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SPECTRAL PROBLEMS IN THE SHAPE OPTIMISATION. SINGULAR
BOUNDARY PERTURBATIONS

S.A. NAZAROV AND J. SOKOLOWSKI

AsstrAcT. In the paper asymptotic analysis of spectral problems iifopaed
for singular perturbations of geometrical domains. Asyatiptapproximations
of eignevalues and eigenfunctions are constructed fordhks second order
boundary value problems. The presented results are cotigériand can be
used in the analysis of shape optimization and inverse gnokl
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§1. INTRODUCTION.

1.1. Shape optimisation problems for eigenvaluesin the paper asymptotic analysis of
eigenvalues and eigenfunctions is performed with resjpesinigular perturbations of ge-
ometrical domains (see Fig. 2). The case of low frequensie®nsidered for scalar
equations in two spatial dimensions. Similar results fasgt bodies are presented in a
forthcoming paper. The results established here can betlditesed in some applications,
for example in shape sensitivity analysis of the Helmhotfuation. Compared to the ex-
isting results in the literature, the technicalfdiulties of the present paper concern the
variable coéficients of diferential operators in limit problems that particularlysarirom
the curved boundaries. The known results are given for snguerturbations of isolated
points of the boundary (small holes in the domain, see [Z81],[[16], [5], [28], [39]-
[40]), perturbations of straight boundaries includingtpdrations by changing the type of
boundary conditions (cf. [7]-[10]), and the dependencéefdbtained results in more gen-
eral geometrical domains on the curvature is not clarifietbupw. We show that the first
order correction terms are independent on the curvatues, iéthe appropriate change of
curvilinear variables leads toftierential expressions depending explicitly on the cuneatur
The perturbations of boundaries in the form of caverns, stake df some material, and
knops or proturberances, so we add some material, cannatabgsad with the classical
tools of shape optimisation. The asymptotic analysis sderns the only avalaible tool to
perform the icient analysis of boundary value problems, eigenvalueg@@hfunctions,
and of shape functionals, in general setting. The interagipbations of the domain by
creation of small openings or holes, but very close to thendaty (see Fig. 1), are in-
cluded into the scheme of asymptotic analysis presentdekipdper. In relation to shape
optimisation, such an analysis leads to the asymptoticeqapations of shape function-
als. The first term in such approximations in the specific csepology changes is called
topological derivativeand can be used in numerical methods e.g., of the level set typ
the case of boundary perturbations, the first term in asyticpapproximations of shape
1



2 SPECTRAL PROBLEMS IN THE SHAPE OPTIMISATION

Ficure 1. Small hole very close to the boundary.

Ficure 2. The domain€, E, andQ(h).

functionals replaces the so-called shape gradients whiellstained under much more
restrictive assumptions compared to the present paper.

The description of shape optimisation problems for eigkrasgacan be found in mono-
graphs [44], [3], [13], [12], [2], [48]. There is a naturalg&etween the regularity of
geometrical domains, from one side for the results on thstexce of optimal domains,
where some weak conditions e.g., in the Dirichlet case ofythe Mosco convergence for
minimising sequences of admissible domains are required! ttee necessary optimality
conditions where stronger assumptions on the regularityoohdaries of admissible do-
mains are necessary if the boundary variations technigdie iglapplied to compute the
directional derivatives of eigenvalues with respect to diomperturbations, even in non-
smooth situations of the cracks [6], [23]. The authors fileditially the gap in the paper
on topological derivatives [38], in the present paper the-amooth boundary variations
are considered for the particular class of shape functsonal

1.2. Problem formulation. Let Q c R? be a domain with the smooth bounddrythe
boundary is a simple, regular, and closed contour. In thghtwiurhood of" a curvilinear
system of coordinates(s) is defined, whersis the length of the curve measured alding
n denotes the oriented distancdtovhilen > 0in Q€ = R?\ Q. By w ¢ R? = (-0, 0)xR
is denoted a domain with the compact closure wUdw. The boundarg= of the infinite
domainZ = R? \ @ is assumed to be piecewise-smooth, which means that thafnise
set of pointsPy, ..., Py on dZ, such that each curvilinear intervB@P;,; is smooth and
the angles between tangent$ati = 1,..., N are strictly positive. In other words, peaks
directed outside are forbidden.

Introduce a family of domains, depending on the small patanhe> O,

(1.1) wh = {X = (X1, %) 1 € = (£1.6) = (h"'n,h7's) € w),
(1.2) Q) = Q\ o
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(see Fig. 1.2). Here and in the sequel, a point on the cortdaridentified with its
coordinates, with the convention that for the points which are located’oon the left-
hand side of the origi® are given the negative values of the parameter

Let us consider the spectral Neumann problem

(1.3) —Au"(x) = A"UN(x),  x e Q(h),

(1.4) Apu(x) =0, xeI(h) = aQ(h),

for the Laplace operatadk,, wheredy = n - V, is the normal derivative along the outer
normaln”. Note that (1.3) is but the Helmholtz equation. Conditichg are prescribed
alongI'(h) except of the point®;(h), i = 1,...,N, which are images of the poinf,

i =1,...,N, onthe contour(h). Problem (1.3), (1.4) admits the sequence of eigenvalues

(1.5) 0= <A <A< <A< = +oo

where the multiplicity is explicitly indicated. The corgesnding eigenfunctions], ufl, uf), ..., ufl, ...
can be subject to the orthogonality and normalisation dardi

(1.6) U, uam = 6pm.  P.MeNg:={0,1,2,...},

where (, )y is the scalar product in the Lebesgue sphgr’), andd,m the Kronecker
symbol.

Our aim is the derivation of asymptotic formulae for the eiggdues and eigenfunctions
of problem (1.3), (1.4). It is not dicult to see (cf. §3), that for a fixed indexm and
with h — 0 the entrya?, of the sequence (1.5) converges to the appropriate elerhtre o
sequence

(1.7) 0= <A< << <> +o0
of the eigenvalues for the limit, with = 0, spectral Neumann problem
(1.8) ~AP(X) = 2°v(%), xeQ; V(X)) =0, xeT.

The eigenfunctions of (1.8) are smooth function€iand are subject to the orthogonality
and normalisation conditions

(1.9) (Vg, V%)Q = 6p’m, p, me N

1.3. Asymptotic ansatze and procedures.In the paper the following ansatze are used to
construct the asymptotics of eigenvalues and eigenfumgtio

(1.10) AN =22+ 2+

(1.11) UR() = V(%) + M OIW(&) + W (WE(€) + hAVE(X) + ...
HereV?, andvZ, are terms of regular type, a smooth and a continuous functispectively
on the seR2, andw?,, w2, are terms of the boundary layer type, which depend omahil
variables¢ = (¢1,&2), defined in (1.1), and are given by the solutions of the Nevma
problem in the domai&. Finally,x € C*(Q) is the cut-df function, equals to zero outside
of a neighbourhood of the origit and equals to one in the vicinity of the po®t

The procedures of constructions of asymptotic ansatzeeofyfpe (1.10), (1.11) as well
as the determination of theirs terms are not of an partiéatarest. During the years 70-80
of the last century the subject was fully investigated inftlaenework of two methods, of
matched [14] and compound [28] asymptotic expansions faméxing solutions in do-
mains with singularly perturbed boundaries. In additibthé domainQ is included in the
half-space bounded by the tangénb the contoul” at the pointD, andI’ coincides with
L in the vicinity of O, then by means of even extension over the part of the bourfdddy
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for the Dirichlet boundary conditions) we obtain from (1.8).4) the spectral Neumann
problem in the domain with small hole (see Fig. 2). For suchablem the asymptotics
are obtained in [27] (see also [26], [5], [32], [5], [7], [8tc. devoted to such class of
problems).

For the above reasons, we pay a particular attention in therga the dependence of
the terms in ansatze (1.10) and (1.11) upon the curvaii@eof the contout” at the point
0. From the dimension analysis it follows directly that cuwra is absent in the principal
correction terms in the asymptotics of the eigenfunctiorsaf the eigenvalues. In addi-
tion, the principal term of the boundary layer type is alsteipendent of the curvatuzéO)
at the point0, however, the termg, w2, and A}, can be dependent or{0). Actually, it
is the case for the term?, but we find out finally that the ternt,, is independent o£(0).
The proof of this fact is complex, includes some technieaiind it is one of the main
results of the paper. We provide the proo§i, which contains the derivation of terms in
representations (1.10) and (1.11).

The structure of ansatz (1.11) shows that in the sequel thiead®f compound asymp-
totics expansions is applied. In particular, it is expldine section 2.2, that the only
functionw! enjoys the canonic property of the boundary layer, i.e eiays foré| — oo,
in contrast ton® which has the logarithmic growth at infinity. In this way, deposition
of the terms in ansatz (1.11) into thegular andboundary layermparts is relatively for-
mal. By an application of the procedure of rearrangemenisafrdpancies [25] (see also
monograph [28]) it is possible to reformulate the ansatauichsa way that the function
w? becomes decreasing, however in such a case the logaritmovittgpasses to the term
v2 which thus looses the regularity. It is convenient for fertpurposes accept thet is
bounded anav’ enjoys the growth, which particularly simplifies the choseay of the
justification of asymptotics i§3.

1.4. The structure of the paper. We briefly describe the contain of paper.§tdthe terms

in asymptotic ansatze (1.10), (1.11) are subsequentlgtnarted for the Neumann prob-
lem. The explicit formulae for the variations of eigenvaug given, both in the cases of
simple and multiple. Ir§3 the formal asymptotics is justified. §# different boundary
conditions are considered including Dirichlet and mixedmary conditions. The varia-
tions of the boundary include perturbations of angularrfeorpoints as well as smoothing
of such points of the boundary. §b the associated shape optimisation problems are in-
vestigated, using the asymptotic formula already derieed the asymptotics of shape
functionals are constructed.

We point out, that the authors attempt to express the petioris and the appearing
integral characteristics of geometrical objects by medr$assical characteristics which
include the tensor of virtual mass and polarisation terilsgarithmic capacity etc. Many
exact formulae for classical characteristics of a broadsctaf canonical shapes are pro-
vided in monographs [41], [22] and others.

1.5. Revisiting shape optimisation. Our results can be used for shape optimisation of
spectral problems, in particular for solutions of the Hetttth equation. We provide
the analysis of non-smooth perturbations of boundarieshvhses the same tools as the
derivation of topological derivatives of shape functian#lut in the case of domain bound-
aries. In particular boundary cracks are allowed forlibandary variations In this way

we extend the notion of shape gradient to the case of sindpalandary perturbations.
The immediate conclusion from the obtained formulae cannbel@yed to obtain an in-
formation about the decreasing and increasing of eigeasdior the specific boundary
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perturbations in the form of caverns and knops. Such annmdtion is interesting on its
own for the analysis of shape optimisation problems for migkies. For the first time
a systematic study of such properties of spectral problesmsgiformed in view of direct
applications to shape optimisation and inverse problems.

§2. CONSTRUCTING THE ASYMPTOTICS.

2.1. First term of boundary layer type. Let° = 1% be a simple eigenvalue for problem
(1.8) andv® = 9, the corresponding eigenfunction, normalised by condifia®). The
Laplace operatohy in the curvilinear coordinatess) takes the form

(2.12) J(n, 9)728,J(N, 9)3n + I(N, 9)19sI(n, )10

whereJ(n, s) = 1 + nx(s) is the Jacobian, ane stands for the curvature of the curle
Under the transformation to the rapid variabdes (¢1, £2), the splitting occurs

(2.13) Ax = h2A¢ + h%(0) (0, — 26402) + ...

In the coordinatesn s) the gradien¥, takes the formd,, J(n, )1ds), and the projection
n", nl of the unit normal vecton" onto the coordinate axes for the variabteands are
given by the formulae

(2.14) M=dv 20, nl=d¥23h,, d=v2+3%5
wherev = (v1, v») is the outward unit vector on the bound#@ c R?.

Therefore, denoting b§, the directional derivative along the normal vectpwe obtain
in the rapid coordinates the decomposition

(2.15) O = d7Y2(110n + I72v20) = 0719, + %(0)é1(v20, — 20g,) + . . .

In (2.13) and (2.15) by dots are denoted the terms which arémmortant for the sub-
sequent analysis. Taking into account the homogeneous alaugondition in (1.8), the
function\ in Ch-neighbourhood of the poi® admits the representation

VO(x) = VP(0) + s9V°(0) + % (n°02v°(0) + $62°(0)) + O((? + $)¥?)

