see e.g. Janson (1997, Ch. VI,
Corollary 6.13)), stating that Wiener chaoses of order n > 2 do not contain any Gamma random
variable (our refinement consists in a further restriction on moments).

Corollary 5.6 Fix a real ν > 0 and an even integer n > 4. Let In(f) be such that E(In(f)2) =
2ν. Then, In(f) cannot be equal in law to 2G(ν/2) − ν, where G(ν/2) stands for a Gamma
random variable of parameter ν/2, and E(In(f)4) − 12E(In(f)3) > 12ν2 − 48ν.

Proof. According to Proposition 5.4, if In(f) was equal in law to 2G(ν/2)− ν (or if E(In(f)4)−
12E(In(f)3) = 12ν2 − 48ν), then In(f) would be independent of X. Plainly, this is only possible
if f = 0, which is absurd, since ‖f‖2

H⊗n = 2ν/n!. The fact that E(In(f)4) − 12E(In(f)3) cannot
be less than 12ν2 − 48ν derives from a straightforward modification of the calculations following
formula (3.33).

2

The following result characterizes the stable convergence of double integrals. The proof (omit-
ted) is analogous to that of Proposition 5.4.

Proposition 5.7 Fix ν > 0. Let the sequence {I2(fk)}k>1 be such that E(I2(fk)
2) → 2ν and ei-

ther one of conditions (i)–(vi) of Theorem 4.1 are satisfied. Then, for every h ∈ H, (I1(h), I2(fk))

converges in law to (I1(h), F (ν)), where F (ν)
Law
= 2G(ν/2) − ν is independent of I1 (h), if, and

only if,

〈fk ⊗1 fk, h ⊗ h〉H⊗2 → 0. (5.45)

In particular, (5.45) is verified for every h ∈ H if, and only if, I2(fk) is asymptotically independent
of X.

The next result gives sufficient conditions under which one can have a neat non-CLT, anal-
ogous to the central result of Theorem 5.1. Note that, in the following statement, all multiple
integrals have different orders, so that no covariance conditions are assumed. Observe also that
the second part of condition (5.46) below can be replaced by either one of the equivalent conditions
(i)–(vi) of Theorem 1.2.

Proposition 5.8 For d > 2, fix d strictly positive reals ν1, ..., νd > 0, as well as d even numbers
2 6 n1 < . . . < nd. Suppose that 2ni 6= nj for every i 6= j. Consider a sequence of random vectors
of the form

Ik =
(
In1(f

1
k ), . . . , Ind

(fd
k )
)

where f i
k ∈ H⊙ni . Assume finally that, for every 1 6 i 6 d,

lim
k→∞

E
[
Ini

(f i
k)

2
]

= 2νi and lim
k→∞

E
[
Ini

(f i
k)

4
]
− 12E

[
Ini

(f i
k)

3
]

= 12ν2
i − 48νi. (5.46)

Then, as k → ∞, the sequence {Ik}k>1 converges in distribution to

(F (ν1), . . . , F (νd)) ,

where (F (ν1), . . . , F (νd)) denotes a vector of independent random variables such that, for i =
1, ..., d, the variable F (νi) verifies (1.4) for ν = νi.
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Proof. The conclusion follows once we show that the asymptotic condition (5.43) holds for every
1 6 i 6= j 6 d. Thanks to (5.44) one has that

E 〈D[Ini
(f i

k)],D[Inj
(f j

k)]〉2H 6

ni∑

r=1

ni!
2nj!

2(ni + nj − 2r)!

(ni − r)!2(nj − r)!2(r − 1)!2
‖f i

k ⊗r f j
k‖2

H
⊗(ni+nj−2r) .

Using the definitions of the contractions, we also have

‖f i
k ⊗r f j

k‖2

H
⊗(ni+nj−2r) = 〈f i

k ⊗ni−r f i
k, f

j
k ⊗nj−r f j

k〉H⊗2r

which yields, by the Cauchy-Schwarz inequality:

‖f i
k ⊗r f j

k‖2

H
⊗(ni+nj−2r) 6 ‖f i

k ⊗ni−r f i
k‖H⊗2r‖f j

k ⊗nj−r f j
k‖H⊗2r . (5.47)

In the case 1 ≤ r ≤ ni − 1, the RHS of equation (5.47) tends to zero as k → ∞ by Theorem 1.2,
because, on one hand, either ni − r ∈ {1, . . . , ni − 1} \ {ni

2 } or nj − r ∈ {1, . . . , nj − 1} \ {nj

2 }
(recall that ni 6= nj for every i 6= j) and, on the other hand, for ℓ ∈ {i, j}:

sup
k>1

‖f ℓ
k ⊗nℓ−r f ℓ

k‖H⊗2r 6 sup
k>1

‖f ℓ
k‖2

H⊗nℓ
< +∞.

