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SPECTRAL PROBLEMS IN THE SHAPE OPTIMISATION. SINGULAR
BOUNDARY PERTURBATIONS

S.A. NAZAROV AND J. SOKOLOWSKI

A. In the paper asymptotic analysis of spectral problems is performed
for singular perturbations of geometrical domains. Asymptotic approximations
of eignevalues and eigenfunctions are constructed for the scalar, second order
boundary value problems. The presented results are constructive and can be
used in the analysis of shape optimization and inverse problems.
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§1. I.

1.1. Shape optimisation problems for eigenvalues.In the paper asymptotic analysis of
eigenvalues and eigenfunctions is performed with respect to singular perturbations of ge-
ometrical domains (see Fig. 2). The case of low frequencies is considered for scalar
equations in two spatial dimensions. Similar results for elastic bodies are presented in a
forthcoming paper. The results established here can be directly used in some applications,
for example in shape sensitivity analysis of the Helmholtz equation. Compared to the ex-
isting results in the literature, the technical difficulties of the present paper concern the
variable coefficients of differential operators in limit problems that particularly arise from
the curved boundaries. The known results are given for singular perturbations of isolated
points of the boundary (small holes in the domain, see [26], [27], [16], [5], [28], [39]-
[40]), perturbations of straight boundaries including perturbations by changing the type of
boundary conditions (cf. [7]-[10]), and the dependence of the obtained results in more gen-
eral geometrical domains on the curvature is not clarified upto now. We show that the first
order correction terms are independent on the curvature, even if the appropriate change of
curvilinear variables leads to differential expressions depending explicitly on the curvature.
The perturbations of boundaries in the form of caverns, so wetake off some material, and
knops or proturberances, so we add some material, cannot be analysed with the classical
tools of shape optimisation. The asymptotic analysis seemsto be the only avalaible tool to
perform the efficient analysis of boundary value problems, eigenvalues andeigenfunctions,
and of shape functionals, in general setting. The internal perturbations of the domain by
creation of small openings or holes, but very close to the boundary (see Fig. 1), are in-
cluded into the scheme of asymptotic analysis presented in the paper. In relation to shape
optimisation, such an analysis leads to the asymptotic approximations of shape function-
als. The first term in such approximations in the specific caseof topology changes is called
topological derivativeand can be used in numerical methods e.g., of the level set type. In
the case of boundary perturbations, the first term in asymptotic approximations of shape
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2 SPECTRAL PROBLEMS IN THE SHAPE OPTIMISATION

F 1. Small hole very close to the boundary.

F 2. The domainsΩ, Ξ, andΩ(h).

functionals replaces the so-called shape gradients which are obtained under much more
restrictive assumptions compared to the present paper.

The description of shape optimisation problems for eigenvalues can be found in mono-
graphs [44], [3], [13], [12], [2], [48]. There is a natural gap between the regularity of
geometrical domains, from one side for the results on the existence of optimal domains,
where some weak conditions e.g., in the Dirichlet case of thetype Mosco convergence for
minimising sequences of admissible domains are required, and the necessary optimality
conditions where stronger assumptions on the regularity ofboundaries of admissible do-
mains are necessary if the boundary variations technique [44], is applied to compute the
directional derivatives of eigenvalues with respect to domain perturbations, even in non-
smooth situations of the cracks [6], [23]. The authors filledpartially the gap in the paper
on topological derivatives [38], in the present paper the non-smooth boundary variations
are considered for the particular class of shape functionals.

1.2. Problem formulation. Let Ω ⊂ R2 be a domain with the smooth boundaryΓ, the
boundary is a simple, regular, and closed contour. In the neighbourhood ofΓ a curvilinear
system of coordinates (n, s) is defined, wheres is the length of the curve measured alongΓ,
n denotes the oriented distance toΓ, while n > 0 inΩc

= R
2 \Ω. Byω ⊂ R2

− = (−∞, 0)×R
is denoted a domain with the compact closureω = ω∪∂ω. The boundary∂Ξ of the infinite
domainΞ = R2

− \ ω is assumed to be piecewise-smooth, which means that there isa finite
set of pointsP1, . . . ,PN on ∂Ξ, such that each curvilinear intervalPiPi+1 is smooth and
the angles between tangents atPi , i = 1, . . . ,N are strictly positive. In other words, peaks
directed outside are forbidden.

Introduce a family of domains, depending on the small parameterh > 0,

ωh = {x = (x1, x2) : ξ = (ξ1, ξ2) ≔ (h−1n, h−1s) ∈ ω},(1.1)

Ω(h) = Ω \ ωh(1.2)
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(see Fig. 1.2). Here and in the sequel, a point on the contourΓ is identified with its
coordinates, with the convention that for the points which are located onΓ on the left-
hand side of the originO are given the negative values of the parameters.

Let us consider the spectral Neumann problem

(1.3) −∆xu
h(x) = λhuh(x), x ∈ Ω(h),

(1.4) ∂nhuh(x) = 0, x ∈ Γ(h) ≔ ∂Ω(h),

for the Laplace operator∆x, where∂nh = nh · ∇x is the normal derivative along the outer
normalnh. Note that (1.3) is but the Helmholtz equation. Conditions (1.4) are prescribed
alongΓ(h) except of the pointsPi(h), i = 1, . . . ,N, which are images of the pointsPi ,
i = 1, . . . ,N, on the contourΓ(h). Problem (1.3), (1.4) admits the sequence of eigenvalues

(1.5) 0= λh
0 < λ

h
1 ≤ λ

h
2 ≤ · · · ≤ λ

h
m ≤ · · · → +∞

where the multiplicity is explicitly indicated. The corresponding eigenfunctionsuh
0, u

h
1, u

h
2, . . . , u

h
m, . . .

can be subject to the orthogonality and normalisation conditions

(1.6) (uh
p, u

h
m)Ω(h) = δp,m, p,m∈ N0 ≔ {0, 1, 2, . . . },

where (·, ·)Υ is the scalar product in the Lebesgue spaceL2(Υ), andδp,m the Kronecker
symbol.

Our aim is the derivation of asymptotic formulae for the eigenvalues and eigenfunctions
of problem (1.3), (1.4). It is not difficult to see (cf. §3), that for a fixed indexm and
with h→ 0 the entryλh

m of the sequence (1.5) converges to the appropriate element of the
sequence

(1.7) 0= λ0
0 < λ

0
1 ≤ λ

0
2 ≤ · · · ≤ λ

0
m ≤ · · · → +∞

of the eigenvalues for the limit, withh = 0, spectral Neumann problem

(1.8) −∆xv
0(x) = λ0v(x), x ∈ Ω; ∂nv0(x) = 0, x ∈ Γ.

The eigenfunctions of (1.8) are smooth functions inΩ and are subject to the orthogonality
and normalisation conditions

(1.9) (v0
p, v

0
m)Ω = δp,m, p,m∈ N.

1.3. Asymptotic ans̈atze and procedures.In the paper the following ansätze are used to
construct the asymptotics of eigenvalues and eigenfunctions

(1.10) λh
m = λ

0
m + h2λ′m+ . . . ,

(1.11) uh
m(x) = v0

m(x) + hχ(x)w1
m(ξ) + h2

χ(x)w2
m(ξ) + h2v2

m(x) + . . .

Herev0
m andv2

m are terms of regular type, a smooth and a continuous function, respectively
on the setΩ, andw1

m, w2
m are terms of the boundary layer type, which depend on therapid

variablesξ = (ξ1, ξ2), defined in (1.1), and are given by the solutions of the Neumann
problem in the domainΞ. Finally,χ ∈ C∞(Ω) is the cut-off function, equals to zero outside
of a neighbourhood of the originO and equals to one in the vicinity of the pointO.

The procedures of constructions of asymptotic ansätze of the type (1.10), (1.11) as well
as the determination of theirs terms are not of an particularinterest. During the years 70-80
of the last century the subject was fully investigated in theframework of two methods, of
matched [14] and compound [28] asymptotic expansions for examining solutions in do-
mains with singularly perturbed boundaries. In addition, if the domainΩ is included in the
half-space bounded by the tangentL to the contourΓ at the pointO, andΓ coincides with
L in the vicinity ofO, then by means of even extension over the part of the boundary(odd
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for the Dirichlet boundary conditions) we obtain from (1.3), (1.4) the spectral Neumann
problem in the domain with small hole (see Fig. 2). For such a problem the asymptotics
are obtained in [27] (see also [26], [5], [32], [5], [7], [8],etc. devoted to such class of
problems).

For the above reasons, we pay a particular attention in the paper to the dependence of
the terms in ansätze (1.10) and (1.11) upon the curvatureκ(O) of the contourΓ at the point
O. From the dimension analysis it follows directly that curvature is absent in the principal
correction terms in the asymptotics of the eigenfunctions and of the eigenvalues. In addi-
tion, the principal term of the boundary layer type is also independent of the curvatureκ(O)
at the pointO, however, the termsv2

m, w2
m andλ′m can be dependent onκ(O). Actually, it

is the case for the termw2
m but we find out finally that the termλ′m is independent ofκ(O).

The proof of this fact is complex, includes some technicalities and it is one of the main
results of the paper. We provide the proof in§2, which contains the derivation of terms in
representations (1.10) and (1.11).

The structure of ansatz (1.11) shows that in the sequel the method of compound asymp-
totics expansions is applied. In particular, it is explained in section 2.2, that the only
functionw1 enjoys the canonic property of the boundary layer, i.e., it decays for|ξ| → ∞,
in contrast tow2 which has the logarithmic growth at infinity. In this way, decomposition
of the terms in ansatz (1.11) into theregular andboundary layerparts is relatively for-
mal. By an application of the procedure of rearrangement of discrepancies [25] (see also
monograph [28]) it is possible to reformulate the ansatz in such a way that the function
w2 becomes decreasing, however in such a case the logarithmic growth passes to the term
v2 which thus looses the regularity. It is convenient for further purposes accept thatv2 is
bounded andw2 enjoys the growth, which particularly simplifies the chosenway of the
justification of asymptotics in§3.

1.4. The structure of the paper. We briefly describe the contain of paper. In§2 the terms
in asymptotic ansätze (1.10), (1.11) are subsequently constructed for the Neumann prob-
lem. The explicit formulae for the variations of eigenvalues is given, both in the cases of
simple and multiple. In§3 the formal asymptotics is justified. In§4 different boundary
conditions are considered including Dirichlet and mixed boundary conditions. The varia-
tions of the boundary include perturbations of angular (corner) points as well as smoothing
of such points of the boundary. In§5 the associated shape optimisation problems are in-
vestigated, using the asymptotic formula already derived,and the asymptotics of shape
functionals are constructed.

We point out, that the authors attempt to express the perturbations and the appearing
integral characteristics of geometrical objects by means of classical characteristics which
include the tensor of virtual mass and polarisation tensor,logarithmic capacity etc. Many
exact formulae for classical characteristics of a broad class of canonical shapes are pro-
vided in monographs [41], [22] and others.

1.5. Revisiting shape optimisation.Our results can be used for shape optimisation of
spectral problems, in particular for solutions of the Helmholtz equation. We provide
the analysis of non-smooth perturbations of boundaries which uses the same tools as the
derivation of topological derivatives of shape functionals, but in the case of domain bound-
aries. In particular boundary cracks are allowed for theboundary variations. In this way
we extend the notion of shape gradient to the case of singularboundary perturbations.
The immediate conclusion from the obtained formulae can be employed to obtain an in-
formation about the decreasing and increasing of eigenvalues for the specific boundary
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perturbations in the form of caverns and knops. Such an information is interesting on its
own for the analysis of shape optimisation problems for eigenvalues. For the first time
a systematic study of such properties of spectral problems is performed in view of direct
applications to shape optimisation and inverse problems.

§2. C  .

2.1. First term of boundary layer type. Let λ0
= λ0

m be a simple eigenvalue for problem
(1.8) andv0

= v0
m the corresponding eigenfunction, normalised by condition(1.9). The

Laplace operator∆x in the curvilinear coordinates (n, s) takes the form

(2.12) J(n, s)−1∂nJ(n, s)∂n + J(n, s)−1∂sJ(n, s)−1∂s

whereJ(n, s) = 1 + nκ(s) is the Jacobian, andκ stands for the curvature of the curveΓ.
Under the transformation to the rapid variablesξ = (ξ1, ξ2), the splitting occurs

(2.13) ∆x = h−2
∆ξ + h−1

κ(O)(∂ξ1 − 2ξ1∂2
ξ2

) + . . .

In the coordinates (n, s) the gradient∇x takes the form (∂n, J(n, s)−1∂s), and the projection
nh

n, nh
s of the unit normal vectornh onto the coordinate axes for the variablesn ands are

given by the formulae

(2.14) nh
n = d−1/2J−1ν1, nh

s = d−1/2J−1ν2, d = ν21 + J−2ν22,

whereν = (ν1, ν2) is the outward unit vector on the boundary∂Ξ ⊂ R2.
Therefore, denoting by∂ν the directional derivative along the normal vectorν, we obtain

in the rapid coordinates the decomposition

(2.15) ∂nh = d−1/2(ν1∂n + J−2ν2∂s) = h−1∂ν + κ(O)ξ1(ν2∂ν − 2∂ξ2) + . . .

In (2.13) and (2.15) by dots are denoted the terms which are not important for the sub-
sequent analysis. Taking into account the homogeneous Neumann condition in (1.8), the
functionv0 in Ch-neighbourhood of the pointO admits the representation

v0(x) = v0(O) + s∂sv
0(O) +

1
2

(
n2∂2

nv0(O) + s2∂2
sv

0(O)
)
+O((n2

+ s2)3/2)

= v0(O) + hξ2∂sv
0(O) +

1
2

h2
(
ξ21∂

2
nv0(O) + ξ22∂

2
sv

0(O)
)
+O(h3).(2.16)

Replacing the eigenvalue and the eigenfunction in (1.3), (1.4) by ansätze (1.10) and
(1.11), taking into account relations (2.13), (2.15) and collecting the terms of orderh−1

in the equation, and of orderh0 in the boundary conditions, which are written in rapid
variables, we arrive at the problem

(2.17) −∆ξw
1(ξ) = 0, ξ ∈ Ξ, ∂νw1(ξ) = −ν2(ξ)∂sv

0(O), ξ ∈ ∂Ξ .

We recall the well known formulae

(2.18)
∫

∂ω∪∂Ξ

ν2(ξ)dsξ = 0,
∫

∂ω∪∂Ξ

ξ jνkdsξ = −δ j,kmes2ω, j, k = 1, 2.

