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Abstract

• In Section 1, we present a number of classical results concerning the Generalized
Gamma Convolution ( : GGC) variables, their Wiener-Gamma representations, and
relation with the Dirichlet processes.

• To a GGC variable, one may associate a unique Thorin measure. Let G a positive
r.v. and Γt(G)

(
resp. Γt(1/G)

)
the Generalized Gamma Convolution with Thorin

measure t-times the law of G (resp. the law of 1/G). In Section 2, we compare the
laws of Γt(G) and Γt(1/G).

• In Section 3, we present some old and some new examples of GGC variables, among
which the lengths of excursions of Bessel processes straddling an independent expo-
nential time.
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1 Introduction.

Most results presented in this Introduction are classical. They are discussed here in detail
in the hope that it may facilitate further reading of this survey for researchers in probability
with different backgrounds.

A writing convention.
1. Each time we write an equality in law between r.v.’s and that on one or the other side

of this equality, several r.v.’s occur, we always assume that these r.v.’s are independent,
without mentioning it systematically.

2. It will be convenient, in some instances, to speak of a r.v. instead of its law and
vice versa. We hope that no confusion will ensue.

1.1 The Gamma process.
All through this paper, the reference process is the standard Gamma process (γt, t ≥ 0),

which is a subordinator without drift, and with Lévy measure
dx

x
e−x (x > 0). Thus, its

Lévy-Khintchine representation writes
(
see [Ber1]

)
:

E[e−λγt ] = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
e−x
}

(λ, t ≥ 0) (1.1)

= exp
{
− t log(1 + λ)

}
=

1

(1 + λ)t
(1.2)

where formula (1.2) is obtained from (1.1) and from the elementary Frullani formula
(
see

[Leb], p. 6
)

:∫ ∞

0

(1− e−λx)
dx

x

∫ ∞

0

e−xzν(dz) =

∫ ∞

0

log
(
1 +

λ

z

)
ν(dz) (1.3)

where, in general, ν denotes a positive measure on R+, which is σ-finite. Here, ν(dz) =
δ1(dz) is the Dirac measure at 1, but formula (1.3) shall be useful in the sequel.
For each t > 0 fixed, γt follows a gamma law with parameter t :

P (γt ∈ da) =
e−a

Γ(t)
at−1 da (a ≥ 0) (1.4)

This process (γt, t ≥ 0) enjoys a large number of remarkable properties which make it a
”worthy companion” of Brownian motion. In particular, Emery and Yor [EY] establish a
parallel between Brownian motion and its bridges on one hand, and the Gamma process
and its bridges on the other hand. See also Vershik, Yor and Tsilevich

(
[VYT]

)
and Yor

[Y] for a survey of many properties of the gamma process.
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1.2 Wiener-Gamma integrals and GGC variables.

1.2.a Many times throughout this work, we shall use properties of the integrals :

Γ̃(h) :=

∫ ∞

0

h(s) dγs (1.5)

where h : R+ −→ R+ is a Borel function such that :∫ ∞

0

log
(
1 + h(u)

)
du <∞ (1.6)

Under this hypothesis (1.6), Γ̃(h) is finite a.s. (see Proposition 1.1 below). We call

Γ̃(h) a Wiener-Gamma integral, in analogy with the Wiener integrals

∫ ∞

0

f(u) dBu, f ∈

L2(R+, du) which constitute the Gaussian space generated by Brownian motion (Bu, u ≥ 0).

1.2.b We say,
(
following [B1], p. 29

)
, that a positive r.v. Γ is a generalized gamma

convolution (GGC) - without translation term - if there exists a positive Radon measure
µ on ]0,∞[ such that :

E[e−λΓ] = exp
{
−
∫ ∞

0

(1− e−λx)
dx

x

∫ ∞

0

e−xzµ(dz)
}

(1.7)

= exp
{
−
∫ ∞

0

log
(
1 +

λ

z

)
µ(dz)

}
(1.8)

with :

∫
]0,1]

|log x| µ(dx) <∞ and

∫
[1,∞[

µ(dx)

x
<∞ (1.9)

The measure µ is called Thorin’s measure associated with Γ. Thus, from the Lévy-
Khintchine formula, a GGC r.v. is infinitely divisible. In fact, since its Lévy density

lΓ(x) =
1

x

∫ ∞

0

e−xzµ(dz) satisfies : x −→ x l(x) is decreasing, then Γ is a self decompos-

able r.v.
(
see, e.g. [Luk]

)
. Such a self-decomposable r.v. Γ, assumed to be non degenerate,

admits a density fΓ such that fΓ(x) > 0 for every x > 0
(
see [Sat, p.404]

)
. The study of

GGC variables was initiated by O. Thorin in a series of papers
(
see for instance [Thor]

)
.

The following proposition is classical. The reader may refer to Lijoi and Regazzini [LR].

1.2.c GGC variables and Wiener-Gamma representations.

Proposition 1.1 The class of positive GGC variables coincides with the class of Wiener-
Gamma integrals. More precisely :

1. If Γ̃(h) =

∫ ∞

0

h(u) dγu, then :

E(e−λeΓ(h)) = exp
{
−
∫ ∞

0

log
(
1 +

λ

x

)
µh(dx)

}
(1.10)

where µh denotes the image of Lebesgue’s measure on R+ under the application :
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s −→ 1

h(s)
· In other terms :

∫ ∞

0

e−
x

h(s)ds =

∫ ∞

0

e−xzµh(dz) (x > 0) (1.11)

We note that, in (1.11), h may vanish on some measurable set.

2. Let Γ denote a GGC r.v. with Thorin measure µ. Let Fµ(x) :=

∫
]0,x]

µ(dy) (x ≥ 0)

and denote by F−1
µ its right continuous inverse, in the sense of the composition of functions.

Then :

Γ
(law)
= Γ̃(h), with h(u) =

1

F−1
µ (u)

(1.12)

Proof of Proposition 1.1 Let Γ̃(h) :=

∫ ∞

0

h(u) dγu. It is easily obtained, by approxi-

mation of Γ̃h by Riemann sums, using also the fact that the Lévy measure of the process

(γt, t ≥ 0) equals
dx

x
e−x, that :

E(e−λeΓ(h)) = exp
{
−
∫ ∞

0

du

∫ ∞

0

(1− e−λxh(u))
dx

x
e−x
}

= exp
{
−
∫ ∞

0

(1− e−λy)
dy

y

∫ ∞

0

e−
y

h(u)du
}

(1.13)

after making the change of variable xh(u) = y. We observe, from (1.11) and (1.12), the
equivalence of the conditions :∫ ∞

0

log
(
1 + h(u)

)
du <∞⇔

∫
log
(
1 +

1

x

)
µh(dx) <∞

⇔
∫

]0,1]

|log x|µh(dx) <∞ and

∫
[1,∞[

µh(dx)

x
<∞

Remark 1.2

1. Formula (1.13) may be obtained in a slightly different manner : the process (γs−γs− :=
es, s ≥ 0) of jumps of the subordinator (γt, t ≥ 0) is a Poisson point process whose
intensity measure n equals the Lévy measure of (γt, t ≥ 0)

(
see [Ber1]

)
:

n(dx) =
1

x
e−xdx (1.14)

Thus, from the exponential formula
(
[RY], p. 476

)
:

E
[
exp − λ

∑
0<s≤t

f(s, es)
]

= exp
{
−
∫ t

0

ds

∫ ∞

0

(1− e−λf(s,u))n(du)
}
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one gets :

E[exp−λ
∫ ∞

0

h(s)dγs] = E(exp−λ Σ
s>0

h(s)(∆γs))

= exp

{
−
∫ ∞

0

ds

∫ ∞

0

(1− e−λh(s)u)
e−u

u
du

}
,

which agrees with the expression in (1.13).

2. Let h, k : R+ −→ R+ two Borel functions which satisfy (1.6) and assume that

Γ̃(h)
(law)
= Γ̃(k). Relation (1.13) and the uniqueness of the Lévy measure in the Lévy-

Khintchine representation imply : the images by h and k of Lebesgue’s measure on R+ are
identical. Thus, choosing for k the increasing rearrangement h∗, (resp. : the decreasing
rearrangement h∗) of h, we obtain that there exists essentially a unique increasing function
h∗, (resp. a unique decreasing function h∗) such that :

Γ̃(h)
(law)
= Γ̃(h∗) = Γ̃(h∗) (1.15)

From Proposition 1.1, Γ̃(h) is a GGC r.v. and we shall denote by µh the Thorin measure

associated with Γ̃(h).

1.3 m-Wiener-Gamma integrals, (m,G) GGC r.v.
In this work, we shall often consider a GGC r.v. whose associated Thorin measure has
finite total mass. Thus, we shall now particularize Proposition 1.1 in this case.

1.3.a Let m > 0 and h : [0,m] → R+ a Borel function such that :∫ m

0

log
(
1 + h(u)

)
du <∞ (1.16)

We call m-Wiener integral of h the r.v. :

Γ̃m(h) :=

∫ m

0

h(u)dγu (1.17)

Since (γu, 0 ≤ u ≤ m) and (γm− γ(m−u)−, 0 ≤ u ≤ m) have the same law, we deduce from
(1.17), after making the change of variable m− u = v :

Γ̃m(h)
(law)
=

∫ m

0

h(u)dγu
(law)
=

∫ m

0

h(m− u)dγu (1.18)

We note, in relation with (1.15) above, that if h is increasing, resp. decreasing, then
u→ h(m− u) is decreasing, resp. increasing.

1.3.b Let m > 0 and G be a positive r.v. such that :

E
(
log+(1/G)

)
<∞ (1.19)
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We say that a positive r.v. Γ is (m,G) GGC if :

E(e−λΓ) = exp
{
−m

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG)

}
(1.20)

Of course, from (1.7), a (m,G) GGC r.v. is a GGC r.v. whose Thorin measure µ equals :

µ(dx) = mPG(dx) (1.21)

where PG denotes the law of G and we have :

µ
(
]0,∞[

)
= m (1.22)

Under (1.21), it is clear that :∫
]0,1]

|log x|µ(dx) <∞ and

∫
[1,∞[

µ(dx)

x
<∞

⇔ E
(
log+(1/G)

)
<∞ (1.23)

We denote Γm(G) the (law of the) r.v. Γ defined by (1.20). Hence :

E[e−λΓm(G)] = exp
{
−m

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG)

}
(1.24)

= exp
{
−mE

(
log
(
1 +

λ

G

))}
(1.25)

1.3.c G or 1/G ? How to choose ?
We have used the notation Γm(G) due to the relation (1.24). Of course, the relation (1.25)
invites, on the contrary, to adopt the notation Γm(1/G). However, we shall not adopt this
latter notation as the notation Γm(G) is used by L. Bondesson [B1] who has contributed
in an essential manner to the study of the GGC variables.

1.3.d Proposition 1.1, when the Thorin measure has a finite total mass m, admits the
following translation.

Proposition 1.3 A r.v. is a (m,G) GGC if and only if it is a m-Wiener integral. More
precisely :

1) If Γm(G)
(law)
= Γ̃m(h), then

h(u) =
1

F−1
G (u/m)

(
u ∈ [0,m]

)
(1.26)

where F−1
G denotes the right continuous inverse, in the sense of composition of functions,

of FG, the cumulative distribution function of G.

2) If Γm(h)
(law)
= Γm(G), then

G
(law)
=

1

h(Um)
(1.27)
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where Um denotes a uniform r.v. on [0,m].

1.3.e Some classical results
We gather here some results which are due to L. Bondesson [B1] and which we shall use in
the sequel. Let m > 0 and G satisfy (1.19). Then, denoting fΓm(G) the density of Γm(G) :

• fΓm(G)(x) =
xm−1

Γ(m)
g(x) (x > 0) (1.28)

where g is a completely monotone function
(
[B1], p. 49

)
. Moreover

(
[B1], p. 50

)
g admits

a limit on the right of 0 and :

g(0+) = exp
{
mE (logG)

}
(1.29)

We note that, since by hypothesis E
(
log+(1/G)

)
< ∞, g(0+) is finite if and only if

E
(
log+(G)

)
<∞. In Section 2 of this work (see Theorem 2.1) we give an explicit form of

g when E
(
|logG|

)
<∞.

• m may be determined from the knowledge of fΓm(G) :

m = sup
{
α ≥ 0 ; lim

x↓0+

fΓm(G) (x)

xα−1
= 0
}

(1.30)

(
see [B1], p. 51).

1.4 m-Wiener Gamma integrals, m Dirichlet means, Gamma (m) mixtures.

1.4.a The preceding discussion leads us to introduce, for every m > 0, the Dirichlet
process with parameter m, denoted : (D

(m)
u , 0 ≤ u ≤ m) and defined as :

(D(m)
u , 0 ≤ u ≤ m) =

( γu

γm

, 0 ≤ u ≤ m
)

(1.31)

The Dirichlet process may be traced back to at least D. Freedman
(
[Freed]

)
and was pop-

ularized in Bayesian nonparametric statistics by T. Ferguson
(
[Ferg]

)
.

It is well known, and it is an easy consequence of the properties of the ”beta-gamma
algebra” that this process (D

(m)
u , 0 ≤ u ≤ m) is independent from the r.v. γm, hence from

(γv, v ≥ m). This allows to write, for h which satisfies (1.16) :∫ m

0

h(u) dγu
(law)
= γm ·

∫ m

0

h(u) du (D(m)
u ) (1.32)

Thus, from Proposition 1.3, we may write for G which satisfies (1.19) :

Γm(G)
(law)
= γm ·Dm(G) (1.33)
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with

Dm(G) :=

∫ m

0

1

F−1
G (u/m)

du(D
(m)
u ) (1.34)

It follows that for every (m,G) GGC r.v., the r.v. Γm(G) is a Gamma (m) mixture, i.e. it
may be written as :

Γm(G)
(law)
= γm · Z (1.35)

where Z is a positive r.v.

1.4.b The relation (1.35) determines the law of Z. Indeed, let Z and Z ′ two positive
r.v. such that :

γm · Z
(law)
= γm Z

′

Then, for every s ∈ R :

E[γis
m]E[Zis] = E[γis

m]E[Z ′is]

Hence :

E(Zis) = E(Z ′is) and Z
(law)
= Z ′

1.4.c Remark 1.4
(We shall not use the present Remark in the sequel of this paper). We come back to the

notation of point 1 of Remark 1.2 and we denote : (J
(m)
1 ≥ J

(m)
2 ≥ · · · ) the sequel of the

lengths of jumps of the process (γu, u ≤ m) ranked in decreasing order. It is not difficult
to see that since the intensity measure of the Poisson point process

(
(s, es), s ≥ 0

)
is

ds e−x

x
dx, then the jump times (U

(m)
1 , U

(m)
2 , · · · ) constitute a sequence of i.i.d r.v.’s with

uniform law on [0,m] which is independent from the sequence (J
(m)
k , k ≥ 1). Thus :∫ m

0

h(u)dγu
(law)
=

∫ m

0

1

F−1
G (u/m)

dγu

(
from (1.26)

)
=

∑
k≥1

1

F−1
G

(U
(m)
k

m

) J (m)
k =

∑
k≥1

J
(m)
k

1

Gk

(1.36)

where
( 1

Gk

, k ≥ 1
)

is the sequence of i.i.d r.v.’s with common law 1/G and is independent

(as a sequence) from the r.v.’s (J
(m)
k , k ≥ 1). Indeed :

P

[
1

F−1
G

(U
(m)
k

m

) ≤ x

]
= P

[
F−1

G

(
U

(m)
k

m

)
≥ 1

x

]

= P

[
U

(m)
k

m
≥ FG

(1

x

)]
= 1− FG

(1

x

)
= P

( 1

G
≤ x

)
8



since
U

(m)
k

m
is uniform on [0, 1]. We deduce from (1.36) that :

∫ m

0

h(u)du(D
(m)
u ) =

1

γm

·
∫ m

0

h(u) dγu =
∑
k≥1

J
(m)
k

γm

· 1

Gk

(1.37)

We note that :
∑
k≥1

J
(m)
k

γm

= 1.