(2.16) = \2(0) + h£20:°(0) + %hz (£202°(0) + £02°(0)) + O(h).

Replacing the eigenvalue and the eigenfunction in (1.3%)(ty ansatze (1.10) and
(1.11), taking into account relations (2.13), (2.15) antlecting the terms of orden!
in the equation, and of ordé® in the boundary conditions, which are written in rapid
variables, we arrive at the problem

(2.17) —AWHE) =0, £€E, IWHE) = —va(£)dN0(0), €€ dE.
We recall the well known formulae
(2.18) f vo(£)ds =0, f &wds = —6jxmesw, j,k=1,2

OWUI=E OWUI=E

The first formula shows that the right-hand side of the bomndandition in (2.17) has the
null integral over the curvéw U 9=, we note that, = 0 on the straight-line pafiE \ dw
of the boundary. In this way, there exists a unique genamlsolutionw® € HL (E) of
problem (2.17), decaying at infinity. The solution is rer@ed in the form

(2.19) wH(¢) = P (O)W(E),
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Ficure 3. The domairE and its extensio&?

whereW is a canonical solution of the Neumann problem

(2.20) “AW(E) =0, ¢é€E, W) =-raé), (€05,
which admits the representation

m m .
(2.21) W) = T2+ ) = D tsing + O ™),

in the system of polar coordinatgs ), with p = |¢] andy € (-n/2,7/2).

We evaluate the cdigcientm by applying method [29]. To this end, the Green formula
onthe seEr = {£ € E : p < R} is used with the functiong/ andY = & + W sinceY turns
out to be a solution, with the growth at infinity, of the homogeus problem (2.20). We
have

(2.22)
f Yd,Wds = f (Wa,Y - Ya,W)ds =
OwUOE {¢eR2:p=R}
/2
- g f (07" sing(sing) — psing(—p 2 sing)) R,—rde + O(R™) = m + O(R™Y).
-n/2

On the other hand, in view of (2.18), the following relatisn/alid

(2.23) f Yd,Wdg = f Wo,Wds — f Evods = f IV:W[?d¢ + mesw,

OwUIE OwWUI= OWUI= o)

wheremesw denotes the area @f. Therefore, the limit passage — o leads to the
relation

(2.24) m(E) :=m = f|V§W(§)|Zd§ +mesw.

Remark 2.1. As it is indicated in section 1.2, the approach with evenmsiten of a har-
monic function over the boundary with the homogeneous Neumeandition, is applica-
ble to the functionWV (see Fig. 3). As a result, problem (2.20) can be transforrehbet

exterior Neumann problem in the domain

(2.25) EP = (¢ = (£1.&) e R (-él, &) ¢ @)

In this way, the extended functiof¥ becomes a solution, to exactly the same problem as
introduced in monograph [41] for the description of thewd@itmass tensor. Hencey(=)
is twice the bottom right-hand element of the associatedafimass matrix.m
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2.2. Second boundary layer term. The right-hand side of the problem

(2.26) —AWP(E) = FX(9), £€E, 0uw(E) =GX9), £edE,

for the next term of the boundary layer type in ansatz (1.HL) loe determined using
formulae (2.13), (2.15) and (2.1). Indeed, assuming thiatisos to (1.3), (1.4) take the
form of ansatze (1.10) and (1.11) anfiiew splitting out the terms of ordéf in the equation

as well as of ordeh! in the boundary conditions, written in the rapid variables, find
that

(2.27) F2(£) = #(0) (05 WH(©) — 26102, W'(£)).
and
(2.28) G¢) = -#O0)va() (W () +va(&)dN (0))

+  20)érva(€) (9WHE) + 0v°(0))
—  (601(9)3(0) + £2(£)95°(0))
= G{(9) + G5(&) + G5(9).

We note immediately thaﬂsf = 0in view of the boundary conditions in problem (2.17).
By formulae (2.19) and (2.21) the following expansion hdtde

(2.29) F2(&) = 77 mx(0)dsV°(0)p? [2 sin(4p) + sin(2p)] + O(p~3), p — co.
The function
(2.30) £ U2(¢) = —(87) tmx(0)3s\°(0) [sin(4p) + 2 sin(2p)]

turns out to be harmonic in the half-plai@ and verifies the homogeneous Neumann
conditions everywhere on the lig&?2 except of the poing = 0. The function compensates
the leading term of asymptotics of the right-hand side (Rd&%he Poisson equation in
problem (2.26), function (2.30) participates in the expamsf its solution at infinity

(2.31)  wWA(#) = ; Inp + ¢ — (87)tmx(0)d°(0) [sin(4p) + 2 sin(2p)] + O(p~Y).

Here ¢ stands for a generic constant, we assume ¢hat 0, and the logarithmic term
is included since, in advance, it is not clear of there is atsmh to problem (2.26) in

the class of bounded functions; on the other hand it is kn@&s,e.g., [36, Ch. 2] that
there exist a solution with the logarithmic growth fer— 0 and that such a solution is
determined up to an additive constant.

Remark 2.2. Denotatiorg(é) = 75(¢) + O(p~P) used in (2.21) and (2.29), (2.31) means that
(2.32) 2é) = () +A8), VA <™, q=01,..., p=l <R

Wherevgiis the collection of all ordeq derivatives of the functioz, and the radiu&y

is selected in such a way thatc {¢ : p < Ro}. For a solutionw! of problem (2.20) the
estimates of form (2.32) for the remaindst are straightforward, since the remainder
verifies the Laplace equation with the Neumann boundary itiond on the setg¢ €

R? : p > Ro} and{¢ € dR? : p > Ry}, respectively. For such an equation, e.g., the
Fourier method can be used in order to obtain the represemtat the solution in the
form of convergent series, with decaying at infinity harnedainctions. In problem (2.26)
there is non-trivial right-hand side of the equation, ttere by general theory of elliptic
boundary value problems in domains with conical points amitets to infinity, we refer

to the key papers [17], [29], [30] and e.g., to monograph,[86lhe decomposition of the
solution (in the form of a series) the logarithmic multipieean occur beside the Poisson
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kernelzr~tInp. The direct evaluation of the functidd? shows, that the principal term

of asymptotics (2.29) of the right-hand siéé for the equation in problem (2.26) does
not lead to appearance ofgdn In a similar manner it can be verified that the following
asymptotic terms in the expressions

W(E) = cip~tsing + cop 2 cos2¢) + O(p~3),

F2(¢) = Co™2 sin(4p) + Cop™>(3 cos(%) + cos(3)) + Op )

do notlead to the appearance of logarithms: the term withdk&cientC, is compensated
by the functior¢ +— ——Cgp L(cos(aw) + cos(3v) + cosyp) which enjoys the properties of
function (2.30). Estimate of the remainder in represeotat?.31), (2.32) for the solution
w? are justified again by the general theory (see [3@™).

For the computation of the multiplierin expansion (2.31) the method of [30] is used
again. Actually, we inject the functions® andw! in the Green formula on the sk
and compute the integral on the semi-circle of the ra8itaking into account expansion
(2.31):

[Faws [ c@is=- [ anens-

233 = iz lestp=R)
- ( + —m%(O)a NO(0)(sin 2 — Zcp)) do + O(RY) = —a+ O(RY).
-n/2

It remains to study the integral from the left-hand of (2.33)
By equality (2.18), the form of Laplace operator in cunélar coordinates given in
(2.12) and relation (1.8) for the functiaf, we find

(2.34) f G3(£)ds = mesw(92V°(0) + 02°(0)) = -0 (O)mesw.

wNI=

Beside that, in view of equalities (2.18) it follows that

f #(O)erva()dP(O)ds: = 0.
dwNo=

The Stokes formula yields

owt _

FOds= [ neweds [ plawieds.
Er wNI= {£€r?:p=R}
Since the leading asymptotic term of the solutwhis an odd function in the variable,
the integral over the half-circle of the radigsis of the orderO(R™) (the integral over

(-n/2,7/2) > ¢ of an odd function ir¥; = p Sing vanishes). In view of the Green formula,
the integral over the cund@w N d= equals

[ weoFa- [ &2 @yas + [ (aovie-vie@oa)ds
dwNI= dwNI= {£er2:p=R}

In the limit for R — oo, the integral over the half-circle vanishes by the samerasnt as
above, and the integral over the cuftend= becomes zero due to the boundary conditions
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in problem (2.17) and to the second equality (2.18)jfer1, k = 2. Finally,

2\ a/l
(2.35) ~24(0) f flaaTW(ads
2

= —24(0) f m(f)—(f)d% 24(0) f p_lflfz—(f)d%

wNI= {.fE]Rg Zp=R}

The latter integral equals ©(R™1), hence the leading term of the ord@fo 1) of asymp-
totics for the expressioghdw'/d&, with p — oo is still odd with respect to the variable
&, therefore it is annulated by integration. The first intégréthout the minus sing, from
the right-hand side in (2.35) is present in the integral eﬁﬁnctionGg overdw N I=, see
definition in (2.28). Recalling tha(Sf = 0 and collecting the obtained formulae, we can
conclude in accordance with (2.34) that the limit pasfRge « in relation (2.33) results
in the equality

(2.36) a= 1% O)mesw.

We point out, that the curvatus€O) appears in several integrals, which finally cancel each
other.

2.3. The correction term of regular type. For the terms of boundary layer type, the
asymptotics can be written in the condensed form

(2.37) W) =t9&) + O™ ), p—-weo, g=12
Outside a small neighbourhood of the paihtve have:
(2.38)

hw!(€) + hPwA(€) = b2 (t4(n, §) + t%(n, s) — ax " Inh) + O(h®) =: KT (x, In h) + O(h?).

In view of the multiplierh? the expression fof should be present in the problem for the
termv? of regular type

(2.39) —AVA(X) = O2(X) + VP(X) + T2(x), xeQ,

(2.40) aVP(X) = g?(X), xel.

The first two terms in the right-hand side of (2.39) are olsdias a result of replacement
in (1.3) of eigenvalues and eigenfunctions by ansatz®}1(1.11) and collection of order
h? terms written in the slow variables The right-hand sidg? of the boundary condition
(2.40) is but the discrepancy which results from the muttgglon of the boundary layer
terms with the cut-fi functiony. If it is assumed that in the vicinity of the boundary the
cut-of functiony depends only on the tangential varialsleand it is independent of the
normal variablen, than it follows thatg? = 0, since in problems (2.17) and (2.26) the
boundary conditions 06= \ dw are homogeneous. It is clear that such a requirement can
be readily satisfied. Thus, we further assughe- 0.

Multiplication by the cut-@ function introduces in equation (2.39) the discrepancies o
the boundary layer terms. However, the commutators of tlesadprAx with the cut-df
functiony, are not the only source of terms in the functin Actually, the application of
the procedure described in sections 2.1 and 2.2 leads tigtitehand side of the Poisson
equation for the subsequent tewd of ansatz (1.11), the term is of ord®(p™1), i.e., the
solution of such a problem enjoys at least the linear growiffaity. As a result, the main
term of asymptotics for the expressiotw®(h~1n, h~1s) contributes in relation (2.38) with a
term of ordeh?, which means that without constructionvet it is impossible to determine
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v2, and the algorithm becomes incorrect. To avoid such a cdistian, in paper [25] (see
also [28, introductory Ch. 2]) is proposed the procedureafrangement of discrepancies
which make it possible to define, in the framework of compoasyimptotic expansions, a
problem fornv? using only the terms® andw?, w? of ansatz (1.11). This approach consists
in the analysis of terms depending wh andw? from equation (1.3). In particular, the
terms which do not enjoy the ficient decay rat®©(p?) at infinity, are rewritten in slow
variables and are included in the problem for the terms afleedype (simple examples of
such a procedure can be found in [28, Ch. 2] and papers [3Rkhi@ general framework
is described in [28, Ch. 4]). In our case the detached pagtgigen by the expressions

(2.41) £2(x) = ()T (% INh) + Ay ()T (%, Inh)).