The first formula shows that the right-hand side of the boundary condition in (2.17) has the
null integral over the curve∂ω ∪ ∂Ξ, we note thatν2 = 0 on the straight-line part∂Ξ \ ∂ω
of the boundary. In this way, there exists a unique generalized solutionw1 ∈ H1

loc(Ξ) of
problem (2.17), decaying at infinity. The solution is represented in the form

(2.19) w1(ξ) = ∂sv
0(O)W(ξ),
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F 3. The domainΞ and its extensionΞ00

whereW is a canonical solution of the Neumann problem

(2.20) −∆ξW(ξ) = 0, ξ ∈ Ξ, ∂νW(ξ) = −ν2(ξ), ξ ∈ ∂Ξ,

which admits the representation

(2.21) W(ξ) =
m
π

ξ2

ρ2
+O(|ξ|−2) =

m
π
ρ−1 sinϕ +O(ρ−2),

in the system of polar coordinates (ρ, ϕ), with ρ = |ξ| andϕ ∈ (−π/2, π/2).
We evaluate the coefficientm by applying method [29]. To this end, the Green formula

on the setΞR = {ξ ∈ Ξ : ρ < R} is used with the functionsW andY = ξ2 +W sinceY turns
out to be a solution, with the growth at infinity, of the homogeneous problem (2.20). We
have
(2.22) ∫

∂ω∪∂Ξ

Y∂νWdsξ =
∫

{ξ∈R2
−:ρ=R}

(W∂ρY− Y∂ρW)dsξ =

=
m
π

π/2∫

−π/2

(
ρ−1 sinϕ(sinϕ) − ρ sinϕ(−ρ−2 sinϕ)

)
R|ρ=Rdϕ +O(R−1) = m +O(R−1).

On the other hand, in view of (2.18), the following relation is valid

(2.23)
∫

∂ω∪∂Ξ

Y∂νWdsξ =
∫

∂ω∪∂Ξ

W∂νWdsξ −
∫

∂ω∪∂Ξ

ξ2ν2dsξ =
∫

Ξ

|∇ξW|
2dξ +mes2ω,

wheremes2ω denotes the area ofω. Therefore, the limit passageR → ∞ leads to the
relation

(2.24) m(Ξ) ≔ m =
∫

Ξ

|∇ξW(ξ)|2dξ +mes2ω.

Remark 2.1. As it is indicated in section 1.2, the approach with even extension of a har-
monic function over the boundary with the homogeneous Neumann condition, is applica-
ble to the functionW (see Fig. 3). As a result, problem (2.20) can be transformed to the
exterior Neumann problem in the domain

(2.25) Ξ
00
= {ξ = (ξ1, ξ2) ∈ R : (−|ξ1|, ξ2) < ω}.

In this way, the extended functionW becomes a solution, to exactly the same problem as
introduced in monograph [41] for the description of the virtual mass tensor. Hence,m(Ξ)
is twice the bottom right-hand element of the associated virtual mass matrix.�



SINGULAR PERTURBATION OF BOUNDARIES 7

2.2. Second boundary layer term. The right-hand side of the problem

(2.26) −∆ξw
2(ξ) = F2(ξ), ξ ∈ Ξ, ∂nuw

2(ξ) = G2(ξ), ξ ∈ ∂Ξ,

for the next term of the boundary layer type in ansatz (1.11) can be determined using
formulae (2.13), (2.15) and (2.1). Indeed, assuming that solutions to (1.3), (1.4) take the
form of ansätze (1.10) and (1.11) and offer splitting out the terms of orderh0 in the equation
as well as of orderh1 in the boundary conditions, written in the rapid variables,we find
that

(2.27) F2(ξ) = κ(O)
(
∂ξ1w

1(ξ) − 2ξ1∂
2
ξ2

w1(ξ)
)
,

and

G2(ξ) = −κ(O)ξ1ν2(ξ)
(
∂νw

1(ξ) + ν2(ξ)∂sv
0(O)

)
(2.28)

+ 2κ(O)ξ1ν2(ξ)
(
∂ξ2w

1(ξ) + ∂sv
0(O)

)

−
(
ξ1ν1(ξ)∂2

nv0(O) + ξ2ν2(ξ)∂2
sv

0(O)
)

=: G2
1(ξ) +G2

2(ξ) +G2
3(ξ).

We note immediately thatG2
1 = 0 in view of the boundary conditions in problem (2.17).

By formulae (2.19) and (2.21) the following expansion holdstrue

(2.29) F2(ξ) = π−1mκ(O)∂sv
0(O)ρ2 [

2 sin(4ϕ) + sin(2ϕ)
]
+O(ρ−3), ρ→ ∞.

The function

(2.30) ξ 7→ U2(ξ) = −(8π)−1mκ(O)∂sv
0(O)

[
sin(4ϕ) + 2 sin(2ϕ)

]

turns out to be harmonic in the half-planeR2
− and verifies the homogeneous Neumann

conditions everywhere on the line∂R2
− except of the pointξ = 0. The function compensates

the leading term of asymptotics of the right-hand side (2.29) of the Poisson equation in
problem (2.26), function (2.30) participates in the expansion of its solution at infinity

(2.31) w2(ξ) =
a
π

ln ρ + c− (8π)−1mκ(O)∂sv
0(O)

[
sin(4ϕ) + 2 sin(2ϕ)

]
+O(ρ−1).

Here c stands for a generic constant, we assume thatc = 0, and the logarithmic term
is included since, in advance, it is not clear of there is a solution to problem (2.26) in
the class of bounded functions; on the other hand it is known,see e.g., [36, Ch. 2] that
there exist a solution with the logarithmic growth forρ → 0 and that such a solution is
determined up to an additive constant.

Remark 2.2. Denotationz(ξ) = z0(ξ)+O(ρ−p) used in (2.21) and (2.29), (2.31) means that

(2.32) z(ξ) = z0(ξ) + z̃(ξ), |∇q
ξ
z̃(ξ)| ≤ cqρ

−p−q, q = 0, 1, . . . , ρ = |ξ| ≤ R0;

where∇q
ξ
z̃ is the collection of all orderq derivatives of the functioñz, and the radiusR0

is selected in such a way thatω ⊂ {ξ : ρ < R0}. For a solutionw1 of problem (2.20) the
estimates of form (2.32) for the remainderw̃1 are straightforward, since the remainder
verifies the Laplace equation with the Neumann boundary conditions on the sets{ξ ∈
R

2 : ρ > R0} and {ξ ∈ ∂R2
− : ρ > R0}, respectively. For such an equation, e.g., the

Fourier method can be used in order to obtain the representation of the solution in the
form of convergent series, with decaying at infinity harmonic functions. In problem (2.26)
there is non-trivial right-hand side of the equation, therefore by general theory of elliptic
boundary value problems in domains with conical points and outlets to infinity, we refer
to the key papers [17], [29], [30] and e.g., to monograph [36], in the decomposition of the
solution (in the form of a series) the logarithmic multipliers can occur beside the Poisson
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kernelπ−1 ln ρ. The direct evaluation of the functionU2 shows, that the principal term
of asymptotics (2.29) of the right-hand sideF2 for the equation in problem (2.26) does
not lead to appearance of lnρ. In a similar manner it can be verified that the following
asymptotic terms in the expressions

W(ξ) = c1ρ
−1 sinϕ + c2ρ

−2 cos(−2ϕ) +O(ρ−3),

F2(ξ) = C1ρ
−2 sin(4ϕ) +C2ρ

−3(3 cos(5ϕ) + cos(3ϕ)) +O(ρ−4)

do not lead to the appearance of logarithms: the term with thecoefficientC2 is compensated
by the functionξ 7−→ − 1

8C2ρ
−1(cos(5ϕ) + cos(3ϕ) + cosϕ) which enjoys the properties of

function (2.30). Estimate of the remainder in representation (2.31), (2.32) for the solution
w2 are justified again by the general theory (see [30]).�

For the computation of the multipliera in expansion (2.31) the method of [30] is used
again. Actually, we inject the functionsw2 andw1 in the Green formula on the setΞR

and compute the integral on the semi-circle of the radiusR taking into account expansion
(2.31):

(2.33)

∫

ΞR

F2(ξ)dξ +
∫

∂ω∩∂Ξ

G2(ξ)dsξ = −
∫

{ξ∈R2
−:ρ=R}

∂ρw
2(ξ)dsξ =

−

π/2∫

−π/2

(
a
π
+

1
4π

mκ(O)∂sv
0(O)(sin 2ϕ − 2ϕ)

)
dϕ +O(R−1) = −a+O(R−1).

It remains to study the integral from the left-hand of (2.33).
By equality (2.18), the form of Laplace operator in curvilinear coordinates given in

(2.12) and relation (1.8) for the functionv0, we find

(2.34)
∫

∂ω∩∂Ξ

G2
3(ξ)dsξ = mes2ω(∂2

nv0(O) + ∂2
sv

0(O)) = −λ0v0(O)mes2ω.

Beside that, in view of equalities (2.18) it follows that
∫

∂ω∩∂Ξ

κ(O)ξ1ν2(ξ)∂sv
0(O)dsξ = 0.

The Stokes formula yields
∫

ΞR

∂w1

∂ξ1
(ξ)dsξ =

∫

∂ω∩∂Ξ

ν1(ξ)w1(ξ)dsξ +
∫

{ξ∈R2
−:ρ=R}

ρ−1ξ1w1(ξ)dsξ .

Since the leading asymptotic term of the solutionw1 is an odd function in the variableξ2,
the integral over the half-circle of the radiusR is of the orderO(R−1) (the integral over
(−π/2, π/2) ∋ ϕ of an odd function inξ2 = ρ sinϕ vanishes). In view of the Green formula,
the integral over the curve∂ω ∩ ∂Ξ equals

∫

∂ω∩∂Ξ

w1(ξ)
∂ξ1

∂ν
dsξ =

∫

∂ω∩∂Ξ

ξ1
∂w1

∂ν
(ξ)dsξ +

∫

{ξ∈R2
−:ρ=R}

(
ξ1∂ρw

1(ξ) − w1(ξ)∂ρξ1
)
dsξ.

In the limit for R→ ∞, the integral over the half-circle vanishes by the same argument as
above, and the integral over the curve∂ω∩∂Ξ becomes zero due to the boundary conditions
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in problem (2.17) and to the second equality (2.18) forj = 1, k = 2. Finally,

−2κ(O)
∫

ΞR

ξ1
∂2w1

∂ξ22
(ξ)dξ(2.35)

= −2κ(O)
∫

∂ω∩∂Ξ

ξ1ν2(ξ)
∂w1

∂ξ2
(ξ)dsξ − 2κ(O)

∫

{ξ∈R2
−:ρ=R}

ρ−1ξ1ξ2
∂w1

∂ξ2
(ξ)dsξ .

The latter integral equals toO(R−1), hence the leading term of the orderO(ρ−1) of asymp-
totics for the expressionξ2∂w1/∂ξ2 with ρ → ∞ is still odd with respect to the variable
ξ2, therefore it is annulated by integration. The first integral, without the minus sing, from
the right-hand side in (2.35) is present in the integral of the functionG2

2 over∂ω ∩ ∂Ξ, see
definition in (2.28). Recalling thatG2

1 = 0 and collecting the obtained formulae, we can
conclude in accordance with (2.34) that the limit passageR→ ∞ in relation (2.33) results
in the equality

(2.36) a = λ0v0(O)mes2ω.

We point out, that the curvatureκ(O) appears in several integrals, which finally cancel each
other.

2.3. The correction term of regular type. For the terms of boundary layer type, the
asymptotics can be written in the condensed form

(2.37) wq(ξ) = tq(ξ) +O(ρq−3), ρ→ ∞, q = 1, 2.

Outside a small neighbourhood of the pointO we have:
(2.38)

hw1(ξ) + h2w2(ξ) = h2
(
t1(n, s) + t2(n, s) − aπ−1 ln h

)
+O(h3) =: h2T(x, ln h) +O(h3).

In view of the multiplierh2 the expression forT should be present in the problem for the
termv2 of regular type

(2.39) −∆xv
2(x) = λ0v2(x) + λ′v0(x) + f 2(x), x ∈ Ω,

(2.40) ∂nv
2(x) = g2(x), x ∈ Γ.

The first two terms in the right-hand side of (2.39) are obtained as a result of replacement
in (1.3) of eigenvalues and eigenfunctions by ansätze (1.10), (1.11) and collection of order
h2 terms written in the slow variablesx. The right-hand sideg2 of the boundary condition
(2.40) is but the discrepancy which results from the multiplication of the boundary layer
terms with the cut-off functionχ. If it is assumed that in the vicinity of the boundary the
cut-off functionχ depends only on the tangential variables, and it is independent of the
normal variablen, than it follows thatg2

= 0, since in problems (2.17) and (2.26) the
boundary conditions on∂Ξ \ ∂ω are homogeneous. It is clear that such a requirement can
be readily satisfied. Thus, we further assumeg2

= 0.
Multiplication by the cut-off function introduces in equation (2.39) the discrepancies of

the boundary layer terms. However, the commutators of the operator∆x with the cut-off
functionχ, are not the only source of terms in the functionf 2. Actually, the application of
the procedure described in sections 2.1 and 2.2 leads to the right-hand side of the Poisson
equation for the subsequent termw3 of ansatz (1.11), the term is of orderO(ρ−1), i.e., the
solution of such a problem enjoys at least the linear growth at infinity. As a result, the main
term of asymptotics for the expressionh3w3(h−1n, h−1s) contributes in relation (2.38) with a
term of orderh2, which means that without construction ofw3 it is impossible to determine
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v2, and the algorithm becomes incorrect. To avoid such a contradiction, in paper [25] (see
also [28, introductory Ch. 2]) is proposed the procedure of rearrangement of discrepancies
which make it possible to define, in the framework of compoundasymptotic expansions, a
problem forv2 using only the termsv0 andw1, w2 of ansatz (1.11). This approach consists
in the analysis of terms depending onw1 andw2 from equation (1.3). In particular, the
terms which do not enjoy the sufficient decay rateO(ρ−2) at infinity, are rewritten in slow
variables and are included in the problem for the terms of regular type (simple examples of
such a procedure can be found in [28, Ch. 2] and papers [32], [4], the general framework
is described in [28, Ch. 4]). In our case the detached parts are given by the expressions

(2.41) f 2(x) = λ0χ(x)T(x, ln h) + ∆x(χ(x)T(x, ln h)).

We verify that the functionf 2, smooth outside of a neighbourhood of the originO, is of
the growthO(|x|−1) for x→ Owhich means thatf 2 belongs toH−1(Ω) and is admissible for
the right-hand side of equation (2.39). For the first term this fact is obvious, sincet1(n, s) =
O(|x|−1) andt0(n, s) = O(| ln |x||). Let us consider the second term. Representation (2.13)
of the operator∆x in the curvilinear coordinates:

∆x = (∂2
n + ∂

2
s) + κ(O)(∂n − n∂2

s) + a12(n, s)∂2
n + a22(n, s)∂2

s+(2.42)

a11(n, s)∂n + a21(n, s)∂s =: L0(∂n, ∂s) + L1(n, ∂n, ∂s) + L2(n, s, ∂n, ∂s).

Herea jk are smooth functions in a neighbourhood of the pointO, in variablesn ands, in
addition

a jk(0, 0) = 0, ∂na j2(0, 0) = 0, ∂sa j2(0, 0) = 0, j, k = 1, 2.

Therefore,

(2.43) ∆xT = J−1
{
L0t1 + (L0t2 + L1t0) + L1t2 + L2(t1 + t2)

}
.