We then define the random Dirichlet measure P
(1/G)
0,m (dx) by the formula :

P
(1/G)
0,m (dx) :=

∑
k≥1

J
(m)
k

γm

δ1/Gk
(dx)

and we obtain, from (1.34) and (1.37) :

Dm(G)
(law)
=

∫ ∞

0

xP
(1/G)
0,m (dx) (1.38)

This relation (1.38) justifies the denomination, for Dm(G), of a Dirichlet means.
The study of the Dirichlet means can be traced back to an early work of Cifarelli and
Regazzini

(
[CR1]

)
which culminates into the more recognized

(
[CR2]

)
. Additional early

works on this topic include
(
[HHL],[Yam],[FT], [DS]

)
1.4.d Multiplication by a beta variable.

In this section we discuss what happens when Dm(G) is multiplied by certain independent
beta random variables. This idea, and restatements of the results (1.4.d i-iii) below, first
appear in James

(
see [J], Theorem 3.1

)
.

1.4.d i) We denote by D(m) the set of the laws of r.v.’s of the form∫ m

0

h(u)du(D
(m)
u ) := Dm(h), with

∫ m

0
log
(
1 + h(u)

)
du <∞.

If Dm(h) ∈ D(m) and if βm,m′−m, with m′ > m, is a beta r.v. with parameters (m,m′−m)
then :

βm,m′−m ·Dm(h) ∈ D(m′) (1.39)

Indeed,
γm

γm′
is independent from γm′ and follows a beta law, with parameters (m,m′−m).

Hence :

βm,m′−m ·Dm(h)
(law)
=

γm

γm′
·
∫ m

0

h(u) du(D
(m)
u )

(law)
=

γm

γm′

∫ m

0

h(u)
dγu

γm

(law)
=

1

γm′

∫ m′

0

h(u)1[0,m](u)du(D
(m′)
u ) ∈ D(m′)

9



1.4.d ii) In the same spirit as for the preceding point, we note that, if G is a positive
r.v. such that E(log+G) <∞ and if m′ > m, then :

Γm

( 1

G

)
(law)
= Γm′

( 1

G · Yp

)
(1.40)

where, on the RHS of (1.40), G and Yp are independent and Yp is a Bernoulli r.v. with

parameter p =
m

m′ :

P (Yp = 1) = p = 1− P (Yp = 0) (1.41)

Indeed, we deduce from (1.24) :

E(e−λΓm(1/G)) = exp

{
−m

∫ ∞

0

(1− e−λx)
dx

x
E(e−x/G)

}
= exp

{
−m′

∫ ∞

0

(1− e−λx)
dx

x

m

m′ E(e−x/G)

}
= exp

{
−m′

∫ ∞

0

(1− e−λx)
dx

x
E(e

−( x
GYp

)
)

}
= E(e

−λΓm( 1
GYp

)
)

1.4.d iii) We now write the relation (1.40) in a slightly different manner with the

introduction of the r.v.’s Dm(1/G) and Dm

( 1

GYp

)
. We have, from (1.40) and (1.35) for

m′ > m :

Γm(1/G)
(law)
= γmDm(1/G)

(law)
= Γm′

( 1

GYp

)
(law)
= γm′ ·Dm′

( 1

GYp

)
Hence :

γm

γm′
γm′Dm(1/G)

(law)
= γm′Dm′

( 1

GYp

)
so that, from point 1.4.b :

γm

γm′
·Dm(1/G)

(law)
= Dm′(

1

GYp

)
i.e. :

βm,m′−m ·Dm(1/G)
(law)
= Dm′

( 1

GYp

) (
p =

m

m′

)
(1.42)

In particular, for m < 1 and m′ = 1 :

βm,1−m ·Dm(1/G)
(law)
= D1

( 1

GYm

)
(1.43)
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1.4.d iv) Some elements of D(m).
Let T denote a positive r.v. which belongs to the Bondesson class B

(
see [B1], p. 73, Th.

5.2.2
)

i.e. whose density fT writes :

fT (x) = C xβ−1 h1(x)h2(1/x) (β ∈ R, x > 0)

with

hj(x) = exp
{
− bj x+

∫ ∞

0

log
(1 + y

x+ y

)
νj(dy)

}
j = 1, 2

and ∫ ∞

0

νj(dy)

1 + y
<∞

Then, from Bondesson
(
[B1], Th. 5.2.2, p. 79

)
, we know that :

Γm := γm · T (1.44)

is GGC (for every m > 0) with some, possibly unknown, associated Thorin measure we

denote as µm. Assuming furthermore that E
(
T−m

)
<∞, we get, from (1.30) :

µm

(
]0,∞[

)
= sup

{
α ≥ 0 ; lim

x↘0+

fΓm(x)

xα−1
= 0
}

(1.45)

But, an elementary computation, starting from (1.44), shows that :

fΓm(x) =
1

Γ(m)
xm−1E

(
e−

x
T

1

Tm

)
(1.46)

Thus, we have :

µm

(
]0,∞[

)
= m

Hence, there exists, from Proposition 1.3, a positive r.v. Gm such that E
(
log+

( 1

Gm

))
<∞

and also such that, from (1.33) :

Γm
(law)
= γm · T = Γm(Gm) = γm ·Dm(Gm) (1.47)

Thus, from point 1.4.b

T
(law)
= Dm(Gm) ∈ D(m) (1.48)

We now summarize what we have just obtained :
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Proposition 1.5
Let T denote a positive r.v. which belongs to B, such that :

E
(
T−m

)
<∞

Then :

1) T ∈ D(m)

2) For every m′ > m, βm,m′−m · T ∈ D(m′)
(
from (1.43)

)
In particular, Proposition 1.5 may be applied in the following cases :

• If T is a generalized inverse Gaussian r.v., i.e. its density is given by :

fT (x) = C xβ−1 exp
{
− 1

2

(
c1x+

c2
x

)}
· 1[0,∞[(x)

(β ∈ R, c1, c2 > 0) then, for every m > 0, T ∈ D(m) (although T is a GGC variable
with infinite total mass for its Thorin measure

(
see [B1], p. 59

)
).

• If T is a Gamma r.v. γθ with parameter θ then for every m > 0, γθ ∈ D(m). Indeed

γθ ∈ B and for every m < θ : E
( 1

γm
θ

)
< ∞. On the other hand, assuming still

m < θ, we have :

βm,θ−m · γθ
(law)
= γm ∈ D(θ) from (1.40)

• If T is a positive stable r.v. with index α :

E(e−λT ) = exp{−C λα}
(
λ,C > 0, α ∈]0, 1[

)
then, for α ≤ 1

2
, T ∈ B

(
see [B1], p. 85-88

)
and hence T ∈ D(m) for every m > 0

since E
( 1

Tm

)
<∞.

Remark 1.5 Epifani, Guglielmi and Melilli
(
[EGM1], section 4; see also [EGM2]

)
, posed

the natural question of which kind of probability measures are the laws of Dirichlet means.
They were able to find some examples in cases where those particular random variables pos-
sessed all finite moments. One sees that Proposition 1.5, in a rather simple way, identifies
a large number of possible distributions.

1.4.e Another representation of Γm(G).
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Let m > 0 and let K be a positive r.v. We shall say that (Yt, t ≥ 0) is a (m,K) R+ valued
compound Poisson process if :

Yt :=
Nt∑
i=1

Ki

where (K1, K2, · · · ) is a sequence of i.i.d. variables, distributed as K, and with (Nt, t ≥ 0)
a Poisson process with parameter m, independent of the sequence (Ki, i = 1, 2 · · · ). In
particular, Nt is a Poisson r.v. with parameter mt.

Proposition 1.6.

Let Γm(G) a (m,G) GGC r.v.
(
with E

(
log+

(
1
G

))
<∞ and m > 0

)
. Define K by :

K
(law)
=

e

G
(e, a standard exponential r.v.)

Then

1) Γm(G)
(law)
=

∫ ∞

0

e−tdYt

where (Yt, t ≥ 0) is a (m,K) compound Poisson process.

2) Γm(G) satisfies the affine equation :

Γm(G)
(law)
= U1/m

[
Γm(G) +K

]
(
with U uniformly distributed on [0, 1]

)
.

Proof of Proposition 1.6.
i) We first prove point 1. We consider (Yt, t ≥ 0) a (m,K) compound Poisson process.

Then, approximating

∫ ∞

0

e−tdYt by the Riemann sums

∑
(Yti+1

− Yti)e
−ti ,

we obtain :

E

(
exp
{
− λ

∫ ∞

0

e−tdYt

})
= exp

{
−
∫ ∞

0

(1− e−λv)µ
(
[v,∞]

)dv
v

}
where µ is the Lévy measure of the subordinator (Yt, t ≥ 0). Since this subordinator is a
(m,K) compound Poisson process, we have:

µ
(
[v,∞[

)
= mP (K ≥ v) = mP

( e

G
≥ v
)

= mP (e ≥ v G) = mE(e−vG).

13



Hence :

E

(
exp
{
− λ

∫ ∞

0

e−tdYt

})
= exp

{
−m

∫ ∞

0

(1− e−λv)
dv

v
E(e−vG)

}
= E(e−λΓm(G))

ii) We now prove point 2. We have :∫ ∞

0

e−tdYt =

∫ T1

0

e−tdYt +

∫ ∞

T1

e−tdYt

(where T1 is the first jump time of (Nt, t ≥ 0))

= e−T1K1 + e−T1

∫ ∞

0

e−td(YT1+t)

and we observe that :

e−T1
(law)
= U1/m,

∫ ∞

0

e−td(YT1+t)
(law)
=

∫ ∞

0

e−tdYt,

and

∫ ∞

0

e−td(YT1+t) is independent of T1.

1.5 The subordinators
(
Γt(G), t ≥ 0

)
1.5.a Let Γ denote a GGC r.v. From Lévy-Khintchine formula, there exists a (unique)

subordinator (Γt, t ≥ 0) such that :

Γ1
(law)
= Γ (1.49)

hence we have :

E(e−λΓt) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x

∫ ∞

0

e−xzµ (dx)
}

(1.50)

where µ denotes the Thorin measure associated with Γ.

1.5.b Let G denote a positive r.v. which satisfies (1.19). Then, there exists a subordi-
nator

(
Γt(G), t ≥ 0

)
which is characterized by :

E(e−λΓt(G)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG)

}
(1.51)

= exp
{
− t E

(
log
(
1 +

λ

G

))}
(1.52)

14



In particular, for every t > 0, Γt(G) is a (t, G) GGC r.v. Thus, there exists, following
(1.33), a family of r.v.’s Dt(G), t ≥ 0, whose laws are characterized by :

Γt(G) = γt ·Dt(G) (1.53)

and, for every t > 0, from (1.34) and Proposition 1.3 :

Γt(G)
(law)
=

∫ t

0

1

F−1
G

(
u
t

) dγu
(law)
=

∫ t

0

1

F−1
G (1− u

t
)
dγu (1.54)

Dt(G)
(law)
=

∫ t

0

1

F−1
G

(
u
t

) du(D
(t)
u )

(law)
=

∫ t

0

1

F−1
G

(
u
t

) du(D
(t)
u ) (1.55)

We note that the relations (1.54) and (1.55) are only true for fixed t, for any t > 0, but do
not hold as equalities in law between processes. On the other hand, since :

E(e−λγt) =
1

(1 + λ)t
, we deduce from (1.53) that :

E(e−λΓt(G)) = E

(
1(

1 + λDt(G)
)t
)

(1.56)

1.5.c Some elementary properties of
(
Γt(G), t ≥ 0) and

(
Dt(G), t ≥ 0

)
Let G denote a positive r.v. which satisfies (1.19).
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Proposition 1.7
1) The family of laws of the r.v.’s Dt(G), t ≥ 0 solves the equation : for every t, s ≥ 0 :

γt+s ·Xt+s
(law)
= γt ·Xt + γsXs (1.57)

2) For every s, t ≥ 0 :

Dt+s(G)
(law)
= βt,sDt(G) + (1− βt,s)Ds(G) (1.58)

3) We assume furthermore that E
( 1

G

)
<∞

(
which implies E

(
log+

( 1

G

)
<∞

)
. Then :

3 i) for every t > 0, E
(
Γt(G)

)
= t E(1/G) and E

(
Dt(G)

)
= E(1/G) (1.59)

3 ii)
1

t
Γt(G)

a.s.−→
t→0

E(1/G) and Dt(G)
(law)−→
t→∞

E(1/G) (1.60)

3 iii)
[
Γt(G)

]t (law)−→
t→0

U and
[
Dt(G)

]t (law)−→
t→0

1 (1.61)

where U is uniform on [0, 1].
Point 2 of this Proposition 1.7 is due to Hjort and Ongaro

(
see [HO]

)
.

Proof of Proposition 1.7
Point 1 :

γt+s ·Dt+s(G)
(law)
= γtDt(G) + γsDs(G) (1.62)

follows from :

Γt+s(G)
(law)
= Γt(G) + Γs(G)

since
(
Γt(G), t ≥ 0

)
is a subordinator and since, from the definition of Da(G) :

Γa(G)
(law)
= γa ·Da(G).

We now show (1.58). From the beta-gamma algebra, we have :

(γt, γs)
(law)
=
(
βt,s γt+s, (1− βt,s)γt+s

)
(1.63)

hence, plugging (1.63) in (1.62), we obtain :

γt+s ·Dt+s(G)
(law)
= βt,s γt+sDt(G) + (1− βt,s)γt+sDs(G)
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which, using point 1.4.b, implies relation (1.58). We now prove 3 i). We have :

E
[
Γt(G)

]
= − ∂

∂λ
E(e−λΓt)

∣∣
λ=0

= − ∂

∂λ
exp
{
− t E

(
log
(
1 +

λ

G

))}∣∣
λ=0

= t E(1/G)

and we deduce from (1.53), that :

E
[
Γt(G)

]
= E

[
γt ·Dt(G)

]
= t E

(
Dt(G)

)
= t E(1/G)

We now prove 3 ii). The a.s. convergence (hence, the convergence in law) of
1

t
Γt(G) as

t→∞ towards E(1/G) follows from the law of large numbers.

We prove that Dt(G)
(law)−→
t→∞

E(1/G). We first observe that the family
(
Dt(G), t ≥ 0) is tight.

Indeed :

sup
t>0

P
(
Dt(G) > a

)
≤ sup

t>0

E
(
Dt(G)

)
a

≤ E(1/G)

a
(1.64)

We write now :

Γt(G)

t

(law)
= Dt(G)

(γt

t
− 1
)

+Dt(G)

and we shall prove that Dt(G)
∣∣∣γt

t
− 1
∣∣∣ P−→

t→∞
0, which implies by the preceding equality that

Dt(G)
P−→

t→∞
E(1/G). We have :

E

[
Dt(G)|γt

t
− 1|

1 +Dt(G)|γt

t
− 1|

]
≤ E

[
C|γt

t
− 1|

1 + C|γt

t
− 1|

]
+P
(
Dt(G) > C

)
for all C > 0. Hence, from (1.64):

lim
t→∞

E

[
Dt(G)|γt

t
− 1|

1 +Dt(G)|γt

t
− 1|

]
≤ lim

t→∞
E

[
C|γt

t
− 1|

1 + C|γt

t
− 1|

]
+
E(1/G)

C

≤ E(1/G)

C

since |γt

t
− 1| −→

t→∞
0 a.s. C being arbitrary, the point 3 ii) is proven.

We now prove point 3 iii).

If we knew that
(
Dt(G)

)t (law)−→
t→0

1, then, combining this result with the classical one :

(γt)
t (law)−→

t→0
U , we would deduce :

(
Γt(G)

)t (law)
= (γt)

t ·
(
Dt(G)

)t (law)−→
t→0

U

17



In fact, we shall proceed in the other direction. We shall show further (see point 7 of

Remark 2.2) that
(
Γt(G)

) (law)−→
t→0

U . The relation
(
Γt(G)

)t
= (γt)

t
(
Dt(G)

)t
and :

(γt)
t (law)−→

t→0
U,
(
Γt(G)

)t (law)−→
t→0

U then imply easily that :(
Dt(G)

)t (law)−→
t→0

1.

Remark 1.7 Lijoi and Reggazini [LR] have shown that the support of the law of Dt(G)
is the closure of the convex hull of the support of the law of 1/G. In particular :

• If G ≤ a a.s., then Dt(G) ≥ 1

a
a.s. (1.65)

• If G ≥ a a.s., then Dt(G) ≤ 1

a
a.s. (1.66)

In section 3 of this survey, we shall verify this assertion with the help of numerous examples.