We verify that the functiorf2, smooth outside of a neighbourhood of the origiris of
the growthO(|x| 1) for x — O which means that? belongs tdH~1(Q) and is admissible for
the right-hand side of equation (2.39). For the first terra tact is obvious, sincé(n, s) =
O(Ix") andt®(n, s) = O(|In|xl}). Let us consider the second term. Representation (2.13)
of the operaton in the curvilinear coordinates:

(2.42) Ax = (02 + 02 + %(0)(0n — Nd2) + aa(n, 932 + ax(n, 592+
a11(n, 9)0n + a1(n, s =: L%(dn, ds) + L1(N, 3n, ds) + L*(N, S, O, s).
Hereay are smooth functions in a neighbourhood of the pdlnin variablesn ands, in
addition
ajk(0,0)=0, 0haj2(0,0)=0, 8sa32(0,0)=0, jk=12
Therefore,
(2.43) AT = I7HLO + (Lo + L) + L2 + L2t + 1))

The first two terms in braces vanishes by the definition of imgudar components andt?
and the term&'t? andL?(t* +t?) are of the required order. Thug, = 0 and|x“f? € L(Q)
foranyu > 0.

Under the assumption thaf is a simple eigenvalue, problem (2.39), (2.40) with such
right-hand sides admits a solutighin the Sobolev spada*(Q) if and only if the following
relation is satisfied

(2.44) (VP \P)q + (2, W0)g = 0.
Owing to the normalisation condition (1.9), the floc@ent of ” equals one. Integral of the

productf?\0 is convergent, which means that

(2.45) (% Ve = lim f (A°T + AxT)Vdx,
Qs

whereQ; = Q\{x n+s< 52}. The arcys = 9Q\ 0Q; turns out to be a half-circle in the
curvilinear coordinate system. We imitate the polar cawath system in the curvilinear
coordinates by putting = r cosy ands = r sing while calling in the sequeb, ¢, with

p = h7'r, the polar coordinate system. Integration by parts withGneen formula irQ;
for the smooth function¥ and\° in the domain yields

(2.46) f2P%dx= | (WoNT — TonP)ds,.
Jreec]
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Let us observe thats, = d(n, 8)/2J(n, s)ds, on the curveys, and owing to formulae (2.14)
the derivative)y along the normal to the contoys satisfies the relation

ONT = NpdnT + NsJ™205T,
Nh = dY2cosp, Ns=d Y23 Ising, d=(cosp)?+ I %(sing)’.
We take into account only the terms with the non-null limisd — +0; it follows that

expression (2.46) takes the form
/2

AN°(0)s f (sartl(n, 9 —t'(n, s)ars) |,_,de
-n/2
/2

+°(0)%(0) f n(ndnt'(n, ) - 3st'(n, 9)) |,_,dee
-n/2
/2

+2(0)s f art(n, )| _,de + o).
-n/2

The second term, which depends on the curvat(y, vanishes (note that the integral is
zero sincandnt® — st is still odd function of the variablg). The first integral is evalu-
ated in (2.22), and the third integral is computed in (2.33)\iew of relations (2.19) and
(2.36) the integrals equal teds\°(Q)mis\°(0) and\P(0)a = 1°V°(0)’mesw, respec-
tively. Thus, by the limit passage in (2.45), we obtain froompatibility condition (2.44)
for problem (2.39), (2.40), the formula for asymptotic @mtion term in representation
(1.10) of the simple eigenvalue

(2.47) Ay = M(E)INV(0)? - 1°mesw2(0)%.

2.4. Multiple eigenvalues. Assume now, thatd, is an eigenvalue of the multiplicity, >
1, ie,

2.48 22 <0 =...=220 <9
m-1 m 1

MH-2— Moy
In such a case ansatze (1.10) and (1.11) are valipferm,...,m+ xy, — 1, however,
the principal terms of expansions for the eigenfunctighs . . _, in problem (1.3),
(1.4) are predicted in the form of linear combinations

(2.49) VO = alVy 4+ Al v

MH#m—1

h
? um+>tm

of eigenfunctions corresponding in problem (1.8) to theerigluei?,, subject to the or-
thogonality and normalisation conditions (1.9). Theficgents of columnaP = (af, ce a,?m)
in (2.49) are to be determined. Under assumption that thevoaga™, . . ., a™* are unit
vectors and are pairwise orthogonal, i.e.,

(2.50) a’-al=6pq, p.g=m....M+xn—1

then the linear combinations (2.49) wiph= m, ..., m+x,— 1, are simply a new orthonor-
mal basis in the eigenspace of the eigenvalye

The construction of boundary layer terms is performed insdime way as in the pre-
vious section. When solving problem (2.39), (2.40) for tegular termv?, it appearsen,
compatibility conditions

(2.51) AP Do+ (TP )a=0, k=0,...,%m—1,



12 SPECTRAL PROBLEMS IN THE SHAPE OPTIMISATION

Ficure 4. The geometry which makes the extensiomihimpossible.

which can be written in the form of a linear systemwgfalgebraic equations
(2.52) APaP = MaP

L of the sizexm X #m,

with the matrixM = (M) "¢

J
(2.53) Mk = MBIV, (0)IVD, (0) — Ve, L (OVi,, ;(O)mes(w).

Formula (2.53) is derived in exactly the same way as it is twmiula (2.47) The ma-
trix M is symmetric, and its real eigenvalut, . .., 2™~V corresponds to eigenvectors
am,...,a™*-1 which satisfy conditions (2.50). Actually, just theseiatites of the ma-
trix M with elements (2.53) are included in ansatze (1.10) arid j1(2.49) for eigenvalues
/l'r} and eigenfunctions’r} of problem (1.3), (1.4) fop=m,...,m+ x,— 1 in case (2.48).

§3. JUSTIFICATION OF ASYMPTOTICS

3.1. The weighted Poincag inequality. The subspacel(Q(h)), of the Sobolev space
H1(Q(h)) contains functions of zero mean over the Qéh).

Lemma 3.1. The following inequality is valid
(3.1) llu; L2(Q()Il < clir (L + [In )~ u; La(Q(N)I] < ClIVU; La(Q)I],

where (X) = dist(x, 0), and the constant c is independent of the parametef{® hy] and
the function ue HX(Q(h))..

Proof. In the representation

(3.2) u(x) = u.(x) + b,

the constanb, is chosen such that

(3.3) fu*(x)dx= 0, b, = —(meszQ*)‘lfu(x)dx
Q. Q.

where the domaif2, c Q satisfiesQ. # @ andQ. Nnwy = @ for h € (0,hg]. Let us
construct an extensidn, of the functionu, in the classH?®, from the sefQ \ Bgp, ontoQ,
in such a way that the estimate is valid

(3.4)  1IVuts; Lo(Q)Il < clIVius; Lo(Qrn)ll = ClIVil; L2(Qri)ll < ¢l VxUs; L2(Q(N))I.

HereBgy is the ball of radiu®kRhand the centr®, andwy, C Bgp.

We emphasise that an extension fréXth) onto Q may not exist in the clasil?, for
example in the case of a crack, see Fig. 4 and section 4.3cl8trg coordinatex +—
n = h™ix transforms the sefry = {x € Q : Rh>r > Rh/2} into the half-ringZ(h) with
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fixed radia and gently sloped ends, we recall that the boyn#ars smooth. Therefore,
for the component), of the similar decomposition to (3.2), (3.3)

(35) U.) = U+ [ Ustady =0
x(h)
of the functiony — U_ (1) = u.(x), the Poincaré inequality is valid
U ;5 La(Z(M)IT < clIV,U L La(Z(h)IT = IV, U La(Z()II

and there exists an extension denotedhyfrom =(h) onto=°(h) = {5 : x€ Q,7 < Rh},
such that

U5 HEEC () < dlu L HEEM)I < cllV,U L La(E(h))Il-

In these inequalities, the factarsre independent af, andh € (0, hg].
The required extensiau, is defined as follows

— | (¥, X € Q\ Brn,
(3.6) U.() = { U.(p) +c., XxeQNBgrn
Owing to the above relations, we have
IVxUs; Lo(Q)Il < cllVxu. : Lo(Q\ Bro)ll < cl[Vxu; Lo(Q(N))II-

For function (3.6), in the same way as before, the orthogynedndition from (3.3) is
satisfied, which means that

(3.7) ([U.; La(Q)Il < ViU & L2(Q)Il < cllVxU; L2(Q))II-
By the one-dimensional Hardy inequality
1 1

2
dr, ZeClo,1),

fr‘1| In rl‘ZZ(r)zdrs4fr’3—f(r)
0 0

the following estimate is valid
(3.8) (L +1Inr) ™. 1 La(Q)ll < (IVx:; L2(Qu)I) < clIVxu; La(Q(h)I-
For the constarth, in decomposition (3.5) we now obtain
lb| = ' fU*(n)dn’ < cl|U.; La(E(M)I| = cllUass L2(E(h))II
x(h)
= ch™[U,; La(Zrn)ll < (L + [Inh))[Ir~2(2 + [ In )T La(Zrn)ll-

Beside that, the imagg, (h) of the setQQ(h) N Bgrn under stretching of coordinates, again
enjoys the gently sloped boundary, hence

IU.; La(Eo (Ml < c(IV,U.; La(Zo (W) + IU.; La(E)IN).
In this way we have
Ir=2(@ + [ Inr])~tu.; La(Q(h) N Br)ll
< ch (1 + [ Inh)~Hju, : Lo(Q(h) N Bry)l
= ch (1 +Inh) UL + by 1 La(Zu ()l
< c(1+]Inh) IV, U.; La(Su () + [1U.; La(E()I] -+ [b.])
< c(|IVxus; L2(Q(N) N Bro)ll + I (1 + | Inr)) ™ T; Lo(Srn)l).
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The relation combined with relation (3.8) and definitior6j&hows that for the component
u, of decomposition (3.2), the required inequality (3.1) isified. Sinceu € H(Q(h)) ,
the constanb. in (3.2) satisfies the estimate

(3.9) bl = L £ (U9~ U () = L £ u.(4

< cllus; Lo(Q()I < cllVxu; Lo(Q(h))I.

It remains to note that the integral

r=2(1+|Inrl)~2dx
a(h)
with the weight factor, present in the left-hand side of J3l&@es not exceed a constant
independent of the parameterm
In the sequel, the left-hand side of formula (3.1) is dendtefiu; Q(h)]||.
In the proof of Lemma 3.1, it is constructed an extension tethbyU := U, + b, of the
functionu € H(Q(h)). from the se2(h) \ Bgn onto the domaif2, such that

(3.10) lllu; QI+ 1VxT; La(Q)1] < clIVu; La(Q(h)II

see formulae (3.7) and (3.9). Assume th¢ 1 andu, is the extension described above
of the eigenfunctions},, for such an extension in view of relation (1.6) and the irakg
identity [21]

(3.11) Ul Vidam = UL, Doy, 2€ HY(Q(N).,
which replaces problem (1.3), (1.4) for positive eigenealithe following relation is valid
(3.12) T HYQ)I? < clIV ey La(Q())IZ = caf,

The minimax principle (see e.g., [47]), where the test fiomgt can be taken from the space
C2(Q.), show that for an arbitramn there exist positive numbehg, andcp, such that

(3.13) AN <cn for he (0 hy.

Therefore, the normih; HX(Q)|| are uniformly bounded with respect to the parameter
h € (0. hy] for a fixedm, i.e. the paird A%, O} admit the weak limi{13, ¥} € R x HY(Q)
for h — +0 and the strong limit ifR x L,(Q).

In the integral identity (3.11) we choose a test functioa CX(Q \ 0) with the null
mean value. For ghiciently smallh, T}, = ul!, on the support of the function thus the
limit passage in (3.11) leads to the equality

(3.14) V5 Da = (3, 2o

SinceCy’ (Q\0) is dense iH(Q) (the elements of the Sobolev spat¥Q) have no traces
at single points), by the completion argument, we can asshiaté integral identity (3.14)
the test functiorz belongs toH(Q). .

By inequalities (3.1) and (3.10), (3.11), it follows that

’fﬁ,}dx—fu&dx{s fm|dx+ f |uﬂj|d><1

Q(h) QNBgrn Q()NBgn
< ch?(L+ [ In hi)(IEh,; QI+ llufy; Q)N
< ch?(1+[Inhj),
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and

fmzdx— f Jul12dX < ch(1 + | In hi).
Q Q(h)
Hence
Vme HY(Q), IV La(Q)ll = L,
i.e.,’/ﬁq is an eigenvalue arﬁﬁ is a normalised eigenfunction of problem (1.8).

Proposition 3.1. Entries of sequences (1.5) and (1.7) are related by the pastsage
(3.15) AN - 2% as h- +0.

Proof is completed at the end of this section. We only observe thets been already
shown thatt, — 29, thus it suffices to prove thap = m.