The first two terms in braces vanishes by the definition of the singular componentst1 andt2

and the termsL1t2 andL2(t1+ t2) are of the required order. Thus,g2
= 0 and|x|µ f 2 ∈ L2(Ω)

for anyµ > 0.
Under the assumption thatλ0 is a simple eigenvalue, problem (2.39), (2.40) with such

right-hand sides admits a solutionv2 in the Sobolev spaceH1(Ω) if and only if the following
relation is satisfied

(2.44) λ′(v0, v0)Ω + ( f 2, v0)Ω = 0.

Owing to the normalisation condition (1.9), the coefficient ofλ′ equals one. Integral of the
productf 2v0 is convergent, which means that

(2.45) (f 2, v0)Ω = lim
δ→+0

∫

Ωδ

(λ0T + ∆xT)v0dx,

whereΩδ = Ω\
{
x : n2

+ s2 ≤ δ2
}
. The arcγδ = ∂Ω\∂Ωδ turns out to be a half-circle in the

curvilinear coordinate system. We imitate the polar coordinate system in the curvilinear
coordinates by puttingn = r cosϕ and s = r sinϕ while calling in the sequelρ, ϕ, with
ρ = h−1r, the polar coordinate system. Integration by parts with theGreen formula inΩδ
for the smooth functionsT andv0 in the domain yields

(2.46)
∫

Ωδ

f 2v0dx=
∫

γδ

(v0∂NT − T∂Nv0)dsx.
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Let us observe thatdsx = d(n, s)1/2J(n, s)dsx on the curveγδ, and owing to formulae (2.14)
the derivative∂N along the normal to the contourγδ satisfies the relation

∂NT = Nn∂nT + NsJ
−1∂sT,

Nn = d−1/2cosϕ, Ns = d−1/2J−1sinϕ, d = (cosϕ)2
+ J−2(sinϕ)2.

We take into account only the terms with the non-null limits for δ → +0; it follows that
expression (2.46) takes the form

∂sv
0(O)δ

π/2∫

−π/2

(
s∂r t

1(n, s) − t1(n, s)∂r s
) ∣∣∣

r=δ
dϕ

+v0(O)κ(O)

π/2∫

−π/2

n
(
n∂nt1(n, s) − s∂st

1(n, s)
) ∣∣∣

r=δ
dϕ

+v0(O)δ

π/2∫

−π/2

∂r t(n, s)
∣∣∣
r=δ

dϕ + o(1).

The second term, which depends on the curvatureκ(O), vanishes (note that the integral is
zero sincen∂nt1 − s∂st1 is still odd function of the variables). The first integral is evalu-
ated in (2.22), and the third integral is computed in (2.33).In view of relations (2.19) and
(2.36) the integrals equal to−∂sv0(O)m∂sv0(O) andv0(O)a = λ0|v0(O)|2mes2ω, respec-
tively. Thus, by the limit passage in (2.45), we obtain from compatibility condition (2.44)
for problem (2.39), (2.40), the formula for asymptotic correction term in representation
(1.10) of the simple eigenvalue

(2.47) λ′m = m(Ξ)|∂sv
0
m(O)|2 − λ0mes2ω|v

0
m(O)|2.

2.4. Multiple eigenvalues. Assume now, thatλ0
m is an eigenvalue of the multiplicityκm >

1, i.e.,

(2.48) λ0
m−1 < λ

0
m = · · · = λ

0
m+κm−1 < λ

0
m+κm
.

In such a case ansätze (1.10) and (1.11) are valid forp = m, . . . ,m+ κm − 1, however,
the principal terms of expansions for the eigenfunctionsuh

m, . . . , u
h
m+κm−1 in problem (1.3),

(1.4) are predicted in the form of linear combinations

(2.49) vp0
= ap

1v0
m+ · · · + ap

κm
v0

m+κm−1

of eigenfunctions corresponding in problem (1.8) to the eigenvalueλ0
m, subject to the or-

thogonality and normalisation conditions (1.9). The coefficients of columnsap
= (ap

1, . . . , a
p
κm

)
in (2.49) are to be determined. Under assumption that the columnsam, . . . , am+κm−1 are unit
vectors and are pairwise orthogonal, i.e.,

(2.50) ap · aq
= δp,q, p, q = m, . . . ,m+ κm − 1,

then the linear combinations (2.49) withp = m, . . . ,m+κm−1, are simply a new orthonor-
mal basis in the eigenspace of the eigenvalueλm.

The construction of boundary layer terms is performed in thesame way as in the pre-
vious section. When solving problem (2.39), (2.40) for the regular termvp2, it appearsκm

compatibility conditions

(2.51) λp′(vp0, v0
m+k)Ω + ( f p2, v0

m+k)Ω = 0, k = 0, . . . , κm− 1,
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F 4. The geometry which makes the extension inH1 impossible.

which can be written in the form of a linear system ofκm algebraic equations

(2.52) λp′ap
= Map

with the matrixM = (M ik)κm−1
j,k=0 of the sizeκm × κm,

(2.53) M jk = m(Ξ)∂sv
0
m+k(O)∂sv

0
m+ j(O) − λ0

mv0
m+k(O)v0

m+ j(O)mes2(ω).

Formula (2.53) is derived in exactly the same way as it is for formula (2.47) The ma-
trix M is symmetric, and its real eigenvaluesλm′, . . . , λm+κm−1′ corresponds to eigenvectors
am, . . . , am+κm−1, which satisfy conditions (2.50). Actually, just these attributes of the ma-
trix M with elements (2.53) are included in ansätze (1.10) and (1.11), (2.49) for eigenvalues
λh

p and eigenfunctionsuh
p of problem (1.3), (1.4) forp = m, . . . ,m+ κm− 1 in case (2.48).

§3. J  

3.1. The weighted Poincaŕe inequality. The subspaceH1(Ω(h))⊥ of the Sobolev space
H1(Ω(h)) contains functions of zero mean over the setΩ(h).

Lemma 3.1. The following inequality is valid

(3.1) ‖u; L2(Ω(h))‖ ≤ c‖r−1(1+ | ln r |)−1u; L2(Ω(h))‖ ≤ C‖∇xu; L2(Ω(h))‖,

where r(x) = dist(x,O), and the constant c is independent of the parameter h∈ (0, h0] and
the function u∈ H1(Ω(h))⊥.

Proof. In the representation

(3.2) u(x) = u∗(x) + b∗

the constantb∗ is chosen such that

(3.3)
∫

Ω∗

u∗(x)dx= 0, b∗ = −(mes2Ω∗)−1
∫

Ω∗

u(x)dx

where the domainΩ∗ ⊂ Ω satisfiesΩ∗ , ∅ andΩ∗ ∩ ωh = ∅ for h ∈ (0, h0]. Let us
construct an extension̂u∗ of the functionu∗ in the classH1, from the setΩ \ BRh ontoΩ,
in such a way that the estimate is valid

(3.4) ‖∇x̂u∗; L2(Ω)‖ ≤ c‖∇xu∗; L2(ΩRh)‖ = c‖∇xu; L2(ΩRh)‖ ≤ c‖∇xu∗; L2(Ω(h))‖.

HereBRh is the ball of radiusRhand the centreO, andωh ⊂ BRh.
We emphasise that an extension fromΩ(h) ontoΩ may not exist in the classH1, for

example in the case of a crack, see Fig. 4 and section 4.3. Stretching coordinatesx 7−→
η = h−1x transforms the setΣRh = {x ∈ Ω : Rh> r > Rh/2} into the half-ringΣ(h) with
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fixed radia and gently sloped ends, we recall that the boundary ∂Ω is smooth. Therefore,
for the componentU⊥ of the similar decomposition to (3.2), (3.3)

(3.5) U∗(η) = U⊥(η) + b⊥,
∫

Σ(h)

U⊥(η)dη = 0

of the functionη 7−→ U⊥(η) = u⊥(x), the Poincaré inequality is valid

‖U⊥; L2(Σ(h))‖ ≤ c‖∇ηU⊥; L2(Σ(h))‖ = c‖∇ηU∗; L2(Σ(h))‖

and there exists an extension denoted byÛ⊥ from Σ(h) ontoΣ0(h) = {η : x ∈ Ω, τ < Rh},
such that

‖Û⊥; H1(Σ0(h))‖ ≤ c‖U⊥; H1(Σ(h))‖ ≤ c‖∇ηU⊥; L2(Σ(h))‖.

In these inequalities, the factorsc are independent ofU⊥ andh ∈ (0, h0].
The required extension̂u∗ is defined as follows

(3.6) û∗(x) =

{
u∗(x), x ∈ Ω \ BRh,

Û⊥(η) + c⊥, x ∈ Ω ∩ BRh.

Owing to the above relations, we have

‖∇x̂u∗; L2(Ω)‖ ≤ c‖∇xu∗ : L2(Ω \ BRh)‖ ≤ c‖∇xu; L2(Ω(h))‖.

For function (3.6), in the same way as before, the orthogonality condition from (3.3) is
satisfied, which means that

(3.7) ‖̂u∗; L2(Ω)‖ ≤ c‖∇x̂u∗ : L2(Ω)‖ ≤ c‖∇xu; L2(Ω(h))‖.

By the one-dimensional Hardy inequality
1∫

0

r−1| ln r |−2Z(r)2dr ≤ 4

1∫

0

r
∣∣∣∣∣
dZ
dr

(r)
∣∣∣∣∣
2

dr, Z ∈ C1
c [0, 1),

the following estimate is valid

(3.8) ‖r−1(1+ | ln r |)−1û∗ : L2(Ω)‖ ≤
(
‖∇x̂u∗; L2(Ω∗)‖

)
≤ c‖∇xu; L2(Ω(h))‖.

For the constantb⊥ in decomposition (3.5) we now obtain

|b⊥| =
∣∣∣∣
∫

Σ(h)

U∗(η)dη
∣∣∣∣ ≤ c‖U∗; L2(Σ(h))‖ = c‖Ûast; L2(Σ(h))‖

= ch−1‖̂u∗; L2(ΣRh)‖ ≤ c(1+ | ln h|)‖r−1(1+ | ln r |)−1û∗; L2(ΣRh)‖.

Beside that, the imageΣω(h) of the setΩ(h) ∩ BRh under stretching of coordinates, again
enjoys the gently sloped boundary, hence

‖U∗; L2(Σω(h))‖ ≤ c(‖∇ηU∗; L2(Σω(h))‖ + ‖U∗; L2(Σ(h))‖).

In this way we have

‖r−1(1+ | ln r |)−1u∗; L2(Ω(h) ∩ BRh)‖

≤ ch−1(1+ | ln h|)−1‖u∗ : L2(Ω(h) ∩ BRh)‖

= ch−1(1+ | ln h|)−1‖U⊥ + b⊥ : L2(Σω(h))‖

≤ c(1+ | ln h|)−1(‖∇ηU∗; L2(Σω(h))‖ + ‖U∗; L2(Σ(h))‖ + |b⊥|)

≤ c(‖∇xu∗; L2(Ω(h) ∩ BRh)‖ + ‖r
−1(1+ | ln r |)−1û∗; L2(ΣRh)‖).
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The relation combined with relation (3.8) and definition (3.6) shows that for the component
u∗ of decomposition (3.2), the required inequality (3.1) is verified. Sinceu ∈ H1(Ω(h))⊥,
the constantb∗ in (3.2) satisfies the estimate

|b∗| =
∣∣∣∣∣
∫

Ω(h)

(u(x) − u∗(x))dx
∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω(h)

u∗(x)dx
∣∣∣∣∣(3.9)

≤ c‖u∗; L2(Ω(h))‖ ≤ c‖∇xu; L2(Ω(h))‖.

It remains to note that the integral
∫

Ω(h)

r−2(1+ | ln r |)−2dx

with the weight factor, present in the left-hand side of (3.1) does not exceed a constant
independent of the parameterh. �

In the sequel, the left-hand side of formula (3.1) is denotedby ‖|u;Ω(h)|‖.
In the proof of Lemma 3.1, it is constructed an extension denoted byû := û∗ + b∗ of the

functionu ∈ H1(Ω(h))⊥ from the setΩ(h) \ BRh onto the domainΩ, such that

(3.10) |‖u;Ω‖| + ‖∇x̂u; L2(Ω)‖ ≤ c‖∇xu; L2(Ω(h))‖

see formulae (3.7) and (3.9). Assume thatm ≥ 1 and̂uh
m is the extension described above

of the eigenfunctionuh
m, for such an extension in view of relation (1.6) and the integral

identity [21]

(3.11) (∇xu
h
m,∇xz)Ω(h) = λ

h
m(uh

m, z)Ω(h), z ∈ H1(Ω(h))⊥,

which replaces problem (1.3), (1.4) for positive eigenvalues, the following relation is valid

(3.12) ‖̂uh
m; H1(Ω)‖2 ≤ c‖∇xu

h
m; L2(Ω(h))‖2 = cλh

m.

The minimax principle (see e.g., [47]), where the test functions can be taken from the space
C∞c (Ω∗), show that for an arbitrarym there exist positive numbershm andcm, such that

(3.13) λh
m ≤ cm for h ∈ (0, hm].

Therefore, the norms‖̂uh
m; H1(Ω)‖ are uniformly bounded with respect to the parameter

h ∈ (0, hm] for a fixedm, i.e. the pairs
{
λh

m, û
h
m

}
admit the weak limit

{̂
λ0

m, v̂
0
m

}
∈ R × H1(Ω)

for h→ +0 and the strong limit inR × L2(Ω).
In the integral identity (3.11) we choose a test functionz ∈ C∞c (Ω \ O) with the null

mean value. For sufficiently smallh, ûh
m = uh

m on the support of the functionz, thus the
limit passage in (3.11) leads to the equality

(3.14) (∇x̂v
0
m, z)Ω = λ̂

0
m(̂v0

m, z)Ω.

SinceC∞c (Ω\O) is dense inH1(Ω) (the elements of the Sobolev spaceH1(Ω) have no traces
at single points), by the completion argument, we can assumethat in integral identity (3.14)
the test functionzbelongs toH1(Ω)⊥.

By inequalities (3.1) and (3.10), (3.11), it follows that
∣∣∣∣∣
∫

Ω

ûh
mdx−

∫

Ω(h)

uh
mdx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

Ω∩BRh

|̂uh
m|dx+

∫

Ω(h)∩BRh

|uh
m|dx

∣∣∣∣∣

≤ ch2(1+ | ln h|)(‖|̂uh
m;Ω|‖ + ‖|uh

m;Ω(h)|‖)

≤ ch2(1+ | ln h|),
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and ∣∣∣∣∣∣∣∣∣

∫

Ω

|̂uh
m|

2dx−
∫

Ω(h)

|uh
m|

2dx

∣∣∣∣∣∣∣∣∣
≤ ch(1+ | ln h|).

Hence
v̂0

m ∈ H1(Ω), ‖̂v0
m; L2(Ω)‖ = 1,

i.e., λ̂0
m is an eigenvalue and̂v0

h is a normalised eigenfunction of problem (1.8).

Proposition 3.1. Entries of sequences (1.5) and (1.7) are related by the limitpassage

(3.15) λh
m→ λ

0
m as h→ +0.

Proof is completed at the end of this section. We only observe that it has been already
shown thatλh

m→ λ
0
p, thus it suffices to prove thatp = m.