1.6 Some examples of GGC subordinators
Let Γ denote a GGC variable with associated Thorin measure µ, and let (Γt, t ≥ 0) denote

the subordinator such that Γ1
(law)
= Γ. We have :

E(e−λΓt) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x

∫ ∞

0

e−xzµ(dz)
}

(1.67)

Such a subordinator is called a GGC subordinator.
Here are now some examples of such subordinators. They are lifted from a paper by H.
Matsumoto, L. Nguyen and M. Yor [MNY] on one hand, and from the study of hyperbolic
subordinators made in Pitman and Yor [PY] on the other hand. The reader may refer to
these papers for further information. In the study of these examples, we shall denote sub-
ordinators with curly letters, especially to avoid some possible confusion with the modified
Bessel functions, which are traditionally written with ordinary capital letters.

1.6.a The hyperbolic subordinators
(
see [PY] for a probabilistic description of these

subordinators.
)

i) The subordinator (Ct, t ≥ 0) is characterized by :

E(e−λCt) = exp
{
− t log cosh

√
2λ
}

=
( 1

cosh
√

2λ

)t

(λ, t ≥ 0) (1.68)

Its Lévy density lC equals :

lC(x) =
1

x

∞∑
n=1

exp
(
− π2

8
(2n− 1)2x

)
(x ≥ 0) (1.69)
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and its associated Thorin measure, (i.e. : the Thorin measure of C1) equals :

µC(dx) =
∞∑

n=1

δπ2

8
(2n−1)2

(dx) (1.70)

ii) The subordinator (St, t ≥ 0) is characterized by :

E(e−λSt) =
( √

2λ

sinh
√

2λ

)t

(λ, t ≥ 0) (1.71)

Its Lévy density equals :

lS(x) =
1

x

∞∑
n=1

exp
(
− π2

2
n2x
)

(x ≥ 0) (1.72)

Hence, its Thorin measure equals :

µS(dx) =
∞∑

n=1

δπ2n2

2

(dx) (x ≥ 0) (1.73)

It has infinite total mass.

We note that the subordinator (Tt, t ≥ 0) which is characterized by :

E(e−λTt) =
( 1

cosh
√

2λ

)t

·
(sinh

√
2λ√

2λ

)t

=
(tanh

√
2λ√

2λ

)t

(1.74)

satisfies :

(Ct, t ≥ 0)
(law)
= (St + Tt, t ≥ 0) (1.75)

and that its Lévy density equals :

lT (x) = lC(x)− lS(x)

However, this subordinator (Tt t ≥ 0) is not GGC, as its would be ‘Thorin measure’
µT is a signed measure :

µT = µC − µS .
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1.6.b The subordinators (J (0)
t , t ≥ 0) and (K(0)

t , t ≥ 0)
We denote by Iν and Kν the modified Bessel functions with index ν

(
see [Leb], p. 108

)
.

i) The subordinator (J (0)
t , t ≥ 0) is characterized by :

E(e−λJ (0)
t ) =

(
1+λ+

√
(1 + λ)2 − 1

)−t
= exp

{
− t
∫ ∞

0

(1− e−λx)
dx

x
I0(x)e

−x
}

(1.76)

Its Lévy density lJ (0) equals :

lJ (0)(x) = I0(x)
e−x

x
(x ≥ 0) (1.77)

and its Thorin measure µJ (0) , with total mass equal to 1, equals :

µJ (0)(dx) =
1

π

dx√
x(2− x)

1[0,2] (x) (1.78)

This formula was obtained by Bondesson ([B3], Ex. 5.2). In Section 3, Theorem 3.1, we

shall meet again this subordinator (J (0)
t , t ≥ 0).

ii) The subordinator (K(0)
t , t ≥ 0) is characterized by :

E(e−λK(0)
t ) = exp

{
− t

2

(
arg cosh (1 + λ)

)2}
= exp

{
− t

∫ ∞

0

(1− e−λx)
dx

x
K0(x)e

−x
}

(1.79)

Hence, its Lévy density equals :

lK(0)(x) = K0(x)
e−x

x
x ≥ 0 (1.80)

and its Thorin measure µK(0) equals :

µK(0)(dx) =
dx√

x(x− 2)
1[2,∞[(x)dx (1.81)

We note that this latter formula follows from :

e−xK0(x) = e−x

∫ ∞

1

e−x(cosh t)dt
(
see [Leb], p. 119

)
= e−x

∫ ∞

1

e−xu du√
u2 − 1

=

∫ ∞

2

e−xv dv√
v(v − 2)

iii) The subordinators (K(0)
t , t ≥ 0) and (J (0)

t , t ≥ 0) are connected via the subordination
relation :

(J (0)
t , t ≥ 0)

(law)
= (K(0)

S1/2(t), t ≥ 0) (1.82)
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where, on the RHS from (1.82), the processes (K(0)
u , u ≥ 0) and (S1/2(t), t ≥ 0) are inde-

pendent, and where (S1/2(t), t ≥ 0) is the stable subordinator with index 1/2 characterized
by :

E(e−λS1/2(t)) = exp
(
− t
√

2λ
)

(1.83)

iv) The v.a. K(0)
t , for t fixed, may be realized in the following manner :

let
(
bu(s) ; 0 ≤ s ≤ u

)
the brownian bridge with length u

(
with bu(0) = bu(u) = 0

)
and

let :

A(bu) :=

∫ u

0

exp
(
2bu(s)

)
ds

Then :

K(0)
t

(law)
=
[
A(b1/t)

]−1 (law)
= t

(∫ 1

0

exp
(2b(s)√

t

)
ds
)−1

(1.84)

where, in (1.84),
(
b(s), 0 ≤ s ≤ 1

)
denotes the standard brownian bridge b1.

v) In relation with the preceding, D. Dufresne and M. Yor, in a work in preparation [DY ],

establish the following formula : let
(
b
(x)
u (s), 0 ≤ s ≤ u

)
denote the brownian bridge with

length u, starting from 0 and such that b
(x)
u (u) = x. Let :

A
[
b(x)
u

]
:=

∫ u

0

exp
(
2b(x)

u (s)
)
ds (1.85)

Then, D. Dufresne and M. Yor obtain the representation as a Wiener-Gamma integral of

the r.v.
1

A[b
(x)
u ]

:

1

A[b
(x)
u ]

(law)
=

∫ ∞

0

2

e2x + 2ex cosh (su) + 1
dγs (1.86)

and in particular :

1

A[bu]

(law)
=

∫ ∞

0

dγs

1 + cosh (su)
(1.87)

1.6.c The subordinators (J (ν)
t , t ≥ 0) and (K(ν)

t , t ≥ 0)
They are obtained by replacing in (1.76), resp. (1.79), I0 by Iν , resp. K0 by Kν .

i) The subordinator (J (ν)
t , t ≥ 0), which is defined for ν > −1, is characterized by :

E(e−λJ (ν)
t ) = exp

{
− t

∫ ∞

0

(1− e−λx)
dx

x
e−xIν(x)

}
(1.88)
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Thus, its Lévy density lI(ν) equals :

lJ (ν)(x) =
e−x

x
Iν(x) x ≥ 0 (1.89)

Its Thorin measure, in the case −1/2 < ν < 0, is obtained by the following calculus :

Iν(z) =

(
z
2

)ν
√
πΓ(ν + 1/2)

·
∫ 1

0

(1− t2)ν−1/2(ezt + e−zt)dt (Reν > −1/2)(
see [Leb], p. 119, form.5.10.22

)
and :

e−zIν(z) = Cν z
ν

∫ 1

0

(1− t2)ν−1/2(e−z(1−t) + e−z(1+t))dt

But, for ν < 0 :

zνe−za =
1

Γ(−ν)

∫ ∞

0

s−ν−1e−z(a+s)ds

Hence :

e−zIν(z)

= C ′
ν

∫ 1

0

(1− t2)ν−1/2dt

∫ ∞

0

s−ν−1(e−z(1−t+s) + e−z(1+t+s))ds

= C ′
ν

∫ 1

0

(1− t2)ν−1/2dt
[ ∫ ∞

1−t

e−zh(h− 1 + t)−ν−1dh+

∫ ∞

1+t

e−zh(h− 1− t)−ν−1dh
]

= C ′
ν

∫ 1

0

e−zhdh

∫ 1

0

dt(1− t2)ν−1/2
[
(h− 1 + t)−ν−11h>1−t + (h− 1− t)−ν−11h>1+t

]
Hence, in the case −1/2 < ν < 0, the Thorin measure of (J (ν)

t , t ≥ 0) admits a density
equal to :

µJ (ν)(dx)/dx =
[
C ′

ν

∫ 1

0

(1− t2)ν−1/2
{(
x− (1− t)

)−ν−1
1x>1−t

+
(
x− (1 + t)

)−ν−1
1x>1+t

}
dt
]

Hence, if −1/2 < ν < 0, (J ν
t , t ≥ 0) is a GGC subordinator.

ii) The subordinator (K(ν)
t , t ≥ 0), defined for ν < 1, is characterized by :

E(e−λK(ν)
t ) = exp

{
− t

∫ ∞

0

(1− e−λx)
dx

x
e−xKν(x)

}
(1.90)
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Its Lévy density lK(ν) equals :

lK(ν)(x) =
e−x

x
Kν(x) (x ≥ 0) (1.91)

Its Thorin measure µK(ν) , obtained by using the formula
(
[Leb], p. 119

)
Kν(z) =

∫ ∞

0

e−z cosh u(cosh νu)du

equals :

µK(ν)(dx) = cosh
[
ν arg cosh(x− 1)

] dx√
x(x− 2)

1[2,∞[(x) (1.92)

The formula in (1.92) simplifies using,

cosh
[
ν arg cosh(x− 1)

]
=

1

2

{(
(x− 1) +

√
(x− 2)x

)ν
+
(
(x− 1) +

√
(x− 2)x

)−ν}
,

since:
arg cosh(y) = log

(
y +

√
y2 − 1

)
.

1.7 The subordinator
(
Γt(Sβ), t ≥ 0

)
(0 < β < 1)

We give here a realisation for the subordinator
(
Γt(Sβ), t ≥ 0

)
, where Sβ is a positive

β-stable r.v.
Let α > 0. We denote σt,n := {s1 = 0 < s2 · · · < sn = t} a subdivision of the interval
[0, t] with mesh δ(σt,n) := sup

i
(si+1 − si). The limit along the decreasing filtering set of

sequences σt,n whose meshes δ(σt,n) tend to zero, of
∑

sk∈σt,n

(γsk+1
−γsk

)α exists a.s. Observe

that : E
( ∑

sk∈σt,n

(γsk+1
− γsk

)α
)

=
∑

sk∈σt,n

Γ(α+ sk+1 − sk)

Γ(sk+1 − sk)
−→

δ(σt,n)→0
tΓ(α). Let :

V (α)(t) := lim
δ(σt,n)→0

∑
sk∈σt,n

(γsk+1
− γsk

)α =
∑

0<s≤t

(γs − γs−)α (1.93)

Let

Nt,x := #{s ≤ t ; γs − γs− > x1/α}

From Section 1.4, Nt,x is a Poisson r.v. with parameter t ·
∫ ∞

x1/α

e−u

u
du. But, evidently :

Nt,x = #{s ≤ t ; (γs − γs−)α > x} (1.94)

23



We deduce from (1.94) that the Poisson point process{
(γs − γs−)α, s ≥ 0

}
admits n(α)(dx) =

1

α

dx

x
e−x1/α

(x > 0)

as intensity measure. Hence
(
V (α)(t), t ≥ 0

)
is a subordinator whose Lévy measure equals

n(α)(dx) :

E(e−λV (α)(t)) = exp
{
− t

α

∫ ∞

0

(1− e−λx)
dx

x
e−x1/α

}
This subordinator, for every α > 0, is self-decomposable but it is GGC only in the case
α ≥ 1. In this case : α ≥ 1 we have :

E(e−λV (α)(t)) = exp
(
− t

α

∫ ∞

0

(1− e−λx)
dx

x
E(e−xS1/α)

}
where S1/α is a positive

1

α
stable r.v. In other terms, with the notation of Section 1.5.b :

(
Γt(Sβ), t ≥ 0

) (law)
=
(
V (α)(tα), t ≥ 0

) (
α =

1

β
≥ 1
)

(1.95)

1.8 Remark.
We now end up this Introduction by indicating how the study of the GGC subordinators
may be embedded in a more general one.
A subordinator (Nt, t ≥ 0) is said to belong to the Thorin class T (χ)(R+), with χ > 0

(
see

[Grig]
)
, if its Lévy measure admits a density lN of the form :

lN(x) = xχ−2k(x) x > 0 (1.96)

where k is a completely monotonic function, i.e. it may be represented as :

k(x) :=

∫ ∞

0

e−xy µ(dy) (1.97)

for a positive Radon measure µ carried by R∗
+. Thus, the subordinators which we study in

this work, i.e. : the GGC subordinators, belong to the class T (1)(R+). The class T (2)(R+)
has been studied by Goldie [Gol], Steutel [Steu] and Bondesson [B2]. The r.v’s which
belong to this class are the generalized convolutions of mixtures of exponential laws. Note
that T (χ)(R+) ⊂ T (χ′)(R+) if χ < χ′. We also note that [BNMS] present extensions of
these notions to Rd.

In the same manner as condition (1.9) is necessary and sufficient for a measure µ to be
the Thorin measure associated to a positive r.v., B. Grigelionis [Grig] obtains a necessary
and sufficient analytical condition so that a measure µ defines, via (1.96) and (1.97), a
subordinator (Nt, t ≥ 0) which belongs to the class T (χ)(R+).
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1.9 We now detail the contents of the sequel of this paper :

• In Section 2, we present a duality result which connects on one hand the r.v.’s Γt(G) and
Dt(G) to the r.v.’s Γt(1/G) and Γt(G) on the other hand.

• In Section 3, we study in depth the examples of subordinators Γt(Gα) (0 ≤ α ≤ 1)
for which we know how to compute explicitly their Laplace transforms, i.e. : their Lévy
exponents, as well as their densities at any time, and their Wiener-Gamma representations.

2 A duality principle.

Throughout this section, G denotes a positive r.v. such that E
(
|logG|

)
< ∞. Thus, we

have :

E
(
log+(1/G)

)
<∞ and E

(
log+(G)

)
<∞ (2.1)

Consequently, the subordinators
(
Γt(G), t ≥ 0

)
and

(
Γt(1/G), t ≥ 0

)
are well defined.

We denote by ψG (resp. ψ1/G) the characteristic exponent (i.e. : the Bernstein function or
Lévy exponent) of the subordinator

(
Γt(G), t ≥ 0

)
, resp.

(
Γt(1/G), t ≥ 0

)
.

ψG(λ) :=

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG) (2.2)

and the same formula for ψ1/G obtained when replacing G by 1/G. We denote by FG the
cumulative distribution function of G and by F−1

G its right continuous inverse, in the sense
of the composition of functions.

2.1 The duality theorem.

Theorem 2.1 (Duality)

1 ) F−1
1/G(y) · F−1

G (1− y) = 1 a.e.
(
y ∈ [0, 1]

)
(2.3)

2) For any λ ≥ 0 :

ψ1/G(λ)− ψG(1/λ) = E(logG) + log λ (2.4)

3) i) fΓt(1/G) the density of the r.v. Γt(1/G), equals :

fΓt(1/G)(x) = e−t E(log G)E
{(Γt(G)

x

) 1−t
2
Jt−1

(
2
√
xΓt(G)

)}
(2.5)

where Jν denotes the Bessel function with index ν :

Jν(z) =
∞∑

k=0

(−1)k 1

Γ(k + 1) Γ(k + ν + 1)

(z
2

)ν+2k

, |z| <∞, |Arg z| < π (2.6)

(
see [Leb], p. 102

)
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ii) fΓt(1/G)(x) =
xt−1

Γ(t)
e−t E(log G) E(e−xDt(G)) (x > 0) (2.7)

iii)E

(
1(

Dt(G)
)t)= et E(log G) (2.8)

4 ) i) E

(
1(

λ+Dt(G)
)t)= exp

{
− t
(
ψ1/G(λ)− E(logG)

}
(2.9)

ii) The densities fDt(G) and fDt(1/G) of, resp., Dt(G) and Dt(1/G) are related by :

fDt(1/G)(x) = xt−2 e−t E(log G) fDt(G)(1/x) (x > 0) (2.10)
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Remark 2.2.
1) The relation (2.4) is found, under a slightly different form, in Bondesson

(
[B1], p. 48, III

“Curious composition”
)
, under the only hypothesis E

(
log+(1/G)

)
< ∞. We have chosen

to work under the stronger hypothesis E
(
|logG|

)
<∞ since it seems that only under this

hypothesis can we obtain the most interesting results.