From Lemma 3.1 it follows that the left-hand side of iden{iBy11) can be chosen as
the scalar produal?, z) in the spacéd*(Q(h)).. We define the operatdt" in the space
H(Q(h)). by the formula

(3.16) (K", 2) = (U, Doy, U ze HH(Q(N))..
It is easy to check that" is symmetric, positive and compact, therefore, self-adjdror
m > 1 we setuf}, = (A7)~1. The positive eigenvalues and the corresponding eigetibamc

of problem (1.3), (1.4) can be considered in an abstractdveonk, so we deal with the
spectral equation in the Hilbert spalde= H(Q(h)).:

(3.17) KM = guh.
The norm, defined by the scalar product)y = (-, -) is denoted by - ||4. The following
statement [49] is known as lemma almost eigenvalues and eigenvectors

Lemma 3.2. Letu and U € H be such thalik"U — uU|| = r and||U|ly = 1. Then there
exists an eigenvalyg), of the operator K, which satisfies the inequality
-l <.
Moreover, for anyr, > 7 the following inequality holds
lU = U.lln < 27/7,
where U is a linear combination of eigenfunctions of the operatdt Kssociated to the
eigenvalues from the segmént- 7., u + 7.], [|U.|ln = 1.

The asymptotic approximatiopsandU of a solution to equation (3.16) is defined by
the number £, + h?Am)~1 and by the functiofiVi|I;1V1, respectively, wheren > 1 and
AL, with VI are, respectively, the correction given by (2.47) and the efithe first four
terms in the ansatz (1.11), found§@&. In the case of multiple eigenvalu%, we take into
consideration the specification provided at the end of ge@i4.

We estimate the quantityfrom Lemma 3.2. SincgVh|| > [V2|l4 —cmh andad+h2A;, >
A8, — cmh?, for a suficiently smallh it follows that

(3.18) 7 =[[K"U - uU[ln
= (A%, + h2AL) "IV supl((28, + h2 A, )KMVR 2)]
< CmSUPI(YxVim Vxamy — (A% + P2 (Vi 2o,

where the supremum is taken over the iget HY(Q(h)). : |Zl4 = 1} and, hence, the
L,-norms of the test functiomindicated in inequality (3.1), both standard and weighted,
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are bounded by a constait Beside that, we can respect the proof of the trace theorem
[21], which gives

(3.19) h™/2(1 + [ Inh) "1z Lo(dewn N T(M)I]
< clliz QMIIIVxz L2(M)I + lllz (NIl < cN.
The last expression in (3.18) can be processed as follows
(3.20)
=11+ 1212 -n*13+ 14~ 1° - h?I®
= (VR V@) — (Vi Do) + (Vv Vddagy — (Vi + AnVins Do)
— W03 Do) + (Ver(hwy, + hPWE), Viz) = A0, (x(hwi, + hPw), 2)
— 245 (e, + ),

Q(h) Q(h)

Z)Q(h) :
The estimates of two term$ and|1® are straightforward
(3.21) [13] < cmlIV2; L2(Q)IIN; < Cm(1 + [ INhA,
d 1/2
19 < oo f 2L+ I )(p + b+ Inp) el ) iz QI
0
< cmh?(L+ | INh)A.

Here, expressions (2.19), (2.21) and (2.31) of boundamlrlarms are taken into account,
as well as linear dependence orhlaf the right-hand side (2.41) in problem (2.39), (2.40)
for the termv? (compare to (2.38)). Moreovat,is the diameter of the support of cuffo
functiony.

The remaining terms require some additional work. In vienetdtions (1.8) and (2.38)-
(2.41) we have

(3.22) It = (0mV3y Downor(y»
Z=12+12+13:=
OV Dawnur(ry + (Axx(th + ), Doy + A (th + t2), Doy
(3.23) 11 < Calldm Ve La(@wn N T(M)II N1 La(@wh N T(H)II
< cuh2(1+ | Inh)hY2(1 + | Inh))/2N.

In (3.23) it is taken into account the trace inequality (3, 59d the estimates
IVRVZ (X Inh)| < cor™P(L+[Inh)), p=12,...

for the solution of problem (2.39), (2.40) which follow fraime theory of elliptic boundary
problems in the domains with corners or conical points (eegtper [30], and also e.g.,
[36]) and from the analysis (2.43) of the right-hand sideaiation (2.39).

By Remark 2.2 and formulae (2.19), (2.21), (2.31) and (2.@7.38) the estimates are
obtained

324 W) = (@) — B < G (L +p) Y,
| W) = W) ~ ()] < (L + [INp)(L+p)
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which means that

1% = W21Z] = |A%, (e (W + h2WP), z)Q(h) |

d
(3.25) < ch( f F2(L+]InT(L+p) 202 + P31+ I p|)2)rdr)l/2
0

<ch®(1+|InhP2)N.
We continue the transformations
15 = 17 + 13 1= (Vulhwiy + 0P8, Vir2) o = ([Awe xI(hWh + b, 2)

Q(h)
13 =13 +13 1= (0 Aulth + 2. 2) ) + ([0 X1 + 1)), -

(3.26)

Here [Ax,x] = 2Vxx - Vx + (Axy) is the commutator of Laplace operator with the cut-
off functiony. The supports of cdicients of first order dierential operatorAy, x] are
contained in the sesuppVyy| which is located at the distancg from the origin. Thus,
taking into account relation (2.37) and Remark 2.2, we find

(3.27) 15 = h?12] = ([Ax x](WWE, + h2R2), 2o
d 1/2
< cm( f(th“‘ + h4p‘2) rdr) 1, L2(Q(N))Il < cnh®N.
g p=r/h
Moreover,
(3.28) 1 —hP1F = 13 +13 := (Vx(hWp, + W*W2), x2) . (O (Wi, + hPWE), z)awth .

Remark 3.3. The presence of corners on the boundary of don®@imay result in the
singularities of derivatives of the boundary layer terrhgrefore the inclusiongA,wi, €
Lo(Q(h)) andyd»wh, € Lo(I'(h)), in general are not valid. However, the terms in (3.28)
may be well defined in the sense of duality obtained by thensid@ of scalar products
(-, )am and ¢, -)r in the Lebesgue spaces to the appropriate weighted Koieridasses
(see [17] and e.g., [36, Ch. 2]). Additional weighted fastare local, i.e., the factors are
written in fast variables. That is why the norms of test fimts z can be bounded as
before by the constan¥. We point out that the method proposed below which involves
the weighted norms can be avoided. The other possibilityﬁertermlf is to rewrite the
gradientVy in curvilinear coordinates, s, pass to the fast variables and take into account
the integral identities for problems (2.17) and (2.26) with test functio — x(X)z(X).

]

By its definition, the functionvt, remains harmonic, angk, verifies the equation
(3.29) AWa(&) = —LMEL VoW (), £ €E;
here are taken into account splittings (2.13) and (2.42)@Laplace operator. Therefore,
(3.30) Ax(hWE, + W?W2) = R2LYW2, + LA(hW! + h?WP).

In (3.30) the operatork? are written in the slow variables and the functiaf in fast
variables (in contrast to (3.29) whete = h=2L%(dp, ds) andL(é1, V) = h1LY(n, 3y, Os)
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). Owing to (3.30), (2.37) in application of Remark 3.3, iidovs that
2 d
(3.31) 13 < cmN(Z h-2d f r2(L+|Inr)?(r?h*p20) 4
g=0 0
-1/2
r4(h2p 2@+ 4 pip=20+e )))Ip:r/hrdr) < cnh®N.
It suffices to process theftiérence of integrals from (3.22) and (3.28):
|1 — |2 = — (anh(hW}n + hZWan - V%), Z)Bwhml"(h) .

Using the same arguments, already applied to derivatiomohbdary conditions in prob-
lems (2.17) and (2.26), we refer to formulae (2.14)-(2.1®8) €.28), and obtain that

(3.32) 11 =13l < ch™?(1 + | INh)Y2 AR (Megdwn)? < ch®(1 + [ Inh))Y2N.

Collecting estimates (3.21), (3.23), (3.25), (3.27), 13,33.32) of the terms in (3.20),
we arrive at the following estimate of value (3.18)

(3.33) 7 < cnh3(@ + | Inh))®/2.

We point out, that the maximal exponent2of the logarithmic factor is inherited from
estimate (3.25). We are ready now to verify the theorem atheuasymptotics, which is
the main result of this section

Theorem 3.4. For any positive eigenvalug?, of multiplicity x, for problem (1.8), see
(2.48), there exist numbecg, > 0 and h, > 0 such that for he (0, hy] the eigenvalues
P ..,A{}Wm_l for problem (1.3), (1.4) and except for all other eigenvalire sequence
(1.5) satisfy the following inequalities

(3.34) 1§ — A% — hPAY| < cuh®(L+INh)2, g=m... .M+ xn— 1

Moreover, there is a constaf,, and columns &, ..., a"™#m=1 which define an unitary
matrix of the sizer,, x », such that

MHxm—1

(3.35) IV + y(hwt + h?w™) + h?ve — Z alul; H(Q(M)Il < Cmh(L + | Inh))®2,
p=m

q=m,....m+xym—1

By VW is denoted linear combination (2.49) of eigenfunctionsrobfem (1.8), constructed
in the end of Section 2.4, andtyw? and ¥ are given functions which are determined
for fixed W in the way described i§2, finally A% is an eigenvalue of the matriM with
cogficients (2.53). In the case of a simple eigenvaljjdi.e., xm = 1), we have ¥ = 2,
the corresponding eigenfunction, an® = Ay, is given by (2.47).

Proof. Given eigenvectora™,...,a™* "1 of the matrixM, we construct linear com-
binations (2.49) and the associated appropriate termsyim@stic ansatz (1.11). As a
result, approximation solutior{@lg +h2a%)1, Uq} forg=m,...,m+xy,— 1 are obtained
for the abstract spectral problem (3.16).

Let 2% be an eigenvalue of the mati of multiplicity «q, i.e.,

(3.36) ATV ¥ == Ol o g
We choose the factar, in the valuer, = c.h? in Lemma 3.2 so small that the segment
(3.37) [(2% + h2a%) 1 — ¢,h2, (A% + h22%) ™t + ¢,h?]
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does not contain the approximation eigenvaluds+« h?A”)~ with p ¢ {q,q + kg — 1} .
Then Lemma 3.2 delivers the eigenvallygls, . .. ,,uih(qﬂqfl) of the operatoK" such that

(338)  |ufy — (Am+hA") <t <cuh®@+1Inh)% p=gq,....q+K— 1.

We here emphasize that, at the time being, we cannot inférthiese eigenvalues are
differents. At the same moment, the second part of Lemma 3.2 igasormed colums
bhP = (bhpq, e brl;querq—l) veryfying the inequalities
Kmg+Nmg—1

(3.39) IUP - > bPull HYQM)I < e < ch(1+|Inh)®/

K=Kong T
Here{,u{(‘mq, ... ,p*k‘mqmmqfl} implies the list of all eigenvalues of the operakdtin segment
(3.37). Note that the numbeks,q andNmq can depend on the paramekebut this fact is
not reflected in the notation. Since
(3.40) Iew's HY@()Il < eh,  I2ew?; HY(Q(h)Il < chP(1+ [ In hi),

IRV HY(Q(h))I| < chP(1 + | In hi)?,

the normalistion condition (1.9) for the eigenfunctionpodblem (1.8) and similar condi-
tions for eigenvectors of the matrii ensure that
(3.41) I(UP, UYL,y —Optd <Ch,  pt=0,...,q+kq+ 1
On the other hand, inequalities (3.39) and the orthoggnafiti normalisation conditions
(1.6) for eigenfunctions*k‘ of problem (1.3), (1.4) lead to the relation

Kmg+Nmg—1

(3.42) (UP,Wiaey =, BEPBY| < chi1+|Inh)32
K=Kmq

Formulas (3.41) and (3.42) are true simultaneously if arig ibn

(3‘43) qu > Kq .