In the case r = ni < nj, one has that the RHS of equation (5.47) equals

‖f i
k‖2

H⊗ni
‖f j

k ⊗nj−ni
f j

k‖H⊗2ni ,

which tends to zero as k → ∞, because nj − ni ∈ {1, . . . , nj − 1} \ {nj

2 } (recall that 2ni 6= nj

for every i 6= j). These two facts imply that E〈D[Ini
(f i

k)],D[Inj
(f j

k)]〉2
H

tends to zero as k → ∞,
which yields the announced result. 2

We conclude this section by pointing out that, due to representation (2.22), Theorem 5.2 and
Proposition 5.8 can be used to study the convergence of functionals towards more general laws
in the second chaos of X. A simple illustration of this fact is the following result.

Proposition 5.9 Let n2 > n1 > 2 be even integers such that n2 6= 2n1. For i = 1, 2, consider
a sequence {Ini

(f i
k)}k>1, with f i

k ∈ H⊙ni , such that condition (5.46) is satisfied for ν1 = ν2 = 1.
Then, as k → ∞, the sequence

1

2
×
(
In1

(
f1

k

)
− In2

(
f2

k

))
, k > 1,

converges in law to N × N ′ where N,N ′ are two independent N (0, 1) random variables.

Proof. Proposition 5.8 implies immediately that
(
In1

(
f1

k

)
− In2

(
f2

k

))
converges in law to N2 −

(N ′)2, and the result is obtained by using the elementary identity in law

1

2
(N2 − (N ′)2)

Law
= N × N ′.

2

Remark 5.10 Suppose that the sequences {Ini
(f i

k)}k>1, i = 1, 2, are such that (1.2) is verified,
and that either one of conditions (i)-(iii) of Theorem 1.1 holds. Then, according to Theorem 5.1,
the product In1(f

1
k ) × In2(f

2
k ) also converges in distribution to N × N ′.

Acknowledgment: We are grateful to S. Kwapień, M.S. Taqqu and M. Yor for inspiring discus-
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[18] J. Neveu (1968). Processus Aléatoires Gaussiens. Presses de l’Université de Montréal.

[19] D. Nualart (2006). The Malliavin calculus and related topics. Springer-Verlag, Berlin, 2nd
edition.

[20] D. Nualart and S. Ortiz-Latorre (2007). Central limit theorems for multiple stochastic inte-
grals and Malliavin calculus. To appear in: Stoch. Proc. Appl.

[21] D. Nualart and G. Peccati (2005). Central limit theorems for sequences of multiple stochastic
integrals. Ann. Probab. 33 (1), 177-193.

[22] G. Peccati (2007). Gaussian approximations of multiple integrals. To appear in: Electron.
Comm. Prob.

[23] G. Peccati and M.S. Taqqu (2006). Stable convergence of multiple Wiener-Itô integrals.
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integrals. In: Séminaire de Probabilités XXXVIII , 247-262. Lecture Notes in Math. 1857,
Springer-Verlag, Berlin.

[25] D. Revuz et M. Yor (1999). Continuous martingales and Brownian motion. Springer-Verlag,
Berlin, Heidelberg, New York.

[26] G.-C. Rota and J. Shen (2000). On the combinatorics of cumulants. J. Combin. Theory Ser.
A 91, 283-304.

[27] A.N. Shiryayev (1984). Probability. Springer-Verlag. Berlin Heidelberg New York.

[28] E.V. Slud (1993). The moment problem for polynomial forms in normal random variables.
Ann. Probab. 21(4), 2200-2214.

[29] D. Surgailis (2003a). CLTs for Polynomials of Linear Sequences: Diagram Formulae with
Applications. In: Long Range Dependence. Birkhäuser, Basel, 111-128.
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