2) Of course, all formulae of Theorem 2.1 are “involutive”, in that G may be replaced
there by 1/G.

3) Formula (2.7) agrees with, and makes more precise, the result of Bondesson which we
recalled in (1.28) and (1.30). In particular :

fΓt(G)(x) ∼
x→0

xt−1

Γ(t)
et E(log G) (2.11)

4) Formula (2.4) may be generalized as follows :
Let a, b, c, d ∈ R4, with ad− bc = ±1 and let, for x, λ ≥ 0 :

σ(x) =
ax+ b

cx+ d
, σ̃(λ) =

dλ+ b

cλ+ a
(2.12)

so that σ(G) be a positive r.v. Then :

−ψG(σ̃(λ)) + ψσ(G)(λ) = log (cλ+ a) + k

with k := E
(
log
( G+ λ0

σ(G) + λ0

· σ(G)

G

))
− log (c λ0 + a) where λ0 is a fixed point of σ̃. The

relation (2.4) corresponds to a = d = 0, b = c = 1. We shall study, in the Appendix, the
case where a = d = sinhu, b = c = coshu (u ≥ 0).

5) Cifarelli and Regazzini
(
[CR2]

)
, Cifarelli and Melilli [CM] have obtained the density of

Dt(G) for t ≥ 1 and James, Lijoi and Prünster [JLP] have obtained it for t ≤ 1. For t ≤ 1,
they obtained :

fDt(G)(x) =

∫ x

0

(x− u)t−1 d

du

(
θt(u)

)
du (2.13)

with

θt(u) :=
1

π
sin
(
t π F1/G(u)

)
exp
{
− t E

(
log
(
u− 1

G

)
1u 6= 1

G

)}
(2.14)

The proof of this formula (2.13) hinges upon the knowledge of the density of the r.v.

D1

( 1

GYt

)
which is defined by :

(
see (1.41) and (1.42) with m = t and m′ = 1

)
.

βt,1−t ·Dt(1/G)
(law)
= D1

( 1

G · Yt

)
(t ≤ 1)
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This density equals :

fD1

( 1

G · Yt

)
(x) =

sin
(
t π FG(1/x)

)
π

xt−1 exp
{
− t E

(
log
(
x− 1

G

)
· 1G6= 1

x

)}
(2.15)

which is obtained by inverting its Stieltjes transform.
Other formulae for densities of Dirichlet means may be found in Regazzini, Guglielmi and
DiNunno [RGdN]

6) Formula (2.8) is obtained from (2.7) by integrating between 0 and ∞ :

1 =

∫ ∞

0

fΓt(1/G)(x)dx =

∫ ∞

0

1

Γ(t)
xt−1e−tE(log G)E(e−xDt(G))dx

=
e−tE(log G)

Γ(t)
E
[ 1(
Dt(G)

)t] Γ(t), hence :

E
( 1(
Dt(G)

)t) = etE(log G) (2.16)

The interest of this formula (2.16) is the following : it allows, in a situation where the
law of G is not known but when one knows the laws of Dt(G) and Dt(1/G) to show that

E
(
|logG|

)
<∞ as soon as E

((
Dt(G)

)−t)
<∞ and E

((
Dt(1/G)

)−t)
<∞.

Formula (2.7), once multiplied by xν , and integrated between 0 and ∞, leads to :

E
[(

Γt(1/G)
)ν]

=
Γ(ν + t)

Γ(t)
e−tE(log G)E

( 1(
Dt(G)

)ν+t

)
(2.17)

The formula is also true even when the expectations which appear in this expression are
infinite.

7) The result :(
Γt(G)

)t (law)−→
t→0

U (2.18)

with U uniform on [0, 1]
(
see point 3 iii) of Proposition 1.7

)
is a consequence of (2.7).

Indeed :

P
((

Γt(G)
)t ≤ e−a

)
= P

(
Γt(G) ≤ e−

a
t

)
=

∫ e−
a
t

0

fΓt(G)(x)dx

=
etE(log G)

Γ(t)

∫ e−
a
t

0

xt−1E(e−xDt(1/G))dx(
from (2.7) applied when replacing G by 1/G

)
:

∼
t→0

1

Γ(t)

∫ e−
a
t

0

xt−1dx =
e−a

Γ(t+ 1)
−→
t↓0

e−a

We note that, from (1.64), the family of the laws of Dt(1/G), t ≤ 1 is tight as soon as
E(G) <∞.
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2.2 Proof of Theorem 2.1.

2.2.a Point 1 is trivial. We show point 2 :
Since, from Frullani’s formula :

ψG(λ) = E
(
log
(
1 +

λ

G

))
= E

(
log
( λ
G

(
1 +

G

λ

)))
= log λ− E(logG) + E

(
log
(
1 +

G

λ

)
we have, by changing λ in 1/λ :

−ψG(1/λ) + ψ1/G(λ) = −log λ+ E(logG)

2.2.b We now show point 3 of Theorem 2.1 :
i) From formula (2.4), after multiplying by t and exponentiating, we obtain :

E(e−λΓt(1/G)) =
e−tE(log G)

λt
E(e−

1
λ

Γt(G)) (2.19)

Then, taking the Laplace transform of both sides of (2.19) in the variable λ, we obtain :∫ ∞

0

E(e−λ(Γt(1/G))e−βλdλ = E
( 1

β + Γt(1/G)

)
= e−tE(log G)E

(∫ ∞

0

e−βλ− 1
λ
Γt(G)dλ

λt

)
= 2e−tE(log G)E

{(Γt(G)

β

) 1−t
2
K1−t

(
2
√
βΓt(G)

)}
(2.20)

where Kν denotes the Bessel-McDonald function with index ν and where we have used
formula 5.10.25 in [Leb], p. 108 and 119.
We now use (2.20) to compute fΓt(1/G) by inverting its Stieltjes transform

(
see [Wid]

)
.

fΓt(1/G)(u) =
1

2iπ
lim
η↓0

{
E
( 1

−u− iη + Γt(1/G)
− 1

−u+ iη + Γt(1/G)

)}
=

e−tE(log G)

iπ
E
((Γt(G)

u

) 1−t
2
[
e

iπ(1−t)
2 K1−t

(
2
√
uΓt(G) e−

iπ
2

)
−e−

iπ(1−t)
2 K1−t

(
2
√
uΓt(G) e−

iπ
2

)])
(2.21)

However, it is well known that
(
see [Leb], p. 108 and 109

)
:

• Kν = K−ν

• π < Arg z < π
2
⇒ Kν(z) = iπ

2
e

iνπ
2 H

(1)
ν (z e

iπ
2 )

• π
2
< Arg z < π ⇒ Kν(z) = − iπ

2
e−

iνπ
2 H

(2)
ν (z e−

iπ
2 )
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where the Hankel functions H
(1)
ν and H

(2)
ν satisfy

(
[Leb], p. 108

)
H(1)

ν +H(2)
ν = 2Jν

Plugging these relations into (2.21), we obtain :

fΓt(1/G)(u) = e−tE(log G)E
{(Γt(G)

u

) 1−t
2
Jt−1

(
2
√
uΓt(G)

)}
ii) We now prove (2.7), which is a consequence of (2.5). Indeed, from (2.5) and (2.6) :

fΓt(1/G)(u) = e−tE(log G)E
{(Γt(G)

u

) 1−t
2

∞∑
k=0

(−1)k

Γ(k + 1) Γ(k + t)

(
uΓt(G)

)k+ t−1
2

}
= e−tE(log G)ut−1E

{ ∞∑
k=0

(−1)k

Γ(k + 1) Γ(k + t)

(
uγtDt(G)

)k}
from (1.53). But, since E(γk

t ) =
Γ(k + t)

Γ(t)
, we have :

fΓt(1/G)(u) =
e−tE(log G)

Γ(t)
ut−1E

( ∞∑
k=0

(−1)k

k!

(
uDt(G)

)k)
=

e−tE(log G)

Γ(t)
ut−1E(e−uDt(G)) (2.22)

On the other hand, as we already noticed in point 6 of Remark 2.2, formula (2.8) may be
obtained by integrating from 0 to ∞ in (2.22).

2.2.c We now prove point 4 of Theorem 2.1.

i) Formula (2.9) is immediate. Indeed, since Γt(G)
(law)
= γtDt(G) we get :

E(e−λΓt(G)) = exp
(
− tψG(λ)

)
= E

( 1(
1 + λDt(G)

)t)
Replacing then λ by 1/λ in this latter formula, we obtain :

E
[ 1(
λ+Dt(G)

)t] = exp
{
− t
(
ψG(1/λ) + log λ

)}
= exp

{
− t
(
ψ1/G(λ)− E(logG)

)}
(2.23)

from (2.4). We note that (2.8) may also be obtained by taking λ = 0 in (2.23).

ii) We now show (2.10). For this purpose, we shall prove that the two members of
(2.10) admit the same Stieltjes transform with index t. Indeed :∫ ∞

0

e−tE(log G)

(λ+ x)t
xt−2fDt(G)

(1

x

)
dx = e−tE(log G)

∫ ∞

0

1

(1 + λx)t
fDt(G)(x)dx
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after making the change of variables y = 1/x

= e−tE(log G)E(e−λΓt(G)) from (1.56)

= exp− t
(
E(logG) + ψG(λ)

)
(2.24)

whereas :∫ ∞

0

1

(λ+ x)t
fDt(1/G)(x)dx =

1

λt

∫ ∞

0

1(
1 + x

λ

)t fDt(1/G)(x)dx

= exp
{
− t
(
log λ+ ψ1/G(1/λ)

)} (
from (1.56)

)
= exp

{
− t
(
E(logG) + ψG(λ)

)} (
from (2.4)

)
(2.25)

The comparison of (2.24) and (2.25) and the injectivity of the Stieltjes transform of index
t imply (2.10).

iii) We now show (2.10), for t = 1, by using (2.13). For t = 1, (2.13) writes :

fD1(G)(x) =
sin
(
πF1/G(x)

)
π

e−E((log|x− 1
G
|)1x6=1/G) (2.26)

Thus :

fD1(1/G)(x) =
sin
(
πFG(x)

)
π

e−E((log|x−G|)1x6=G)

=
sin
(
πFG(x)

)
π

exp

{
−E

(
log
(
xG
∣∣1
x
− 1

G

∣∣) · 1x 6=G

)}
=

sin
(
πFG(x)

)
π

e−E(log G)

x
e−E(log| 1

x
− 1

G
|1x6=G)

=
1

x
e−E(log G)fD1(G)(1/x), from (2.26)

since sin
(
πFG(x)

)
= sin

(
π(1 − FG(x)

)
= sin

(
πF1/G(1/x)

)
. It is possible, by using (2.13),

to extend this proof for all t < 1. We leave the details to the interested reader.

2.3 A complement to the duality theorem.
Here again, G denotes a r.v. such that E

(
|logG|

)
<∞, and we recall that, for any t ≤ 1 Yt

denotes a Bernoulli r.v. with parameter t
(
see (1.41) and (1.42), with m = t and m′ = 1

)
.

Theorem 2.3. For all t ∈ [0, 1[ :
1) The density fD1( G

Yt
) may be expressed in terms of G, as :

f
D1

(
G
Yt

)(x) =
sin
(
π t FG(1/x)

)
π

xt−1exp

{
−t E

((
log
∣∣x− 1

G

∣∣) 1x6= 1
G

)}
x > 0, (2.27)

and when 1/x is in the support of FG. Otherwise replace sin
(
π t FG(1/x)

)
by sin

(
π (1− t)

)
when x > 0.
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2) The following duality formula holds :

f
D1

(
G
Yt

)(x) =
sin
(
π t FG(1/x)

)
sin
(
π t
(
1− FG(1/x)

)) · xt−2f
D1

(
1

GYt

) (1

x

)
· et E(log G) (2.28)

3) Let ∧t : [0,∞[−→ [0, 1] be defined by :

∧t(y) := 1− 1

πt
arc tg

( sin (πt)

cos (πt) + y

)
(2.29)

Then :

FG(1/x) = ∧t

( f
D1

(
G
Yt

)(x)
xt−2f

D1

(
1

GYt

)( 1
x

)
et E(log G)

)
(2.30)

Remark 2.4.
1) We note that the right-hand side of (2.30) depends on t

(
t ∈ [0, 1[

)
, whereas the left-

hand side does not depend on t.

2) Since
(
see (1.43)

)
D1

(
1

GYt

) (law)
= βt,1−t · Dt(1/G), the knowledge of the law of Dt(1/G)

and of that of Dt(G), for one t < 1, allow to determine that of G. We shall exploit this
fact, in points 2.5 and 2.6 below, to determine the Thorin measure of a Pareto distribution
and of a power of a gamma variable.

3) We note that finding an explicit Thorin measure of an arbitrary GGC is akin to finding
the Lévy measure of some infinitely divisible random variable. Bondesson

(
[B1],Theorem

4.3.2, p. 61
)
, using inversion techniques, obtains an expression for the Thorin measure, but

notes that it seldom yields explicit expressions. On the other hand the use of statement
3) of Theorem 2.3 will often lead to tractable expressions for the Thorin measure.

4) We shall prove (see Section 3.1.b) that ∧t is the cumulative distribution function of
a r.v. Zt which we shall describe. On the other hand, some trigonometric computations
allow to see that ∧−1

t , the inverse of ∧t in the sense of composition of functions, equals :

∧−1
t (x) =

sin(π tx)

sin
(
πt(1− x)

) x ∈ [0, 1] (2.31)

5) Point 1 of Theorem 2.3 is due to James
(
see [J]

)
.

2.4 Proof of Theorem 2.3.
2.4.a We first prove point 1.

As this point has already been established by James
(
see [J]

)
, we shall only give a quick

proof.
We have, from (1.56) :

E

[
1

1 + λD1

(
G
Yt

)]= exp
(
− tψG(λ)

)
=

1

λ
E

(
1

1
λ

+D1

(
G
Yt

))
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Hence, changing λ in
1

λ
and using (2.4) :

E

[
1

λ+D1

(
G
Yt

)] = exp
{
− t ψG(1/λ)− log λ

}
= exp

(
(t− 1)log λ

)
· et E(log)exp

(
− t ψ1/G(λ)

)
(2.32)

We then compute f
D1

(
G
Yt

) by inverting its Stieltjes transform :

f
D1

(
G
Yt

)(u) =

et E(log G)

2iπ
lim
η↓0

{
exp
[(

(t− 1) log (−u− iη)
)
− t ψ1/G(−u− iη)

]
−exp

[(
(t− 1)log(−u+ iη)

)
− t ψ1/G(−u+ iη)

]}
(u > 0) (2.33)

It then suffices to observe that :

exp (t− 1) log (−u− iη)−→
η↓0+

exp
{
(t− 1) log |u| − iπ(t− 1)

}
= ut−1e−iπ(t−1)

and :

lim
η↓0+

exp
{
(t− 1) log (−u+ iη)

}
= ut−1eiπ(t−1)

as well as :

t ψ1/G(−u− iη) = t E
(
log(1− uG− iη G)

)
= t E

(
log (1− uG− iη G)1uG<1 + log(1− uG− iη G)1uG>1

)
−→
η↓0+

t E
(
log
(
|1− uG|

)
1uG 6=1 − iπP (uG > 1)

)
whereas :

t ψ1/G(−u+ iη)−→
η↓0+

t E
(
log
(
|1− uG|

)
1uG 6=1 + iπP (uG > 1)

Then, plugging the values of these different limits in (2.33), we obtain point 1 of Theorem
2.3.

2.4.b We now prove point 2 of Theorem 2.3.
We deduce from (2.7) that :

f
D1

(
G
Yt

)(x)
=

sin
(
πt FG(1/x)

)
π

xt−1exp
{
− t E

(
log
( 1

G
|1− xG|

)
1xG 6=1

)}
=

sin
(
πt FG(1/x)

)
π

xt−1et E(log G)exp
{
− t E

(
(log |1− xG|

)
1xG 6=1

)}
(2.34)
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whereas :

xt−2f
D1

(
1

GYt

)(1

x

)
et E(log G) = xt−2 sin

(
πtF1/G(x)

)
π

et E(log G) · x1−t

· exp
{
− t E

(
log
(∣∣∣1
x
− 1

G

∣∣∣)1xG 6=1

)}
=

1

x

sin
(
πtF1/G(x)

)
π

etE(log G)exp
{
− t E

(
log
(1

x
|1− xG|

)
1xG 6=1

)}
=

sin
(
πt F1/G(x)

)
π

xt−1etE(log G)exp
{
− t E

(
log|1− xG|

)
1xG6=1

)}
(2.35)

hence, point 2 of Theorem 2.3 follows, by comparison of (2.35) and (2.34).