To prove that actually the siga occurs in (3.43), we first of all, notice that, for afu
ciently smallh > 0, the relations of type (3.43) are valid for all eigenva:h'u%, ..., A9 of
problem (1.8) and all eigenvalug$ of the associated matricé. We have verified above
Proposition 3.1 that each eigenvau{?and the corresponding eigenfunctidpof singu-

larly perturbed problem (1.3), (1.4) converge to an eigkm/and an eigenfunction of the
limit problem (1.8), respectively. This observation eresuthat the number of entries of the
eigenvalue sequence (1.5), which live on the interval{p, does not exceeti+xy,— 1 for

a smallh > 0. Summing up the inequalities (3.43) over/lﬁj ...,4% andA?, we conclude
that the equalitiedlng = kg are necessary. Moreover, we now are able to confirm that the
eigenvalue&ih(q), e ’#ih(qﬂ(qfl) can be chosen flerent one from another. Indeed, we take
7, = C.h3(1+]Inh])*>2in Lemma 3.2 and fi<, so large that the inequality (3.39) with the
new bounct/C. still warrants that the segment

(3.44)
Tq(h) = [(A% + h2A%)™! = C.h3(L + [ Inh)*2, (A3, + hPa%) ™" + C.h%(1 + | In h)*?|
contains exactly, eigenvalues of the operats. It suffices to mention two facts. First,

for a smallh > 0, the intervalsry(h) and T p(h) with 2% # AP do not intersect. Second,
any eigenvalu;a'lg = (/lE)‘l in the interval (3.44) meets the inequality (3.3#).
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Remark 3.5. Estimates (3.40) show that the bound in (3.35) is large ttama of the
termsw®, w¥ and V¥ included into the approximation solution and, therefohe, ¢sti-
mate (3.35) remaines valid for the functigi alone, without three correcting terms. This
is the usual situation in the asymptotic analysis of singsgeectral problems: One needs
to construct additional asymptotic terms of eigenfuncionorder to prove that the cor-
recting term in the asymptotics of an eigenvalue is foundeamtly. In principal, one can
employ the general procedure [28] and construct higher pgytin terms of eigenvalues
and eigenfunctions. We keep the boundary layer and regataections in the estimate
(3.35) because they form so-called asymptotinglometatavhich is replicated in the as-
ymptotic series (see [28] and [35]; actually the notion ofraptotic conglomerates was
introduced in [35]).

4. OrHER GEOMETRICAL FORMS AND BOUNDARY CONDITIONS

4.1. Perturbation of a domain with the Dirichlet boundary condit ions. Let us consider
the spectral problem with equation (1.3) and the Dirichtairtdary conditions

(4.1) u'(x) =0, xeI(h),
or the mixed boundary conditions
(4.2) u'(x) =0, xeTl(h)\dwn pu"(x)=0, xedwnnT(h).

Eigenvalues for these two spectral problem form a sequeftiee same form as in (1.5),
given by

(4.3) O< AN <A< < <Al < +o0

with the corresponding eigenfunction subject to condiftb®). The notation for attributes
of three spectral problems (1.3), (1.4) and (1.3), (4.1)108); (4.2) is the same, without
any misunderstanding. The peculiarity of spectral prolslémroduced in this section is
the absence of the eigenvalﬂg = 0, compare (4.3) with (1.5). The asymptotic ansatz
given by (1.10) and (1.11) keep their validity and the firstite 12, \, are given by the
solutions of Dirichlet spectral problem

(4.4) AV = AN(x), xeQ, W(x)=0, xeT,
which admits the infinite sequence of eigenvalues
(4.5) 0< A< <A3 < <A < +oo,

compare again with (1.7), and the corresponding eigenfomet?, \9,\3,..., V2, ... are
subject to the orthogonality and normalisation conditidn8). The construction of asymp-
totics for the Dirichlet boundary conditions on the non paved part of the contodt(h)
is much simpler compared to the case of Neumann conditionpaiticular, the second
termw? of boundary layer type can be neglected, and we can restrisetves to analy-
sis of problems fow! andv?. Indeed, the Dirichlet boundary conditions on non compact
part of the boundaryZ turn out to provide the decay at infinity of both the functiavis
andw?, instead of the case of Neumann conditions. Heméeandw? in the present case
are of the boundary layer type. It means that the decompaditir |£| — oo at the term
w? is free from the non-decaying parts (compare to formula®l(Q, therefore there is no
discrepancy from the term in the problem for®.

Assume that, in the same way as in section 2% = 19 is a simple eigenvalue in
problem (4.4) and® = 2, is the corresponding eigenfunction, in particupet; Lo(Q)|| =
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1. In the vicinity of the poinO we have
(4.6) VO(x) = ndnV°(0) + %nzaﬁvo(O) +NsIndsv°(0) + O(r3)
~ a0 P(0) + 1 5E08P(0) + E8n07(0) + O(F),

Thus, the principal term of the boundary layer type shouldyiven by the solution to
boundary value problem

(4.7) ~AWHE) =0, £€E, WHE) =0, £€02\ dw,
with the boundary conditions

(4.8) wWHE) = —£00V°(0), € € dwn IE,

in the case of (4.1), or with the conditions

(4.9) WHE) = —v1(£)aN(0), ¢ € dw N IE,

for mixed boundary value problem (1.3), (4.2). In the twoesador the solutiom?! the
following relations are fulfilled

(4.10) wH€) = W(E)an(0),

mé

(4.11) W) = — >

. m _ .
+O(p 2)=—;p *cosp +O(p7?)

where the decomposition (4.11) is described already in Re&2. Let us note th& c
R?; hence the asymptotic term detached in (4.11) is negative.

Lemma4.1. e For the mixed boundary value problem (4.7), (4.9), the camtsn
in decomposition (4.11) is given by (2.24).
e For the Dirichlet problem (4.7), (4.8) the constamtin decomposition (4.11) is
given by formula

(4.12) mE) :=m= - f|V§W(§)|Zd§ - mesw.
Proof. The sumY(¢) = & + W(¢) turns out to be a solution of problem with the

homogeneous boundary conditions@nn d=. Therefore, for the mixed boundary value
problem, in the same way as in (2.22) and (2.23), we obtaifoll@ving relations

(4.13) f IV, W(E)[2dé + mesw = f Yo,Wdsg = f (YO,W — W3, Y)ds

= OwNI=E OwNI=
= lim f (Wa,Y - Yo, W) ds
{.fE]R% :p=R}
/2
m
=— f (0" coS' ¢ + p cosgp? cosy) pl,—rde + O(R™)
-n/2
=m+OR™?).

For the Dirichlet problem, the first equality in (4.13) is l&ged by the formula
—f|V§W(§-‘)|Zd§-‘— mesw = — f Wa,Yds.

= JwNI=
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The problem for regular tern#? is defined in exactly same way as problem (2.39),
(2.40), however the reasons mentioned above lead to tlwvioll) form of the right-hand
side f2
(4.14) 2(x) = % 0tH(n, 9 + AN, 9)),  tH(n, s) = 7 mMIN(O)n(n® + &),
compare to formula (2.41) where in addition the téfroomes from decomposition (2.37),
g = 2 which is null in the present case. Therefore the funcifocan be determined by a
solution of equation (2.39) with the boundary conditions
(4.15) V() =0, xel.

Let us observe that it is not required that the cfitfanction verifies some additional
conditions: in any case the Dirichlet conditions turn oub®ohomogeneous. Since we
are going to provide the term? with a decay at infinity, the right-hand side (2.27) of the
Poisson equation in problem (2.26) is modified and the eguaikes the form

(4.16) —AMW(€) = %(0) (05, WH(&) — 26102, WH(¢)), £€B,

whereW!(¢) = w (&) — X(&)tL(£), X e C*(R?) is a cut-df function,X = 1 forp > 2R, and
X = 0 forp < Ry, andt! is the principal term of asymptotics fwcl). In the case (4.1) the
boundary conditions fon? are given as follows

(4.17) W) =0, £€dZ\dw,

(4.18) WP(E) = ~3EP0) a9 P(O), € € o O,
and in the case (4.2) formula (4.18) is replaced by the fatigwone
(4.19) W2 (&) = G2(¢), &€ dwndE;

moreover the tern@i =0 anng in formula (2.28) are not changed and in accordance
with the decomposition (4.6) we have

G3(&) = —£1v1(9)FNVP(0) — (€1v2(é) + £2v1(£))0r0V°(O).
Due to the Dirichlet conditions (4.17) on non compact parthef boundary two prob-

lems (4.16)-(4.18) and (4.16), (4.17), (4.19) admit deegygolutions. In view of Remark
2.2 it is straightforward to verify the estimates

VEW(@l <cp™™ P, p=Ro, p=012...

Hence, the functiom? looses nondecreasing asymptotic tefmin the framework of re-
arrangement of discrepancies [25], [28]; the resultingftdterm are of orde®(p~2) and

in formula (2.29) are transfered on the right-hand side ofiqn (2.39) (compare (4.14)
with (2.41), (2.38)). Repetition with obvious changes gfitanents from Section 2.3 shows
that the compatitbility condition for problem (2.39), (8)lin the class of bounded func-
tions is equivalent to formula

(4.20) A’ =m|aVP(0) .

In the case of multiple eigenvalu, in problem (4.4) with condition (2.48) satisfied,
the members of asymptotic ansatz are determined exacthgigadme way, as in the end of
Section 2.4. The only exception is formula (2.53), which meads as follows

(4.21) M j = M(E)FnVin, 1 (O)Fnviy, (0);
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wherem = m(E) is the integral attribute of the domai) described in Lemma 4.1.

Remark 4.1. We leave the denotatiow for odd extension from the domat onto the
domainz% of the functionw, which appears in (4.10) and (4.11), (see (2.25) and Figure
3). By virtue of the homogeneous Dirichlet boundary comaisi 0nd= \ dw, it is harmonic
function inZ%, subject to the condition

W(E) = —é1, € €02,
in the case (4.8) and to the condition

8,(&) = —v(§), &€=

in the case (4.9).This type of function is employed in [41 floe description of polari-
sation tensors and of virtual mass, respectively. By Lemriahe quantitym(Z) from
decomposition (4.11) is twice the upper left-hand elemettié matrix associated with the
polarisation tensom

The justification of obtained formal asymptotics practicatpeats arguments already
presented in section 2.4. The only exception is the fact, ttebounded solution® of
problem (2.39), (4.15) can be represented in the fvé{x) = ®(¢) + O(r), therefore is not
any element of the Sobolev spadé(Q). Thus, when constructing the global asymptotic
approximation for the eigenfunctiasf, the termv? is multiplied by the cut-& function
Xn which equals toX(h~n, h~1s) in the vicinity of the pointD and to one on the remaining
part of the domaii®2. We point out, that additional discrepancy resulting fréwa termv?,
cancels in the principal part with the discrepancy resglfiom the multiplication of the
asymptotic ternt® by the cut-df function X(£) on the right-hand side of equation (4.16).
Finally, we formulate the result.

Theorem 4.2. For any eigenvaluel’, in problem (4.4) of multiplicityxm (see (2.48))

there exist the constantg, > 0 and h, > 0 such that for he (0, hy] the eigenvalues
A /lh 1 in the Dirichlet problem (1.3), (4.1) (respectively, in thexed boundary

value problem (1.3), (4.2)), but not all other members otieege (4.3), satisfy the follow-
ing inequalities

(4.22) G — A - A% <cuh®, g=m... m+xp— 1.

Moreover, there exist the consta®yt, and the columns™,, . . ., a"™#m=1 ¢ R*m which form
an unitary matrix of dimensiony, X »m, such that
Mtyn—1

(4.23) | 4 X Z alull; H ()

< Cph,

In (4.23) WO stands for the linear Comb|nat|0n (2.49) of the eigenfunrtgiin problem (4.4)
subject to the orthogonality and normalisation conditi¢h®). The columns of cfiicients
a% in (2.49) satisfy condition (2.50). The quantiti#® in (4.22) are given by eigenvalues,
and the columns® by eigenvectors, of the, x »xm)-matrix M with the cogficients (4.21).
The terms W and w# of the boundary layer type are determined by the funct®nvhile
solving problems (4.7), (4.8) and (4.16)-(4.18) ((4.7)9fj4nd (4.16), (4.17), (4.19) in the
case of mixed boundary conditions), respectively. Thetiome™ is a bounded solution
of problem (2.39), (4.15) with the right-hand side (4.14)¢ls a solution exists provided
#m compatibility conditions in form (2.52) are verified. In tharticular case of a simple
eigenvaluel?,, it follows that ¥° = {9, is the coresponding normalised eigenfunction in
problem (4. 4) and the unique compat|b|l|ty condition odlplem (2.39), (4.15) furnishes
the quantityl;, = ™ from formula (4.20)m
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Ficure 5. Perturbation near the corner point.