From Lemma 3.1 it follows that the left-hand side of identity(3.11) can be chosen as
the scalar product〈uh

m, z〉 in the spaceH1(Ω(h))⊥. We define the operatorKh in the space
H1(Ω(h))⊥ by the formula

(3.16) 〈Khu, z〉 = (u, z)Ω(h), u, z∈ H1(Ω(h))⊥.

It is easy to check thatKh is symmetric, positive and compact, therefore, self-adjoint. For
m ≥ 1 we setµh

m = (λh
m)−1. The positive eigenvalues and the corresponding eigenfunction

of problem (1.3), (1.4) can be considered in an abstract framework, so we deal with the
spectral equation in the Hilbert spaceH = H1(Ω(h))⊥:

(3.17) Khuh
= µhuh.

The norm, defined by the scalar product〈·, ·〉H = 〈·, ·〉 is denoted by‖ · ‖H . The following
statement [49] is known as lemma onalmost eigenvalues and eigenvectors.

Lemma 3.2. Let µ and U ∈ H be such that‖KhU − µU‖ = τ and‖U‖H = 1. Then there
exists an eigenvalueµh

m of the operator Kh, which satisfies the inequality

|µ − µh
m| ≤ τ.

Moreover, for anyτ• > τ the following inequality holds

‖U − U•‖H ≤ 2τ/τ•

where U• is a linear combination of eigenfunctions of the operator Kh, associated to the
eigenvalues from the segment[µ − τ•, µ + τ•], ‖U•‖H = 1.

The asymptotic approximationsµ andU of a solution to equation (3.16) is defined by
the number (λ0

m + h2λm)−1 and by the function‖Vh
m‖
−1
H Vh

m, respectively, wherem ≥ 1 and
λ′m with Vh

m are, respectively, the correction given by (2.47) and the sum of the first four
terms in the ansatz (1.11), found in§2. In the case of multiple eigenvalueλ0

p, we take into
consideration the specification provided at the end of section 2.4.

We estimate the quantityτ from Lemma 3.2. Since‖Vh
m‖ ≥ ‖v

0
m‖H−cmh andλ0

m+h2λ′m ≥

λ0
m− cmh2, for a sufficiently smallh it follows that

τ = ‖KhU − µU‖H(3.18)

= (λ0
m+ h2λ′m)−1‖Vh

m‖
−1 sup|〈(λ0

m+ h2λ′m)KhVh
m, z〉|

≤ cm sup|(∇xV
h
m,∇xz)Ω(h) − (λ0

m+ h2λ′m)(Vh
m, z)Ω(h)|,

where the supremum is taken over the set{z ∈ H1(Ω(h))⊥ : ‖z‖H = 1} and, hence, the
L2-norms of the test functionz indicated in inequality (3.1), both standard and weighted,
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are bounded by a constantN. Beside that, we can respect the proof of the trace theorem
[21], which gives

h−1/2(1+ | ln h|)1/2‖z; L2(∂ωh ∩ Γ(h))‖(3.19)

≤ c‖|z;Ω(h)|‖(‖∇xz; L2(Ω(h))‖+ ‖|z;Ω(h)|‖) ≤ cN .

The last expression in (3.18) can be processed as follows

I = I1
+ h2I2 − h4I3

+ I4 − I5 − h2I6

(3.20)

:=
(
(∇xv

0
m,∇xz)Ω(h) − λ

0
m(v0

m, z)Ω(h)

)
+ h2

(
(∇xv

2
m,∇xz)Ω(h) − (λ0

mv2
m + λ

′
mv0

m, z)Ω(h)

)

− h4λ′m(v2
m, z)Ω(h) +

(
∇xχ(hw1

m+ h2w2
m),∇xz

)
Ω(h)
− λ0

m

(
χ(hw1

m+ h2w2
m), z

)
Ω(h)

− h2λ′m

(
χ(hw1

m+ h2w2
m), z

)
Ω(h)
.

The estimates of two termsI3 andI6 are straightforward

|I3| ≤ cm‖v
2
m; L2(Ω)‖Nz ≤ cm(1+ | ln h|)N ,(3.21)

|I6| ≤ cm

( d∫

0

r2(1+ | ln r |)2(h2ρ−2
+ h4(1+ | ln ρ|)2)rdr

)1/2

‖|z;Ω(h)|‖

≤ cmh2(1+ | ln h|)N .

Here, expressions (2.19), (2.21) and (2.31) of boundary layer terms are taken into account,
as well as linear dependence on lnh of the right-hand side (2.41) in problem (2.39), (2.40)
for the termv2 (compare to (2.38)). Moreover,d is the diameter of the support of cut-off
functionχ.

The remaining terms require some additional work. In view ofrelations (1.8) and (2.38)-
(2.41) we have

I1
= (∂nhv0

m, z)∂ωh∩Γ(h),(3.22)

I2
= I2

1 + I2
2 + I2

3 :=

(∂nhv2
m, z)∂ωh∪Γ(h) + (∆xχ(t1m+ t2m), z)Ω(h) + λ

0
m(χ(t1m+ t2m), z)Ω(h),

|I2
1| ≤ cm‖∂nhv2

m; L2(∂ωh ∩ Γ(h))‖ ‖z; L2(∂wh ∩ Γ(h))‖(3.23)

≤ cmh1/2(1+ | ln h|)h1/2(1+ | ln h|)1/2N .

In (3.23) it is taken into account the trace inequality (3.19), and the estimates

|∇
p
xv2

m(x, ln h)| ≤ cpr1−p(1+ | ln h|), p = 1, 2, . . .

for the solution of problem (2.39), (2.40) which follow fromthe theory of elliptic boundary
problems in the domains with corners or conical points (see the paper [30], and also e.g.,
[36]) and from the analysis (2.43) of the right-hand side of equation (2.39).

By Remark 2.2 and formulae (2.19), (2.21), (2.31) and (2.37), (2.38) the estimates are
obtained

(3.24)
|w̃1

m(ξ)| = |w1
m(ξ) − t1m(ξ)| ≤ cρ−1(1+ ρ)−1,

|w̃2
m(ξ)| = |w2

m(ξ) − t2m(ξ)| ≤ c(1+ | ln ρ|)(1+ ρ)−1,
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which means that

|I5 − h2I2
3| =

∣∣∣λ0
m

(
χ(hw̃1

+ h2w̃2), z
)
Ω(h)

∣∣∣

≤ ch
( d∫

0

r2(1+ | ln r |)(1+ ρ)−2(ρ−2
+ h2(1+ | ln ρ|)2)rdr

)1/2

(3.25)

≤ ch3(1+ | ln h|5/2)N .

We continue the transformations

(3.26)
I5
= I5

1 + I5
2 :=

(
∇x(hw1

m+ h2w2
m),∇xχz

)
Ω(h)
−

(
[∆x, χ](hw1

m+ h2w2
m), z

)
Ω(h)

I2
2 = I2

4 + I2
5 :=

(
χ∆x(t1m+ t2m), z

)
Ω(h)
+

(
[∆x, χ](t1m+ t2m), z

)
Ω(h)
.

Here [∆x, χ] = 2∇xχ · ∇x + (∆xχ) is the commutator of Laplace operator with the cut-
off functionχ. The supports of coefficients of first order differential operator [∆x, χ] are
contained in the setsupp|∇xχ| which is located at the distancedχ from the origin. Thus,
taking into account relation (2.37) and Remark 2.2, we find

|I5
2 − h2I2

5| = ([∆x, χ](hw̃1
m+ h2w̃2

m), z)Ω(h)(3.27)

≤ cm

( d∫

dχ

(
h2ρ−4

+ h4ρ−2
)∣∣∣∣∣
ρ=r/h

rdr
)1/2

‖z; L2(Ω(h))‖ ≤ cmh3N .

Moreover,

(3.28) I5
1 − h2I2

4 = I5
3 + I5

4 :=
(
∇x(hw̃1

m+ h2w̃2
m), χz

)
Ω(h)
−

(
∂nh(hw1

m+ h2w2
m), z

)
∂ωh∩Ω(h)

.

Remark 3.3. The presence of corners on the boundary of domainΞ may result in the
singularities of derivatives of the boundary layer terms, therefore the inclusionsχ∆xw̃

q
m ∈

L2(Ω(h)) andχ∂nhwq
m ∈ L2(Γ(h)), in general are not valid. However, the terms in (3.28)

may be well defined in the sense of duality obtained by the extension of scalar products
(·, ·)Ω(h) and (·, ·)Γ(h) in the Lebesgue spaces to the appropriate weighted Kondriatiev classes
(see [17] and e.g., [36, Ch. 2]). Additional weighted factors are local, i.e., the factors are
written in fast variables. That is why the norms of test functions z can be bounded as
before by the constantN. We point out that the method proposed below which involves
the weighted norms can be avoided. The other possibility forthe termI5

1 is to rewrite the
gradient∇x in curvilinear coordinatesn, s, pass to the fast variables and take into account
the integral identities for problems (2.17) and (2.26) withthe test functionξ 7−→ χ(x)z(x).
�

By its definition, the functioñw1
m remains harmonic, and̃w2

m verifies the equation

(3.29) ∆ξw̃
2
m(ξ) = −L1(ξ1,∇ξ)w̃1

m(ξ), ξ ∈ Ξ;

here are taken into account splittings (2.13) and (2.42) of the Laplace operator. Therefore,

(3.30) ∆x(hw̃1
m + h2w̃2

m) = h2L1w̃2
m + L2(hw̃1

+ h2w̃2).

In (3.30) the operatorsLq are written in the slow variables and the functionw̃q in fast
variables (in contrast to (3.29) where∆ξ = h−2L0(∂n, ∂s) andL1(ξ1,∇ξ) = h−1L1(n, ∂n, ∂s)
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). Owing to (3.30), (2.37) in application of Remark 3.3, it follows that

|I5
3| ≤ cmN

( 2∑

q=0

h−2q

d∫

0

r2(1+ | ln r |)2(r2h4ρ−2(1+ρ)
+(3.31)

r4(h2ρ−2(2+ρ)
+ h4ρ−2(1+ρ)))|ρ=r/hrdr

)−1/2

≤ cmh3N .

It suffices to process the difference of integrals from (3.22) and (3.28):

I1 − I5
4 = −

(
∂nh(hw1

m+ h2w2
m − v0

m), z
)
∂ωh∩Γ(h)

.

Using the same arguments, already applied to derivation of boundary conditions in prob-
lems (2.17) and (2.26), we refer to formulae (2.14)-(2.13) and (2.28), and obtain that

(3.32) |I1 − I5
4| ≤ cmh1/2(1+ | ln h|)1/2Nh2(mes1∂ωh)1/2 ≤ cmh3(1+ | ln h|)1/2N .

Collecting estimates (3.21), (3.23), (3.25), (3.27), (3.31), (3.32) of the terms in (3.20),
we arrive at the following estimate of value (3.18)

(3.33) τ ≤ cmh3(1+ | ln h|)5/2.

We point out, that the maximal exponent 5/2 of the logarithmic factor is inherited from
estimate (3.25). We are ready now to verify the theorem aboutthe asymptotics, which is
the main result of this section

Theorem 3.4. For any positive eigenvalueλ0
m of multiplicity κm for problem (1.8), see

(2.48), there exist numberscm > 0 and hm > 0 such that for h∈ (0, hm] the eigenvalues
λh

m, . . . , λ
h
m+κm−1 for problem (1.3), (1.4) and except for all other eigenvalues in sequence

(1.5) satisfy the following inequalities

(3.34) |λh
q − λ

0
m − h2λq′| ≤ cmh3(1+ | ln h|)5/2, q = m, . . . ,m+ κm − 1.

Moreover, there is a constantCm and columns ahm, . . . , ahm+κm−1 which define an unitary
matrix of the sizeκm × κm such that

‖vq0
+ χ(hwq1

+ h2wq2) + h2vq2 −

m+κm−1∑

p=m

ahq
p uh

p; H1(Ω(h))‖ ≤ Cmh(1+ | ln h|)5/2,(3.35)

q = m, . . . ,m+ κm − 1.

By vq0 is denoted linear combination (2.49) of eigenfunctions in problem (1.8), constructed
in the end of Section 2.4, and wq1, wa2 and vq2 are given functions which are determined
for fixed vq0 in the way described in§2, finallyλq′ is an eigenvalue of the matrixM with
coefficients (2.53). In the case of a simple eigenvalueλ0

m (i.e.,κm = 1), we have vm0
= v0

m
the corresponding eigenfunction, andλm′

= λ′m is given by (2.47).

Proof. Given eigenvectorsam, . . . , am+κm−1 of the matrixM , we construct linear com-
binations (2.49) and the associated appropriate terms in asymptotic ansatz (1.11). As a
result, approximation solutions

{
(λ0

q + h2λq′)−1,Uq
}

for q = m, . . . ,m+κm−1 are obtained
for the abstract spectral problem (3.16).

Let λq′ be an eigenvalue of the matrixM of multiplicity κq, i.e.,

λq−1′ < λq′
= · · · = λq+κq−1′ < λq+κq′.(3.36)

We choose the factorc∗ in the valueτ∗ = c∗h2 in Lemma 3.2 so small that the segment

[(λ0
m+ h2λq′)−1 − c∗h

2, (λ0
m+ h2λq′)−1

+ c∗h
2](3.37)
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does not contain the approximation eigenvalues (λ0
m + h2λp′)−1 with p < {q, q + κq − 1} .