2.4.c We now prove point 3 of Theorem 2.3.
From (2.28), we obtain :

f
D1

(
G
Yt

)(x)
xt−2f

D1

(
1

GYt

)( 1
x

)
etE(log G)

=
sin
(
πt FG(1/x)

)
sin
(
πt
(
1− FG(1/x)

)) = ∧−1
t

(
FG(1/x)

)
with ∧−1

t (x) =
sin(πtx)

sin πt(1− x)

(
see (2.31)

)
Then, inverting this formula, since ∧t ◦ ∧−1

t (x) = x, x ∈ [0, 1] we obtain :

FG(1/x) = ∧t

( f
D1

(
G
Yt

)(x)
xt−2etE(log G)f

D1

(
1

GYt

)( 1
x

))

2.5 Computation of the Thorin measure of a Pareto r.v.
Here is a first application of Theorem 2.3.

2.5.a Let m > 0 fixed and :

Xθ :=
γθ

γm

(0 < θ < 1) (2.36)

with density :

fXθ
(x) =

Γ(θ +m)

Γ(θ) Γ(m)
xθ−1(1 + x)−(θ+m) (2.37)

=
Γ(θ +m)

Γ(θ) · Γ(m)
xθ−1E(e−xγθ+m) (2.38)

The r.v. Xθ is a GGC r.v.
(
see Bondesson [B1], p. 59

)
. The rationale of our work is now

the following :
• We first compute the Thorin measure associated with Xθ.
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• Then, letting θ converge 1, we shall obtain - as the Thorin measure depends continuously
(for the narrow topology) on the law of Xθ

(
see Bondesson, [B1]

)
- the Thorin measure

associated with the r.v. X1 =
γ1

γm

, i.e. to a Pareto r.v. with parameter m(m > 0).

2.5.b Thorin measure associated with Xθ, θ < 1.
Since, from (2.37) :

sup
{
α > 0 ; lim

x→0

fXθ
(x)

xα−1
= 0
}

= θ

we deduce from (1.30) the existence of a r.v. Gθ, such that E
(
log+

( 1

Gθ

))
<∞ and such

that Xθ is a (θ,Gθ) GGC r.v. :

Xθ
(law)
= Γθ(Gθ)

(law)
= γθDθ(Gθ)

(law)
=

γθ

γm

(2.39)

hence :

Dθ(Gθ)
(law)
=

1

γm

(2.40)

On the other hand, from (2.7) :

fΓθ(Gθ)(x) =
xθ−1

Γ(θ)
eθE(log Gθ)E(e−xDθ(1/Gθ)) (2.41)

Comparing (2.40) and (2.38) yields :

eθE(log Gθ) =
Γ(θ +m)

Γ(m)
(2.42)

Dθ(1/Gθ)
(law)
= γθ+m (2.43)

Since, on the other hand :

D1

( 1

GθYθ

)
(law)
= βθ,1−θ ·Dθ(1/Gθ)

(law)
= βθ,1−θ · γθ+m (2.44)

D1

(Gθ

Yθ

)
(law)
= βθ,1−θ ·Dθ(Gθ)

(law)
= βθ,1−θ ·

1

γm

(2.45)

we easily deduce from these formulae that :

f
D1

(
1

GθYθ

)(z) =
sin πθ

πΓ(θ +m)
zθ−1

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy (2.46)

f
D1

(
Gθ
Yθ

)(z) =
sin πθ

πΓ(θ)
z−m−1

∫ 1

0

e−
y
z ym+θ−1(1− y)−θdy (2.47)
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The Thorin measure of Xθ, which equals : θPGθ
(dx), where PGθ

is the law of Gθ, is then,
by applying (2.30) :

FGθ

(1

z

)
= ∧θ

( ∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

zm

∫ 1

0

e−yzym+θ−1(1− y)−θdy

)
(2.48)

where, to obtain (2.48), we have used (2.42).

2.5.c Thorin measure of
γ1

γm

(m > 0).

By continuity, the r.v.
γ1

γm

is a (1, G) GGC r.v. and its Thorin measure is the law of G

whose cumulative distribution function is obtained by letting θ tend to 1 in (2.48). To
obtain this limit, we shall develop several computations.

2.5.i) Development of

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy as β = 1− θ → 0

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

= e−z

∫ ∞

0

e−u (z + u)m+θ−1

uθ
du (y = z + u)

=
e−z

β

∫ ∞

0

e−uuβ
[
(z + u)m−β − (m− β)(z + u)m−β−1

]
du

with
(
β = 1− θ

)
and after integrating by parts :

=
e−z

β

∫ ∞

0

e−u(z + u)m
[( u

z + u

)β(
1− (m− β)

1

z + u

)]
du

∼
β→0

e−z

β

∫ ∞

0

e−u(z + u)m
[(

1 + β log
( u

z + u

))(
1− (m− β)

1

z + u

)
du

=
β→0

e−z

β

∫ ∞

0

e−u(z + u)m
(
1− m

z + u

)
du

+e−z

∫ ∞

0

e−u(z + u)m
(
log

u

1 + u
+

1

z + u

)
du+ o(β)

=
e−zzm

β
+ e−zzm

∫ ∞

0

e−u
(
1 +

u

z

)m(
log

u

1 + u
+

1

z + u

)
du+ o(β)

since

∫ ∞

0

e−u(z + u)m
(
1− m

z + u

)
du = zm, by integration by parts. Finally :

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy =

β→0

e−zzm

β
+ e−zzmCm(z) + o(β) (2.49)
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with

Cm(z) =

∫ ∞

0

e−u
(
1 +

u

z

)m(
log

u

1 + u
+

1

z + u

)
du (2.50)

2.5. ii) Development of zm
∫ 1

0
e−xzxm+θ−1(1− x)−θdx as β = 1− θ −→ 0

zm

∫ 1

0

e−xzxm−β(1− x)β−1dx = e−zzm

∫ 1

0

ezu(1− u)m−βuβdu (x = 1− u)

=
e−zzm

β

∫ 1

0

ezu
(
(m− β)(1− u)m−β−1 − z(1− u)m−β

)
uβdu

with β = 1− θ, and after integrating by parts :

=
e−zzm

β

∫ 1

0

ezu(1− u)m
( u

1− u

)β(m− β

1− u
− z
)
du

∼
β→0

e−zzm

β

∫ 1

0

ezu(1− u)m
(m− β

1− u
− z
)(

1 + β log
u

1− u

)
du

∼
β→0

e−zzm

β

∫ 1

0

ezu(1− u)m
( m

1− u
− z
)
du+ e−zzm

∫ 1

0

ezu(1− u)m ·[
− 1

1− u
+
( m

1− u
− z
)
log

u

1− u

]
du+ o(β)

=
e−zzm

β
+ e−zzmC̃m(z) + o(β) (2.51)

with

C̃m(z) =

∫ 1

0

ezu(1− u)m
(
− 1

1− u
+
( m

1− u
− z
)
log

u

1− u

)
du (2.52)

since :

∫ 1

0

ezu(1− u)m
( m

1− u
− z
)
du = 1, by integrating by parts.

2.5. iii) Let

q1−β(z) :=

∫ ∞

z

e−y y
m+θ−1

(y − z)θ
dy

zm

∫ 1

0

e−xzxm+θ−1(1− x)θdx

(2.53)

Thus, we have :

q1−β(z) =
β→0

e−z

β
zm + e−zzmCm(z) + o(β)

e−zzm

β
+ e−zzmC̃m(z) + o(β)

(2.54)
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where Cm(z) and C̃m(z) are given by (2.50) and (2.52). Hence :

q1−β(z) = 1 + β
(
Cm(z)− C̃m(z)

)
+ o(β) (2.55)

Plugging this expression in (2.48), we obtain :

FG1−β
(1/z)

= 1− 1

πθ
arc tg

(
sin(πθ)

cos(πθ) + 1 + β
(
Cm(z)− C̃m(z) + o(β)

))
= 1− 1

π(1− β)
arc tg

(
sin πβ

−cos πβ + 1 + β
(
Cm(z)− C̃m(z) + o(β)

))
−→
β→0

1− 1

π
arc tg

(
π

Cm(z)− C̃m(z)

)
= F (1/z) (2.56)

where F is the cumulative distribution function of the Thorin measure associated to the
Pareto r.v.

γ1

γm

, with parameter m > 0.

2.6 Thorin measure associated with γ
1/α
1 , 0 < α < 1.

2.6.a Let Xα :
(law)
= γ

1/α
1 with 0 < α < 1, with density :

fXα(x) = αxα−1e−xα

= αxα−1E(e−xSα) (2.57)

where Sα is a positive stable r.v. with index α :

E(e−λSα) = exp(−λα) (λ ≥ 0) (2.58)

From Bondesson
(
[B1], p. 60

)
, Xα is a GGC r.v. Since :

α = sup
{
ν > 0, lim

x↓0

fXα(x)

xν−1
= 0
}

Xα is a (α,Gα) GGC r.v., for a r.v. Gα such that : E
(
log+(1/Gα)

)
<∞. Thus :

Xα
(law)
= (γ1)

1/α = Γα(Gα) = γαDα(Gα) (2.59)

We shall now devote some effort to finding the law of Gα, making use in particular of
formula (2.10)
From (2.7) :

fΓα(Gα)(x) =
xα−1

Γ(α)
eαE(log Gα)E(e−xDα(1/Gα)) (2.60)
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we deduce, by comparison with (2.57) :

eαE(log Gα) = αΓ(α) = Γ(α+ 1) (2.61)

and

Dα(1/Gα)
(law)
= Sα (2.62)

Since :

D1

( 1

GαYα

)
(law)
= βα,1−α ·Dα(1/Gα)

(law)
= βα,1−α · Sα

we deduce that the density of D1

( 1

GαYα

)
equals :

fD1( 1
GαYα

)(y) =
sin(πα)

π
yα−1

∫ ∞

y

1

(x− y)α
fα(x)dx (2.63)

where fα denotes the density of Sα. On the other hand, from Chaumont-Yor
(
[CM], p.

112
)

:

γ
1/α
1

(law)
=

γ1

Sα

(2.64)

hence, since :

γ1

Sα

(law)
= γα ·Dα(Gα)

(law)
= βα,1−α · γ1Dα(Gα)

(law)
= γ1 ·D1

(Gα

Yα

)
(2.65)

we get :

D1

(Gα

Yα

)
(law)
=

1

Sα

and (2.66)

fD1(Gα
Yα

)(x) =
1

x2
fα

(1

x

)
(2.67)

Then, applying (2.30), we get :

F1/Gα

(1

y

)
= ∧α

( Γ(α+1)sin (πα)
π

∫∞
y

1
(x−y)α fα(x)dx

yfα(y)

)
(2.68)

where, to obtain (2.68), we have used (2.60). This expression (2.68), provides us then with
the explicit form of the Thorin measure of (γ1)

1/α, which is equal to PGα .
2.6.b. We shall now give a more suitable expression of (2.68). From the relations (2.65)
and (2.66), we deduce :

βα,1−α ·Dα(Gα)
(law)
= D1

(Gα

Yα

)
=

1

Sα

(2.69)
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hence :

1

y2
fα

(1

y

)
=

sin πα

π
yα−1

∫ ∞

y

1

(z − y)α
fDα(Gα)(z)dz (2.70)

But, the density of Dα(Gα) may be computed from that of Dα(1/Gα), thanks to (2.10):

fDα(Gα)(x) = xα−2 eαE(log Gα)fDα(Gα)(1/x).

Now from (2.62) and (2.61), we obtain:

fDα(Gα)(x) = xα−2 Γ(α+ 1)fα(1/x). (2.71)

We now note the interesting relationship concerning the law of Sα.

Lemma 2.4
Let 0 < α < 1, and S denote a positive random variables with density (f(y), y > 0) such
that:

yf(y) = CE
[ 1

(y − S)α
1{S<y}

]
(2.72)

for some C > 0. Then, S is a stable (α) variable; precisely:

E
(

exp
{
− λS

})
= exp

{
− CΓ(1− α)

α
λα
}
.

We postpone the proof of the Lemma for the moment, and we note that, plugging (2.72)
into (2.68), we obtain:

F1/Gα

(1

y

)
= ∧α

(
E
(

1
(Sα−y)α 1Sα>y

)
E
(

1
(y−Sα)α 1Sα<y

)

= 1− 1

πα
arc tg

[
sin(πα) · E

(
1

(y−Sα)α 1Sα<y

)
cos(πα) · E

(
1

(y−Sα)α 1Sα<y

)
+ E

(
1

(Sα−y)α 1Sα>y

)], (2.73)

from (2.29).
Proof of Lemma 2.4 From (2.72), we take the Laplace transform of both sides:∫ ∞

0

e−λyyf(y)dy = CE
[ ∫ ∞

S

e−λy

(y − S)α
dy
]

= CE
[
e−λS

∫ ∞

0

e−λz

zα
dy
]

= CΓ(1− α)λα−1E
(
e−λS

)
.
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Denoting φ(λ) = E
(
e−λS

)
, we get:

−φ′(λ) = CΓ(1− α)λα−1φ(λ),

from which we deduce:

φ(λ) = exp
{
− CΓ(1− α)

α
λα
}
.

3 Explicit examples of GGC variables associated with

the (Gα, 0 ≤ α ≤ 1) family.

All the examples discussed in this Section are related to the r.v.’s. (Gα, 0 ≤ α ≤ 1)
introduced in [BFRY]. Below, we indicate the properties of these r.v.’s which we shall use.
We also recall our notation :

Γt(Gα) = γt ·Dt(Gα) and (3.1)

E(e−λΓt(Gα)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−xGα)

}
(λ, t ≥ 0) (3.2)

3.1 The family (Gα, 0 ≤ α ≤ 1).
(
see [BFRY])

)
3.1.a. For 0 < α < 1, the density fGα of Gα equals :

fGα(x) =
α sin(πα)

(1− α)π

xα−1(1− x)α−1

(1− x)2α − 2(1− x)αxα cos(πα) + x2α
1[0,1](x) (3.3)

In particular :

• for α = 1/2, G1/2 follows the arc sine law :

fG1/2
(x) =

1

π

1√
x(1− x)

1[0,1](x), G1/2
(law)
= β1/2, 1/2 (3.4)

• for α = 1, G1 is uniform on [0, 1] (3.5)

• for α = 0, G0
(law)
=

1

1 + exp(πC)
(3.6)

where C is a standard Cauchy variable.
In general, for 0 < α < 1 one has :

E[e−λΓ1−α(Gα)] = exp
{
− (1− α)

∫ ∞

0

(1− e−λx)
dx

x
E(e−xGα)

}
= (1 + λ)α − λα (3.7)
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The density fΓ1−α(Gα) of Γ1−α(Gα) equals :

fΓ1−α(Gα)(x) =
α

Γ(1− α)

1

x1+α
(1− e−x) 1[0,∞](x) (3.8)

which may be translated as the following identities in law :

Γ1−α(Gα)
(law)
=

γ1−α

βα,1

(law)
=

γ1−α

U1/α
(3.9)

3.1.b. We note, for 0 < µ < 1, Sµ and S ′µ two independent copies of positive stable (µ)
r.v.’s, i.e. :

E(e−λSµ) = exp(−λµ) (λ ≥ 0) (3.10)

and, we let :

Zµ :=
(Sµ

S ′µ

)µ

(3.11)

Then
(
see [Lam] or [CY], p. 116

)
, the density fZµ of Zµ equals :

fZµ(x) =
sin(πµ)

πµ

1

x2 + 2x cos(πµ) + 1
1[0,∞](x) (3.12)

and we have :

Gα
(law)
=

(Z1−α)1/α

1 + (Z1−α)1/α
(3.13)

or equivalently :

1

Gα

(law)
= 1 +

1

(Z1−α)1/α

(law)
= 1 +

S ′1−α

S1−α

(3.14)

We note that the cumulative distribution function FZµ of Zµ equals :

FZµ(x) = 1− 1

πµ
arc tg

[ sin(πµ)

cos(πµ) + x

]
x ≥ 0 (3.15)

and that its inverse, in the sense of composition of functions, is given by :

F−1
Zµ

(x) =
sin (πµx)

sin
(
πµ(1− x)

) (0 ≤ x ≤ 1) (3.16)

(see Remark 2.4, point 3).
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3.1.c. Although this will not be used in the sequel, we indicate a realization of the r.v.
Γ1−α(Gα) which has been at the start of [BFRY]. Let (Rt, t ≥ 0) denote a Bessel process
starting from 0, with dimension d = 2(1− α), with 0 < d < 2, or equivalently 0 < α < 1.
Let, for any t > 0 :

g
(α)
t := sup{s ≤ t ; Rs = 0}, d

(α)
t := inf{s ≥ t, Rs = 0} (3.17)

and let e
(law)
= γ1 an exponentially distributed r.v., with mean 1, independent from (Rt, t ≥ 0).