The absence of logarithms in majorants (4.22) and (4.23npeve with (3.34) and
(3.35) in Theorem 4.2) can be explained in the following wlirst, there is no singular
termt? with the logarithm (see (2.31) and (2.37)), furthermoreftivestionsu e I—°|1(Q(h))
satisfy inequality (3.1), where in the middle the weightéaec —* stands instead of (1 +
In|r)~ The verification of such an inequality is performed by meahthe Friedrichs
inequality on the arcH{r/2,7/2) > ¢ and for the Dirichlet boundary conditions d¥h) \
dwn, see e.g., [36, Ch. 2] for the details.

Remark 4.3. Since the boundary layer term&! andw® have similar behaviour at infinity,
we have excluded the second one from the approximationieolint (4.23) in accordance
with the concept of asymptotic conglomerates [28], [3b].

4.2. Perturbation of the boundary in the vicinity of a corner point. Assume that in
the vicinity of the origin the domaif coincides with the angl& = {x:r > 0, |¢| < a/2}
wherea € (0, 2r] is the opening of the angler, () are the polar coordinates, and we set
X1 = —rcosy andx, = rsing. Given a domainw with the originQ in its interior, we
denote

(4.24) wh = {x &:=hlxe a)}.

In the domainQ(h) = Q \ wn, see Figure 5, with the piece-wise smooth boundary
r'(h)y = 9Q(h), we consider equation (1.3) along with the boundary camiit (4.1) or
(4.2). In contrary to the previous sections, the stretclihgoordinates is performed
for the Cartesian coordinate system (compare formula J4d241.1)) and, therefore, the
derivation of asymptotics becomes now much simpler. Weicestur analysis to a simple
eigenvaluel’, of the limit Dirichlet problem (4.4) and the correspondirgenfunctionv?,
normalised by relation (1.9). In the vicinity of the cornerimt O the functionv®, admits
the decomposition

(4.25) V(%) = Kpr™2 cos(ﬁgo) + O(rMin@r/a2exlaly oy 0,
a

where Ky, is a constant (it is the so-called intensity factor). Sucloanf of singular
function can be found, e.g. by an application of the Fouriethud, and we refer the
reader for all the details of the derivation, e.g., to [36, €h By the formulavd(x) =
K1h™/2p™® cosratyp) +o(h*/?) onaQ(h) \ 69, it follows that the decomposition of bound-
ary layer type starts with the terhi’*w?%/* (£), which compensates the principal part of the
discrepancy in the boundary conditions and is given by atisalwf the boundary value
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problem
(426) AW =0, feEZ:=K\w, Wp'#) =0, £€dE\dw,
(4.27) W () = Ko™ Cos(gtp), £€dwndE,
or
Ja
(4.28) W™ oy = g 2 g cos(%), £€dwndz,
ov ov a

where (4.28) is given for (4.2) and (4.27) is the condition(fb1). Since the homogeneous
Dirichlet conditions are prescribed on the non compact §&rf the boundary, problem
(4.26), (4.27) admits a unique solutiovf/” with the decay at infinity. The following
formulae are valid,

(4.29) W& = KmW(),
(4.30) W(E) = gpﬁr/” Cos(gcp) + 027, p = oo,

HereW is a solution to problem (4.26), (4.27) &, = 1.

Remark 4.4. By a simple repetition of arguments given in the proof of Leavinl, with
the evident modifications if necessary, we arrive at the kgua

2
dé;

(4.31) mE) = m=F f IVeW(E)Pde f 'Vf (p”/a cos(fgo))
‘ . P
o) wnK

where the sigr- relates to the condition (4.1), and the sigis given for the case of (4.2).
Such formulae can be derived from relations (2.24) and j4y2neans of a conformed
mapping technique, with the appropriate transformatichetorneik onto the half-plane

R2. Unfortunately, the conformal mapping is not applicablaisimple way to equation
(1.3), the reason is the form of the right-hand side with tihéittonal weight factor which

makes the asymptotic constructions provided in sectiomrfii¢h more involvedm

The asymptotic ansatz for solutions of spectral problen3)(14.1) and (1.3), (4.2)
should be taken in the following form:

(4.32) AN =20 +hZley 4

(4.33) W00 = VB0 + YOO WE () + HE/ 20 + ..

The correction ternv2™’® of regular type is given by a solution to problem (2.39), 8.1
with the right-hand side

F2772(x) = %07 (%) + Ax(e (It (X)) = 2% I (%) + [Ax. x (ITT* (),
t7/(x) = Klgr‘”/a cos(gcp).

It is taken into account that/® is a harmonic function. In view of?/¢(x) = O(r/®) for
r—o0, solutions to problem (2.39), (4.15) should be found indlass of smooth functions
onQ\ O, such that

IVRVZ/e(X)| < cprMnim/a2-r/al=p 5 =01, ...
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Ficure 6. The magistral crack with a kink or cavity at the tip.

It is not difficult to see (we refer the reader to [36, Ch. 2], for the dét#ilat the solu-
tion with such properties does exist if and only if the follogy compatibility condition is
verified

(4.34) f AV + 2Nl dx = 0.
Q

We recall here that?, is a simple eigenvalue. By an application of the Green foaninil
the domair2\ B, in the same way as before, we can transform the compatibditglition
(4.34) into the formula for the asymptotic correction in gresatz (4.32) for the eigenvalue

(4.35) A, = mK2,

We are not going to analyse the case of multiple eigenval&sce the theorem on
asymptotics and its proof can be presented in exactly the seay as before, no new ideas
is required. For this reason, we are going to derive sevegahptotic terms in the most
interesting case of the Neumann problem (1.3), (1.4) foralomwith cracks, see Figure
6

4.3. Spectral problems for domains with cracks. Let @ = 27 and let%, be a simple
eigenvalue for the limit Neumann problem (1.8). The eigenfionvd, normalised in the
space,(Q), can be decomposed as follows

(4.36) V(X = V8,(0) + K1rt/2 cos% + K2r cosp + K3r3/? Sin(%«p)
+ K*?cos 2 - %Aﬂqv%(O)rz +0(r¥?), 0.

The four terms in the right-hand side, witch contain thenistty factork? are denoted by
KRrP205(p), p = 1,2,3,4. The last asymptotic term comes out from the tefgg, in
the equation from problem (4.4) (compare with the procedfigsymptotic construction
[17], which is retold e.g., in [36, Ch. 6]). Due to formula8), the following asymptotic
ansatze are proposed:

(4.37) AN =22 +ha@ + K329 L W22 @
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4

4
(4.38) U0 = Vo0 + > DAY + (0 > hP2nfRe) + ..
p=1

=2
The termswt, andw?, of the boundary layer type are given by solutions of the pois
439) AW =0, £eE P = —KPI,(0P2Dy(y)), &€ E.

The right-hand sides of the boundary conditions have cotrqgaports and the integrals
of the functions oved= vanish. This implies the existence of a unique solution t8%#
which decay at infinity. In addition, the following represationwh, = KEW? is useful,
and

1 3
(4.40) WP(E) = = > ~Mpg ¥20q() + O(p?). > .

o1

Ol

Lemma 4.2. The matrix(mpq)g,q:1 of size2 x 2 is symmetric and positive definite,
(4.41) Mpa(E) 1= Mpg = (VeWP, VaW)z + (Ve(oP2Dp), V(0P *Dy))., -

Proof follows the proof of Lemma 4.1. The functiol8(£) = pP/2® () + WP(£) turn
out to be solutions of the homogeneous problem (4.39). Tleetsformula leads to

f W99, WPds: — f pV20q0, (0?0 p)ds:
w w

(4.42) - f (Y99, WP — WP3,Y)d s, = f (WP3, Y9 — Y99, WP)d s
w

{€eK:p=R}
3 Mo -
- YRR ) [ odervirte + ofa)
j=1 t

Since the left-hand side equals the sum of scalar produéts4d), the right-hand side has
the finite limit, which in view of the definition of the angulpartsdy equals tay,; my;5jq =
Mpq. Therefore, the matrir takes the form of the sum of two Gram matrices, symmetric
and positive definitem

Remark 4.5. In the case of the kinked crack mes= 0 and therefore, the second term
on the right-hand side of (4.41) vanishes. Neverthelesgntatrixm of Lemma 4.2 keeps
the properties. We refer to [34, 1], for much more involveeldty of cracks elongation in
elastic solidsm

In view of formulae (4.37), (4.38) and (4.40), in the same waayit is described in
Section 2.3, we can formulate boundary value problems fonge!? andv®) of regular
type
(4.43) AV = ARV + AN + [Ax YOOI

+ 20T, xeQ, @) =0, xeoQ;
where
TZ() = 7~ Kgmuar Y204 (p),
Ta(X) = 77 *KEMar 204 () + (20 ) KGmyor ~H20;(¢).
The compatibility conditions for problems (4.43) with = 2,3, are processed by the
method [29]: the Green formula is applied in the domi(B, and taking into account the

(4.44)
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asymptotic decomposition (4.36) the integral on the confen, ) > ¢ is evaluated (com-
pare with the procedure in (4.42)). As a result, by the noisatbn (1.9), the following
expressions are obtained

(4.45) A@ = my(Kp)? 4D = 2KimipK3,

Now we use the theory of elliptic boundary value problemshi@ domains with corner
points, taking into account that the right-hand sides (Mod#roblem (4.43) fog = 2 and
q = 3 are only of orde©(r~/2) andO(r 1), respectively, therefore

VD09 = KEF20.4(¢) + KEFT02(e) + O,
V(%) = KEri/2y(g) + O(r (1 + | In]))

We refer the reader, e.g., to [36, Ch. 2] for all details whach needed to derive (4.46); see

also Remark 2.2. The next step of our procedure is the fotionlaf problems forvv(n?)
andw®:

(4.47) A =0, ¢eE amd©) =GRE©), ¢eoz
We use the following notation
GR(E) = ~K3n(0**®3(e)) ~ KiZo, (02 01(p)),

1
G(€) = —Knon(p*®a(p)) — K320, (0" ®2(p)) — Kion(p™*@1()) + ZA%VO(O)anZ.
In this way, forq = 3 we haventd(£) = K3W? + KX2W!, moreover

(4.48) W) = (Kime + Kifmu)o ™ 201(0) + O(p ™),  p — +oo,

(4.46)

and, thus, the detached asymptotics term has to be put mfirefblem fowﬁﬁ). We observe
that

f G(¢)ds = %ﬂngO(O) f d,p%ds =~V (O)mesw.

dwnK dwnK
Thus, problem (4.47) foq = 4 has no decaying solution, there exists a solution with the
logarithmic growth

(4.49) W) = —/lOVO(O)mesza)z—lﬂ Inp+0@p™?), p— .

In the next step of the procedure we proceed in very similar eescribed ir§2, but
with the ansatze (4.37), (4.38) and with decompositiondQ} (4.48), (4.49), as a result
the following boundary value problem is obtained \7&,‘?

(450) AR = A0 + AMP) + AR + [Ax x (I T(¥)
+ 2 ()THX), XeQ, dVP(X) =0, xedQ.
Here the notation is used
M3z _ Mp2 _
(4.51) To(¥) = Kr%?r 203(p) + K%Zr N
1
+ (K3 L K22y ) 205() — 20 (O)mesw— In .
bl 2r &
The solutionsvﬁﬁ) andvﬁﬁ) of problem (4.43) is defined up to the tem/fﬁ), i.e. we can

require that the following condition is satisfied

(4.52) VO \0)0=0 q>1,
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which provides the uniqueness of the intensity factéfé and K12 in decompositions
(4.46). In view of formulae (4.44) f6F2 and (4.45) for/lﬁﬁ) the functiomﬁﬁ) is proportional
to the intensity coficientKl, which means that

(4.53) KL = KnKE,

where¥, is a constant, which depends on the donfaiand on the selected simple eigen-
valueA®.

Taking into account formulae (4.51)-(4.53), and accordmghe method of [29] the
compatibility conditions for problem (4.54) can be formeldas follows

(4.54) A9 = 2myaK LK + mpa(K2)? + myKim(KL)? — 2208 (0O)mesw.

We do not justify the asymptotics, since the related thearambe established in the same
way as it is described in details §3. We observe only, that decomposition (4.37) with the
four terms in precise of the order at le&@h>2(1 + | In h|))*? (compare with (3.34)).