Then Lemma 3.2 delivers the eigenvalluesµh
i(q), . . . , µ

h
i(q+κq−1) of the operatorKh such that

|µh
i(q) − (λ0

m+ h2λq′)−1| ≤ τ ≤ cmh3(1+ | ln h|)5/2, p = q, . . . , q+ κq − 1 .(3.38)

We here emphasize that, at the time being, we cannot infer that these eigenvalues are
differents. At the same moment, the second part of Lemma 3.2 givesthe normed colums
bhp
= (bhp

kmq
, . . . , bhp

kmq+Nmq−1) veryfying the inequalities

‖U p −

kmq+Nmq−1∑

k=kmq

bhp
k uh

k; H1(Ω(h))‖ ≤ c
τ

τ∗
≤ ch(1+ | ln h|)5/2.(3.39)

Here{µh
kmq
, . . . , µh

kmq+Nmq−1} implies the list of all eigenvalues of the operatorKh in segment
(3.37). Note that the numberskmq andNmq can depend on the parameterh but this fact is
not reflected in the notation. Since

‖hχw1; H1(Ω(h))‖ ≤ ch, ‖h2χw2; H1(Ω(h))‖ ≤ ch2(1+ | ln h|),(3.40)

‖h2v2; H1(Ω(h))‖ ≤ ch2(1+ | ln h|)2,

the normalistion condition (1.9) for the eigenfunctions ofproblem (1.8) and similar condi-
tions for eigenvectors of the matrixM ensure that

|(U p,U t)L2(Ω(h)) − δp,t| ≤ ch, p, t = q, . . . , q+ κq + 1.(3.41)

On the other hand, inequalities (3.39) and the orthogonality and normalisation conditions
(1.6) for eigenfunctionsuh

k of problem (1.3), (1.4) lead to the relation

∣∣∣∣(U p,U t)L2(Ω(h)) −

kmq+Nmq−1∑

k=kmq

bhp
k bht

k

∣∣∣∣ ≤ ch(1+ | ln h|)5/2.(3.42)

Formulas (3.41) and (3.42) are true simultaneously if and only if

Nmq ≥ κq .(3.43)

To prove that actually the sign= occurs in (3.43), we first of all, notice that, for a suffi-
ciently smallh > 0, the relations of type (3.43) are valid for all eigenvaliuesλ0

1, . . . , λ
0
m of

problem (1.8) and all eigenvaluesλq′ of the associated matricesM . We have verified above
Proposition 3.1 that each eigenvalueλh

p and the corresponding eigenfunctionuh
p of singu-

larly perturbed problem (1.3), (1.4) converge to an eigenvalue and an eigenfunction of the
limit problem (1.8), respectively. This observation ensures that the number of entries of the
eigenvalue sequence (1.5), which live on the interval (0, λ0

m), does not exceedm+κm−1 for
a smallh > 0. Summing up the inequalities (3.43) over allλ0

1, . . . , λ
0
m andλq′, we conclude

that the equalitiesNmq = κq are necessary. Moreover, we now are able to confirm that the
eigenvaluesµh

i(q), . . . , µ
h
i(q+κq−1) can be chosen different one from another. Indeed, we take

τ∗ = C∗h3(1+ | ln h|)5/2 in Lemma 3.2 and fixC∗ so large that the inequality (3.39) with the
new boundc/C∗ still warrants that the segment

Υq(h) =
[
(λ0

m+ h2λq′)−1 −C∗h
3(1+ | ln h|)5/2, (λ0

m+ h2λq′)−1
+C∗h

3(1+ | ln h|)5/2
](3.44)

contains exactlyκq eigenvalues of the operatorKh. It suffices to mention two facts. First,
for a smallh > 0, the intervalsΥq(h) andΥp(h) with λq′

, λp′ do not intersect. Second,
any eigenvalueµh

k = (λh
k)
−1 in the interval (3.44) meets the inequality (3.34).�
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Remark 3.5. Estimates (3.40) show that the bound in (3.35) is large than norms of the
termswq1,wq2 andvq2 included into the approximation solution and, therefore, the esti-
mate (3.35) remaines valid for the functionvq0 alone, without three correcting terms. This
is the usual situation in the asymptotic analysis of singular spectral problems: One needs
to construct additional asymptotic terms of eigenfunctions in order to prove that the cor-
recting term in the asymptotics of an eigenvalue is found correctly. In principal, one can
employ the general procedure [28] and construct higher asymptotic terms of eigenvalues
and eigenfunctions. We keep the boundary layer and regular corrections in the estimate
(3.35) because they form so-called asymptoticconglometatewhich is replicated in the as-
ymptotic series (see [28] and [35]; actually the notion of asymptotic conglomerates was
introduced in [35]).

4. O     

4.1. Perturbation of a domain with the Dirichlet boundary condit ions. Let us consider
the spectral problem with equation (1.3) and the Dirichlet boundary conditions

(4.1) uh(x) = 0, x ∈ Γ(h),

or the mixed boundary conditions

(4.2) uh(x) = 0, x ∈ Γ(h) \ ∂ωh, ∂nhuh(x) = 0, x ∈ ∂ωh ∩ Γ(h).

Eigenvalues for these two spectral problem form a sequence,of the same form as in (1.5),
given by

(4.3) 0< λh
1 < λ

h
2 ≤ λ

h
3 ≤ · · · ≤ λ

h
m ≤→ +∞

with the corresponding eigenfunction subject to condition(1.6). The notation for attributes
of three spectral problems (1.3), (1.4) and (1.3), (4.1) or (1.3), (4.2) is the same, without
any misunderstanding. The peculiarity of spectral problems introduced in this section is
the absence of the eigenvalueλh

0 = 0, compare (4.3) with (1.5). The asymptotic ansatz
given by (1.10) and (1.11) keep their validity and the first termsλ0

m, v0
m are given by the

solutions of Dirichlet spectral problem

(4.4) ∆xv
0(x) = λ0v0(x), x ∈ Ω, v0(x) = 0, x ∈ Γ,

which admits the infinite sequence of eigenvalues

(4.5) 0< λ0
1 < λ

0
2 ≤ λ

0
3 ≤ · · · ≤ λ

0
m ≤→ +∞,

compare again with (1.7), and the corresponding eigenfunctionsv0
1, v

0
2, v

0
3, . . . , v

0
m, . . . are

subject to the orthogonality and normalisation conditions(1.9). The construction of asymp-
totics for the Dirichlet boundary conditions on the non perturbed part of the contourΓ(h)
is much simpler compared to the case of Neumann conditions. In particular, the second
termw2 of boundary layer type can be neglected, and we can restrict ourselves to analy-
sis of problems forw1 andv2. Indeed, the Dirichlet boundary conditions on non compact
part of the boundary∂Ξ turn out to provide the decay at infinity of both the functionsw1

andw2, instead of the case of Neumann conditions. Hence,w1 andw2 in the present case
are of the boundary layer type. It means that the decomposition for |ξ| → ∞ at the term
w2 is free from the non-decaying parts (compare to formulae (2.31)), therefore there is no
discrepancy from the termw2 in the problem forv0.

Assume that, in the same way as in section 2.1,λ0
= λ0

m is a simple eigenvalue in
problem (4.4) andv0

= v0
m is the corresponding eigenfunction, in particular‖v0; L2(Ω)‖ =
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1. In the vicinity of the pointO we have

v0(x) = n∂nv
0(O) +

1
2

n2∂2
nv

0(O) + ns∂n∂sv
0(O) +O(r3)(4.6)

= hξ1∂nv0(O) + h2

(
1
2
ξ21∂

2
nv

0(O) + ξ1ξ2∂n∂sv
0(O)

)
+O(h3).

Thus, the principal term of the boundary layer type should begiven by the solution to
boundary value problem

(4.7) −∆ξw
1(ξ) = 0, ξ ∈ Ξ, w1(ξ) = 0, ξ ∈ ∂Ξ \ ∂ω,

with the boundary conditions

(4.8) w1(ξ) = −ξ1∂nv0(O), ξ ∈ ∂ω ∩ ∂Ξ,

in the case of (4.1), or with the conditions

(4.9) ∂νw
1(ξ) = −ν1(ξ)∂nv

0(O), ξ ∈ ∂ω ∩ ∂Ξ,

for mixed boundary value problem (1.3), (4.2). In the two cases, for the solutionw1 the
following relations are fulfilled

(4.10) w1(ξ) =W(ξ)∂nv0(O),

(4.11) W(ξ) =
m
π

ξ1

ρ2
+O(ρ−2) = −

m
π
ρ−1 cosϕ +O(ρ−2)

where the decomposition (4.11) is described already in Remark 2.2. Let us note thatΞ ⊂
R

2
−; hence the asymptotic term detached in (4.11) is negative.

Lemma 4.1. • For the mixed boundary value problem (4.7), (4.9), the constant m
in decomposition (4.11) is given by (2.24).
• For the Dirichlet problem (4.7), (4.8) the constantm in decomposition (4.11) is

given by formula

(4.12) m(Ξ) := m = −
∫

Ξ

|∇ξW(ξ)|2dξ −mes2ω.

Proof. The sumY(ξ) = ξ1 + W(ξ) turns out to be a solution of problem with the
homogeneous boundary conditions on∂ω ∩ ∂Ξ. Therefore, for the mixed boundary value
problem, in the same way as in (2.22) and (2.23), we obtain thefollowing relations

∫

Ξ

|∇ξW(ξ)|2dξ +mes2ω =
∫

∂ω∩∂Ξ

Y∂νWdsξ =
∫

∂ω∩∂Ξ

(Y∂νW−W∂νY)dsξ(4.13)

= lim
R→∞

∫

{ξ∈R2
−:ρ=R}

(
W∂ρY− Y∂ρW

)
dsξ

=
m
π

π/2∫

−π/2

(
ρ−1 cos2 ϕ + ρ cosϕρ−2 cosϕ

)
ρ|ρ=Rdϕ +O(R−1)

= m +O(R−1).

For the Dirichlet problem, the first equality in (4.13) is replaced by the formula

−

∫

Ξ

|∇ξW(ξ)|2dξ −mes2ω = −
∫

∂ω∩∂Ξ

W∂νYdsξ .
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�

The problem for regular termv2 is defined in exactly same way as problem (2.39),
(2.40), however the reasons mentioned above lead to the following form of the right-hand
side f 2

(4.14) f 2(x) = λ0χ(x)t1(n, s) + ∆(χ(x)t1(n, s)), t1(n, s) = π−1m∂nv
0(O)n(n2

+ s2)−1.

compare to formula (2.41) where in addition the termt2 comes from decomposition (2.37),
q = 2 which is null in the present case. Therefore the functionv2 can be determined by a
solution of equation (2.39) with the boundary conditions

(4.15) v2(x) = 0, x ∈ Γ.

Let us observe that it is not required that the cut-off function verifies some additional
conditions: in any case the Dirichlet conditions turn out tobe homogeneous. Since we
are going to provide the termw2 with a decay at infinity, the right-hand side (2.27) of the
Poisson equation in problem (2.26) is modified and the equation takes the form

(4.16) −∆ξw
2(ξ) = κ(0)

(
∂ξ1w̃

1(ξ) − 2ξ1∂2
ξ2

w̃1(ξ)
)
, ξ ∈ Ξ,

wherew̃1(ξ) = w1(ξ) − X(ξ)t1(ξ), X ∈ C∞(R2) is a cut-off function,X = 1 for ρ > 2R0 and
X = 0 for ρ < R0, andt1 is the principal term of asymptotics forw1

0. In the case (4.1) the
boundary conditions forw2 are given as follows

(4.17) w2(ξ) = 0, ξ ∈ ∂Ξ \ ∂ω,

(4.18) w2(ξ) = −
1
2
ξ21∂

2
nv

0(O) − ξ1ξ2∂2
n∂sv

0(O), ξ ∈ ∂ω ∩ ∂Ξ,

and in the case (4.2) formula (4.18) is replaced by the following one

(4.19) w2(ξ) = G2(ξ), ξ ∈ ∂ω ∩ ∂Ξ;

moreover the termG2
1 = 0 andG2

2 in formula (2.28) are not changed and in accordance
with the decomposition (4.6) we have

G2
3(ξ) = −ξ1ν1(ξ)∂2

nv
0(O) − (ξ1ν2(ξ) + ξ2ν1(ξ))∂n∂sv

0(O).

Due to the Dirichlet conditions (4.17) on non compact part ofthe boundary two prob-
lems (4.16)-(4.18) and (4.16), (4.17), (4.19) admit decaying solutions. In view of Remark
2.2 it is straightforward to verify the estimates

|∇
p
ξ
w2(ξ)| ≤ cpρ

−1−p, ρ ≥ R0, p = 0, 1, 2, . . .

Hence, the functionw2 looses nondecreasing asymptotic termt2, in the framework of re-
arrangement of discrepancies [25], [28]; the resulting from t2 term are of orderO(ρ−2) and
in formula (2.29) are transfered on the right-hand side of equation (2.39) (compare (4.14)
with (2.41), (2.38)). Repetition with obvious changes of arguments from Section 2.3 shows
that the compatitbility condition for problem (2.39), (4.15) in the class of bounded func-
tions is equivalent to formula

(4.20) λ′ = m|∂nv
0(O)|2.

In the case of multiple eigenvalueλ0
m in problem (4.4) with condition (2.48) satisfied,

the members of asymptotic ansatz are determined exactly in the same way, as in the end of
Section 2.4. The only exception is formula (2.53), which nowreads as follows

(4.21) M jk = m(Ξ)∂nv0
m+k(O)∂nv0

m+ j(O);
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wherem = m(Ξ) is the integral attribute of the domainΞ, described in Lemma 4.1.

Remark 4.1. We leave the denotationW for odd extension from the domainΞ onto the
domainΞ00 of the functionW, which appears in (4.10) and (4.11), (see (2.25) and Figure
3). By virtue of the homogeneous Dirichlet boundary conditions on∂Ξ\∂ω, it is harmonic
function inΞ00, subject to the condition

W(ξ) = −ξ1, ξ ∈ ∂Ξ00,

in the case (4.8) and to the condition

∂ν(ξ) = −ν1(ξ), ξ ∈ ∂Ξ00.

in the case (4.9).This type of function is employed in [41] for the description of polari-
sation tensors and of virtual mass, respectively. By Lemma 4.1 the quantitym(Ξ) from
decomposition (4.11) is twice the upper left-hand element in the matrix associated with the
polarisation tensor.�

The justification of obtained formal asymptotics practically repeats arguments already
presented in section 2.4. The only exception is the fact, that the bounded solutionv0 of
problem (2.39), (4.15) can be represented in the fromv2(x) = Φ(ϕ)+O(r), therefore is not
any element of the Sobolev spaceH1(Ω). Thus, when constructing the global asymptotic
approximation for the eigenfunctionuh

m, the termv2 is multiplied by the cut-off function
Xh which equals toX(h−1n, h−1s) in the vicinity of the pointO and to one on the remaining
part of the domainΩ. We point out, that additional discrepancy resulting from the termv2,
cancels in the principal part with the discrepancy resulting from the multiplication of the
asymptotic termt1 by the cut-off functionX(ξ) on the right-hand side of equation (4.16).
Finally, we formulate the result.

Theorem 4.2. For any eigenvalueλ0
m in problem (4.4) of multiplicityκm (see (2.48))

there exist the constantscm > 0 and hm > 0 such that for h∈ (0, hm] the eigenvalues
λh

m, . . . , λ
h
m+κm−1 in the Dirichlet problem (1.3), (4.1) (respectively, in themixed boundary

value problem (1.3), (4.2)), but not all other members of sequence (4.3), satisfy the follow-
ing inequalities

(4.22) |λh
q − λ

0
m− h2λq′| ≤ cmh3, q = m, . . . ,m+ κm − 1.

Moreover, there exist the constantCm and the columns ahm, . . . , ahm+κm−1 ∈ Rκm which form
an unitary matrix of dimensionκm × κm, such that

(4.23)
∥∥∥∥∥v

q0
+ χhwq1

+ Xhvq2 −

m+κm−1∑

p=m

ahq
p uh

p; H1(Ω(h))
∥∥∥∥∥ ≤ Cmh,

In (4.23) vq0 stands for the linear combination (2.49) of the eigenfunctions in problem (4.4)
subject to the orthogonality and normalisation conditions(1.9). The columns of coefficients
aq0 in (2.49) satisfy condition (2.50). The quantitiesλq′ in (4.22) are given by eigenvalues,
and the columns aq0 by eigenvectors, of the(κm×κm)-matrixM with the coefficients (4.21).
The terms wq1 and wq2 of the boundary layer type are determined by the function vq0 while
solving problems (4.7), (4.8) and (4.16)-(4.18) ((4.7), (4.9) and (4.16), (4.17), (4.19) in the
case of mixed boundary conditions), respectively. The function vq2 is a bounded solution
of problem (2.39), (4.15) with the right-hand side (4.14), such a solution exists provided
κm compatibility conditions in form (2.52) are verified. In theparticular case of a simple
eigenvalueλ0

m, it follows that vm0
= v0

m is the coresponding normalised eigenfunction in
problem (4.4), and the unique compatibility condition of problem (2.39), (4.15) furnishes
the quantityλ′m = λ

m′ from formula (4.20).�
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F 5. Perturbation near the corner point.