Then :

Γ1−α(Gα)
(law)
= d(α)

e − g(α)
e (3.18)

A more general study of quantities such as the RHS of (3.18), has been developed by M.
Winkel [Wink].

3.2 Study of the subordinators
(
Γt(G1/2), t ≥ 0

)
and

(
Γt(1/G1/2), t ≥ 0

)
.

In this Section, G1/2 is a beta (1/2, 1/2) variable, i.e. : its law is the arc sine distribution.(
see (3.4)

)
.

3.2.a. Theorem 3.1.
Let

(
Γt(G1/2), t ≥ 0

)
denote the subordinator characterized by :

E(e−λΓt(G1/2)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG1/2)

}
(3.19)

The following explicit formulae hold :
1. Laplace transform of Γt(G1/2).

E(e−λΓt(G1/2)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
I0

(x
2

)
e−

x
2

}
(3.20)

=
(√

1 + λ−
√
λ
)2t

=
( 1
√

1 + λ+
√
λ

)2t

=
(
1 + 2λ+ 2

√
λ(1 + λ)

)−t
(3.21)

where, in (3.20), I0 denotes the modified Bessel function with index 0.
(
see [Leb], p. 108

)
2. Laws of Γt(G1/2) and of Dt(G1/2).

Γt(G1/2)
(law)
=

γt

β1/2,1/2+t

, Dt(G1/2)
(law)
=

1

β1/2,1/2+t

(law)
= 1 +

γt+1/2

γ1/2

(3.22)

The density of fΓt(G1/2) equals :

fΓt(G1/2)(x) =
22tΓ(1 + t)

2π Γ(2t)
xt−1

(∫ 1

0

e−xy
(
y(1− y)

)t−1/2
dy
)
1[0,∞](x) (3.23)
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3. Wiener-Gamma representation of Γt(G1/2).
For any t > 0 :

Γt(G1/2)
(law)
=

∫ t

0

dγu

sin2
(

πu
2t

) (law)
=

∫ t

0

dγu

cos2
(

πu
2t

) (3.24)

Here is the dual version of Theorem 3.1 :

Theorem 3.1*.
(
Cifarelli and Melilli, [CM]

)
Let

(
Γt(1/G1/2), t ≥ 0

)
denote the subordi-

nator characterized by :

E(e−λΓt(1/G1/2)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
G1/2 )

}
(3.25)

Then :

1. Laplace transform of Γt(1/G1/2).

E(e−λΓt(1/G1/2)) =
( 2

1 +
√

1 + λ

)2t

(λ, t ≥ 0) (3.26)

2. Laws of Γt(1/G1/2) and of Dt(1/G1/2).

Γt(1/G1/2)
(law)
= γt · βt+1/2, t+1/2, Dt (1/G1/2)

(law)
= βt+1/2, t+1/2 (3.27)

The density fΓt(1/G1/2) of Γt

( 1

G1/2

)
equals :

fΓt(1/G1/2)(x) =
t · 22t

Γ(1/2 + t)
√
π
xt−1

(∫ 1

0

e−
x
y
(1− y)t−1/2

√
y

dy
)
1[0,∞](x) (3.28)

3. Wiener-Gamma representation of Γt(1/G1/2).
For any t ≥ 0 :

Γt

( 1

G1/2

)
(law)
=

∫ t

0

cos2
(πu

2t

)
dγu

(law)
=

∫ t

0

sin2
(πu

2t

)
dγu (3.29)

Remark 3.2.
1) Theorem 3.1*. has been obtained by Cifarelli and Melilli [CM]. It would be possible

to prove Theorem 3.1 by first using Theorem 3.1* and then by applying the duality Theorem
2.1. In fact, we shall operate conversely, as we shall first prove Theorem 3.1, then we shall
show that Theorem 3.1* may be deduced from it, due to the duality Theorem 2.1.

2) By comparing formula (3.20) with formula (1.76), we deduce :

(J (0)
t , t ≥ 0)

(law)
=
(1

2
Γt(G1/2), t ≥ 0

)
44



3) We come back to (3.26) and we write :

2

1 +
√

1 + λ
=

1

1 + 1
2
(
√

1 + λ− 1)
=

∫ ∞

0

e−u−u
2
(
√

1+λ−1)du

= E
(
exp− λS

(1)
1/2

( e

2

))
(3.30)

where
(
S

(1)
1/2(t), t ≥ 0

)
denotes the stable (1/2) subordinator, Esscher transformed, with

the Esscher transformation with parameter 1
(
see [Sat]

)
. In (3.30), e denotes a standard

exponential r.v. independent from
(
S

(1)
1/2(t), t ≥ 0

)
. Hence :( 2

1 +
√

1 + λ

)2t

= E
(
exp
(
− λS

(1)
1/2

(γ2t

2

)))
(3.31)

where the subordinators
(
S

(1)
1/2(t), t ≥ 0

)
and (γ2t, t ≥ 0) featured in (3.31) being assumed

independent. This formula led James and Yor to consider, more generally, the subordinator(
S

(ν)
1/2(γt), t ≥ 0

)
. In the article [JY], the following is obtained :

(
Γt(G1/2), t ≥ 0

) (law)
=
(
S1/2(γ2t) + S̃

(1)
1/2(γ2t), t ≥ 0

)
(3.32)

where, on the right-hand side of (3.32), the three subordinators S1/2, S̃
(1)
1/2 and γ are assumed

independent, and
(
S1/2(t), t ≥ 0)

(law)
=
(
S̃1/2(t), t ≥ 0

)
.

3.2.b. Proof of Theorem 3.1.

i) We already prove (3.21). In fact, (3.21) follows immediately from (3.6), since :

E[e−λΓt(G1/2)] =
(
E[e−λΓ1/2(G1/2)]

)2t

=
(√

1 + λ−
√
λ
)2t

=

(
1

√
1 + λ+

√
λ

)2t

=

(
1

1 + 2λ+ 2
√
λ(1 + λ)

)t

ii) We now prove (3.20), which is equivalent to :

E(e−xG1/2) = e−
x
2 I0

(x
2

)
, x ≥ 0 (3.33)

From the Lipschitz-Hankel formula
(
see [Wat] or [MNY], Th. 1.1

)
:

ν

∫ ∞

0

e−axIν(x)
dx

x
=
(
a+

√
a2 − 1

)−ν
(a ≥ 1, ν > 0) (3.34)

we deduce :

ν

∫ ∞

0

(1− e−λx)e−
x
2 Iν

(x
2

)dx
x

= 1−
(
2λ+ 1 + 2

√
λ(1 + λ)

)−ν
(3.35)
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then, letting ν → 0 in (3.35) :∫ ∞

0

(1− e−λx)e−
x
2 I0

(x
2

)dx
x

= log
(
2λ+ 1 + 2

√
λ(1 + λ)

)
(3.36)

Hence :

E(e−λΓ1(G1/2)) = exp
{
−
∫ ∞

0

(1− e−λx)
dx

x
E(e−xG1/2)

}
=

(
1

√
1 + λ+

√
λ

)2

=
1

2λ+ 1 + 2
√
λ(1 + λ)

= exp
{
−
∫ ∞

0

(1− e−λx)
dx

x
e−

x
2 I0

(x
2

)}
This formula, which is of interest by itself, shall not be used in the sequel of this proof.

iii) We now prove point 2 of Theorem 3.1.

For this purpose, we shall use the following property of hypergeometric functions:
(
see

[Leb], p. 238
)
. Let, for α, δ, γ reals

(
cf [Leb], p. 239

)
:

F (α, δ, γ ; z) =
Γ(γ)

Γ(δ)Γ(γ − δ)

∫ 1

0

tδ−1(1− t)γ−δ−1(1− tz)−αdt (3.37)(
γ > δ > 0, |z| < 1

)
= E

(
(1− zβδ,γ−δ)

−α
)

(3.38)

Lemma 3.3. Let a, b, c three positive reals. Then :

1) E
(
e
−λ γa

βb,c

)
=

Γ(a+ b) Γ(b+ c)

Γ(b) (Γ(a+ b+ c)

1

λa
F
(
a, a+ b, a+ b+ c ; −1

λ

)
(λ ≥ 0) (3.39)

2) E(e−λγaβb,c) = F (a, b, b+ c ; −λ) (λ ≥ 0) (3.40)

Proof of Lemma 3.3.

Since E(e−λγa) =
1

(1 + λ)a
, we have :

E(e
−λ γa

βb,c ) = E

[(
1

1 + λ
βb,c

)a]
=

1

B(b, c)

∫ 1

0

xaxb−1

(x+ λ)a
(1− x)c−1dx(

by definition of the beta (b, c) law
)

=
B(a+ b, c)

B(b, c)

1

B(a+ b, c)

1

λa

∫ 1

0

xa+b−1(1− x)c−1(
1 + x

λ

)a dx

=
Γ(a+ b) Γ(b+ c)

Γ(b) Γ(a+ b+ c)

1

λa
E
((

1 +
βa+b,c

λ

)−a)
,
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hence point 1 of Lemma 3.3, from (3.38). Point 2 of Lemma 3.3 may be obtained from
similar arguments.
We now end the proof of point 2 of Theorem 3.1. From Lemma 3.3, we have :

E(e
−λ

γt
β 1

2 , 12+t ) =
Γ
(
t+ 1

2
) Γ(t+ 1)

Γ(1
2
) Γ(2t+ 1)

1

λt
F (t, t+

1

2
, 2t+ 1 ; −1

λ

)

=
Γ
(
t+ 1

2
) Γ(t+ 1)

Γ(1
2
) Γ(2t+ 1)

1

λt

(1 +
√

1 + 1
λ

2

)−2t

(3.41)

since
(
see [Leb], p. 259

)
:

F
(
α, α+

1

2
, 2α+ 1 ; z

)
=
(1 +

√
1− z

2

)−2α

Using Legendre’s duplication formula
(
[Leb], p. 4

)
:

Γ
(
t+

1

2

)
Γ(t+ 1) = 2−2t

√
π(2t+ 1)

(
with Γ

(1

2

)
=
√
π
)

we obtain :

E(e
−λ

γt
β 1

2 , 12+t ) =
( 1
√

1 + λ+
√
λ

)2t

= E(e−λΓt(G1/2))

from (3.21). Hence :

γt

β 1
2
, 1
2
+t

(law)
= Γt(G1/2) (3.42)

The form of the density of Γt(G1/2) follows easily from (3.42).

iv) From Proposition 1.3 and (1.18), to show point 3 amounts to compute the inverse
of the cumulative distribution function of G1/2. Now, we have :

FG1/2
(x) := P (G1/2 ≤ x) =

1

π

∫ x

0

du√
u(1− u)

=
2

π
Arc sin (

√
x) x ≥ 0

so that F−1
G1/2

(y) = sin2
(πy

2

)
(0 ≤ y ≤ 1).

3.2.c Proof of Theorem 3.1*.

i) We prove point 1, in two different ways :

• A direct proof.
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We deduce, as a particular case of the beta-gamma algebra, that :

N2

2

(law)
= γ1/2

(law)
= eβ 1

2
, 1
2

(3.43)

where N is a centered Gaussian variable, with variance 1, and e a standard exponential.
Hence :

P
(N2

2
> x

)
= P (e β 1

2
, 1
2
> x) = P

(
e >

x

β 1
2
, 1
2

)
= E(e

− x
β 1

2 , 12 )

Thus :∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
G1/2 ) = E

(∫ γ1/2

0

dx

x
(1− e−λx)dx

)
=

∫ 1

0

du

u

(
1− E

(
exp(−λu γ1/2)

))
(from the change of variable :x = u γ1/2)

=

∫ 1

0

du

u

(
1− 1

(1 + λu)1/2

)
= 2
(
log
(√

1 + λ+ 1
)
− log 2

)
hence :

E(e
−λΓt(

1
G1/2

)
) = exp

{
− 2t log

(√1 + λ+ 1

2

)}
=

( 2

1 +
√

1 + λ

)2t

=
( 4

2 + λ+ 2
√

1 + λ

)t

• We may also prove (3.26) with the help of the duality Theorem 2.1. Indeed, from (2.4) :

E(e
−λΓt(

1
G1/2

)
) = E

(
exp− 1

λ
Γt(G1/2)

)
·
exp− t E(log G1/2)

λt

=
4t(

1 + 2
λ

+ 2
√

1
λ
(1 + 1

λ
)
)t · 1

λt

from (3.21) and since E(log G1/2) = −log 4, from (2.7) and (3.22). Thus :

E(e
−λΓt(

1
G1/2

)
) =

4t(
2 + λ+ 2

√
1 + λ

)t =
( 2

1 +
√

1 + λ

)2t

ii) We now prove point 2 of Theorem 3.1*.
Of course, it would be possible to use point 2 of Lemma 3.3 to make this proof, in the same
manner that we have used point 1 of this Lemma 3.3 to show point 2 of Theorem 3.1. In
fact, we prefer to use formula (2.7) of the duality Theorem 2.1. We have :

fΓt(1/G1/2)(u) = e−t E(log G1/2)u
t−1

Γ(t)
E(e−u Dt(G1/2))

=
4t

Γ(t)
ut−1 E(e

− u
β 1

2 , 12+t )
(
from (3.22)

)
(3.44)
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Considering now the Laplace transform of the two sides of (3.44) we obtain :

E(e
−λΓt(

1
G1/2

)
) =

4t

Γ(t)
E
(∫ ∞

0

e−λuut−1e
− u

β 1
2 , 12+t du

)
=

4t

Γ(t)
E
[( β 1

2
, 1
2
+t

1 + λβ 1
2
, 1
2
+t

)t]
=

4tB(t+ 1
2
, t+ 1

2
)

B(1
2
, 1

2
+ t)

E
[( 1

1 + λβt+ 1
2
, 1
2
+t

)t]
(3.45)

Note that, by taking λ = 0 in (3.45), we get :

4t B(t+ 1
2
, t+ 1

2
)

B(1
2
, t+ 1

2
)

= 1

(which may also be recovered from the duplication formula for the Gamma function).
Hence :

E(e
−λΓt(

1
G1/2

)
) = E

[( 1

1 + λβt+1/2, t+1/2

)t]
= E(e−λγtβt+1/2, t+1/2)

The other formulae of Theorem 3.1* are now easily obtained. In particular, since :

F−1
1/G1/2

(u) =
1

F−1
G1/2

(1/u)
=

1

sin2 πu
2

, we have, from Proposition 1.3 :

Γt(1/G1/2)
(law)
=

∫ t

0

dγu

F−1
1/G1/2

(u
t
)

=

∫ t

0

sin2
(πu

2t

)
dγu.