We rewrite formulae (4.37) and (4.45), (4.54) in the follogyiform

2
(4.55) A= a5+ > myh(#0/2KIKK
k=1
+ 2 {2myaKRKS + muKan(Kn)? = Aqve(0)?mesw) + O(h®*3(1+ | Inhi))*/2,

Remark 4.6. It is possible to add to the right-hand side of (4.55) the baigbrder terms
2h%2my3K 2 K3 andn®mges(K23)?. The formula with exactly same asymptotic precision reads

3
(456)  An =A%+ > myhU2KIKE
jk=1
+ h2my Kin(K2)2 — h2A3,(0)°mesw + O(h®/2(1 + | In hi))®/2,

As it follows from the proof of Lemma 4.2, 8 3-matrix (mjk):ik:l is again symmetric
and positive definite. If the asymptotic terms of lower ordes taken into account, it
necessitates an extension of the matrix of decompositiefficients (4.40), the appropriate
construction is described in [33], [16] for the domain pdration by small opening, and
the passage to the crack with= 27 can be performed by an application of the method
proposed in [37]m

4.4. Growing of geometrical domain. In the analysed already perturbations, it was al-
ways assumed that the perturbations of the domain resull@tigease of the volume, i.e.,
mesQ(h) < mesQ. However in the shape optimisation it is always possiblestjuire
also that the volume of domain increasesQlfs a domain with smooth boundary, then
mesQ(h) > mesQ in the case of

=R3Uw,

[1]

(4.57)

(4.58) Q) =@\ U U{xeU: &= (' hy e =)
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Ficure 8. Exterior perturbation of the corner point.

4.5. Spectral problem for a crack. (see Figures 7 and 8). He#eis a domain such that
wNR? # @, andU is a neighbourhood of the origin. We assume that the set Y4558
connected and its boundad{2(h) is piecewise smooth.

Asymptotic procedures presented§ia and in Section 4.1, can be applied without any
substantial modification, and the justification of asymipgiven in§3 simplifies in the
present case due to the fact, that we do not need any extesisgigenfunctions from
the domain (1.2) ont®, now we simply use the restriction of the eigenfunction defin
on the set (4.58) t62. We also point out that in the asymptotic ansatz (1.11) wel rree
smooth extension of the functioA onto an open neighbourhood of the §etso now we
can restrict taQ the function defined on (4.58). In addition, for the extentlettionv®
the representations (2.1) and (4.6) are still valid, treneethe problems for the boundary
layer type terms of our ansatze are of the same form as before

We recall that for the solutiow’ of Neumann problem (2.39), (2.40) the extension in
the clasH(Q) is needed, with the property that the extended functiomigided. In the
case of the Dirichlet problem (2.39), (4.15) in general nteesion of the solution? is
required, since the solution is multiplied by a cdf-mnction X;, in the global asymptotic
approximation for the spectral problems (1.3), (4.1) o8)1(4.2) (see the subtrahend
inside of the norm on the right-hand side of (4.23)), and thecfion X, equals to zero
on the sef)(h) \ Q. If Q is the domain with a corner point on the boundary, &tgt) =
Q U wh Wherewy, is a small set (4.24) (see Figure 8 and compare with sect@®n #hen
the extension of function (4.25) is not always availableit$® necessary to multiply the
members of the asymptotic ansatz by a cfiittanction X,,. Such an approach is common
in the theory of elliptic boundary value problems in domawith singularly perturbed
boundaries [28] and it is described in details in Chapter thisfmonograph, (see also the
original paper [25]).
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4.6. Mixed boundary value problems with the Dirichlet boundary conditions on the
boundary of a cavern. The most complicated asymptotic ansatze appear for thedzoy
conditions

(4.59) (X)) =0, xedh)naoQ, u'(x)=0, xedQ(h)\aQ.

In such a case the principal feature which causes seridiisutties is but the lack of the
decay at infinity of solutions to the limit problem

(4.60) ~AWP(E) =0, £€E, 9,W0(E) =0, &ed=naR?,
wo(¢) = ), £€d=\R?,

even for the functiorg® with the null mean value, therefore the decay of boundargriay
terms is produced artificially. Complications appear alyeat the stage of construction
of principal members of ansatze, thus the question on thert#ence of asymptotic struc-
tures on the curvature pass to the second plan. Moreovealdglogithm of construction
of asymptotics and its justificationftir only in some details with the framework given
in [27] (see also [28, Ch. ?]) for the Dirichlet problem in tiemain with small interior
opening. We recall here, that the complexity of asymptatdicstructions for solutions to
problem (1.3), (4.59) could causes even some mistakes ilished results (for exemple
see [31] and the explanation given in [5]). For the convergeof the reader we briefly
explain the algoritm of [27] in our context.

Assume thatt® = 29 is a simple eigenvalue of problem (1.8), andu&t= V2, be the
associated eigenfunction normalized #(€2), and such that’(O) # 0. The case ofn = 0
is not excluded, i.e]° = 0 andv®(x) = (mesQ)~/2.

We need in the sequel certain special solutions of limit ldauy value problems which
we list now. The first special solution is the generalizeddgaréunction [43] with the
singularity at the poin® € 9Q2, namely the solution to the problem

(4.61)  —AGm(X) = 22Gm(¥) —VOOMNY(X), XeQ, 8Gm(X) =6(X), xeT.
The Green function is smooth @\ O, verifies the orthogonality conditioG,, V3)q = 0,
and in the vicinity of the singular poir@ it admits the decomposition

(4.62) Gm(¥) = -7 tInr + g% +O(r), r— 0.

The second special solution is the so-called capacitamrpial & (see [22]) of the set
(2.25), i.e.& is a harmonic function§ = 0 on the curvéd= \ dR?, its normal derivative
8&/0&, = 0 on the seb= N 9R?, andE admits the decomposition

(4.63) &) = ~(20) tinp + & + &), EE =0(p™Y), p— .

In the literature [22], [41], the quantity expA&) is called the logarithmic capacity or
exterior conformal radius of the s&f°. In order to avoid the presence of cuf-function
X, in all asymptotic formulae, we simply assume tBa¢ Q(h).

Now, we turn to the asymptotic ansatz, which according tq,[2&n be written in the
following way

(4.64) AN =20+ A (z) + ...,

(4.65) Um(X) = V(X + Bm(Zm)Gm(X) + V(% Zm) + X OWH(E, Zm) + .-

Here,zn = (|Inh| + £)~! is a new parameter, and the quantit®sA?(2), andan(2), are
to be determined. The functiom$, andV? decay forp — co andr — 0, respectively, in
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particular we have
(4.66) V(0. zy) = 0.

In view of formulae (4.62) and (4.66), the right-hand sidéoéindary conditions in prob-
lem (4.60), collecting the principal terms of discrepancisulting in the second condition
of (4.59) from the first three members in ansatz (4.65), téake$orm

o°(€.2m) = ~V(0) — an(zn)(@  Inh— 77t Inp + G1y).
According to (4.63) the solution of problem (4.60) with aBuight-hand side is given by
WOE, Zm) = 28m(Zm)EE) + am(Zm)(x ™M INh] + 280 — GT) — Vi (O).
The solution decays at infinity provided that
-1
(4.67) am(zm) = R(O)[|IN hl + 210 2GR ] * =1 15 (O)am.

Let us consider now the problem f9f,(x, zy), which can be determined according to
ansatze (4.64), (4.65), with the decaying tenfy and in view of equalities (4.61) f@,
it takes the form

—AVR(X Zm) = 2°VA(X, Zm) = FRA(X, Zm)

(4.68) 1= AQ(Zm) V(% Zm) + AY(Zm)VO(X) + AD(Zm)am(Zm)Gm(¥)
—am(Zn)Va(O)VA(¥),  x€ Q,
(4.69) OVO(X,Zn) =0, xe€oQ,

Lemma 4.3. Assume that the eigenfunctiof) is associated to a simple eigenvalue, it is
normalised in k(Q), and in addition §,(0) # 0. For all right-hand sides Fe L,(Q), with
the orthogonality conditioiiF, v2)q = 0, the Neumann problem

AV-2V=F in Q 8V=0 on Q

admits the unique solution \¢ H?(Q), with V(O) = 0. Furthermore,||V; H?(Q)| <
cllF; La(Q)lI.

Proof. The existence of a particular solutid® and its diferential properties are well
known (see e.g., [21]). The assumptid{O) # 0 allows us to determine the constagitn
the formula for the general solution = V* + coV2, by the additional conditioW(0) = 0.

X.

Hence, assuming that the right-hand sifein (4.68) is given, we can conclude that the

solutionV?, verifies condition (4.68) if and only if

AR(Zn) (Vs Ve + A(Zm) — am(Zm)Vi(0) = 0

or, which is equivalent, according to (4.67)
(4.70) A(zm) = 7NVR(O)P2m(1 + (Vi Vi)a) ™

We inject (4.70) into (4.68), hence? is a solution of nonlinear problem, with the
Neumann condition (4.69) and the Sobolev condition (4.686Jined by a mapping from
the subspace

H={VeH¥Q):9.V=0 on 9Q, V(©O)=0}
into the subspace
L={FeLy(Q): (F.vi)a=0}.

Since the nonlinear perturbation of the isomorphisine £ defined in Lemma 4.3 turns
out to be a small and analytic perturbation, general reg2tsshow that for sfficiently
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small values of parametey, introduced in (4.67), problem (4.68)-(4.70), (4.66) has th
unique solutiorv?, analytical with respect ta,, and such tha¥9(x; 0) = 0. We inject the
solution into (4.70) and obtain the correctiaf}(z.) in the asymptotic ansatz (4.64), the
resulting correction is analytical with respecizg moreover

(4.71) Aozm) = MP(0)2m + OZ).

In this way the formal asymptotic analysis is performed, aedefer the reader to [27] for
the arguments on the justification of asymtotics.

Remark 4.7. Itis not difficult to construct the expansion of the eigenvalfjén the series
of inverse powers of the large paramdtarh|

(4.72) A~ > InhiPAR
p=0

The results already established show that the series ge®@nd the remainder is of the
orderO(h!=%), > 0. On the other hand, the functibn- |In his slowly increasing, hence
the expansion (4.72), and in particular the resulting fo4r64), (4.71) formula

(4.73) A =22 + [Inh2VS(0) + Ol Inh|~2)
is not suficiently precise, and therefore its utility in shape optiatisn is questionablaa

Remark 4.8. If 2% is a simple eigenvalue but the corresponding eigenfunttikes the
value\V°(0) = 0, the asymptotic analysis is performed in exactly the samag ag it is
describedir§2, i.e., it looses the complication discussed above. For léipteieigenvalue
(see (2.48)) the eigenfunction$, . . -’ngmfl can be fixed in such a way that the rela-

tions (see (1.9)) are verified anfl ;(0) = --- =V}, ,(0) = 0. In this way, at most
one between eigenvalugs, . . ., /lﬂwm_l in problem (1.3), (4.59) requires the complicated
asymptotic analysis

5. ON SHAPE OPTIMISATION

5.1. Reduction and enhancement of eigenvalues (eigenfrequesddy boundary per-
turbations. For all three problems (1.3), (1.4) or (1.3), (4.1) and (1(3)2), formulae
(2.47) and (4.20) for the asymptotic correction of a simpgeevaluel?, can be presented
in a unique way with the help of the corresponding eigenfionat’, normalized inL,(Q):

(4.74) = 5, + W (ME)V2O)F - Aqmesw(0)F) + O(h*™).

Here,s is an arbitrary positive number for (1.4) atic= O for cases (4.1) and (4.2). Thus,
the sign of the multiplier foh? in (1.9) is determined according the way the boundary is
perturbed, energyn(Z) and geometrynesw characteristics, as well as by the location of
the pointO on the contour'.

5.2. Control on eigenvalues: Dirichlet problem. If, as a result of the boundary pertur-
bations a cavern is formated, from Lemma 6.1 it follows tiet multiplierm in (4.74)
is negative. In view of the equality’(0) = O this impliesA, < A9, under the condition
anV2(0) # 0. We point out that the same conclusion can be drown out frenmtinimax
principle (cf. [47])

v @)
4.75 ah = e i G\ L
(4.75) ™= T e v QM)
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Ficure 9. The perturbation of the domain with the area preserved.