The absence of logarithms in majorants (4.22) and (4.23) (compare with (3.34) and
(3.35) in Theorem 4.2) can be explained in the following way.First, there is no singular
termt2 with the logarithm (see (2.31) and (2.37)), furthermore thefunctionsu ∈ H̊1(Ω(h))
satisfy inequality (3.1), where in the middle the weight factor r−1 stands instead ofr−1(1+
ln |r |)−1 The verification of such an inequality is performed by means of the Friedrichs
inequality on the arc (−π/2, π/2) ∋ ϕ and for the Dirichlet boundary conditions onΓ(h) \
∂ωh, see e.g., [36, Ch. 2] for the details.

Remark 4.3. Since the boundary layer termswq1 andwq2 have similar behaviour at infinity,
we have excluded the second one from the approximation solution in (4.23) in accordance
with the concept of asymptotic conglomerates [28], [35].�

4.2. Perturbation of the boundary in the vicinity of a corner poin t. Assume that in
the vicinity of the origin the domainΩ coincides with the angleK = {x : r > 0, |ϕ| < α/2}
whereα ∈ (0, 2π] is the opening of the angle, (r, ϕ) are the polar coordinates, and we set
x1 = −r cosϕ and x2 = r sinϕ. Given a domainω with the originO in its interior, we
denote

(4.24) ωh =
{
x : ξ := h−1x ∈ ω

}
.

In the domainΩ(h) = Ω \ ωh, see Figure 5, with the piece-wise smooth boundary
Γ(h) = ∂Ω(h), we consider equation (1.3) along with the boundary conditions (4.1) or
(4.2). In contrary to the previous sections, the stretchingof coordinates is performed
for the Cartesian coordinate system (compare formula (4.24) to (1.1)) and, therefore, the
derivation of asymptotics becomes now much simpler. We restrict our analysis to a simple
eigenvalueλ0

m of the limit Dirichlet problem (4.4) and the corresponding eigenfunctionv0
m

normalised by relation (1.9). In the vicinity of the corner point O the functionv0
m admits

the decomposition

(4.25) v0
m(x) = Kmrπ/2 cos

(
π

α
ϕ

)
+O(rmin{2π/α,2+π/α}), r → 0,

where Km is a constant (it is the so-called intensity factor). Such a form of singular
function can be found, e.g. by an application of the Fourier method, and we refer the
reader for all the details of the derivation, e.g., to [36, Ch. 2]. By the formulav0

m(x) =
K1hπ/αρπ/α cos(πα−1ϕ)+o(hπ/2) on∂Ω(h)\∂Ω, it follows that the decomposition of bound-
ary layer type starts with the termhπ/αωπ/αm (ξ), which compensates the principal part of the
discrepancy in the boundary conditions and is given by a solution of the boundary value
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problem

(4.26) −∆ξw
π/α
m (ξ) = 0, ξ ∈ Ξ := K \ ω, wπ/αm (ξ) = 0, ξ ∈ ∂Ξ \ ∂ω,

(4.27) wπ/αm (ξ) = −Kmρ
π/α cos

(
π

α
ϕ

)
, ξ ∈ ∂ω ∩ ∂Ξ,

or

(4.28)
∂wπ/αm

∂ν
(ξ) = −Km

∂

∂ν
ρπ/α cos

(
π

α
ϕ

)
, ξ ∈ ∂ω ∩ ∂Ξ,

where (4.28) is given for (4.2) and (4.27) is the condition for (4.1). Since the homogeneous
Dirichlet conditions are prescribed on the non compact part∂Ξ of the boundary, problem
(4.26), (4.27) admits a unique solutionwπ/αm with the decay at infinity. The following
formulae are valid,

(4.29) wπ/αm (ξ) = KmW(ξ),

(4.30) W(ξ) =
m
π
ρ−π/α cos

(
π

α
ϕ

)
+O(ρ−2π/α), ρ→ ∞.

HereW is a solution to problem (4.26), (4.27) forKm = 1.

Remark 4.4. By a simple repetition of arguments given in the proof of Lemma 4.1, with
the evident modifications if necessary, we arrive at the equality

(4.31) m(Ξ) := m= ∓
∫

Ξ

|∇ξW(ξ)|2dξ ∓
∫

ω∩K

∣∣∣∣∣∇ξ
(
ρπ/α cos

(
π

α
ϕ

))∣∣∣∣∣
2

dξ;

where the sign− relates to the condition (4.1), and the sign+ is given for the case of (4.2).
Such formulae can be derived from relations (2.24) and (4.12) by means of a conformed
mapping technique, with the appropriate transformation ofthe cornerK onto the half-plane
R

2
−. Unfortunately, the conformal mapping is not applicable ina simple way to equation

(1.3), the reason is the form of the right-hand side with the additional weight factor which
makes the asymptotic constructions provided in section 6.1much more involved.�

The asymptotic ansatz for solutions of spectral problems (1.3), (4.1) and (1.3), (4.2)
should be taken in the following form:

(4.32) λh
m = λ

0
m + h2π/αλ′m + . . .

(4.33) uh
m(x) = v0

m(x) + χ(x)hπ/αwπ/αm (ξ) + h2π/αv2π/α
m (x) + . . .

The correction termv2π/α
m of regular type is given by a solution to problem (2.39), (4.15)

with the right-hand side

f 2π/α(x) = λ0χ(x)tπ/α(x) + ∆x(χ(x)tπ/α(x)) = λ0χ(x)tπ/α(x) + [∆x, χ(x)]tπ/α(x),

tπ/α(x) = K1
m
π

r−π/α cos
(
π

α
ϕ

)
.

It is taken into account thattπ/α is a harmonic function. In view off 2π/α(x) = O(r−π/α) for
r → 0, solutions to problem (2.39), (4.15) should be found in theclass of smooth functions
onΩ \ O, such that

|∇
p
xv2π/α(x)| ≤ cprmin{π/α,2−π/α}−p, p = 0, 1, . . .
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F 6. The magistral crack with a kink or cavity at the tip.

It is not difficult to see (we refer the reader to [36, Ch. 2], for the details) that the solu-
tion with such properties does exist if and only if the following compatibility condition is
verified

(4.34)
∫

Ω

(λ′mv0
m+ f 2π/α)v0

mdx= 0.

We recall here thatλ0
m is a simple eigenvalue. By an application of the Green formula in

the domainΩ \Bρ in the same way as before, we can transform the compatibilitycondition
(4.34) into the formula for the asymptotic correction in theansatz (4.32) for the eigenvalue

(4.35) λ′m = mK2
m.

We are not going to analyse the case of multiple eigenvalues.Since the theorem on
asymptotics and its proof can be presented in exactly the same way as before, no new ideas
is required. For this reason, we are going to derive several asymptotic terms in the most
interesting case of the Neumann problem (1.3), (1.4) for domains with cracks, see Figure
6

4.3. Spectral problems for domains with cracks. Let α = 2π and letλ0
m be a simple

eigenvalue for the limit Neumann problem (1.8). The eigenfunctionv0
m, normalised in the

spaceL2(Ω), can be decomposed as follows

v0
m(x) = v0

m(O) + K1r1/2 cos
ϕ

2
+ K2r cosϕ + K3r3/2 sin

(3
2
ϕ
)

(4.36)

+ K4r2 cos 2ϕ −
1
4
λ0

mv0
m(O)r2

+O(r5/2), τ→ 0.

The four terms in the right-hand side, witch contain the intensity factorKp
m are denoted by

Kp
mr p/2

Φp(ϕ), p = 1, 2, 3, 4. The last asymptotic term comes out from the termλ0
mv0

m in
the equation from problem (4.4) (compare with the procedureof asymptotic construction
[17], which is retold e.g., in [36, Ch. 6]). Due to formula (4.36), the following asymptotic
ansätze are proposed:

(4.37) λh
m = λ

0
m + hλ(2)

m + h3/2λ(3)
m + h2λ(4)

m + . . . ,
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(4.38) uh
m(x) = v0

m(x) +
4∑

j=2

h j/2v( j)
m (x) + χ(x)

4∑

p=1

hp/2w(p)
m (ξ) + . . .

The termsw1
m andw2

m of the boundary layer type are given by solutions of the problems

(4.39) −∆ξw
(p)
m (ξ) = 0, ξ ∈ Ξ, ∂νw

(p)
m (ξ) = −Kp∂ν(ρ

p/2
Φp(ϕ)), ξ ∈ ∂Ξ.

The right-hand sides of the boundary conditions have compact supports and the integrals
of the functions over∂Ξ vanish. This implies the existence of a unique solution to (4.39)
which decay at infinity. In addition, the following representationwp

m = Kp
mWp

m is useful,
and

(4.40) Wp(ξ) =
1
π

3∑

q=1

1
q

mpqρ
−q/2
Φq(ϕ) +O(ρ−2), ρ→ ∞.

Lemma 4.2. The matrix(mpq)2
p,q=1 of size2× 2 is symmetric and positive definite,

(4.41) mpq(Ξ) := mpq = (∇ξW
p,∇ξW

q)Ξ + (∇ξ(ρ
p/2
Φp),∇ξ(ρ

p/2
Φq))ω .

Proof follows the proof of Lemma 4.1. The functionsYp(ξ) = ρp/2
Φp(ϕ) +Wp(ξ) turn

out to be solutions of the homogeneous problem (4.39). The Green formula leads to
∫

∂ω

Wq∂νW
pdsξ −

∫

∂ω

ρq/2
Φq∂ν(ρ

p/2
Φp)dsξ

=

∫

∂ω

(Yq∂νW
p −Wp∂νY

q)dsξ =
∫

{ξ∈K:ρ=R}

(Wp∂ρY
q − Yq∂ρW

p)dsξ(4.42)

=

3∑

j=1

Rπ(q− j) mp j

2π j
(q+ j)

π∫

−π

Φq(ϕ)Φ j(ϕ)dϕ + o(1).

Since the left-hand side equals the sum of scalar products in(4.41), the right-hand side has
the finite limit, which in view of the definition of the angularpartsΦk equals to

∑
mp jδ j,q =

mpq. Therefore, the matrixm takes the form of the sum of two Gram matrices, symmetric
and positive definite.�

Remark 4.5. In the case of the kinked crack mes2ω = 0 and therefore, the second term
on the right-hand side of (4.41) vanishes. Nevertheless, the matrixm of Lemma 4.2 keeps
the properties. We refer to [34, 1], for much more involved theory of cracks elongation in
elastic solids.�

In view of formulae (4.37), (4.38) and (4.40), in the same wayas it is described in
Section 2.3, we can formulate boundary value problems for termsv(2)

m andv(3)
m of regular

type

−∆xv
(q)
m (x) = λ0

mv(q)
m (x) + λ(q)

m v0
m(x) + [∆x, χ(x)]Tq

m(x)(4.43)

+ λ0
mχ(x)Tq

m(x), x ∈ Ω, ∂mv(q)
m (x) = 0, x ∈ ∂Ω;

where

(4.44)
T2

m(x) = π−1K1
mm11r−1/2

Φ1(ϕ),
T3

m(x) = π−1K2
mm21r−1/2

Φ1(ϕ) + (2π−1)K1
mm12r−1/2

Φ2(ϕ).

The compatibility conditions for problems (4.43) withq = 2, 3, are processed by the
method [29]: the Green formula is applied in the domainΩ\Bρ and taking into account the
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asymptotic decomposition (4.36) the integral on the contour (−π, π) ∋ ϕ is evaluated (com-
pare with the procedure in (4.42)). As a result, by the normalisation (1.9), the following
expressions are obtained

(4.45) λ(2)
m = m11(K1

m)2, λ(3)
m = 2K1

mm12K
2
m.

Now we use the theory of elliptic boundary value problems in the domains with corner
points, taking into account that the right-hand sides (4.44) of problem (4.43) forq = 2 and
q = 3 are only of orderO(r−1/2) andO(r−1), respectively, therefore

(4.46)
v(2)

m (x) = K12
m r1/2

Φ1(ϕ) + K22
m r1
Φ2(ϕ) +O(r3/2),

v(3)
m (x) = K13

m r1/2
Φ1(ϕ) +O(r(1+ | ln r |))

We refer the reader, e.g., to [36, Ch. 2] for all details whichare needed to derive (4.46); see
also Remark 2.2. The next step of our procedure is the formulation of problems forw(3)

m

andw(4)
m :

(4.47) −∆ξw
(q)
m = 0, ξ ∈ Ξ, ∂νw

(q)
m (ξ) = G(q)

m (ξ), ξ ∈ ∂Ξ.

We use the following notation

G(3)
m (ξ) = −K3

m∂n(ρ3/2
Φ3(ϕ)) − K12

m ∂ν(ρ
1/2
Φ1(ρ)),

G(4)
m (ξ) = −K4

m∂n
(
ρ2
Φ4(ϕ)

)
− K22

m ∂ν
(
ρ1
Φ2(ρ)

)
− K13

m ∂n
(
ρ1/2
Φ1(ϕ)

)
+

1
4
λ0

mv0(O)∂νρ2.

In this way, forq = 3 we havew(3)
m (ξ) = K3

mW3
+ K12

m W1, moreover

(4.48) w(3)
m (ξ) = (K3

mm31+ K12
m m11)ρ

−1/2
Φ1(ρ) +O(ρ−1), ρ→ +∞,

and, thus, the detached asymptotics term has to be put into the problem forv(4)
m . We observe

that ∫

∂ω∩K

G(4)
m (ξ)dsξ =

1
4
λ0

mv0(O)
∫

∂ω∩K

∂νρ
2dsξ = −λ

0
mv0(O)mes2ω.

Thus, problem (4.47) forq = 4 has no decaying solution, there exists a solution with the
logarithmic growth

(4.49) w(4)
m (ξ) = −λ0v0(O)mes2ω

1
2π

ln ρ +O(ρ−1), ρ→ ∞.

In the next step of the procedure we proceed in very similar way described in§2, but
with the ansätze (4.37), (4.38) and with decompositions (4.40), (4.48), (4.49), as a result
the following boundary value problem is obtained forv(4)

m

−∆xv
(4)
m (x) = λ0

mv(4)
m (x) + λ(2)

m v(2)
m (x) + λ(4)

m v0
m(x) + [∆x, χ(x)]T4

m(x)(4.50)

+ λ0
mχ(x)T4

m(x), x ∈ Ω, ∂nv(4)
m (x) = 0, x ∈ ∂Ω.

Here the notation is used

T4
m(x) = K1

m
m13

3π
r−3/2
Φ3(ϕ) + K2

m
m22

2π
r−1
Φ2(ϕ)(4.51)

+
(
K3

m
m31

π
+ K12

m m11
)
r−1/2
Φ3(ϕ) − λ0

mv0
m(O)mes2ω

1
2π

ln
r
ε
.