3.3 Study of the r.v.’s Γ1−α(Gα) and Γ1−α(1/Gα), 0 < α < 1

3.3.a. Theorem 3.4. Let, for 0 < α < 1,
(
Γt(Gα), t ≥ 0

)
the subordinator characterized

by :

E(e−λΓt(Gα)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−xGα)

}
(3.46)

We then have the following explicit formulae :

1. Laplace transform of Γt(Gα).

E(e−λΓt(Gα)) =
(
(1 + λ)α − λα

) t
1−α (λ, t ≥ 0) (3.47)

2. Distributions of Γ1−α(Gα) and of D1−α(Gα).

Γ1−α(Gα)
(law)
=

γ1−α

βα,1

(law)
=

γ1−α

U1/α
(3.48)

D1−α(Gα)
(law)
=

1

βα,1

(law)
=

1

U1/α

(law)
= 1 +

γ1

γα

(3.49)
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(
where

γ1

γα

is, by definition, a Pareto r.v. with parameter α
)
. The density fΓ1−α(Gα) of

Γ1−α(Gα) equals :

fΓ1−α(Gα)(x) =
α

Γ(1− α)

1

x1+α
(1− e−x) 1[0,∞[(x) (3.50)

3. Wiener-Gamma representation of Γt(Gα).
For every t ≥ 0 and 0 < α < 1 :

Γt(Gα)
(law)
=

∫ t

0

[
1 +

(
sin
(
π(1− α)( t−u

t
)
)

sin
(
π(1− α)u

t

) )1/α]
dγu (3.51)

(law)
=

∫ t

0

[
1 +

(
sin
(
π(1− α)u

t

)
sin
(
π(1− α)

(
t−u

t

)))1/α]
dγu

In particular, for t = 1− α :

Γ1−α(Gα)
(law)
=

∫ 1−α

0

[
1 +

(
sin(πu)

sin π(1− α− u)

)1/α]
dγu (3.52)

We note that, for α = 1/2, formula (3.52) cöıncides with (3.24). The dual version of
Theorem 3.4 is :

Theorem 3.4*. Let 0 < α < 1 and let
(
Γt(1/Gα), t ≥ 0

)
the subordinator characterized

by :

E(e−λΓt(1/Gα)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−

x
Gα )
}

(3.53)

Then :

1. Laplace transform of Γt(1/Gα).

E(e−λΓt(1/Gα)) =
( 1

α

(1 + λ)α − 1

λ

) t
1−α

(3.54)

2. Laws of Γ1−α(1/Gα) and of D1−α(1/Gα).

Γ1−α(1/Gα)
(law)
= γ1−α · U, D1−α(1/Gα)

(law)
= U (3.55)(

we note that the law of D1−α(1/Gα) does not depend on α, and it may be compared with
(3.27) : β1,1 = U

)
.The density fΓ1−α(1/Gα) of Γ1−α(1/Gα) equals :

fΓ1−α(1/Gα)(x) =
1

Γ(1− α)

1

xα

(∫ ∞

1

e−xy dy

yα+1

)
1[0,∞[(x) (3.56)

3. Wiener-Gamma representation of Γt(1/Gα).
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For every t ≥ 0 :

Γt

( 1

Gα

)
(law)
=

∫ t

0

dγu

1 +
(

sin
(

π(1−α)
(

t−u
t

))
sin
(

π(1−α)u
t

) )1/α
(3.57)

(law)
=

∫ t

0

dγu

1 +
(

sin
(

π(1−α)u
t

)
sin
(

π(1−α)
(

t−u
t

)))1/α
(3.58)

Remark 3.5.

1) Formula (3.51) was originally obtained by T. Fujita and M. Yor
(
see [FY]

)
.

2) We deduce from Proposition 1.6 :

E
(
D1−α

( 1

Gα

))
= E(Gα) = E(U) =

1

2

(
from (3.55)

)
(3.59)

Of course, we may verify directly that :

E(Gα) =
1

2

starting from the formula :

E
(
exp(− λe Gα)

)
=

α

1− α

1− (1 + λ)α−1

(1 + λ)α − 1
(3.60)

(
see [BFRY], formula 1.19

)
, then taking the derivative in λ = 0.

3) In [BFRY], Section 4.2.1, the positive variables Xα,1 whose Laplace transforms equal :

E(e−λ Xα,1) =
1

α

(1 + λ)α − 1

λ
(0 < α < 1)

have been introduced. We note that, from (3.54) :

Xα,1
(law)
= Γ1−α

( 1

Gα

)
(3.61)

4) Since Γ1−α(1/Gα)
(law)
= γ1−α · U and Γ1−α(Gα)

(law)
=

γ1−α

U1/α
the relations (3.51) and (3.57)
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may also be written as :

1

U1/α
− 1

(law)
=

∫ 1−α

0

( sin(πu)

sin(π(1− α− u))

)1/α

du(D
(1−α)
u )

(law)
=

∫ 1−α

0

(sin(π(1− α− u))

sin(πu)

)1/α

du (D(1−α)
u )

and

U
(law)
=

∫ 1−α

0

du(D
(1−α)
u )

1 +
(

sin(π(1−α−u))
sin(πu)

)1/α

(law)
=

∫ 1−α

0

du(D
(1−α)
u )

1 +
(

sin(πu)
sinπ(1−α−u)

)1/α
(3.62)

In particular, for α =
1

2
, one finds :

U
(law)
=

∫ 1/2

0

cos2(πu) du(D
(1/2)
u )

(law)
=

∫ 1/2

0

sin2(πu)du(D
(1/2)
u )

3.3.b. Proof of Theorem 3.4.

i) Point 1) is an immediate consequence of (3.6) and point 2) of (3.7), as may be shown
after some elementary computations.

ii) We now prove point 3. From Proposition 1.3, it amounts to compute FGα and its
inverse. However, from (3.12) and (3.11), we find, successively :

FGα(x) = P (Gα < x) = P
( Z

1/α
1−α

1 + Z
1/α
1−α

< x
)

= P
(
Z1−α <

( x

1− x

)α)
(0 ≤ x ≤ 1)

i.e. :

FGα(x) = FZ1−α

(( x

1− x

)α)
(0 ≤ x ≤ 1) (3.63)

hence :

F−1
Gα

(x) =

(
F−1

Z1−α
(x)
)1/α

1 +
(
F−1

Z1−α
(x)
)1/α

(3.64)

then :

FZ1−α(x) = P (Z1−α ≤ x) =
sin π(1− α)

π(1− α)

∫ x

0

dy

y2 + 2y
(
cos π(1− α)

)
+ 1

= 1− 1

π(1− α)
arc tg

( sin π(1− α)

cos π(1− α) + x

)
(3.65)

= ∧1−α(x) with the notation of (2.29)
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and, from (3.15) :

F−1
Z1−α

(x) =
sin
(
π(1− α)x

)
sin
(
π(1− α)(1− x)

) (3.66)

hence, plugging (3.66) in (3.64), we obtain :

1

F−1
Gα

(x)
= 1 +

(sin
(
π(1− α)(1− x)

)
sin
(
π(1− α)x

) )1/α

(3.67)

which, thanks to Proposition 1.3, proves point 3) of Theorem 3.4.

3.3.c. Proof of Theorem 3.4*.
We use the duality theorem. From formula (2.7) :

fΓ1−α(Gα)(x) ∼
x→0

x−α

Γ(1− α)
e(1−α) E(log Gα) (3.68)

which we compare with (3.50) :

fΓ1−α(Gα)(x) =
α

Γ(1− α)

1

x1+α
(1− e−x) 1[0,∞[(x)

and we deduce :

E(log Gα) =
logα

1− α
(3.69)

Then, using this time (2.4) :

E(e−λ Γt(
1

Gα
)) = exp

{
− t
(
E(log Gα) + log λ+ ψGα

(1

λ

))}
=

[
exp
(
− t

1− α
logα

)] 1

λt

[(
1 +

1

λ

)α

−
(1

λ

)α] t
1−α

from (3.69) and (3.47) :

=
[ 1

α

(1 + λ)α − 1

λ

] t
1−α

(3.70)

which establishes (3.54). The density of Γ1−α

( 1

Gα

)
may be computed from the density

formula (2.7) and the knowledge of the law of D1−α(Gα)
(law)
=

1

U1/α
, given by (3.49). All the

formulae in point 2 of Theorem 3.4* follow easily from the explicit expression of fΓ1−α( 1
Gα

),

and point 3 of Theorem 3.4* follows from :

F−1
1/Gα

(y) · F−1
Gα

(1− y) = 1,

and from Proposition 1.3.
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3.4 Study of the subordinators
(
Γt(µ+ G0), t ≥ 0

)
and

(
Γt

(
1

µ+G0

)
, t ≥ 0

)
We recall the following formula, which was established in [BFRY]

(
see formulae (3.11) and

(3.9) in [BFRY]
)

:

exp
{
−
∫ ∞

0

(1− e−λx)
dx

x
E(e−x(µ+G0))

}
=

log
(
1 + 1

λ+µ

)
log
(
1 + 1

µ

) λ, µ ≥ 0 (3.71)

This formula was obtained in [BFRY] by “letting α tend to 0 in the study of the r.v.’s
Gα”. Here, G0 satisfies

(
see (3.5)

)
:

G0
(law)
=

1

1 + expπC
, where C denotes a standard Cauchy r.v. (3.72)

3.4.a.Theorem 3.6. Let µ > 0 be fixed and let
(
Γt(µ+G0), t ≥ 0

)
denote the subordinator

which is characterized by :

E(e−λ Γt(µ+G0)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−x(µ+G0))

}
(3.73)

Then :

1. Laplace transform of Γt(µ+ G0).

E(e−λ Γt(µ+G0)) =

(
log
(
1 + 1

λ+µ

)
log
(
1 + 1

µ

) )t

(3.74)

2. Laws of Γ1(µ+ G0) and D1(µ+ G0).

The densities of Γ1(µ+ G0) and D1(µ+ G0) equal :

fΓ1(µ+G0)(x) =
1

log
(
1 + 1

µ

) e−µx 1− e−x

x
1[0,∞[(x) (3.75)

fD1(µ+G0)(x) =
1

log
(
1 + 1

µ

) 1

x
1[ 1

µ+1
, 1
µ

](x) (3.76)

3. Wiener-Gamma representation of Γt(µ+ G0).
For every t ≥ 0 :

Γt(µ+ G0)
(law)
=

∫ t

0

1 + exp
(
cotg

(
πu
t

))
1 + µ

(
1 + exp

(
cotg

(
πu
t

))) dγu (3.77)

Here is the dual version of Theorem 3.6.

Theorem 3.6*. Let µ ≥ 0 and
(
Γt

( 1

µ+ G0

)
, t ≥ 0

)
denote the subordinator characteri-

zed by :

E(e
−λ Γt(

1
µ+G0

)
) = exp

{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
µ+G0 )

}
(3.78)
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Then :

1. Laplace transform of Γt

( 1

µ+ G0

)
·

E
[
e
−λ Γt(

1
µ+G0

)]
=
[1

λ
log
(1 + λ(1 + µ)

1 + λµ

)]t
(3.79)

2. Laws of Γ1

( 1

µ+ G0

)
and D1

( 1

µ+ G0

)
·

Γ1

( 1

µ+ G0

)
(law)
= e(U + µ), D1

( 1

µ+ G0

)
(law)
= U + µ (3.80)

In particular, for µ = 0 :

Γ1

( 1

G0

)
(law)
= e · U, D1

( 1

G0

)
(law)
= U (3.81)

The density of Γ1

( 1

µ+ G0

)
equals :

f
Γ1

(
1

µ+G0

)(x) =
(∫ 1

0

1

µ+ y
exp
(
− x

µ+ y

)
dy
)
1[0,∞[(x) (3.82)

3. Wiener-Gamma representation of Γt

( 1

µ+ G0

)
·

For every µ ≥ 0 and t ≥ 0 :

Γt

( 1

µ+ G0

)
(law)
=

∫ t

0

1 + µ
(
1 + exp

(
− cotg πu

t

))
1 + exp

(
− cotg πu

t

) dγu (3.83)

Remark 3.7.
1) We may take µ = 0 in the statement of Theorem 3.6*, since E

(
log+(G0)

)
<∞, but not

in that of Theorem 3.6.

2) Formula (3.79), with µ = 0, was obtained by Bondesson
(
[B1], Ex. 3.3.1, p. 42

)
and

the relation D1

( 1

G0

)
(law)
= U has been obtained, independently, by Diaconis and Freedman(

[DF], Ex. 7.4, p. 74
)

and by Cifarelli and Melilli
(
[CM], Ex. 2, p. 1393

)
.

3) The formula D1

( 1

G0

)
(law)
= U may be obtained by letting α −→ 0, in (3.55) and formula

Γ1

(
1

G0

)
= e.U is formula (3.55) with α = 0.

3.4.b. Proof of Theorem 3.6.
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Point 1 follows immediately from (3.71), whereas formula (3.75) is a consequence of :

E(e−λ Γ1(µ+G0)) =
log
(
1 + 1

λ+µ

)
log
(
1 + 1

µ

) =
1

log
(
1 + 1

µ

) ∫ λ+µ

λ+µ−1

dv

1 + v

=
1

log
(
1 + 1

µ

) ∫ λ+µ

λ+µ−1

dv

∫ ∞

0

e−x(1+v)dx

=
1

log
(
1 + 1

µ

) ∫ ∞

0

e−xdx

∫ λ+µ

λ+µ−1

exp(−xv)dv

=
1

log
(
1 + 1

µ

) ∫ ∞

0

e−(λ+µ)x 1− e−x

x
dx

On the other hand, formula (3.76), which yields the density of fD1(µ+G0) follows from :

E[e−λ Γ1(µ+G0)] =
log
(
1 + 1

λ+µ

)
log
(
1 + 1

µ

) = E

(
1

1 + λD1(µ+ G0)

)
1

log
(
1 + 1

µ

) ∫ 1
µ

1
µ+1

dx

x
· 1

1 + λx

(
after writing

1

x(1 + λx)
=

1

x
− λ

1 + λx

)
Then, the last point in Theorem 3.6 follows, with the help of (3.72), from :

F−1
µ+G0

(y) = µ+
1

1 + exp tg
(

π
2
(1− 2y)

)
=

1 + µ(exp(cotg(πy)) + 1)

1 + exp cotg(πy)
(3.84)

Proof of Theorem 3.6*.
It may be proven by using the duality theorem. From (2.7) and (3.75) :

fΓ1(µ+G0)(0) = eE(log(µ+G0)) =
1

log
(
1 + 1

µ

)
i.e. :

E
(
log(µ+ G0)

)
= −log

(
log

(
1 +

1

µ

))
(3.85)

We then apply the duality theorem :

E(e
−λ Γt(

1
µ+G0

)
) = E(e−

1
λ

Γt(µ+G0)) · 1

λt
· e−t E

(
log(µ+G0)

)
=

(
log
(
1 + 1

µ

)
λ

)t

·

 log
(
1 + 1

1
λ
+µ

)
log
(
1 + 1

µ

)
t
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(
from (3.85) and (3.79)

)
=

[
1

λ
log

(
1 + λ(1 + µ)

1 + λµ

)]t

We now compute the density of Γ1

( 1

µ+ G0

)
by using (2.7) :

f
Γ1

(
1

µ+G0

)(x) = e−E(log(µ+G0))E(e−x D1(µ+G0))

= log
(
1 +

1

µ

)
·
∫ 1

µ

1
µ+1

1

y log
(
1 + 1

µ

) e−xydy(
from (3.85) and (3.76)

)
=

∫ 1

0

1

µ+ y
e−

x
µ+y dy (3.86)

Formula (3.80) now follows easily from (3.86).
We deduce, from Proposition 1.6, that :

E

[
Γ1

(
1

µ+ G0

)]
= E(µ+ G0) = E (D1(µ+ G0))

= E(U + µ) =
1

2
+ µ·

In particular, we have :

E(G0) = E(U) =
1

2
·

Finally, the last point of Theorem 3.6* follows from Proposition 1.3 and from (3.84).

3.5 Study of the subordinators
(
Γt(G1), t ≥ 0

)
and

(
Γt(1/G1), t ≥ 0

)
In this Section

(
see (3.5)

)
, G1 denotes a uniform r.v. on [0, 1].

Theorem 3.8. Let
(
Γt(G1), t ≥ 0

)
denote the subordinator characterized by :

E(e−λ Γt(G1)) = exp
{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG1)

}
(3.87)

Then :

1. Laplace transform of Γt(G1).

E(e−λ Γt(G1)) =

(
λλ

(1 + λ)1+λ

)t

λ, t ≥ 0 (3.88)
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2. Laws of Γ1(G1) and D1(G1).
The expressions of the densities of Γ1(G1) and D1(G1) are :

fΓ1(G1)(x) =
1

π

(∫ 1

0

e−xy sin (π y)dy

yy(1− y)1−y

)
1[0,∞[(x) (3.89)

fD1(G1)(x) =
sin
(

π
x

)
π(x− 1)1− 1

x

1[1,∞[(x) (3.90)

3. Wiener-Gamma representation of Γt(G1).
For every t ≥ 0 :

Γt(G1)
(law)
= t

∫ t

0

dγu

u

(law)
= t

∫ t

0

dγu

t− u
(3.91)

Here is now the dual version of Theorem 3.8, which is due to Diaconis and Kemperman
[DK].