Here
Hy = H{Q(M) = {ue H(Q(W) :u=0 on aQ(h)

with Ho = If|1(Q), and byRn, is denoted a subspace of dimensionWe observe that the
required result is obtained by the embeddlﬁh’g;(Q(h)) C I—°|1(Q), with the convention that
the functions are extended by zero@n Q(h), therefore1?, > 29,

Assume thaf(h) is the domain from (4.58), aridl is the domain which coincides with
the half-planeR? outside of the circlé8g. We denotav, = Z\ R? andw_ = ZNR2
(see Fig. 9). In this case principle (4.75) becomes uselessn the explications given
in section 6.3 it follows that formulae (4.20) and (4.22) a&did also in the case when
the both sets, andw_ are not empty. In addition, a natural modification of the frafo
Lemma 4.1 leads to the following variant of formula (4.12):

(4.76) m(E) = - f|V§W(§)|Zd§ - mesw_ + Mesw, .

Hencem(E) < 0 under the condition thahesw_ > mesw, (the volume of added part is
greater then the volume of the clipped partimésw, > masw-_, it is possible to predict
the sign of quantity (4.76) only under additional assumptiatw_ = @.

Lemma 5.1. If the domairE is of form (4.57) and the set, = w N R? is nonempty, then
the multiplierm = m(Z) in the asymptotics (4.11) of the solution to problem

(4.77) -AW(E) =0, £eE, W) =-&6, £€dE,
is positive.

Proof. The right-hand side of boundary condition in (4.77) is nagadndw \ R2 and
is null on dR? \ w. The maximum principle assures thal¢) < 0 in Z, which means
m > 0 since the harmonic functigir?¢; is negative in half-spade?. The equalitym = 0
is impossible, since all harmonics decayinggor co change the sign in infinitym

We note that, under growing of the domain , the multipigE) in expansions (4.11)
and (2.21) and in others, cannot be express through staimdegdal attributes of sets [41].

5.3. Control on eigenvalues: Neumann problem.According to formula (2.24) for prob-
lem (1.3), (1.4) in domain (1.2) with a cavern the fiagentm(E) is positive, however the
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differences!), — 1% for m > 1 can have arbitrary sign in dependence of the position of the
pointO. Indeed, leD coincide, for example, with a local extremum of the function

(4.78) I'ss—V2(0,9).

Then|V2,(0)| = 0 in view of homogeneous Neumann condition #rthus A%, — 2%, <

0, provided that®(0) # 0 and the parametéris suficiently small (if O is the global
minimum, then the inequality?,(0) # 0 can be established by the maximum principle).
Taking df a cavern at the poir® of sign change of function (4.78), and assuming that
dsV8,(0) # 0 (for the eigenfunction associated to the first positiveeai@lue/l‘l) such an
assumption is satisfied) we obtain thgt- 1% > 0 for h sufficiently smalll. If the perturbed
domainQ(h) containg2 and takes form (4.58) (see Fig. 9), unfortunately the sigm(&)

is not known, the cd@cientm(Z) in view of (2.22) and (2.23) is obtained in the analogous
to (2.24) and (4.76) form

(4.79) m(E) = f|V§W(§)|2d§ +Mmesw_ — Mesw, .

Indeed, forw- = @ andmesw, > 0 in the right-hand side of (4.79) appears fiatence
of unknown sign. We emphasise that the proof of Lemma 5.1dagsethe maximum
principle cannot be used, in addition the conformal mappieghod indicated in Remark
4.4 is also not applicable.

5.4. Mixed boundary value problems. For mixed boundary value problems under bound-
ary conditions (4.2) the minimax principle (4.75) is not Apgible; however in view of
Lemma 4.1 the constami(Z) is positive for a cavern, hence the same conclusion as for
the Neumann (1.3), (1.4) problem is valid in view of the egyal,(0) = 0. If Q(h) ¢ Q
formula (4.79) holds, which means that foesw_ > mesw, it follows thatm(Z) > 0 as
before. On the other hand, far. = @ the sign of the quantityn(Z) is unknown.

For boundary condition (4.59), the priciple (4.75) lead¢h®inequalityAl}, > A9, pro-
vided thatQ(h) c Q. If the domainQ(h) is of form (4.58), the strict inequality holds at
least for simple eigenvalues by formula (4.73), howevey doil suficiently smallh since
it is required that the terrin h|=% is small enough.

5.5. Multiple eigenvalues. Assume thatl, is a multiple eigenvalue (see (2.48)) of the
Dirichlet problem (4.4). Then the asymptotic correctidfis ..., A™*m~ in ansatz (1.10)
for problem (1.3), (4.1) or (1.3), (4.2) are given by eigdnes ¢, X »xm)-matrix M with
elements (4.21). Sindel is proportional to a matrix of the formMIMT, whereM is a
column of heigtheny,, and M is the transposed row, hence the eigenvalues take the form

MHsm—1
(4.80) AT =mE) > IO AV = el =0,

p=m

Therefore, Theorem 6.3 assures a nontrivial correctiothf@ronly one amongy, eigen-
values. There are known standard procedures (see, e.{)., \{2fich allow to construct
the higher order terms of expressions (1.10) and (1.11)@ddtermine if the eigenvalues
decrease of increase in terms of higher order corrections.

For the Neumann problem (1.3), (1.4) the maWbwith elements (2.53) turns out to be
the sum of two matrices of the formtMT thus the eigenvalues are not given in the simple
form (4.80).
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Ficure 10. The selvage micro-crack.

Ficure 11. The micro-crack parallel to the boundary.

5.6. Corner point. All theory explained up to now is valid for problems from Sent
4 (see Figures 5 and 6), when the limit domain has a cornet poithe boundary. We
note only that the sum with respect jk = 1, 2, 3 in (4.56) with the definite matrir,

shows the more general property of monotone dependencgarfvalues with respect to
boundary perturbations

5.7. Selvage micro-crack.Let T := w is a segment of a curve, i.e&€, = R? \ T is a
half-plane with a crack (see Figures 10 and 11).

In the casanesw = 0 and formulae (1.10), (2.47) and (3.34) for eigenvaluasfte
eigenvalues are considered here, the case of multipleaiyas is discussed in section
5.5) of the problem (1.3), (1.4) can be reduced to

(4.81) A = 20+ WI0nO) P f IVeW(@)[2dé + O(h*(L + | In h)?).

HereW is the solution (2.21) to problem (2.20), which equals tozmmly in the case of
a straight crackr parallel to the boundar§R? (see Fig. 11), since in such a cage= 0
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on the surface&§* of the cut. If T is a boundary of curvilinear crack (Fig. 10), then
the Dirichlet integral in (4.81) is positive. The fact is inc@rdance with the minimax
principle (4.75) for sequences (1.5) and (1.7): whRkgs (m + 1)-dimensional subspace
of the Sobolev spacds!(Q(h)) andH(Q) c HY(Q(h)).

Formulae (4.81) can be employed for solving one more shafimisgtion problem.
Let /lcl’ and/lg be simple eigenvalues and it is required to find out the looadf a crack of
the lengthh, such that the distance betweé]nnd/lg is maximised. It follows that

A= a0 = 29— 0+ 2 f IV WERAENR(O) — M(O)P) + O(h3(L + | In h)E.

In such way, for a smalh, the crack should be located at the maximum of the function
I's>s— (9% -V(9%
Let us observe, that the integrﬁlVérledf attains its maximal value for the crack of unit

length orthogonal to the boundary (see [42]). Similar atateel problems can be analysed
and solved for other types of boundary perturbations anthtoother boundary conditions.

5.8. Asymptotics of energy functionals. In domain (1.2) the Dirichlet problem is con-
sidered

(4.82) “AUN(X) = £(X), xeQh), u'(x)=0, xeTI(h)=2aQ(h),
and the functional evaluated for its solution
(4.83) 7 (u"; Q(h)) = f TU"(x), x)dx

Q(h)

For the sake of simplicity here we assume that all data arengby smooth functions,
i.e., f e C®(Q), T € C(R x Q), and the boundarids andd= of the limit domains are
also smooth. Of course, these assumptions can be easiliedrhit the technique of the
previous sections. It is obvious that we can assumeTt@tx) = 0.

The goal of the section is to establish the asymptotics aftfanal (4.83) forh — +0.
The construction and justification of asymptotics of theiiohs to problem (4.82) do not
require any new argument compared to employed already inquesections: asymptotic
approximation of the solution” is given by

(4.84) U"(x) = VO(%) + by (YW () + W2 (WP (€) + hPxn(x)v2(),

wherey andyp are cut-df functions, present in formulae (1.11) and (4.23), &hdtands

for solution of the limit problem

(4.85) AP = f(x), xeQ, V() =0, xel =0Q.

Decomposition (4.7) is valid, hence the boundary layer aandw? are given by so-

lutions to (4.7), (4.8) and (4.16)-(4.18), respectivelheTproblems for boundary layers

admit solutions decaying at infinity with the rap'), in addition, forw* the represen-

tation (4.10), (4.11) are valid, on contrary, the represton forw? is not applied in the

sequel. Finallyy? stands for the solution of the problem

(4.86) “AVA(X) = F2(X), xeQ, V() =0, xeT,

with the right-hand side

m(E)
v/

(4.87) f2(x) = A(r(Mti(n, ), ti(n,s) =

6nv°(0)ﬁ.
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such a problem admits a bounded solution. Furthermore,
(4.88) V) +x(t'(n, 8) = mE)a(0)G(X),

whereg is the Poisson kernel, i.e., harmonic functioirwhich is equal to zero o\ O
and with the singularitp[z(n? + s?)]* at the poin®©. Itis clear thaiz < 0in Q.

Theorem 5.1. The following asymptotic formula holds for the first variatiof the energy
shape functional with respect to the singular domain pédration

(4.89) T (" Q(h) = 7(V°; Q) + Pm(E)9,V°(0)3,V(0) + O(h®)
where V is given by a solution to the following boundary vadtablem
(4.90) ANV =T (V(X),X), xeQ, V(X)=0, xeT,

and T’ denotes the derivative of integrand in (4.83) with respedhe first variable.

Proof. In the same way as in secti§, see also the comments to the Theorem 4.2, the
estimate is obtained

flu” = VP HY Q)] < ek,

Hence

(4.91) (T(u"; x) — T(V"; x))dx < ch®.
J .

Beside that

(4.92)

f TV x)dx— f (TOO %)+ T/ %) ((Ihw'(€) + X(x)h2w2(5)+hZXh(x)vz(X)))dX{
Q(h) Q(h)
< ol [ (92mHE) + (@) + FEXu (P 00)

ah)

d
< chz(f(l ; %)zrdr + hz)dxs ch(L + |Inhi).
0

Observing the relation

(4.93) fT(vO(x),x)dx=fT(vO(x);x)dx+ f (T(Y(0); 0) + O(r)) dx

ah) Q \Q(h)

=fT(v°(x),x)dx+ o(h®),

Q

d
h? fT’(vO; Xy (XIWA(£)dx < ch? f(1+ %)Zrdr <ch*(d+|Inh)),
(h) 0
we process the integral
(4.94) I(h) = h f T/ (V(3), ) () YWH(E) + hrn()IVA(x)) dx

a(h

SinceV? is a bounded function and thefifirencew!(¢) = w(¢) - t1(¢) (see formulae
(4.10), (4.11) and (4.87)) decays at the r@(p~2), the same argument as already used in
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(4.93), with the exchanges and limit passagés- t*, yn — 1 andQ(h) — Q leads to the
precisionO(h®) in (4.94). Therefore, in view of representation (4.88) wlfihat

(4.95) 1(h) = h’m(Z)d,v°(0) f T'(V; )G(x)dx + O(h®).
Q
By the definition of the Poisson kernel, which integratesehaation in problem (4.90)

with a given right-hand side, determines the normal dexigaif the solution at the point
O. Thus, the relations (4.91)-(4.95) lead to (4.89)

Corollary 5.1. For the potential energy

(4.96) (u"; Q(h)) = % f IV, u"(x)2dx — f f()u(x)dx
Q(h) Q(h)
the Green formula and Theorem 5.1 give as a result the asyimpiEcomposition
2
(4.97) 1" Q(h) = —% f f()u"(x)dx = I(V’; Q) — %m(s)wnvo(on2 +0(h®)

ah)
since for TU"(x), X) = f(X)u"(x) problems (4.90) and (4.85) coincide.

Let us note that, by the inclusidn(h) c Q, the functional (4.96) is minimised on the
smaller clas$(Q(h)) compared to the clags*(Q) for the functional

1
V%5 Q) == [ V»P(Pdx— | FVP(x)dx

which means that we have the inequalitgu”; Q(h)) > II(\’; Q). The latter inequality is
in accordance with the inequalitg(Z) < 0 given in Lemma 4.1a
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