The solutionsv(2)
m andv(3)

m of problem (4.43) is defined up to the termcv(0)
m , i.e. we can

require that the following condition is satisfied

(4.52) (v(q)
m , v

0
m)Ω = 0, q ≥ 1,
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which provides the uniqueness of the intensity factorsK12
m and K13

m in decompositions
(4.46). In view of formulae (4.44) forT2

m and (4.45) forλ(2)
m the functionv(2)

m is proportional
to the intensity coefficientK1

m, which means that

(4.53) K12
m = KmK1

m,

whereKm is a constant, which depends on the domainΩ and on the selected simple eigen-
valueλ0

m.
Taking into account formulae (4.51)-(4.53), and accordingto the method of [29] the

compatibility conditions for problem (4.54) can be formulated as follows

(4.54) λ(4)
m = 2m13K

1
mK3

m +m22(K2
m)2
+m11Km(K1

m)2 − λ0
mv0

m(O)mes2ω.

We do not justify the asymptotics, since the related theoremcan be established in the same
way as it is described in details in§3. We observe only, that decomposition (4.37) with the
four terms in precise of the order at leastO(h5/2(1+ | ln h|))5/2 (compare with (3.34)).

We rewrite formulae (4.37) and (4.45), (4.54) in the following form

λh
m = λ

0
m +

2∑

k=1

mjkh( j+k)/2K j
mKk

m(4.55)

+ h2
{
2m13K

1
mK3

m +m11Km(K1
m)2 − λ0

mv0
m(O)2mes2ω

}
+O(h5/2(1+ | ln h|))5/2.

Remark 4.6. It is possible to add to the right-hand side of (4.55) the higher order terms
2h5/2m23K2

mK3
m andh3m33(K3

m)2. The formula with exactly same asymptotic precision reads

λh
m = λ

0
m +

3∑

j,k=1

mjkh( j+k)/2K j
mKk

m(4.56)

+ h2m11Km(K1
m)2 − h2λ0

mv0
m(O)2mes2ω +O(h5/2(1+ | ln h|))5/2.

As it follows from the proof of Lemma 4.2, 3× 3-matrix (m jk)3
j,k=1 is again symmetric

and positive definite. If the asymptotic terms of lower orderare taken into account, it
necessitates an extension of the matrix of decomposition coefficients (4.40), the appropriate
construction is described in [33], [16] for the domain perturbation by small opening, and
the passage to the crack withα = 2π can be performed by an application of the method
proposed in [37].�

4.4. Growing of geometrical domain. In the analysed already perturbations, it was al-
ways assumed that the perturbations of the domain result in adecrease of the volume, i.e.,
mes2Ω(h) ≤ mes2Ω. However in the shape optimisation it is always possible to require
also that the volume of domain increases. IfΩ is a domain with smooth boundary, then
mes2Ω(h) > mes2Ω in the case of

(4.57) Ξ = R
2
− ∪ ω,

(4.58) Ω(h) = (Ω \ U) ∪
{
x ∈ U : ξ = (h−1n, h−1s) ∈ Ξ

}
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F 7. The growing of the perturbed domain.

F 8. Exterior perturbation of the corner point.

4.5. Spectral problem for a crack. (see Figures 7 and 8). Hereω is a domain such that
ω ∩ R2

+
, ∅, andU is a neighbourhood of the origin. We assume that the set (4.58) is

connected and its boundary∂Ω(h) is piecewise smooth.
Asymptotic procedures presented in§2 and in Section 4.1, can be applied without any

substantial modification, and the justification of asymptotics given in§3 simplifies in the
present case due to the fact, that we do not need any extensionof eigenfunctions from
the domain (1.2) ontoΩ, now we simply use the restriction of the eigenfunction defined
on the set (4.58) toΩ. We also point out that in the asymptotic ansatz (1.11) we need a
smooth extension of the functionv0 onto an open neighbourhood of the setΩ, so now we
can restrict toΩ the function defined on (4.58). In addition, for the extendedfunction v̂0

the representations (2.1) and (4.6) are still valid, therefore the problems for the boundary
layer type terms of our ansätze are of the same form as before.

We recall that for the solutionv2 of Neumann problem (2.39), (2.40) the extension in
the classH1(Ω) is needed, with the property that the extended function is bounded. In the
case of the Dirichlet problem (2.39), (4.15) in general no extension of the solutionv2 is
required, since the solution is multiplied by a cut-off functionXh in the global asymptotic
approximation for the spectral problems (1.3), (4.1) or (1.3), (4.2) (see the subtrahend
inside of the norm on the right-hand side of (4.23)), and the functionXh equals to zero
on the setΩ(h) \ Ω. If Ω is the domain with a corner point on the boundary, andΩ(h) =
Ω ∪ ωh whereωh is a small set (4.24) (see Figure 8 and compare with section 4.2). Then
the extension of function (4.25) is not always available, soit is necessary to multiply the
members of the asymptotic ansatz by a cut-off functionXh. Such an approach is common
in the theory of elliptic boundary value problems in domainswith singularly perturbed
boundaries [28] and it is described in details in Chapter 4 ofthis monograph, (see also the
original paper [25]).
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4.6. Mixed boundary value problems with the Dirichlet boundary conditions on the
boundary of a cavern. The most complicated asymptotic ansätze appear for the boundary
conditions

(4.59) ∂nuh(x) = 0, x ∈ ∂Ω(h) ∩ ∂Ω, uh(x) = 0, x ∈ ∂Ω(h) \ ∂Ω.

In such a case the principal feature which causes serious difficulties is but the lack of the
decay at infinity of solutions to the limit problem

−∆xw
0(ξ) = 0, ξ ∈ Ξ, ∂ξ1w

0(ξ) = 0, ξ ∈ ∂Ξ ∩ ∂R2
−,(4.60)

w0(ξ) = g0(ξ), ξ ∈ ∂Ξ \ R2
−,

even for the functiong0 with the null mean value, therefore the decay of boundary layer
terms is produced artificially. Complications appear already at the stage of construction
of principal members of ansätze, thus the question on the dependence of asymptotic struc-
tures on the curvature pass to the second plan. Moreover, thealgorithm of construction
of asymptotics and its justification differ only in some details with the framework given
in [27] (see also [28, Ch. ?]) for the Dirichlet problem in thedomain with small interior
opening. We recall here, that the complexity of asymptotic constructions for solutions to
problem (1.3), (4.59) could causes even some mistakes in published results (for exemple
see [31] and the explanation given in [5]). For the convenience of the reader we briefly
explain the algoritm of [27] in our context.

Assume thatλ0
= λ0

m is a simple eigenvalue of problem (1.8), and letv0
= v0

m be the
associated eigenfunction normalized inL2(Ω), and such thatv0(O) , 0. The case ofm= 0
is not excluded, i.e.,λ0

= 0 andv0(x) = (mes2Ω)−1/2.
We need in the sequel certain special solutions of limit boundary value problems which

we list now. The first special solution is the generalized Green function [43] with the
singularity at the pointO ∈ ∂Ω, namely the solution to the problem

(4.61) −∆xGm(x) = λ0
mGm(x) − v0

m(O)v0
m(x), x ∈ Ω, ∂nGm(x) = δ(x), x ∈ Γ.

The Green function is smooth inΩ \ O, verifies the orthogonality condition (Gm, v0
m)Ω = 0,

and in the vicinity of the singular pointO it admits the decomposition

(4.62) Gm(x) = −π−1 ln r + G0
m +O(r), r → 0.

The second special solution is the so-called capacitary potentialE (see [22]) of the set
(2.25), i.e.E is a harmonic function,E = 0 on the curve∂Ξ \ ∂R2

−, its normal derivative
∂E/∂ξ1 = 0 on the set∂Ξ ∩ ∂R2

−, andE admits the decomposition

(4.63) E(ξ) = −(2π)−1 ln ρ + E0 + Ê(ξ), Ê(ξ) = O(ρ−1), ρ→ ∞.

In the literature [22], [41], the quantity exp (2πE0) is called the logarithmic capacity or
exterior conformal radius of the setΞ00. In order to avoid the presence of cut-off function
Xh in all asymptotic formulae, we simply assume thatO < Ω(h).

Now, we turn to the asymptotic ansatz, which according to [27], can be written in the
following way

(4.64) λh
m = λ

0
m+ Λ

0
m(zm) + . . . ,

(4.65) uh
m(x) = v0

m(x) + am(zm)Gm(x) + V0
m(x, zm) + χ(x)w0

m(ξ, zm) + . . .

Here,zm = (| ln h| + z0
m)−1 is a new parameter, and the quantitiesz0

m, Λ0
m(z), andam(z), are

to be determined. The functionsw0
m andV0

m decay forρ → ∞ andr → 0, respectively, in
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particular we have

(4.66) V0
m(O, zm) = 0.

In view of formulae (4.62) and (4.66), the right-hand side ofboundary conditions in prob-
lem (4.60), collecting the principal terms of discrepancies resulting in the second condition
of (4.59) from the first three members in ansatz (4.65), takesthe form

g0(ξ, zm) = −v0
m(O) − am(zm)

(
π−1 ln h− π−1 ln ρ + G0

m
)
.

According to (4.63) the solution of problem (4.60) with a such right-hand side is given by

w0(ξ, zm) = 2am(zm)Ẽ(ξ) + am(zm)(π−1| ln h| + 2E0 − G
0
m) − v0

m(O).

The solution decays at infinity provided that

(4.67) am(zm) = πv0
m(O)

[
| ln h| + 2πE0 − πG

0
m

]−1
=: πv0

m(O)zm.

Let us consider now the problem forV0
m(x, zm), which can be determined according to

ansätze (4.64), (4.65), with the decaying termw0
m, and in view of equalities (4.61) forGm,

it takes the form

(4.68)
−∆xV0

m(x, zm) − λ0V0
m(x, zm) = F0

m(x, zm)
:= Λ0

m(zm)V0
m(x, zm) + Λ0

m(zm)v0(x) + Λ0
m(zm)am(zm)Gm(x)

−am(zm)v0
m(O)v0

m(x), x ∈ Ω,

(4.69) ∂nV
0
m(x, zm) = 0, x ∈ ∂Ω,

Lemma 4.3. Assume that the eigenfunction v0
m is associated to a simple eigenvalue, it is

normalised in L2(Ω), and in addition v0m(O) , 0. For all right-hand sides F∈ L2(Ω), with
the orthogonality condition(F, v0

m)Ω = 0, the Neumann problem

∆xV − λ
0
mV = F in Ω, ∂nV = 0 on ∂Ω

admits the unique solution V∈ H2(Ω), with V(O) = 0. Furthermore,‖V; H2(Ω)‖ ≤
c‖F; L2(Ω)‖.

Proof. The existence of a particular solutionV• and its differential properties are well
known (see e.g., [21]). The assumptionv0

m(O) , 0 allows us to determine the constantc0 in
the formula for the general solutionV = V• + c0v0

m by the additional conditionV(O) = 0.
⊠.

Hence, assuming that the right-hand sideF0
m in (4.68) is given, we can conclude that the

solutionV0
m verifies condition (4.68) if and only if

Λ
0
m(zm)(V0

m, v
0
m)Ω + Λ0

m(zm) − am(zm)v0
m(O) = 0

or, which is equivalent, according to (4.67)

(4.70) Λ
0
m(zm) = π|v0

m(O)|2zm(1+ (v0
m, v

0
m)Ω)−1.

We inject (4.70) into (4.68), henceV0
m is a solution of nonlinear problem, with the

Neumann condition (4.69) and the Sobolev condition (4.66),defined by a mapping from
the subspace

H =
{
V ∈ H2(Ω) : ∂nV = 0 on ∂Ω, V(O) = 0

}

into the subspace
L =

{
F ∈ L2(Ω) : (F, v0

m)Ω = 0
}
.

Since the nonlinear perturbation of the isomorphismH ≈ L defined in Lemma 4.3 turns
out to be a small and analytic perturbation, general results[20] show that for sufficiently
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small values of parameterzm introduced in (4.67), problem (4.68)-(4.70), (4.66) has the
unique solutionV0

m, analytical with respect tozm, and such thatV0
m(x; 0) = 0. We inject the

solution into (4.70) and obtain the correctionΛ0
m(zm) in the asymptotic ansatz (4.64), the

resulting correction is analytical with respect tozm, moreover

(4.71) Λ
0
m(zm) = πv0(O)2zm +O(z2

m).

In this way the formal asymptotic analysis is performed, andwe refer the reader to [27] for
the arguments on the justification of asymtotics.

Remark 4.7. It is not difficult to construct the expansion of the eigenvalueλn
m in the series

of inverse powers of the large parameter| ln h|

(4.72) λn
m ∼

∞∑

p=0

| ln h|−p
Λ

(p)
m .

The results already established show that the series converges, and the remainder is of the
orderO(h1−δ), δ > 0. On the other hand, the functionh→ | ln h| is slowly increasing, hence
the expansion (4.72), and in particular the resulting form (4.64), (4.71) formula

(4.73) λh
m = λ

0
m+ | ln h|−1π|v0

m(O)|2 +O(| ln h|−2)

is not sufficiently precise, and therefore its utility in shape optimisation is questionable.�

Remark 4.8. If λ0
m is a simple eigenvalue but the corresponding eigenfunctiontakes the

valuev0(O) = 0, the asymptotic analysis is performed in exactly the same way as it is
described in§2, i.e., it looses the complication discussed above. For a multiple eigenvalue
(see (2.48)) the eigenfunctionsv0

m, . . . , v
0
m+κm−1 can be fixed in such a way that the rela-

tions (see (1.9)) are verified andv0
m+1(O) = · · · = v0

m+κm−1(O) = 0. In this way, at most
one between eigenvaluesλh

m, . . . , λ
h
m+κm−1 in problem (1.3), (4.59) requires the complicated

asymptotic analysis.�

5. O  

5.1. Reduction and enhancement of eigenvalues (eigenfrequences) by boundary per-
turbations. For all three problems (1.3), (1.4) or (1.3), (4.1) and (1.3), (4.2), formulae
(2.47) and (4.20) for the asymptotic correction of a simple eigenvalueλ0

m can be presented
in a unique way with the help of the corresponding eigenfunction v0

m normalized inL2(Ω):

(4.74) λh
m = λ

0
m+ h2

(
m(Ξ)|∇xv

0(O)|2 − λ0
mmes2ω|v

0(O)|2
)
+O(h3−δ).

Here,δ is an arbitrary positive number for (1.4) andδ = 0 for cases (4.1) and (4.2). Thus,
the sign of the multiplier forh2 in (1.9) is determined according the way the boundary is
perturbed, energym(Ξ) and geometrymes2ω characteristics, as well as by the location of
the pointO on the contourΓ.

5.2. Control on eigenvalues: Dirichlet problem. If, as a result of the boundary pertur-
bations a cavern is formated, from Lemma 6.1 it follows that the multiplierm in (4.74)
is negative. In view of the equalityv0(0) = 0 this impliesλh

m < λ
0
m under the condition

∂nv0
m(O) , 0. We point out that the same conclusion can be drown out from the minimax

principle (cf. [47])

(4.75) λh
m = min

Rm⊂Hh

max
v∈Rm

‖∇xv; L2(Ω(h))‖2

‖v; L2(Ω(h))‖2
.
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F 9. The perturbation of the domain with the area preserved.