Theorem 3.8*. Let

(
Γt

(
1

G1

)
, t ≥ 0

)
denote the subordinator characterized by :

E(e
−λ Γt(

1
G1

)
) = exp

{
− t

∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
G1 )
}

(3.92)

Then :

1. Laplace transform of Γt(1/G1).

E(e−λ Γt(1/G1)) = (e(1 + λ)−
1+λ

λ )t t, λ ≥ 0 (3.93)

2. Laws of Γ1(1/G1) and D1(1/G1).
The densities of Γ1(1/G1) and D1(1/G1) equal :

fΓ1(1/G1)(x) =
e

π

(∫ 1

0

e−
x
y

sin (πy)dy

yy+1(1− y)1−y

)
1[0,∞[(x) (3.94)

fD1(1/G1)(x) =
e sin(πx)

π

1

xx(1− x)1−x
1[0,1](x) (3.95)

3. Wiener-Gamma representation of Γt(1/G1).
For every t ≥ 0 :

Γt(1/G1)
(law)
=

1

t

∫ t

0

(t− u) dγu
(law)
=

1

t

∫ t

0

u dγu (3.96)

Remark 3.9.
1) Theorem 3.8*, and in particular formula (3.95), are due to P. Diaconis and J. Kem-
perman [DK]. Formula (3.95) may also be found in

(
[CY], Ex. 4.4, p. 98

)
corrected with

multiplication by e in that formula.

58



2) i) A r.v. Z, which takes values on R, is said to be a Luria-Delbrück r.v. if it satisfies :

E(e−λZ) = λλ (λ ≥ 0) (3.97)

and M. Möhle [Möh] determined the density fZ of this r.v. :

fZ(x) =
1

π

∫ ∞

0

e−
xt
2 cos(x t+ t log t) dt (x ∈ R)

=
1

π

∫ ∞

0

e−x t−t log t(sin πt)dt (3.98)

ii) On the other hand, it is proven in
(
[RoY], § III, 1.3, p. 1251, with α = k = 1

)
that

there exists a Wald couple (X,H), which is infinitely divisible and such that :

• H is positive and X and H are infinitely divisible.

• E(e−
λ2

2
H) · E(eλX) = 1 λ ≥ 0

• E(e−
λ2

2
H) = (1 + λ)−(1+λ)eλ,

• E(eλX) = (1 + λ)1+λe−λ (3.99)

Thus :

E(eλ(X+1)) = (1 + λ)1+λ (3.100)

hence, from (3.88), with t = 1:

Γ1(G1)− (1 +X)
(law)
= Z (3.101)

iii) We denote by Z̃ a r.v. defined from Z via the following Esscher transform :

E
(
ϕ(Z̃)

)
:= E

(
ϕ(Z) · e−Z

)
(ϕ Borel and bounded)(

we note that E(e−Z) = 1, from (3.97)
)
. Thus, we have :

E(e−λ eZ) = E(e−(1+λ)Z) = (1 + λ)1+λ

so that :

Z̃
(law)
= −(1 +X) (3.102)

hence, from (3.101) :

Γ1(G1) + Z̃
(law)
= Z (3.103)

We also note that Letac [Let] characterized the law defined by (3.102).
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3.5.b. Proofs of Theorems 3.8 and 3.8*.
i) We prove (3.88), which it suffices to obtain for t = 1. We have :

∂

∂λ
log

(
λλ

(1 + λ)1+λ

)
= log

(
λ

1 + λ

)
= −log

(
1 +

1

λ

)
(3.104)

whereas :∫ ∞

0

(1− e−λx)
dx

x
E(e−x G1) =

∫ ∞

0

(1− e−λx)(1− e−x)
dx

x

Hence :

− ∂

∂λ

∫ ∞

0

(1− e−λx)
dx

x
E(e−x G1) = −

∫ ∞

0

e−λx dx

x
(1− e−x)

= −log

(
1 +

1

λ

)
(3.105)

from Frullani’s integral. (3.88) now follows from the comparison of (3.104) and (3.105).

ii) We now prove (3.93) :∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
G1 ) =

∫ ∞

0

(1− e−λx)
dx

x

∫ ∞

1

e−uxdu

u2

=

∫ ∞

1

du

u2

∫ ∞

0

1− e−λx

x
e−uxdx (Fubini)

=

∫ ∞

1

du

u2
log

(
1 +

λ

u

)
(
from Frullani’s formula

(
see [Leb], p. 6, and (1.3) above

))
.

=

∫ 1

0

log (1 + λw)dw =
1

λ

(
(1 + λ) log(1 + λ)− λ

)
Thus :

E(e−λ Γ1(1/G1)) = exp
{
−
∫ ∞

0

(1− e−λx)
dx

x
E(e

− x
G1 )
}

= exp
{
− 1

λ

(
(1 + λ) log (1 + λ)− λ

)}
=

e

(1 + λ)
1+λ

λ

·

We may also show (3.93) with the help of the duality Theorem :

E(e−λ Γ1(1/G1)) =
e−E(log G1)

λ
E

(
exp− 1

λ
Γ1(G1)

)
=

e

λ

(
1
λ

) 1
λ(

1 + 1
λ

)1+ 1
λ

= e(1 + λ)−
1+λ

λ
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from (3.88) and since : E(log G1) = −E(γ1) = −1.

iii) Point 3) of Theorem 3.8 and 3.8* follows easily from Proposition 1.3 and from the
fact that FG1(u) = u (0 ≤ u ≤ 1).

iv) We now prove (3.94). For this purpose, we use the result of Diaconis and Kemper-
man [DK], see also [RGdN],

fD1(1/G1)(x) =
e sin πx

π

1

xx(1− x)1−x
1[0,1](x) (3.106)

The relation :

Γ1(1/G1) = γ1 ·D1(1/G1)

now implies easily (3.94).

v) We show (3.89) with the help of formula (2.7) in the duality Theorem :

fΓ1(G1)(x) = eE(log G1) E(e
−x D1( 1

G1
)
)

=
1

e
E(e

−x D1( 1
G1

)
)

=

∫ 1

0

e−xy sin πy

π

dy

yy(1− y)1−y
(3.107)

from (3.106). Finally, in order to show (3.90), we apply (2.10) :

fD1(G1)(x) = x−1 eE(log G1) fD1(1/G1)

(1

x

)
=

1

e x

e sin
(

π
x

)
π

1[0,1]

(1

x

) 1(
1
x

) 1
x
(
1− 1

x

)1− 1
x

(from (3.106))

=
sin
(

π
x

)
π(x− 1)1− 1

x

1[1,∞[ (x)
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Appendix

Interpolation between the subordinators
(
Γt(1/G), t ≥ 0

)
and (γt, t ≥ 0).
We denote, for every u ≥ 0, by σu : R −→ R the decreasing function defined by :

σu(x) :=
x sinhu+ coshu

x coshu+ sinhu
=
x tanhu+ 1

x+ tanhu
(3.108)

Since the image of R+ by σu is equal to ]tanh u, coth u], then for every positive r.v. G,
and every u > 0, we have : E

(
|log σu(G)|

)
<∞.

Let
(
Γt

(
σu(G)

)
, t ≥ 0

)
denote the subordinator defined by :

E
(
exp−λΓt

(
σu(G)

))
= exp

{
−tψσu(G)(λ)

}
= exp

{
−t
∫ ∞

0

(1−e−λx)
dx

x
E(e−xσu(G))

}
(3.109)

Since σ0(G) =
1

G
and σ∞(G) = 1, we have :(

Γt

(
σ0(G)

)
, t ≥ 0

)
=
(
Γt(1/G), t ≥ 0

)(
Γt

(
σ∞(G)

)
, t ≥ 0

)
=
(
γt, t ≥ 0

)
Thus, the family of subordinators

(
Γt

(
σu(G)

)
, t ≥ 0

)
interpolates, as u describes R+,

between
(
Γt(1/G), t ≥ 0

)
and (γt, t ≥ 0).

The aim of this appendix is to show that one may compute “explicitly” the Laplace trans-
form, the density, and the Wiener-Gamma representation of the r.v.’s Γt

(
σu(G)

)
in terms

of those of
(
Γt(G), t ≥ 0

)
, for every u ≥ 0.

Theorem A.1. We have, for every u ≥ 0 :

1) − ψG(σu(λ)) + ψσu(G)(λ) = log (λ coshu+ sinhu) + ku (3.110)

with ku = E

[
log

(
G

G sinhu+ coshu

)]
(3.111)

2) F−1
σu(G)(y) = σu

(
F−1

G (1− y)
)

(0 ≤ y ≤ 1) (3.112)

hence :

Γt

(
σu(G)

) (law)
=

∫ t

0

dγs

σu

[
F−1

G (1− s
t
)
] (law)

=

∫ t

0

dγs

σu

[
F−1

G ( s
t
)
] (3.113)
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3) The density fΓt(σu(G))of Γt

(
σu(G)

)
, equals :

fΓt(σu(G))(x)

=
e−x tanh u−t ku

coshu
E

{
e−Γt(G) tanh u

(
Γt(G)

x

) 1−t
2

· Jt−1

(
2
√
y Γt(G)

coshu

)}
1x>0

= xt−1 e
−x tanh u−t ku

Γ(t)
E
[(

coshu+Dt(G) sinhu
)−t

e
− x Dt(G)

cosh u(cosh u+Dt(G) sinh u

]
(3.114)

Remark A.2.

1. For u = 0, we have : σ0(G) =
1

G
, k0 = E(logG) and the preceding formulae and indeed

those of Theorem 2.1.

2. As u −→∞, the relation (3.113) becomes, by passage to the limit :

Γt

(
σ∞(G)

) (law)
=

∫ t

0

dγs = γt (3.115)

and it is not difficult to see, starting from (3.114), that :

fΓt(σu(G))(x) −→
u→∞

1

Γ(t)
e−x xt−11[0,∞[(x) = fγt

(x)

3. More generally than (3.110), if we take :

σ(x) :=
ax+ b

cx+ d
and σ̃(λ) :=

dx+ b

cx+ a
, we have :

−ψG (σ̃(λ)) + ψσ(G)(λ) = log (cλ+ a) + k(σ) (3.116)

with k(σ) := E

(
G

aG+ b

)
(3.117)

We observe that (3.116) and (3.117) follow immediately from :

−ψG

(
σ̃(λ)

)
+ ψσ(G)(λ) = −E

[
log

(
1 +

σ̃(λ)

G

)]
+ E

[
log

(
1 +

λ

σ(G)

)]
= E

[
log

(
1 +

λ(cG+ d)

aG+ b

)]
− E

[
log

(
1 +

dλ+ b

cλ+ a

1

G

)]
= E

[
log

(
(aG+ b) + λ(cG+ d)

aG+ b
· (cλ+ a)G

(cλ+ a)G+ dλ+ b

)]
= E

[
log

(cλ+ a)G

aG+ d

]
·
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Proof of Theorem A.1.
Point 1) is a particular case of point 3 of Remark A.2 and point 2) of Theorem A.1 is
trivial. Let us prove point 3. From (3.110), after multiplying by t, and exponentiating, we
deduce :

E
[
e−λ Γt(σu(G))

]
= e−tku E

[
e−Γt(G)σu(λ) 1

(λ coshu+ sinhu)t

]
(3.118)

then, multiplying each side of (3.118) by exp(−βλ) and integrating in λ from -tanh u to
+∞, we obtain :

E

(∫ ∞

−tanh u

e−λ Γt(σu(G))−βλdλ

)
= e−tku E

(∫ ∞

−tanh u

e−Γt(G)σu(λ)−βλ dλ

(λ coshu+ sinhu)t

)
(3.119)

Making, on the LHS of (3.119) the change of variable : λ coshu+ sinhu = µ, we obtain :

E

[
1

(β + Γt(σu(G))
e(tanh u)(Γt(σu(G))+β)

]

=
e−tku

coshu
E

e−Γt(G)tanh u+β tanh u

∫ ∞

0

e
− 1

cosh u

“
Γt(G)

µ
+βµ

”
µt

dµ


Thus, after simplifying by exp(β tanh u) and using formula 5.10.25, p. 109 in [Leb], we
obtain :

E

[
1

(β + Γt(σu(G))
etanh u Γt(σu(G))

]
=

2e−tku

coshu
E

[
e−Γt(G)tanh u

(
Γt(G)

β

) 1−t
2

·K1−t

(
2
√
β Γt(G)

coshu

)]
We then use the inversion formula of the Stieltjes transform, and thanks to a very similar
computation to the one made in section 2.2.b, we arrive to the identity :

ex tanh u fΓt(σu(G))(x) =
e−tku

coshu
E

[
e−Γt(G)tanh u

(
Γt(G)

x

) 1−t
2

Jt−1

(
2
√
xΓt(G)

coshu

)]
then to (3.116), by using the series development of Jt−1 :

fΓt(σu(G))(x) =
e−x tanh u−tkuxt−1

Γ(t)
E
{(

coshu+Dt(G)sinhu
)−t

e
− xDt(G)

cosh u(cosh u+Dt(G)tanh u)

}
Remark A.3. Formulae (3.114) and (3.115), in the more general situation when : σ(G) =
aG+ b

cG+ d
become :

fΓt(σ(G))(x) =
e−x a

c
−tk(σ)

c
E

(
e−

d
c

Γt(G)

(
Γt(G)

x

) 1−t
2

Jt−1

(
2
√
xΓt(G)

c

))
(3.120)
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where k(σ) is given by (3.117), and :

fΓt(σ(G))(x) =
xt−1

Γ(t)
e−x a

c
−tk(σ)E

{
(c+ dDt(G))−t e

− x Dt(G)
c(c+dDt(G))

}
(3.121)
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List of notations.

G,X,Z denote r.v.’s.
µG : law of G ; fG : density of G ; FG : cumulative distribution function of G ; F−1

G :
inverse function of FG.
Γ : GGC r.v. with associated Thorin measure µ.
m : total mass of µ .

γa : Gamma r.v. with parameter a (a > 0) ; γ1
(law)
= e, a standard exponential r.v.

βa,b : a beta r.v. with parameters a, b (a, b > 0).
U : a uniform r.v. on [0, 1].
C : a standard Cauchy r.v.
Yp : a Bernoulli r.v. (0 ≤ p ≤ 1).

(
P (Yp = 1) = p ; P (Yp = 0) = 1− p

)
Sα : a standard positive stable r.v., with index α (0 < α < 1), and density fα.
γ1

γδ

: a Pareto r.v. of index δ (γ1 and γδ independent).

Gθ generic notation for random variables considered in sections 2.5 and 2.6.
(Gα, 0 ≤ α ≤ 1) the family of r.v.’s introduced in 3.1. In particular :

G1/2
(law)
= β 1

2
, 1
2
, G0

(law)
=

1

1 + expπC
, G1

(law)
= U

Γm(G) a GGC r.v. with associated Thorin measure m · µG.

(γt, t ≥ 0) : standard gamma process

(
i.e. : subordinator with Lévy measure :

dx

x
e−x

)
.

(D
(m)
t , 0 ≤ t ≤ m) Dirichlet process with parameter m.(

Γt(G), t ≥ 0
)

: GGC subordinator with Thorin measure µG, and Lévy density :
1

x
E(e−xG).

ψG : the Bernstein function of the subordinator
(
Γt(G), t ≥ 0

)
:

ψG(λ) =

∫ ∞

0

(1− e−λx)
dx

x
E(e−xG)

Γ̃t(h) =

∫ t

0

h(s) dγs the Wiener-Gamma integral of h.

Dt(G) r.v. whose law is characterized by Γt(G)
(law)
= γtDt(G)

Dt(G) satisfies :

Dt(G)
(law)
=

∫ t

0

1

F−1
G (u/t)

du (D(t)
u )

(Ct, t ≥ 0), (St, t ≥ 0), (Tt, t ≥ 0) : hyperbolic subordinators.

(J (ν)
t , t ≥ 0), (K(ν)

t , t ≥ 0) : subordinators associated to the functions Iν and Kν .
Kν , Iν , Jν : modified and unmodified Bessel functions with index ν.
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S(t)(X) : Stieltjes transform with index t of the positive r.v. X :

S(t)(X)(λ) := E

(
1

(λ+X)t

)
(λ ≥ 0)

(
Sα(t), t ≥ 0

)
standard stable subordinator, with index α (0 < α < 1).

fα(x): density of Sα =(law) Sα(1).
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