Here

Hh = H̊1(Ω(h)) =
{
u ∈ H1(Ω(h)) : u = 0 on ∂Ω(h)

}

with H0 = H̊1(Ω), and byRm is denoted a subspace of dimensionm. We observe that the
required result is obtained by the embeddingH̊1(Ω(h)) ⊂ H̊1(Ω), with the convention that
the functions are extended by zero onΩ \Ω(h), thereforeλh

m > λ
0
m.

Assume thatΩ(h) is the domain from (4.58), andΞ is the domain which coincides with
the half-planeR2 outside of the circleBR0. We denoteω+ = Ξ \ R2

− andω− = Ξ ∩ R2
−

(see Fig. 9). In this case principle (4.75) becomes useless.From the explications given
in section 6.3 it follows that formulae (4.20) and (4.22) arevalid also in the case when
the both setsω+ andω− are not empty. In addition, a natural modification of the proof of
Lemma 4.1 leads to the following variant of formula (4.12):

(4.76) m(Ξ) = −
∫

Ξ

|∇ξW(ξ)|2dξ −mes2ω− +mes2ω+ .

Hence,m(Ξ) < 0 under the condition thatmes2ω− ≥ mes2ω+ (the volume of added part is
greater then the volume of the clipped part). Ifmes2ω+ > mas2ω−, it is possible to predict
the sign of quantity (4.76) only under additional assumption thatω− = ∅.

Lemma 5.1. If the domainΞ is of form (4.57) and the setω+ = ω ∩ R2
− is nonempty, then

the multiplierm = m(Ξ) in the asymptotics (4.11) of the solution to problem

(4.77) −∆ξW(ξ) = 0, ξ ∈ Ξ, W(ξ) = −ξ1, ξ ∈ ∂Ξ,

is positive.

Proof. The right-hand side of boundary condition in (4.77) is negative on∂ω \ R2
− and

is null on ∂R2
− \ ω. The maximum principle assures thatW(ξ) < 0 in Ξ, which means

m ≥ 0 since the harmonic functionρ−2ξ1 is negative in half-spaceR2
−. The equalitym = 0

is impossible, since all harmonics decaying forρ→ ∞ change the sign in infinity.�
We note that, under growing of the domain , the multiplierm(Ξ) in expansions (4.11)

and (2.21) and in others, cannot be express through standardintegral attributes of sets [41].

5.3. Control on eigenvalues: Neumann problem.According to formula (2.24) for prob-
lem (1.3), (1.4) in domain (1.2) with a cavern the coefficientm(Ξ) is positive, however the
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differencesλh
m − λ

0
m for m≥ 1 can have arbitrary sign in dependence of the position of the

pointO. Indeed, letO coincide, for example, with a local extremum of the function

(4.78) Γ ∋ s 7−→ v0
m(0, s).

Then|∇xv0
m(O)| = 0 in view of homogeneous Neumann condition forv0

m thusλh
m − λ

0
m <

0, provided thatv0
m(O) , 0 and the parameterh is sufficiently small (ifO is the global

minimum, then the inequalityv0
m(O) , 0 can be established by the maximum principle).

Taking off a cavern at the pointO of sign change of function (4.78), and assuming that
∂sv0

m(O) , 0 (for the eigenfunction associated to the first positive eigenvalueλ0
1 such an

assumption is satisfied) we obtain thatλh
m−λ

0
m > 0 for h sufficiently small. If the perturbed

domainΩ(h) containsΩ and takes form (4.58) (see Fig. 9), unfortunately the sign ofm(Ξ)
is not known, the coefficientm(Ξ) in view of (2.22) and (2.23) is obtained in the analogous
to (2.24) and (4.76) form

(4.79) m(Ξ) =
∫

Ξ

|∇ξW(ξ)|2dξ +mes2ω− −mes2ω+ .

Indeed, forω− = ∅ andmes2ω+ > 0 in the right-hand side of (4.79) appears a difference
of unknown sign. We emphasise that the proof of Lemma 5.1 based on the maximum
principle cannot be used, in addition the conformal mappingmethod indicated in Remark
4.4 is also not applicable.

5.4. Mixed boundary value problems. For mixed boundary value problems under bound-
ary conditions (4.2) the minimax principle (4.75) is not applicable; however in view of
Lemma 4.1 the constantm(Ξ) is positive for a cavern, hence the same conclusion as for
the Neumann (1.3), (1.4) problem is valid in view of the equality v0

m(O) = 0. If Ω(h) 1 Ω
formula (4.79) holds, which means that formes2ω− ≥ mes2ω+ it follows thatm(Ξ) > 0 as
before. On the other hand, forω− = ∅ the sign of the quantitym(Ξ) is unknown.

For boundary condition (4.59), the priciple (4.75) leads tothe inequalityλh
m > λ

0
m pro-

vided thatΩ(h) ⊂ Ω. If the domainΩ(h) is of form (4.58), the strict inequality holds at
least for simple eigenvalues by formula (4.73), however only for sufficiently smallh since
it is required that the term| ln h|−1 is small enough.

5.5. Multiple eigenvalues. Assume thatλ0
m is a multiple eigenvalue (see (2.48)) of the

Dirichlet problem (4.4). Then the asymptotic correctionsλm′, . . . , λm+κm−1′ in ansatz (1.10)
for problem (1.3), (4.1) or (1.3), (4.2) are given by eigenvalues (κm × κm)-matrix M with
elements (4.21). SinceM is proportional to a matrix of the formMMT , whereM is a
column of heigthκm, andMT is the transposed row, hence the eigenvalues take the form

(4.80) λm′
= m(Ξ)

m+κm−1∑

p=m

|∂nv0
p(O)|2, λm+1′

= . . . λm+κm−1′
= 0.

Therefore, Theorem 6.3 assures a nontrivial correction forthe only one amongκm eigen-
values. There are known standard procedures (see, e.g., [28]), which allow to construct
the higher order terms of expressions (1.10) and (1.11) and to determine if the eigenvalues
decrease of increase in terms of higher order corrections.

For the Neumann problem (1.3), (1.4) the matrixM with elements (2.53) turns out to be
the sum of two matrices of the formMMT thus the eigenvalues are not given in the simple
form (4.80).
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F 10. The selvage micro-crack.

F 11. The micro-crack parallel to the boundary.

5.6. Corner point. All theory explained up to now is valid for problems from Section
4 (see Figures 5 and 6), when the limit domain has a corner point at the boundary. We
note only that the sum with respect toj, k = 1, 2, 3 in (4.56) with the definite matrixm jk,
shows the more general property of monotone dependence of eigenvalues with respect to
boundary perturbations

5.7. Selvage micro-crack.Let Υ := ω is a segment of a curve, i.e.,Ξ = R2
− \ Υ is a

half-plane with a crack (see Figures 10 and 11).
In the casemes2ω = 0 and formulae (1.10), (2.47) and (3.34) for eigenvalues (simple

eigenvalues are considered here, the case of multiple eigenvalues is discussed in section
5.5) of the problem (1.3), (1.4) can be reduced to

(4.81) λh
m = λ

0
m+ h2|∂nv

0
m(O)|2

∫

Ξ

|∇ξW(ξ)|2dξ +O
(
h3(1+ | ln h|)

5
2
)
.

HereW is the solution (2.21) to problem (2.20), which equals to zero only in the case of
a straight crackΥ parallel to the boundary∂R2

− (see Fig. 11), since in such a caseν2 = 0
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on the surfacesΥ± of the cut. IfΥ is a boundary of curvilinear crack (Fig. 10), then
the Dirichlet integral in (4.81) is positive. The fact is in accordance with the minimax
principle (4.75) for sequences (1.5) and (1.7): whereRm is (m+ 1)-dimensional subspace
of the Sobolev spacesH1(Ω(h)) andH1(Ω) ⊂ H1(Ω(h)).

Formulae (4.81) can be employed for solving one more shape optimisation problem.
Let λ0

1 andλ0
2 be simple eigenvalues and it is required to find out the location of a crack of

the lengthh, such that the distance betweenλh
1 andλh

2 is maximised. It follows that

λh
2 − λ

h
1 = λ

0
2 − λ

0
1 + h2

∫

Ξ

|∇ξW(ξ)|2dξ(|v0
2(O)|2 − |v0

1(O)|2) +O(h3(1+ | ln h|))
5
2 .

In such way, for a smallh, the crack should be located at the maximum of the function

Γ ∋ s−→ v0
2(s)2 − v0

1(s)2.

Let us observe, that the integral
∫
|∇ξW|2dξ attains its maximal value for the crack of unit

length orthogonal to the boundary (see [42]). Similar and related problems can be analysed
and solved for other types of boundary perturbations and forthe other boundary conditions.

5.8. Asymptotics of energy functionals. In domain (1.2) the Dirichlet problem is con-
sidered

(4.82) −∆xu
h(x) = f (x), x ∈ Ω(h), uh(x) = 0, x ∈ Γ(h) = ∂Ω(h),

and the functional evaluated for its solution

(4.83) T (uh;Ω(h)) =
∫

Ω(h)

T(uh(x), x)dx.

For the sake of simplicity here we assume that all data are given by smooth functions,
i.e., f ∈ C∞(Ω), T ∈ C∞(R × Ω), and the boundariesΓ and∂Ξ of the limit domains are
also smooth. Of course, these assumptions can be easily omitted by the technique of the
previous sections. It is obvious that we can assume thatT(0; x) = 0.

The goal of the section is to establish the asymptotics of functional (4.83) forh→ +0.
The construction and justification of asymptotics of the solutions to problem (4.82) do not
require any new argument compared to employed already in previous sections: asymptotic
approximation of the solutionuh is given by

(4.84) Uh(x) = v0(x) + hχ(x)w1(ξ) + h2χ(x)w2(ξ) + h2χh(x)v2(x),

whereχ andχh are cut-off functions, present in formulae (1.11) and (4.23), andv0 stands
for solution of the limit problem

(4.85) −∆xv
0(x) = f (x), x ∈ Ω, v0(x) = 0, x ∈ Γ = ∂Ω.

Decomposition (4.7) is valid, hence the boundary layer terms w1 andw2 are given by so-
lutions to (4.7), (4.8) and (4.16)-(4.18), respectively. The problems for boundary layers
admit solutions decaying at infinity with the rateO(ρ−1), in addition, forw1 the represen-
tation (4.10), (4.11) are valid, on contrary, the representation forw2 is not applied in the
sequel. Finally,v2 stands for the solution of the problem

(4.86) −∆xv
2(x) = f 2(x), x ∈ Ω, v2(x) = 0, x ∈ Γ,

with the right-hand side

(4.87) f 2(x) = ∆x(χ(x)t1(n, s)), t1(n, s) =
m(Ξ)
π
∂nv0(O)

n
n2 + s2

.
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such a problem admits a bounded solution. Furthermore,

(4.88) v1(x) + χ(x)t1(n, s) = m(Ξ)∂nv
0(O)G(x),

whereG is the Poisson kernel, i.e., harmonic function inΩ, which is equal to zero on∂Ω\O
and with the singularityn[π(n2

+ s2)]−1 at the pointO. It is clear thatG ≤ 0 inΩ.

Theorem 5.1. The following asymptotic formula holds for the first variation of the energy
shape functional with respect to the singular domain perturbation

(4.89) T (uh;Ω(h)) = T (v0;Ω) + h2m(Ξ)∂nv0(O)∂nV(O) +O(h3)

where V is given by a solution to the following boundary valueproblem

(4.90) −∆xV(x) = T′(v0(x), x), x ∈ Ω, V(x) = 0, x ∈ Γ,

and T′ denotes the derivative of integrand in (4.83) with respect to the first variable.

Proof. In the same way as in section§3, see also the comments to the Theorem 4.2, the
estimate is obtained

‖uh − Vh; H1(Ω(h))‖ ≤ ch3.

Hence

(4.91)
∣∣∣∣∣
∫

Ω(h)

(T(uh; x) − T(Vh; x))dx
∣∣∣∣∣ ≤ ch3.

Beside that
(4.92)∣∣∣∣∣

∫

Ω(h)

T(Vh; x)dx−
∫

Ω(h)

(
T(v0; x) + T′(v0; x)

(
χ(x)hw1(ξ) + χ(x)h2w2(ξ) + h2Xh(x)v2(x)

))
dx

∣∣∣∣∣

≤ ch2

∫

Ω(h)

(
χ(x)2|w1(ξ) + hw2(ξ)|2 + h2Xh(x)2|v2(x)|2

)
dx

≤ ch2
( d∫

0

(
1+

r
h

)2
rdr + h2

)
dx≤ ch4(1+ | ln h|).

Observing the relation
∫

Ω(h)

T(v0(x), x)dx=
∫

Ω

T(v0(x); x)dx+
∫

Ω\Ω(h)

(T(v(O);O) +O(r)) dx(4.93)

=

∫

Ω

T(v0(x), x)dx+O(h3),

h2

∣∣∣∣∣∣∣∣∣

∫

Ω(h)

T′(v0; x)χ(x)w2(ξ)dx

∣∣∣∣∣∣∣∣∣
≤ ch2

d∫

0

(1+
r
h

)2rdr ≤ ch4(1+ | ln h|),

we process the integral

(4.94) I (h) = h
∫

Ω(h)

T′(v0(x), x)
(
χ(x)w1(ξ) + hχh(x)v2(x)

)
dx.

Sincev2 is a bounded function and the differencew̃1(ξ) = w1(ξ) − t1(ξ) (see formulae
(4.10), (4.11) and (4.87)) decays at the rateO(ρ−2), the same argument as already used in
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(4.93), with the exchanges and limit passagesw1→ t1, χh → 1 andΩ(h)→ Ω leads to the
precisionO(h3) in (4.94). Therefore, in view of representation (4.88) we find that

(4.95) I (h) = h2m(Ξ)∂nv
0(O)

∫

Ω

T′(v0; x)G(x)dx+O(h3).

By the definition of the Poisson kernel, which integrates theequation in problem (4.90)
with a given right-hand side, determines the normal derivative of the solution at the point
O. Thus, the relations (4.91)-(4.95) lead to (4.89)�

Corollary 5.1. For the potential energy

(4.96) Π(uh;Ω(h)) =
1
2

∫

Ω(h)

|∇xu
h(x)|2dx−

∫

Ω(h)

f (x)uh(x)dx

the Green formula and Theorem 5.1 give as a result the asymptotic decomposition

(4.97) Π(uh;Ω(h)) = −
1
2

∫

Ω(h)

f (x)uh(x)dx= Π(v0;Ω) −
h2

2
m(Ξ)|∂nv

0(O)|2 +O(h3)

since for T(uh(x), x) = f (x)uh(x) problems (4.90) and (4.85) coincide.

Let us note that, by the inclusionΩ(h) ⊂ Ω, the functional (4.96) is minimised on the
smaller classH̊1(Ω(h)) compared to the class̊H1(Ω) for the functional

Π(v0;Ω) =
1
2

∫

Ω

|∇xv
0(x)|2dx−

∫

Ω

f (x)v0(x)dx,

which means that we have the inequalityΠ(uh;Ω(h)) ≥ Π(v0;Ω). The latter inequality is
in accordance with the inequalitym(Ξ) < 0 given in Lemma 4.1.�
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